
Simulink®

Reference

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Reference
© COPYRIGHT 2002–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002 Online only Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Online only Revised for Simulink 7.8 (Release 2011b)
March 2012 Online only Revised for Simulink 7.9 (Release 2012a)
September 2012 Online only Revised for Simulink 8.0 (Release 2012b)
March 2013 Online only Revised for Simulink 8.1 (Release 2013a)
September 2013 Online only Revised for Simulink 8.2 (Release 2013b)
March 2014 Online only Revised for Simulink 8.3 (Release 2014a)
October 2014 Online only Revised for Simulink 8.4 (Release 2014b)
March 2015 Online only Revised for Simulink 8.5 (Release 2015a)
September 2015 Online only Revised for Simulink 8.6 (Release 2015b)

v

Contents

Blocks — Alphabetical List
1

Functions — Alphabetical List
2

Mask Icon Drawing Commands
3

Simulink Debugger Commands
4

Simulink Classes
5

Model and Block Parameters
6

Model Parameters . 6-2
About Model Parameters . 6-2

vi Contents

Examples of Setting Model Parameters 6-83

Common Block Properties . 6-85
About Common Block Properties . 6-85
Examples of Setting Block Properties 6-95

Block-Specific Parameters . 6-96

Mask Parameters . 6-227
About Mask Parameters . 6-227

Simulink Identifier
7

Simulink Identifier . 7-2

==Fixed-Point Tool==
8

Fixed-Point Tool Parameters and Dialog Box 8-2
Main Toolbar . 8-2
Model Hierarchy Pane . 8-5
Contents Pane . 8-5
Customizing the Contents Pane View 8-8
Dialog Pane . 8-10
Fixed-Point Advisor . 8-13
Configure model settings . 8-14
Run name . 8-16
Simulate . 8-17
Merge instrumentation results from multiple simulations . . 8-18
Derive ranges for selected system . 8-19
Propose . 8-20
Propose for . 8-21
Default fraction length . 8-22
Default word length . 8-23
When proposing types use . 8-24
Safety margin for simulation min/max (%) 8-25

vii

Advanced Settings . 8-26
Advanced Settings Overview . 8-26
Fixed-point instrumentation mode 8-27
Data type override . 8-28
Data type override applies to . 8-31
Name of shortcut . 8-33
Allow modification of fixed-point instrumentation settings . 8-34
Allow modification of data type override settings 8-35
Allow modification of run name . 8-36
Run name . 8-37
Capture system settings . 8-38
Fixed-point instrumentation mode 8-39
Data type override . 8-40
Data type override applies to . 8-41
Manage shortcuts . 8-42

Model Advisor Checks
9

Simulink Checks . 9-2
Simulink Check Overview . 9-5
Migrating to Simplified Initialization Mode Overview 9-5
Identify unconnected lines, input ports, and output ports . . . 9-7
Check root model Inport block specifications 9-8
Check optimization settings . 9-9
Check diagnostic settings ignored during accelerated model

reference simulation . 9-11
Check for parameter tunability information ignored for

referenced models . 9-12
Check for implicit signal resolution 9-13
Check for optimal bus virtuality . 9-14
Check for Discrete-Time Integrator blocks with initial condition

uncertainty . 9-15
Identify disabled library links . 9-16
Identify parameterized library links 9-17
Identify unresolved library links . 9-18
Identify model reference variants and variant subsystems that

override variant choice . 9-19
Identify configurable subsystem blocks for converting to variant

subsystem blocks . 9-20
Check usage of function-call connections 9-20

viii Contents

Check model for upgradable Simulink Scope blocks 9-21
Check signal logging save format . 9-21
Check Data Store Memory blocks for multitasking, strong

typing, and shadowing issues . 9-23
Check if read/write diagnostics are enabled for data store

blocks . 9-25
Check data store block sample times for modeling errors . . . 9-27
Check for potential ordering issues involving data store

access . 9-28
Check for partial structure parameter usage with bus

signals . 9-30
Check Delay, Unit Delay and Zero-Order Hold blocks for rate

transition . 9-31
Check for calls to slDataTypeAndScale 9-34
Check bus usage . 9-36
Check for potentially delayed function-call subsystem return

values . 9-38
Identify block output signals with continuous sample time and

non-floating point data type . 9-40
Check usage of Merge blocks . 9-41
Check usage of Outport blocks . 9-44
Check usage of Discrete-Time Integrator blocks 9-55
Check model settings for migration to simplified initialization

mode . 9-56
Check for non-continuous signals driving derivative ports . . 9-60
Runtime diagnostics for S-functions 9-62
Check model for foreign characters 9-64
Check model for block upgrade issues 9-69
Check model for block upgrade issues requiring compile time

information . 9-70
Check that the model is saved in SLX format 9-73
Check model for SB2SL blocks . 9-75
Check Model History properties . 9-77
Identify Model Info blocks that can interact with external

source control tools . 9-78
Identify Model Info blocks that use the Configuration

Manager . 9-79
Check for Mux blocks used to create bus signals 9-80
Check bus usage . 9-81
Check model for legacy 3DoF or 6DoF blocks 9-83
Check model and local libraries for legacy Aerospace Blockset

blocks . 9-84
Check and update masked blocks in library to use promoted

parameters . 9-85

ix

Check and update mask image display commands with
unnecessary imread() function calls 9-85

Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter . 9-87

Identify questionable operations for strict single-precision
design . 9-88

Check get_param calls for block CompiledSampleTime 9-89
Check model for parameter initialization and tuning issues . 9-91
Check Rapid Accelerator signal logging 9-92
Check for root outports with constant sample time 9-93
Analyze model hierarchy and continue upgrade sequence . . 9-95

Model Reference Conversion Advisor
10

Model Reference Conversion Advisor 10-2
Check Conversion Input Parameters 10-3

Performance Advisor Checks
11

Simulink Performance Advisor Checks 11-2
Simulink Performance Advisor Check Overview 11-2
Baseline . 11-3
Checks that Require Update Diagram 11-3
Checks that Require Simulation to Run 11-3
Check Simulation Modes Settings . 11-3
Check Compiler Optimization Settings 11-3
Create baseline . 11-4
Identify resource-intensive diagnostic settings 11-4
Check optimization settings . 11-4
Identify inefficient lookup table blocks 11-5
Check MATLAB System block simulation mode 11-5
Identify Interpreted MATLAB Function blocks 11-6
Identify simulation target settings 11-6
Check model reference rebuild setting 11-6
Identify Scope blocks . 11-7

x Contents

Check model reference parallel build 11-7
Check Delay block circular buffer setting 11-9
Check solver type selection . 11-9
Select simulation mode . 11-10
Select compiler optimizations on or off 11-11
Final Validation . 11-12

Simulink Limits
12

Maximum Size Limits of Simulink Models 12-2

1

Blocks — Alphabetical List

1 Blocks — Alphabetical List

1-2

Abs

Output absolute value of input

Library

Math Operations

Description

The Abs block outputs the absolute value of the input.

For signed-integer data types, the absolute value of the most negative value is not
representable by the data type. In this case, the Saturate on integer overflow check
box controls the behavior of the block:

If you... The block... And...

Select this check
box

Saturates to the most
positive value of the
integer data type

• For 8-bit signed integers, -128 maps to
127.

• For 16-bit signed integers, -32768
maps to 32767.

• For 32-bit signed integers,
-2147483648 maps to 2147483647.

Do not select this
check box

Wraps to the most
negative value of the
integer data type

• For 8-bit signed integers, -128
remains -128.

• For 16-bit signed integers, -32768
remains -32768.

• For 32-bit signed integers,
-2147483648 remains -2147483648.

 Abs

1-3

The Abs block supports zero-crossing detection. However, when you select Enable zero-
crossing detection on the dialog box, the block does not report the simulation minimum
or maximum in the Fixed-Point Tool. If you want to use the Fixed-Point Tool to analyze a
model, disable zero-crossing detection for all Abs blocks in the model first.

Data Type Support

The Abs block accepts real signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

The block also accepts complex floating-point inputs. For more information, see “ Data
Types Supported by Simulink” in the Simulink® documentation.

Parameters and Dialog Box

The Main pane of the Abs block dialog box appears as follows:

1 Blocks — Alphabetical List

1-4

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

The Signal Attributes pane of the Abs block dialog box appears as follows:

 Abs

1-5

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

1 Blocks — Alphabetical List

1-6

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer™ documentation.

Saturate on integer overflow

Action Reason for Taking This
Action

What Happens Example

Select this
check box.

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to the
maximum value that the
data type can represent.

The number 130 does not
fit in a signed 8-bit integer
and saturates to 127.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can

 Abs

1-7

detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Examples

Usage as an Input to a MinMax Block

The sldemo_hardstop model shows how you can use the Abs block as an input to the
MinMax block.

In the sldemo_hardstop model, the Abs block is in the Friction Model subsystem.

1 Blocks — Alphabetical List

1-8

Usage as an Input to a Switch Block

The sldemo_zeroxing model shows how you can use the Abs block as an input to the
Switch block.

 Abs

1-9

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-10

Action Port

Implement Action subsystems used in if and switch control flow statements

Library

Ports & Subsystems

Description

Action Port blocks implement action subsystems used in if and switch control flow
statements. The If Action Subsystem and the Switch Case Action Subsystem
blocks each contain an Action Port block.

Data Type Support

Action Port blocks do not have data inputs or outputs.

 Action Port

1-11

Parameters and Dialog Box

• “States when execution is resumed” on page 1-11
• “Propagate sizes of variable-size signals” on page 1-13

States when execution is resumed

Specify how to handle internal states when a subsystem with an Action Port block
reenables.

Settings

Default: held

held

When the subsystem reenables, retains the states of the Action subsystem with their
previous values. Retains the previous values of states between calls even if calling
other member Action subsystems of an if-else or switch control flow statement.

reset

Reinitializes the states of the Action subsystem to initial values when the subsystem
reenables.

1 Blocks — Alphabetical List

1-12

Reenablement of a subsystem occurs when called and the condition of the call is true
after having been previously false. In the following example, the Action Port blocks
for both Action subsystems A and B have the States when execution is resumed
parameter set to reset.

If case[1] is true, call Action subsystem A. This result implies that the default
condition is false. When later calling B for the default condition, its states are reset.
In the same way, Action subsystem A states are reset when calling A right after
calling Action subsystem B.

Repeated calls to the Action subsystem of a case does not reset its states. If calling
A again right after a previous call to A, this action does not reset the states of A.
This behavior is because the condition of case[1] was not previously false. The same
applies to B.

Command-Line Information
Parameter: InitializeStates
Type: string
Value: 'held' | 'reset' |
Default: 'held'

 Action Port

1-13

Propagate sizes of variable-size signals

Specify when to propagate a variable-size signal.

Settings

Default: Only when execution is resumed

Only when execution is resumed

Propagates variable-size signals only when reenabling the subsystem containing the
Action Port block.

During execution

Propagates variable-size signals at each time step.

Command-Line Information
Parameter: PropagateVarSize
Type: string
Value: 'Only when execution is resumed' | 'During execution'
Default: 'Only when execution is resumed'

Characteristics

Sample Time Inherited from driving If or Switch Case block

See Also

If, If Action Subsystem, Switch Case, Switch Case Action Subsystem

Introduced before R2006a

1 Blocks — Alphabetical List

1-14

Algebraic Constraint

Constrain input signal to zero

Library

Math Operations

Description

The Algebraic Constraint block constrains the input signal f(z) to zero and outputs an
algebraic state z. The block outputs the value that produces a zero at the input. The
output must affect the input through a direct feedback path, that is, the feedback path
contains only blocks with direct feedthrough. For example, you can specify algebraic
equations for index 1 differential-algebraic systems (DAEs).

Algorithm

The Algebraic Constraint block uses a dogleg trust-region algorithm to solve algebraic
loops [1], [2].

Data Type Support

The Algebraic Constraint block accepts and outputs real values of type double.

 Algebraic Constraint

1-15

Parameters and Dialog Box

Initial guess
An initial guess for the solution value. The default is 0.

Example

By default, the Initial guess parameter is zero. You can improve the efficiency of the
algebraic-loop solver by providing an Initial guess for the algebraic state z that is close
to the solution value.

For example, the following model solves these equations:

z2 + z1 = 1

z2 - z1 = 1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

1 Blocks — Alphabetical List

1-16

Characteristics

Data Types Double
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation No

References

[1] Garbow, B. S., K. E. Hillstrom, and J. J. Moré. User Guide for MINPACK-1. Argonne,
IL: Argonne National Laboratory, 1980.

 Algebraic Constraint

1-17

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic Equations. New York,
NY: Gordon and Breach, 1970.

Introduced before R2006a

1 Blocks — Alphabetical List

1-18

Argument Inport

Argument input port for Simulink Function block

Description

This block is an input argument port for a function that you define in the Simulink
Function block.

Data Type Support

The Argument Inport block accepts complex or real signals of any data type that
Simulink supports, including fixed-point and enumerated data types. The Argument
Inport block also accepts a bus object as a data type.

The numeric and data types of the block output are the same as those of its input. You
can specify the signal type and data type of an input argument to an Argument Inport
block using the Signal type and Data type parameters. For more information, see “
Data Types Supported by Simulink”.

Parameters and Dialog Box

The Main pane of the Argument Inport block dialog box appears as follows:

 Argument Inport

1-19

The Signal Attributes pane of the Argument Inport block dialog box appears as follows:

1 Blocks — Alphabetical List

1-20

• “Port number” on page 1-22
• “Argument Name” on page 1-22
• “Minimum” on page 1-23
• “Maximum” on page 1-24
• “Data type” on page 1-25
• “Show data type assistant” on page 1-27
• “Mode” on page 1-28
• “Data type override” on page 1-30
• “Signedness” on page 1-31
• “Word length” on page 1-32
• “Scaling” on page 1-33
• “Fraction length” on page 1-34

 Argument Inport

1-21

• “Slope” on page 1-35
• “Bias” on page 1-35
• “Output as nonvirtual bus” on page 1-36
• “Lock data type settings against changes by the fixed-point tools” on page 1-37
• “Port dimensions” on page 1-37
• “Signal type” on page 1-38

1 Blocks — Alphabetical List

1-22

Port number

Specify the port number of the block.

Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
in the parent subsystem or model block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Name

Settings

Default: u

This parameter provides the name of the input argument in the function prototype of the
Simulink Function block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Argument Inport

1-23

Minimum

Specify the minimum value for the block to output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-24

Maximum

Specify the maximum value for the block to output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Argument Inport

1-25

Data type

Specify the output data type of the argument input.

Settings

Default: double

double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.
boolean

Data type is boolean.
fixdt(1,16,0)

Data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

Data type is enumerated, for example, Enum: Basic Colors.
Bus: <object name>

1 Blocks — Alphabetical List

1-26

Data type is a bus object.
<data type expression>

The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Argument Inport

1-27

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-28

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

 Argument Inport

1-29

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-30

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow® chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Argument Inport

1-31

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-32

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Argument Inport

1-33

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-34

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Argument Inport

1-35

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-36

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

Tips

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals in the bus must have the same sample
time. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus, to allow the signal or bus to be included in
a nonvirtual bus.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Argument Inport

1-37

Lock data type settings against changes by the fixed-point tools

Select to lock data type settings of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor.

Settings

Default: Off

On
Locks all data type settings for this block.

Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings
for this block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Port dimensions

Specify the dimensions of the input signal to the block.

Settings

Default: 1

Valid values are:

n Vector signal of width n accepted
[m n] Matrix signal having m rows and n columns accepted

1 Blocks — Alphabetical List

1-38

Signal type

Specify the numeric type of the argument input.

Settings

Default: real

real

Specify the numeric type as a real number.
complex

Specify the numeric type as a complex number.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Dimensionalized Yes
Multidimensionalized Yes
Zero-Crossing Detection No

See Also

Argument Outport

Simulink Function

Introduced in R2014b

 Argument Outport

1-39

Argument Outport

Argument output port for Simulink Function block

Description

This block is an output argument port for a function that you define in the Simulink
Function block.

Data Type Support

The Argument Outport block accepts real or complex signals of any data type that
Simulink supports. An Argument Outport block can also accept fixed-point and
enumerated data types when the block is not a root-level output port. The complexity and
data type of the block output are the same as those of its input. The Argument Outport
block also accepts a bus object as a data type.

For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box

The Main pane of the Argument Outport block dialog box appears as follows:

1 Blocks — Alphabetical List

1-40

The Signal Attributes pane of the Argument Outport block dialog box appears as
follows:

 Argument Outport

1-41

• “Port number” on page 1-42
• “Argument Name” on page 1-42
• “Minimum” on page 1-43
• “Maximum” on page 1-44
• “Data type” on page 1-44
• “Show data type assistant” on page 1-46
• “Mode” on page 1-46
• “Data type override” on page 1-47
• “Signedness” on page 1-49
• “Word length” on page 1-49
• “Scaling” on page 1-50
• “Fraction length” on page 1-50

1 Blocks — Alphabetical List

1-42

• “Slope” on page 1-51
• “Bias” on page 1-52
• “Lock output data type setting against changes by the fixed-point tools” on page

1-52
• “Output as nonvirtual bus” on page 1-53
• “Port dimensions” on page 1-53
• “Signal type” on page 1-54

Port number

Specify the port number of the block.

Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Name

Settings

Specify the name of the output argument.

Default: y

This parameter provides the name of the output argument in the function prototype of
the Simulink Function block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Argument Outport

1-43

Minimum

Specify the minimum value for the block to output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-44

Maximum

Specify the maximum value for the block to output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Data type

Specify the output data type of the external input.

Settings

Default: double

double

Data type is double.
single

Data type is single.
int8

Data type is int8.

 Argument Outport

1-45

uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.
boolean

Data type is boolean.
fixdt(1,16,0)

Data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

Data type is enumerated, for example, Enum: BasicColors.
Bus: <object name>

Data type is a bus object.
<data type expression>

The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-46

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.

 Argument Outport

1-47

Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

1 Blocks — Alphabetical List

1-48

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Argument Outport

1-49

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-50

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length

Specify fraction length for fixed-point data type.

 Argument Outport

1-51

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-52

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

 Argument Outport

1-53

See Also

For more information, see “Use Lock Output Data Type Setting”.

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

Tips

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals in the bus must have the same sample
time. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus, to allow the signal or bus to be included in
a nonvirtual bus.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Port dimensions

Specify the dimensions that a signal must have to connect to this Outport block.

Settings

Default: 1

1 Blocks — Alphabetical List

1-54

Valid values are:

N The signal connected to this port must be a vector of size N.
[R C] The signal connected to this port must be a matrix having R rows

and C columns.

Dependency

Clearing via bus object enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Signal type

Specify the numeric type of the signal output by this block.

Settings

Default: real

real

Output a real-valued signal. The signal connected to this block must be real. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

complex

Output a complex signal. The signal connected to this block must be complex. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Dimensionalized Yes

 Argument Outport

1-55

Multidimensionalized Yes
Zero-Crossing Detection No

See Also

Argument Inport

Simulink Function

Introduced in R2014b

1 Blocks — Alphabetical List

1-56

Assertion
Check whether signal is zero

Library

Model Verification

Description

The Assertion block checks whether any of the elements of the input signal is zero. If all
elements are nonzero, the block does nothing. If any element is zero, the block halts the
simulation, by default, and displays an error message. Use the block parameter dialog
box to:

• Specify that the block should display an error message when the assertion fails but
allow the simulation to continue.

• Specify a MATLAB® expression to evaluate when the assertion fails.
• Enable or disable the assertion.

You can also use the Model Verification block enabling setting on the Data Validity
diagnostics pane of the Configuration Parameters dialog box to enable or disable all
Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification library are
intended to facilitate creation of self-validating models. For example, you can use model
verification blocks to test that signals do not exceed specified limits during simulation.
When you are satisfied that a model is correct, you can turn error checking off by
disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

 Assertion

1-57

Note: For information about how Simulink Coder™ generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Assertion block accepts input signals of any dimensions and any numeric data type
that Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Enable assertion
Clearing this check box disables the Assertion block, that is, causes the model to
behave as if the Assertion block did not exist. The Model Verification block

1 Blocks — Alphabetical List

1-58

enabling setting under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box lets you enable or disable all Assertion blocks in
a model regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Assertion block to halt the simulation when the
block input is zero and display an error in the Diagnostic Viewer. Otherwise, the
block displays a warning message in the MATLAB Command Window and continues
the simulation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Assignment

1-59

Assignment
Assign values to specified elements of signal

Library

Math Operations

Description

The Assignment block assigns values to specified elements of the signal. You can specify
the indices of the elements to be assigned values either by entering the indices in the
block's dialog box or by connecting an external indices source or sources to the block. The
signal at the block's data port, labeled U, specifies values to be assigned to Y. The block
replaces the specified elements of Y with elements from the data signal.

Based on the value you enter for the Number of output dimensions parameter, a
table of index options is displayed. Each row of the table corresponds to one of the output
dimensions in Number of output dimensions. For each dimension, you can define the
elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Assignment block for multidimensional
signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The table in the
Assignment block dialog changes to include one row for each dimension. If you define
each dimension with the following entries:

• 1

Index Option, select Assign all
• 2

Index Option, select Index vector (dialog)

1 Blocks — Alphabetical List

1-60

Index, enter [1 3 5]
• 3

Index Option, select Starting index (dialog)

Index, enter 4
• 4

Index Option, select Starting index (port)
• 5

Index Option, select Index vector (port)

The assigned values will be Y(1:end,[1 3
5],4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4 and Idx5 are
the input ports for dimensions 4 and 5.

The Assignment block's data port is labeled U. The rest of this section refers to the data
port as U to simplify the explanation of the block's usage.

When using the Assignment block in Normal mode, Simulink initializes block outputs to
zero even if the model does not explicitly initialize them. In Accelerator mode, Simulink
converts the model into an S-Function. This involves code generation. The code generated
may not do implicit initialization of block outputs. In such cases, you must explicitly
initialize the model outputs.

You can use the block to assign values to vector, matrix, or multidimensional signals.

You can use an array of buses as an input signal to an Assignment block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Iterated Assignment

You can use the Assignment block to assign values computed in a For or While Iterator
loop to successive elements of a vector, matrix, or multidimensional signal in a single
time step. For example, the following model uses a For Iterator block to create a vector
signal each of whose elements equals 3*i where i is the index of the element.

 Assignment

1-61

Iterated assignment uses an iterator (For or While) block to generate indices for the
Assignment block. On the first iteration of an iterated assignment, the Assignment block
copies the first input (Y0) to the output (Y) and assigns the second input (U) to the output
Y(E1). On successive iterations, the Assignment block assigns the current value of U to
Y(Ei), that is, without first copying Y0 to Y. These actions occur in a single time step.

Data Type Support

The data and initialization ports of the Assignment block accept signals of any data
type that Simulink supports, including fixed-point, enumerated, and nonvirtual bus
data types. The external indices port accepts any built-in data type, except Boolean data
types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-62

Parameters and Dialog Box

Number of output dimensions
Enter the number of dimensions of the output signal.

Index mode

 Assignment

1-63

Select the indexing mode: One-based or Zero-based. If One-based is selected, an
index of 1 specifies the first element of the input vector, 2, the second element, and
so on. If Zero-based is selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be indexed. From the list,
select:

• Assign all

This is the default. All elements are assigned.
• Index vector (dialog)

Enables the Index column. Enter the indices of elements.
• Index vector (port)

Disables the Index column. The index port defines the indices of elements.
• Starting index (dialog)

Enables the Index column. Enter the starting index of the range of elements to be
assigned values.

• Starting index (port)

Disables the Index column. The index port defines the starting index of the range
of elements to be assigned values.

If you choose Index vector (port) or Starting index (port) for any
dimension in the table, you can specify the value for the Initialize output (Y)
parameter to be one of the following:

• Initialize using input port <Y0>

• Specify size for each dimension in table

Otherwise, Y0 always initializes output port Y.

The Index and Output Size columns are displayed as relevant.
Index

If the Index Option is Index vector (dialog), enter the index of each element
you are interested in.

1 Blocks — Alphabetical List

1-64

If the Index Option is Starting index (dialog), enter the starting index of the
range of elements to be selected. The number of elements from the starting point is
determined by the size of this dimension at U.

Output Size
Enter the width of the block output signal. If you select Specify size for each
dimension in table for the Initialize output (Y) parameter, this column is
enabled.

Initialize output (Y)
Specify how to initialize the output signal. The Initialize output parameter appears
when you set Index Option to Index vector (port) or Starting index
(port).

• Initialize using input port <Y0>

The signal at the input port Y0 initializes the output.
• Specify size for each dimension in table

The block requires you to specify the width of the block's output signal in the
Output Size parameter. If the output has unassigned elements, the value of
those elements is undefined.

Action if any output element is not assigned
Specify whether to produce a warning or error if you have not assigned all output
elements. Options include:

• Error

• Warning

• None

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

 Assignment

1-65

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-66

Backlash
Model behavior of system with play

Library

Discontinuities

Description

The Backlash block implements a system in which a change in input causes an equal
change in output. However, when the input changes direction, an initial change in input
has no effect on the output. The amount of side-to-side play in the system is referred to as
the deadband. The deadband is centered about the output. This figure shows the block's
initial state, with the default deadband width of 1 and initial output of 0.

A system with play can be in one of three modes:

• Disengaged — In this mode, the input does not drive the output and the output
remains constant.

• Engaged in a positive direction — In this mode, the input is increasing (has a positive
slope) and the output is equal to the input minus half the deadband width.

• Engaged in a negative direction — In this mode, the input is decreasing (has a
negative slope) and the output is equal to the input plus half the deadband width.

If the initial input is outside the deadband, the Initial output parameter value
determines whether the block is engaged in a positive or negative direction, and the
output at the start of the simulation is the input plus or minus half the deadband width.

 Backlash

1-67

For example, the Backlash block can be used to model the meshing of two gears. The
input and output are both shafts with a gear on one end, and the output shaft is driven
by the input shaft. Extra space between the gear teeth introduces play. The width of this
spacing is the Deadband width parameter. If the system is disengaged initially, the
output (the position of the driven gear) is defined by the Initial output parameter.

The following figures illustrate the block's operation when the initial input is within the
deadband. The first figure shows the relationship between the input and the output while
the system is in disengaged mode (and the default parameter values are not changed).

The next figure shows the state of the block when the input has reached the end of the
deadband and engaged the output. The output remains at its previous value.

The final figure shows how a change in input affects the output while they are engaged.

If the input reverses its direction, it disengages from the output. The output remains
constant until the input either reaches the opposite end of the deadband or reverses its
direction again and engages at the same end of the deadband. Now, as before, movement
in the input causes equal movement in the output.

For example, if the deadband width is 2 and the initial output is 5, the output, y, at the
start of the simulation is as follows:

• 5 if the input, u, is between 4 and 6
• u + 1 if u < 4
• u – 1 if u > 6

1 Blocks — Alphabetical List

1-68

Data Type Support
The Backlash block accepts and outputs real values of single, double, and built-in
integer data types.

Parameters and Dialog Box

Deadband width
Specify the width of the deadband. The default is 1.

Initial output
Specify the initial output value. The default value is 0. This parameter is tunable.
Simulink does not allow the initial output of this block to be inf or NaN.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

 Backlash

1-69

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox™ license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

1 Blocks — Alphabetical List

1-70

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following model shows the effect of a sine wave passing through a Backlash block.

The Backlash block uses default parameter values: the deadband width is 1 and the
initial output is 0. The following plot shows that the Backlash block output is zero
until the input reaches the end of the deadband (at 0.5). Now the input and output are
engaged and the output moves as the input does until the input changes direction (at
1.0). When the input reaches 0, it again engages the output at the opposite end of the
deadband.

 Backlash

1-71

Characteristics

Data Types Double | Single | Base Integer
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-72

Unresolved Link

Indicate unresolved reference to library block

Description

This block indicates an unresolved reference to a library block (see “Create a Linked
Block”). You can use this block's parameter dialog box to fix the reference to point to the
actual location of the library block.

 Unresolved Link

1-73

Parameters and Dialog Box

Details

1 Blocks — Alphabetical List

1-74

Description of the cause of the unresolved link. You can customize this description to
include URLs as follows:

set_param(library1,'libraryinfo','https://www.mathworks.com');

Here, library1 is the name of the library for which you want to change the
description, and libraryinfo is the property that provides the description of the
unresolved link.

Source block
Path of the library block that this link represents. To fix a bad link, edit this field to
reflect the actual path of the library block. Then select Apply or OK to apply the fix
and close the dialog box.

Source type
Type of library block that this link represents.

Introduced in R2014a

 Band-Limited White Noise

1-75

Band-Limited White Noise

Introduce white noise into continuous system

Library

Sources

Description

Simulation of White Noise

The Band-Limited White Noise block generates normally distributed random numbers
that are suitable for use in continuous or hybrid systems.

Theoretically, continuous white noise has a correlation time of 0, a flat power spectral
density (PSD), and a total energy of infinity. In practice, physical systems are never
disturbed by white noise, although white noise is a useful theoretical approximation
when the noise disturbance has a correlation time that is very small relative to the
natural bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by using a random
sequence with a correlation time much smaller than the shortest time constant of the
system. The Band-Limited White Noise block produces such a sequence. The correlation
time of the noise is the sample rate of the block. For accurate simulations, use a
correlation time much smaller than the fastest dynamics of the system. You can get good
results by specifying

tc
f

ª

1

100

2p

max

,

1 Blocks — Alphabetical List

1-76

where fmax is the bandwidth of the system in rad/sec.

Comparison with the Random Number Block

The primary difference between this block and the Random Number block is that the
Band-Limited White Noise block produces output at a specific sample rate. This rate is
related to the correlation time of the noise.

Usage with the Averaging Power Spectral Density Block

The Band-Limited White Noise block specifies a two-sided spectrum, where the units are
Hz. The Averaging Power Spectral Density block specifies a one-sided spectrum, where
the units are the square of the magnitude per unit radial frequency: Mag^2/(rad/sec).
When you feed the output of a Band-Limited White Noise block into an Averaging Power
Spectral Density block, the average PSD value is π times smaller than the Noise power
of the Band-Limited White Noise block. This difference is the result of converting the
units of one block to the units of the other: 1/(1/2)(2π) = 1/π, where:

• 1/2 is the factor for converting from a two-sided to one-sided spectrum
• 2π is the factor for converting from Hz to rad/sec

Algorithm

To produce the correct intensity of this noise, the covariance of the noise is scaled to
reflect the implicit conversion from a continuous PSD to a discrete noise covariance. The
appropriate scale factor is 1/tc, where tc is the correlation time of the noise. This scaling
ensures that the response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because of this scaling,
the covariance of the signal from the Band-Limited White Noise block is not the same
as the Noise power (intensity) parameter. This parameter is actually the height of the
PSD of the white noise. This block approximates the covariance of white noise as the
Noise power divided by tc.

Data Type Support

The Band-Limited White Noise block outputs real values of type double.

 Band-Limited White Noise

1-77

Parameters and Dialog Box

Noise power
Specify the height of the PSD of the white noise. The default value is 0.1.

Sample time
Specify the correlation time of the noise. The default value is 0.1. For more
information, see “ Specify Sample Time” in the Simulink documentation.

Seed
Specify the starting seed for the random number generator. The default value is
23341.

Interpret vector parameters as 1-D

1 Blocks — Alphabetical List

1-78

Select to output a 1-D array when the block parameters are vectors. Otherwise,
output a 2-D array one of whose dimensions is 1. See “Determining the Output
Dimensions of Source Blocks” in the Simulink documentation.

Examples

The following Simulink examples show how to use the Band-Limited White Noise block:

• slexAircraftExample

• sldemo_radar_eml

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Random Number

Introduced before R2006a

 Bias

1-79

Bias

Add bias to input

Library

Math Operations

Description

The Bias block adds a bias, or offset, to the input signal according to
Y = U + bias,

where U is the block input and Y is the output.

Data Type Support

The Bias block accepts and outputs real or complex values of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-80

Parameters and Dialog Box

Bias
Specify the value of the offset to add to the input signal.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

 Bias

1-81

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-82

Bit Clear

Set specified bit of stored integer to zero

Library

Logic and Bit Operations

Description

The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero.
Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where bit zero
is the least significant bit.

Data Type Support

The Bit Clear block supports Simulink integer, fixed-point, and Boolean data types. The
block does not support true floating-point data types or enumerated data types.

 Bit Clear

1-83

Parameters and Dialog Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples

If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of constants 2.^[0 1
2 3 4] is represented in binary as [00001 00010 00100 01000 10000]. With bit 2 set to 0,
the result is [00001 00010 00000 01000 10000], which is represented in decimal as [1 2
0 8 16].

Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

1 Blocks — Alphabetical List

1-84

See Also

Bit Set

Introduced before R2006a

 Bit Concat

1-85

Bit Concat

Concatenates up to 128 input words into single output

Library

HDL Coder / HDL Operations

Description

The Bit Concat block concatenates up to 128 input words into a single output. The input
port labeled L designates the lowest-order input word. The port labeled H designates the
highest-order input word. The right-to-left ordering of words in the output follows the
low-to-high ordering of input signals.

How the block operates depends on the number and dimensions of the inputs, as follows:

• Single input: The input is a scalar or a vector. When the input is a vector, the coder
concatenates the individual vector elements.

• Two inputs: Inputs are any combination of scalar and vector. When one input is scalar
and the other is a vector, the coder performs scalar expansion. Each vector element is
concatenated with the scalar, and the output has the same dimension as the vector.
When both inputs are vectors, they must have the same size.

• Three or more inputs (up to a maximum of 128 inputs): Inputs are uniformly scalar or
vector. All vector inputs must have the same size.

1 Blocks — Alphabetical List

1-86

Dialog Box and Parameters

Number of Inputs: Enter an integer specifying the number of input signals. The
number of block input ports updates when you change Number of Inputs.

• Default: 2
• Minimum: 1
• Maximum: 128

Caution Make sure that the Number of Inputs is equal to the number of signals
you connect to the block. If the block has unconnected inputs, an error occurs at code
generation time.

 Bit Concat

1-87

Ports

The block has up to 128 input ports, with H representing the highest-order input word,
and L representing the lowest-order input word. The maximum concatenated output
word size is 128 bits.

Supported Data Types

• Input: Fixed-point, integer (signed or unsigned), Boolean
• Output: Unsigned fixed-point or integer

See Also
Bit Shift | Bit Reduce | Bit Rotate | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-88

Bit Reduce

AND, OR, or XOR bit reduction on all input signal bits to single bit

Library

HDL Coder / HDL Operations

Description

The Bit Reduce block performs a selected bit-reduction operation (AND, OR, or XOR) on
all the bits of the input signal, for a single-bit result.

 Bit Reduce

1-89

Dialog Box and Parameters

Reduction Mode

Specifies the reduction operation:

• AND (default): Perform a bitwise AND reduction of the input signal.
• OR: Perform a bitwise OR reduction of the input signal.
• XOR: Perform a bitwise XOR reduction of the input signal.

Ports

The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Minimum bit width: 2
• Maximum bit width: 128

1 Blocks — Alphabetical List

1-90

Output
Supported data type: ufix1

See Also
Bit Shift | Bit Concat | Bit Rotate | Bit Slice

Introduced in R2014a

 Bit Rotate

1-91

Bit Rotate

Rotate input signal by bit positions

Library

HDL Coder / HDL Operations

Description

The Bit Rotate block rotates the input signal left or right by the specified number of bit
positions.

1 Blocks — Alphabetical List

1-92

Dialog Box and Parameters

Rotate Mode: Specifies direction of rotation, left or right. The default is Rotate Left.

Rotate Length: Specifies the number of bits to rotate. Specify a value greater than or
equal to zero. The default is 0.

Ports

The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Minimum bit width: 2
• Maximum bit width: 128

Output
Has the same data type as the input signal.

 Bit Rotate

1-93

See Also
Bit Shift | Bit Concat | Bit Reduce | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-94

Bit Set

Set specified bit of stored integer to one

Library

Logic and Bit Operations

Description

The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where bit zero is
the least significant bit.

Data Type Support

The Bit Set block supports Simulink integer, fixed-point, and Boolean data types. The
block does not support true floating-point data types or enumerated data types.

 Bit Set

1-95

Parameters and Dialog Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples

If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of constants 2.^[0 1
2 3 4] is represented in binary as [00001 00010 00100 01000 10000]. With bit 2 set to 1,
the result is [00101 00110 00100 01100 10100], which is represented in decimal as [5 6
4 12 20].

Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

1 Blocks — Alphabetical List

1-96

See Also

Bit Clear

Introduced before R2006a

 Bit Shift

1-97

Bit Shift

Logical or arithmetic shift of input signal

Library

HDL Coder / HDL Operations

Description

The Bit Shift block performs a logical or arithmetic shift on the input signal.

1 Blocks — Alphabetical List

1-98

Dialog Box and Parameters

Shift Mode

Default: Shift Left Logical

Specifies the type and direction of shift:

• Shift Left Logical (default)
• Shift Right Logical

• Shift Right Arithmetic

Shift Length

Specifies the number of bits to be shifted. Specify a value greater than or equal to zero.
The default is 0.

Ports

The block has the following ports:

 Bit Shift

1-99

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Minimum bit width: 2
• Maximum bit width: 128

Output
Has the same data type and bit width as the input signal.

See Also
Bit Rotate | Bit Concat | Bit Reduce | Bit Slice

Introduced in R2014a

1 Blocks — Alphabetical List

1-100

Bit Slice

Return field of consecutive bits from input signal

Library

HDL Coder / HDL Operations

Description

The Bit Slice block returns a field of consecutive bits from the input signal. Specify
the lower and upper boundaries of the bit field by using zero-based indices in the LSB
Position and MSB Position parameters.

 Bit Slice

1-101

Dialog Box and Parameters

MSB Position

Specifies the bit position (zero-based) of the most significant bit (MSB) of the field to
extract. The default is 7.

For an input word size WS, LSB Position and MSB Position must satisfy the following
constraints:

WS > MSB Position >= LSB Position >= 0;

The word length of the output is computed as (MSB Position - LSB Position) +
1.

LSB Position

1 Blocks — Alphabetical List

1-102

Specifies the bit position (zero-based) of the least significant bit (LSB) of the field to
extract. The default is 0.

Ports

The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), Boolean
• Maximum bit width: 128

Output
Supported data types: unsigned fixed-point or unsigned integer.

See Also
Bit Rotate | Bit Concat | Bit Reduce | Bit Shift

Introduced in R2014a

 Bitwise Operator

1-103

Bitwise Operator
Specified bitwise operation on inputs

Library

Logic and Bit Operations

Description

Bitwise Operations

The Bitwise Operator block performs the bitwise operation that you specify on one
or more operands. Unlike logic operations of the Logical Operator block, bitwise
operations treat the operands as a vector of bits rather than a single value.

You can select one of the following bitwise operations:

Bitwise Operation Description

AND TRUE if the corresponding bits are all TRUE
OR TRUE if at least one of the corresponding bits is TRUE
NAND TRUE if at least one of the corresponding bits is FALSE
NOR TRUE if no corresponding bits are TRUE
XOR TRUE if an odd number of corresponding bits are TRUE
NOT TRUE if the input is FALSE (available only for single input)

Restrictions on Block Operations

The Bitwise Operator block does not support shift operations. For shift operations, use
the Shift Arithmetic block.

1 Blocks — Alphabetical List

1-104

When configured as a multi-input XOR gate, this block performs modulo-2 addition
according to the IEEE® Standard for Logic Elements.

Behavior of Inputs and Outputs

The output data type, which the block inherits from the driving block, must represent
zero exactly. Data types that satisfy this condition include signed and unsigned integer
data types.

The size of the block output depends on the number of inputs, the vector size, and the
operator you select:

• The NOT operator accepts only one input, which can be a scalar or a vector. If the
input is a vector, the output is a vector of the same size containing the bitwise logical
complements of the input vector elements.

• For a single vector input, the block applies the operation (except the NOT operator) to
all elements of the vector.

• If you do not specify a bit mask, the output is a scalar.
• If you do specify a bit mask, the output is a vector.

• For two or more inputs, the block performs the operation between all of the inputs.
If the inputs are vectors, the block performs the operation between corresponding
elements of the vectors to produce a vector output.

Bit Mask Behavior

Block behavior changes depending on whether you use a bit mask.

If the Use bit mask
check box is...

The block accepts... And you specify... By using...

Selected One input Bit Mask Any valid MATLAB
expression, such
as 2^5+2^2+2^0
for the bit mask
00100101

Not selected Multiple inputs, all
having the same
base data type

Number of input
ports

Any positive integer
greater than 1

 Bitwise Operator

1-105

Tip You can also use strings to specify a hexadecimal bit mask such as
{'FE73','12AC'}.

Bit Set and Bit Clear Operations

You can use the bit mask to set or clear a bit on the input.

To perform a... Set the Operator parameter
to...

And create a bit mask with...

Bit set OR A 1 for each corresponding
input bit that you want to set
to 1

Bit clear AND A 0 for each corresponding
input bit that you want to set
to 0

Suppose you want to set the fourth bit of an 8-bit input vector. The bit mask
would be 00010000, which you can specify as 2^4 for the Bit Mask parameter.
To clear the bit, the bit mask would be 11101111, which you can specify as
2^7+2^6+2^5+2^3+2^2+2^1+2^0 for the Bit Mask parameter.

Data Type Support

The Bitwise Operator block supports the following data types:

• Built-in integer
• Fixed point
• Boolean

The block does not support floating-point data types or enumerated data types. For more
information, see “ Data Types Supported by Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-106

Parameters and Dialog Box

Operator
Specify the bitwise logical operator for the block operands.

Use bit mask
Select to use the bit mask. Clearing this check box enables Number of input ports
and disables Bit Mask and Treat mask as.

Number of input ports
Specify the number of inputs. The default value is 1.

 Bitwise Operator

1-107

Bit Mask
Specify the bit mask to associate with a single input. This parameter is available only
when you select Use bit mask.

Tip Do not use a mask greater than 53 bits. Otherwise, an error message appears
during simulation.

Treat mask as
Specify whether to treat the mask as a real-world value or a stored integer. This
parameter is available only when you select Use bit mask.

The encoding scheme is V = SQ + B, as described in “Scaling” in the Fixed-Point
Designer documentation. Real World Value treats the mask as V. Stored
Integer treats the mask as Q.

Examples

Unsigned Inputs for the Bitwise Operator Block

The following model shows how the Bitwise Operator block works for unsigned
inputs.

1 Blocks — Alphabetical List

1-108

Each Constant block outputs an 8-bit unsigned integer (uint8). To determine the binary
value of each Constant block output, use the dec2bin function. The results for all logic
operations appear in the next table.

Operation Binary Value Decimal Value

AND 00101000 40
OR 11111101 253
NAND 11010111 215
NOR 00000010 2
XOR 11111000 248
NOT N/A N/A

Signed Inputs for the Bitwise Operator Block

The following model shows how the Bitwise Operator block works for signed inputs.

Each Constant block outputs an 8-bit signed integer (int8). To determine the binary
value of each Constant block output, use the dec2bin function. The results for all logic
operations appear in the next table.

Operation Binary Value Decimal Value

AND 01000000 64

 Bitwise Operator

1-109

Operation Binary Value Decimal Value

OR 11111011 –5
NAND 10111111 –65
NOR 00000100 4
XOR 11000010 –62
NOT N/A N/A

Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Logical Operator

Introduced before R2006a

1 Blocks — Alphabetical List

1-110

Block Support Table
View data type support for Simulink blocks

Library

Model-Wide Utilities

Description

The Block Support Table block helps you access a table that lists the data types that
Simulink blocks support. Double-click the block to view the table.

Data Type Support

Not applicable

Parameters and Dialog Box

Not applicable

Characteristics

Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

 Block Support Table

1-111

Alternatives

To access the information in the Block Support Table, you can enter
showblockdatatypetable at the MATLAB command prompt.

Introduced in R2007b

1 Blocks — Alphabetical List

1-112

Bus Assignment

Replace specified bus elements

Library

Signal Routing

Description

The Bus Assignment block assigns signals (including buses and arrays of buses)
connected to its Assignment input ports (:=) to specified elements of the bus connected
to its Bus input port, replacing the signals previously assigned to those elements. The
change does not affect the signals themselves, it affects only the composition of the bus.
Signals not replaced are unaffected by the replacement of other signals. You cannot use
the Bus Assignment block to replace a bus that is nested within an array of buses.

For information about buses, see:

• “Composite Signals”
• “Create Bus Signals”

Connect the bus to be changed to the first input port. Use the block parameters dialog
box to specify the bus elements to be replaced. The block displays an assignment input
port for each such element. The signal connected to the assignment port must have the
same structure, data type, and numeric type as the bus element to which it corresponds.

All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error. All
buses and signals input to a Bus Assignment block that modifies a nonvirtual bus must
therefore have the same sample time. You can use a Rate Transition block to change

 Bus Assignment

1-113

the sample time of an individual signal, or of all signals in a bus, to allow the signal
or bus to be included in a nonvirtual bus. See “Virtual and Nonvirtual Buses” for more
information.

By default, Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block. To prevent Simulink
from performing that conversion, in the Model Configuration Parameters >
Diagnostics > Connectivity pane, set the “Non-bus signals treated as bus signals”
diagnostic to warning or error.

By default, Simulink repairs broken selections in the Bus Assignment and Bus Selector
block parameters dialog boxes that are due to upstream bus hierarchy changes. Simulink
generates a warning to highlight that it made changes. To prevent Simulink from
making these repairs automatically, in the Model Configuration Parameters >
Diagnostics > Connectivity pane, set the “Repair bus selections” diagnostic to Error
without repair.

For information about using this block in a library block, see “Buses and Libraries”.

The following limitations apply to working with arrays of buses, when using the Bus
Assignment block. For details about defining and using an array of buses, see “Combine
Buses into an Array of Buses”.

• You can assign or replace a sub-bus that is an array of buses. However, the nested bus
cannot be nested inside of an array of buses.

• To replace a signal in an array of buses, use a Selector block to select the index for
the bus element that you want to use with the Bus Assignment block. Then use that
selected bus element with the Bus Assignment block.

Data Type Support

The bus input port of the Bus Assignment block accepts and outputs real or complex
values of any data type that Simulink supports, including fixed-point and enumerated
data types. The assignment input ports accept the same data types as the bus elements
to which they correspond.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-114

Parameters and Dialog Box

The Bus Assignment dialog box appears as follows:

Signals in the bus
Displays the names of the signals contained by the bus at the block's Bus input
port. Click any item in the list to select it. To find the source of the selected signal,
click the adjacent Find button. Simulink opens the subsystem containing the
signal source and highlights the source's icon. Use the Select>> button to move the
currently selected signal into the adjacent list of signals to be assigned values (see
Signals that are being assigned below). To refresh the display (e.g., to reflect
modifications to the bus connected to the block), click the adjacent Refresh button.

Signals that are being assigned

 Bus Assignment

1-115

Lists the names of bus elements to be assigned values. This block displays
an assignment input port for each bus element in this list. The label of the
corresponding input port contains the name of the element. You can order the signals
by using the Up, Down, and Remove buttons. Port connectivity is maintained when
the signal order is changed.

Three question marks (???) before the name of a bus element indicate that the input
bus no longer contains an element of that name, for example, because the bus has
changed since the last time you refreshed the Bus Assignment block's input and bus
element assignment lists. You can fix the problem either by modifying the bus to
include a signal of the specified name or by removing the name from the list of bus
elements to be assigned values.

Enable regular expression
To display this parameter, select the Options button on the right-hand side of the

Filter by name edit box ().

Enables the use of MATLAB regular expressions for filtering signal names. For
example, entering t$ in the Filter by name edit box displays all signals whose
names end with a lowercase t (and their immediate parents). For details, see
“Regular Expressions”.

The default is On. If you disable use of MATLAB regular expressions for filtering
signal names, filtering treats the text you enter in the Filter by name edit box as a
literal string.

Show filtered results as a flat list
To display this parameter, select the Options button on the right-hand side of the

Filter by name edit box ().

Uses a flat list format to display the list of filtered signals, based on the search text
in the Filter by name edit box. The flat list format uses dot notation to reflect the
hierarchy of bus signals. The following is an example of a flat list format for a filtered
set of nested bus signals.

1 Blocks — Alphabetical List

1-116

The default is Off, which displays the filtered list using a tree format.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also

• “Composite Signals”
• “Create Bus Signals”
• Bus Creator

• Bus Selector

• Bus to Vector

 Bus Assignment

1-117

• Simulink.Bus

• Simulink.Bus.cellToObject

• Simulink.Bus.createObject

• Simulink.BusElement

• Simulink.Bus.objectToCell

• Simulink.Bus.save

Introduced before R2006a

1 Blocks — Alphabetical List

1-118

Bus Creator

Create signal bus

Library

Signal Routing

Description

The Bus Creator block combines a set of signals into a bus. To bundle a group of signals
with a Bus Creator block, set the block parameter Number of inputs to the number of
signals in the group. The block displays the number of ports that you specify. Connect to
the resulting input ports those signals that you want to group.

The signals in the bus are ordered from the top input port to the bottom input port.
See “How to Rotate a Block” in for a description of the port order for various block
orientations.

You can connect any type of signal to the inputs, including other bus signals. To ungroup
bus signals, connect the output port of the block to a Bus Selector block port.

Note: Simulink hides the name of a Bus Creator block when you copy it from the
Simulink library to a model.

For information about using this block in a library block, see “Buses and Libraries”.

You can use an array of buses as an input signal to a Bus Creator block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

 Bus Creator

1-119

Bus Signal Naming

The Bus Creator block assigns a name to each signal on the bus that it creates. You can
then refer to signals by name when you are searching for their sources (see “Browse Bus
Signals” on page 1-120) or selecting signals for connection to other blocks.

Specify one of the following signal naming options:

• Each signal on the bus inherits the name of the signal connected to the bus (the
default).

Inputs to a Bus Creator block must have unique names. If there are duplicate names,
the Bus Creator block appends (signal#) to all input signal names, where # is the
input port index.

The Bus Creator block generates names for bus signals whose corresponding inputs
do not have names. The names are in the form signaln, where n is the number of the
port the input signal connects to.

• Each input signal must have a specific name.
• If the bus output data type is a bus object, bus signal names use the corresponding

bus object element names.

You can change the name of any signal by editing the name on the block diagram or in
the Signal Properties dialog box. If you change the signal name using either approach
while the Bus Creator block dialog box is open, to see the updated name in the dialog box,
click the Refresh button next to the Signals in the bus list.

Bus Object as the Output Data Type

You can use a bus object as the bus output data type for a Bus Creator block. Using a bus
object can provide strong data typing with an explicit signal interface. Model referencing
requires using bus objects for bus signals that cross model reference boundaries. For
more information, see “Bus Objects”.

To create a nonvirtual bus using a Bus Creator block, use the following settings.

• For the Output data type parameter, use a bus object.
• Select Output as nonvirtual bus.

To use a bus object to enforce strong data typing, clear the Override bus signal names
from inputs check box.

1 Blocks — Alphabetical List

1-120

Browse Bus Signals

The Signals in the bus list on a Bus Creator Block Parameters dialog box displays a list
of the signals entering the block. An arrow next to a signal indicates that the signal is
itself a bus. To display the contents of the bus, click the arrow. In this way, you can view
all signals entering the block, including those entering via buses.

To find the source of any signal entering the block, select the signal in the Signals
in the bus list and click the adjacent Find button. Simulink opens the subsystem
containing the signal source, if necessary, and highlights the source's icon.

Reorder, Add, or Remove Signals

To rearrange the signals that the Bus Creator block includes in the bus signal that it
produces, use buttons such as Add.

You can select multiple contiguous signals in the Signals in the bus list to reorder or
remove. You cannot rearrange leaf signals within a bus. For example, you can move bus
signal Bus1 up or down in the list, but you cannot reorder any of the bus elements of
Bus1.

After making your edits, click Apply.

Data Type Support

The Bus Creator block accepts and outputs real or complex values of any data type
supported by Simulink, including fixed-point and enumerated data types, as well as bus
objects.

For a discussion on the data types supported by Simulink, refer to “ Data Types
Supported by Simulink”.

If you change elements or the order of elements in the Bus Creator and the incoming
bus is a nonvirtual bus, Simulink reports any inconsistency errors when you compile the
model.

 Bus Creator

1-121

Parameters and Dialog Box

• “Number of inputs” on page 1-123
• “Signals in the bus” on page 1-124
• “Enable regular expression” on page 1-125
• “Show filtered results as a flat list” on page 1-126

1 Blocks — Alphabetical List

1-122

• “Output data type” on page 1-127
• “Show data type assistant” on page 1-128
• “Mode” on page 1-129
• “Output as nonvirtual bus” on page 1-130
• “Override bus signal names from inputs” on page 1-131
• “Require input signal names to match signals above” on page 1-131
• “Rename selected signal” on page 1-132
• “Output as nonvirtual bus” on page 1-133

 Bus Creator

1-123

Number of inputs

Specify the number of input ports on this block.

Settings

Default: 2

To bundle a group of signals, enter the number of signals in the group.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-124

Signals in the bus

Show the input signals for the bus.

Settings

When you modify the Number of inputs parameter, click Refresh to update the list of
signals.

Tips

• An arrow next to a signal name indicates that the signal is itself a bus. Click the
arrow to display the subsidiary bus signals.

• Click the Refresh button to update the list after editing the name of an input signal.
• Click the Find button to highlight the source of the currently selected signal.
• To rearrange signals in the bus, see “Reorder, Add, or Remove Signals” on page 1-120.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Bus Creator

1-125

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

1 Blocks — Alphabetical List

1-126

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

 Bus Creator

1-127

Output data type

Specify the output data type of the external input.

Settings

Default: Inherit: auto

Inherit: auto

A rule that inherits a data type
Bus: <object name>

Data type is a bus object.

Tips

• Determine whether you want the Bus Creator block to output a virtual or nonvirtual
bus.

• For a virtual bus, use the Output data type parameter default (Inherit: auto)
or set the parameter to specify a bus object using Bus: <object name>.

• For a nonvirtual bus, set the Output data type parameter to specify a bus object
using Bus: <object name> and click Output as nonvirtual bus.

• If you specify a bus object as the output data type, to have bus signal names match
the corresponding bus object element names, clear the Override bus signal names
from inputs check box (which is selected by default).

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-128

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Bus Creator

1-129

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Tip

At the beginning of a simulation or when you update the model diagram, Simulink
checks whether the signals connected to this Bus Creator block have the specified
structure. If not, Simulink displays an error message.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-130

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

Tips

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals entering the Bus Creator block must
have the same sample time. You can use a Rate Transition block to change the
sample time of an individual signal, or of all signals in a bus, to allow the signal or
bus to be included in a nonvirtual bus.

Dependencies

The following Data type values enable this parameter:

• Bus: <object name>

• <data type expression> that specifies a bus object

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Bus Creator

1-131

Override bus signal names from inputs

Override bus signal names from input signals or inherit names from the bus object
elements.

Settings

Default:On

 On
Override bus element names from input signal names.

 Off
Inherit bus signal names from the corresponding element names in the bus object.

Tip

To inherit signal names from bus element names, clear the Override bus signal names
from inputs check box. This approach:

• Enforces strong data typing.
• Avoids your having to enter a signal name multiple times. Without this option, you

need to enter the signal names in the bus object and in the model, which can lead to
accidentally creating signal name mismatches.

• Supports the array of buses requirement to have consistent signal names across array
elements.

Dependencies

The Output data type parameter must be set to a bus object.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Require input signal names to match signals above

Require that input signals have the names listed in the Signals in the bus list.

1 Blocks — Alphabetical List

1-132

Settings

Default: Off

 On
Check that the input signal names match the signal names in the Bus Creator block
parameters dialog boxs.

 Off
Does not check that the input signal names match the signal names in the Bus
Creator block parameters dialog box.

Tips

• The Require input signal names to match signals above option might be
removed in a future release. To enforce strict data typing, consider using a bus object
for the output data type and clear Override bus signal names from inputs.

• If you select Override bus signal names from inputs, the Require input signal
names to match signals above setting is ignored.

Rename selected signal

List the name of the signal currently selected in the Signals in the bus list when you
select Require input signal names to match signals above.

Settings

Default: ''

Edit this field to change the name of the currently selected signal. See “Signal Names
and Labels ” for guidelines for signal names.

Dependencies

Selecting Require input signal names to match signals above enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Bus Creator

1-133

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

Tips

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals entering the Bus Creator block must
have the same sample time. You can use a Rate Transition block to change the
sample time of an individual signal, or of all signals in a bus, to allow the signal or
bus to be included in a nonvirtual bus.

Dependencies

The following Data type values enable this parameter:

• Bus: <object name>

• <data type expression> that specifies a bus object

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Examples

For an example of how the Bus Creator block works, see the sldemo_househeat model.

1 Blocks — Alphabetical List

1-134

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also

• “Composite Signals”
• “Create Bus Signals”
• Bus Assignment

• Bus Selector

• Bus to Vector

• Simulink.Bus

• Simulink.Bus.cellToObject

• Simulink.Bus.createObject

• Simulink.BusElement

• Simulink.Bus.objectToCell

• Simulink.Bus.save

Introduced before R2006a

 Bus Selector

1-135

Bus Selector
Select signals from incoming bus

Library

Signal Routing

Description

The Bus Selector block outputs a specified subset of the elements of the bus at its input.
The block can output the specified elements as separate signals or as a new bus. For
information about buses, see:

• “Composite Signals”
• “Create Bus Signals”

When the block outputs separate elements, it outputs each element from a separate port
from top to bottom of the block. See “How to Rotate a Block” for a description of the port
order for various block orientations.

Note Simulink software hides the name of a Bus Selector block when you copy it from the
Simulink library to a model.

By default, Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block. To prevent Simulink
from performing that conversion, in the Model Configuration Parameters >
Diagnostics > Connectivity pane, set the “Non-bus signals treated as bus signals”
diagnostic to warning or error.

For information about using this block in a library block, see “Buses and Libraries”.

1 Blocks — Alphabetical List

1-136

Reorder or Remove Signals

To reorder the selected signals that the Bus Selector block includes in the bus signal that
it produces, click Up or Down.

You can select multiple contiguous signals in the Signals in the bus list to remove or
reorder.

You cannot rearrange leaf signals within a bus. For example, you can move bus signal
Bus1 up or down in the list, but you cannot reorder any of the bus elements of Bus1.

After you click a button, click Apply.

Array of Buses Support

The following limitations apply to working with arrays of buses, when using the Bus
Selector block. For details about defining and using an array of buses, see “Combine
Buses into an Array of Buses”.

• You cannot connect an array of buses signal to a Bus Selector block. To work with an
array of buses signal, first use a Selector block to select the index for the bus element
that you want to use with the Bus Selector block. Then use that selected bus element
with the Bus Selector block.

• You cannot assign into a sub-bus that is an array of buses.

Data Type Support

A Bus Selector block accepts and outputs real or complex values of any data type
supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see “ Data
Types Supported by Simulink” in the “Working with Data” chapter of the Simulink
documentation.

Parameters and Dialog Box

The Bus Selector dialog box appears as follows:

 Bus Selector

1-137

1 Blocks — Alphabetical List

1-138

Signals in the bus

Shows the signals in the input bus.

Settings

To refresh the display to reflect modifications to the bus connected to the block, click
Refresh.

Tips

• Use Select>> to select signals to output.
• To find the source of any signal entering the block, select the signal in the list and

click Find. The Simulink software opens the subsystem containing the signal source,
and highlights the source's icon.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Bus Selector

1-139

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

1 Blocks — Alphabetical List

1-140

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

 Bus Selector

1-141

Selected signals

Shows the signals to be output.

Settings

Default: signal1,signal2

You can change the list by using the Up, Down, and Remove buttons.

Tips

• Port connectivity is maintained when the signal order is changed.
• If an output signal listed in the Selected signals list box is not an input to the Bus

Selector block, the signal name is preceded by three question marks (???).

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-142

Output as bus

Output the selected elements as a bus.

Settings

Default: Off

 On
Output the selected elements as a bus.

 Off
Output the selected elements as standalone signals, each from an output port that is
labeled with the corresponding element's name.

Tips

• The output bus is virtual. To produce nonvirtual bus output, insert a Signal
Conversion block after the Bus Selector block. Set the Signal Conversion block
Output parameter to Nonvirtual bus and Data type parameter to use
a Simulink.Bus bus object. For an example, see the Signal Conversion
documentation.

• If the Selected signals list box includes only one signal and you enable Output as
bus, then:

• If the selected signal is a non-bus signal, it is treated as a non-bus signal (it is not
wrapped in a bus).

• If the selected signal is a bus signal, then the output is that bus signal.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Examples

For an example of how the Bus Selector block works, see the sldemo_fuelsys model.
The Bus Selector block appears in the following subsystems:

 Bus Selector

1-143

• fuel_rate_control/airflow_calc

• fuel_rate_control

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also

• “Composite Signals”
• “Create Bus Signals”
• Bus Assignment

• Bus Creator

• Bus to Vector

• Signal Conversion

• Simulink.Bus

• Simulink.Bus.cellToObject

• Simulink.Bus.createObject

• Simulink.BusElement

• Simulink.Bus.objectToCell

• Simulink.Bus.save

Introduced before R2006a

1 Blocks — Alphabetical List

1-144

Bus to Vector

Convert virtual bus to vector

Library

Signal Attributes

Description

The Bus to Vector block converts a virtual bus signal to a vector signal. The input bus
signal must consist of scalar, 1-D, or either row or column vectors having the same data
type, signal type, and sampling mode. If the input bus contains row or column vectors,
this block outputs a row or column vector, respectively; otherwise, it outputs a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector conversion with an
equivalent explicit conversion. See “Correct Buses Used as Muxes”.

Note Simulink hides the name of a Bus to Vector block when you copy it from the
Simulink library to a model.

Data Type Support

The Bus to Vector block accepts virtual bus signals and nonbus signals. If the input is a
nonbus signal, this block has no effect.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Bus to Vector

1-145

Parameters and Dialog Box

This block has no user-accessible parameters.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also
• “Composite Signals”
• “Create Bus Signals”
• Avoiding Mux/Bus Mixtures
• Bus Assignment

• Bus Creator

1 Blocks — Alphabetical List

1-146

• Bus Selector

• Simulink.BlockDiagram.addBusToVector

• Simulink.Bus

• Simulink.Bus.cellToObject

• Simulink.Bus.createObject

• Simulink.BusElement

• Simulink.Bus.objectToCell

• Simulink.Bus.save

Introduced in R2007a

 Check Discrete Gradient

1-147

Check Discrete Gradient

Check that absolute value of difference between successive samples of discrete signal is
less than upper bound

Library

Model Verification

Description

The Check Discrete Gradient block checks each signal element at its input to determine
whether the absolute value of the difference between successive samples of the element
is less than an upper bound. Use the block parameter dialog box to specify the value
of the upper bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and displays an error in
the Diagnostic Viewer.

The Model Verification block enabling setting under Debugging on the Data
Validity diagnostics pane of the Configuration Parameters dialog box lets you enable
or disable all model verification blocks, including Check Discrete Gradient blocks, in a
model.

The Check Discrete Gradient block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

1 Blocks — Alphabetical List

1-148

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Discrete Gradient block accepts single, double, int8, int16, and int32
input signals of any dimensions. This block also supports fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Check Discrete Gradient

1-149

Parameters and Dialog Box

Maximum gradient
Specify the upper bound on the gradient of the discrete input signal.

Enable assertion
Clearing this check box disables the Check Discrete Gradient block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Discrete Gradient blocks, regardless
of the setting of this option.

1 Blocks — Alphabetical List

1-150

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Discrete Gradient block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Discrete Gradient block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and
false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Dynamic Gap

1-151

Check Dynamic Gap
Check that gap of possibly varying width occurs in range of signal's amplitudes

Library
Model Verification

Description
The Check Dynamic Gap block checks that a gap of possibly varying width occurs in the
range of a signal's amplitudes. The test signal is the signal connected to the input labeled
sig. The inputs labeled min and max specify the lower and upper bounds of the dynamic
gap, respectively. If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Gap block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support
The Check Dynamic Gap block accepts input signals of any dimensions and of any
numeric data type that Simulink supports. All three input signals must have the same

1 Blocks — Alphabetical List

1-152

dimension and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Enable assertion
Clearing this check box disables the Check Dynamic Gap block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model

 Check Dynamic Gap

1-153

verification blocks in a model, including Check Dynamic Gap blocks, regardless of the
setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Gap block to halt the simulation
when the block's output is zero and display an error in the Diagnostic Viewer.
Otherwise, the block displays a warning message in the MATLAB Command Window
and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Gap block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No

1 Blocks — Alphabetical List

1-154

Code Generation Yes

Introduced before R2006a

 Check Dynamic Lower Bound

1-155

Check Dynamic Lower Bound
Check that one signal is always less than another signal

Library
Model Verification

Description
The Check Dynamic Lower Bound block checks that the amplitude of a reference signal
is less than the amplitude of a test signal at the current time step. The test signal is the
signal connected to the input labeled sig. If the verification condition is true, the block
does nothing. If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Lower Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you can turn
error checking off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support
The Check Dynamic Lower Bound block accepts input signals of any numeric data
type that Simulink supports. The test and the reference signals must have the same

1 Blocks — Alphabetical List

1-156

dimensions and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signal.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Enable assertion
Clearing this check box disables the Check Dynamic Lower Bound block, that is,
causes the model to behave as if the block did not exist. The Model Verification
block enabling setting under Debugging on the Data Validity diagnostics
pane of the Configuration Parameters dialog box allows you to enable or disable all
model verification blocks, including Check Dynamic Lower Bound blocks, in a model
regardless of the setting of this option.

 Check Dynamic Lower Bound

1-157

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Lower Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Lower Bound block to output
a Boolean signal that is true (1) at each time step if the assertion succeeds and
false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

1 Blocks — Alphabetical List

1-158

Introduced before R2006a

 Check Dynamic Range

1-159

Check Dynamic Range

Check that signal falls inside range of amplitudes that varies from time step to time step

Library

Model Verification

Description

The Check Dynamic Range block checks that a test signal falls inside a range of
amplitudes at each time step. The width of the range can vary from time step to time
step. The input labeled sig is the test signal. The inputs labeled min and max are the
lower and upper bounds of the valid range at the current time step. If the verification
condition is true, the block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

1 Blocks — Alphabetical List

1-160

Data Type Support

The Check Dynamic Range block accepts input signals of any dimensions and of any
numeric data type that Simulink supports. All three input signals must have the same
dimension and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Enable assertion

 Check Dynamic Range

1-161

Clearing this check box disables the Check Dynamic Range block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Dynamic Range blocks, regardless of
the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Range block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Range block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough No

1 Blocks — Alphabetical List

1-162

Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Dynamic Upper Bound

1-163

Check Dynamic Upper Bound
Check that one signal is always greater than another signal

Library
Model Verification

Description
The Check Dynamic Upper Bound block checks that the amplitude of a reference signal
is greater than the amplitude of a test signal at the current time step. The test signal
is the signal connected to the input labeled sig. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default, and displays an
error message.

The Check Dynamic Upper Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you can turn
error-checking off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support
The Check Dynamic Upper Bound block accepts input signals of any dimensions and of
any numeric data type that Simulink supports. The test and the reference signals must

1 Blocks — Alphabetical List

1-164

have the same dimensions and data type. If the inputs are nonscalar, the block compares
each element of the input test signal to the corresponding elements of the reference
signal.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Enable assertion
Clearing this check box disables the Check Dynamic Upper Bound block, that is,
causes the model to behave as if the block did not exist. The Model Verification
block enabling setting under Debugging on the Data Validity diagnostics
pane of the Configuration Parameters dialog box allows you to enable or disable all

 Check Dynamic Upper Bound

1-165

model verification blocks, including Check Dynamic Upper Bound blocks, in a model
regardless of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Upper Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Dynamic Upper Bound block to output
a Boolean signal that is true (1) at each time step if the assertion succeeds and
false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No

1 Blocks — Alphabetical List

1-166

Code Generation Yes

Introduced before R2006a

 Check Input Resolution

1-167

Check Input Resolution

Check that input signal has specified resolution

Library

Model Verification

Description

The Check Input Resolution block checks whether the input signal has a specified scalar
or vector resolution (see Resolution). If the resolution is a scalar, the input signal must
be a multiple of the resolution within a 10e-3 tolerance. If the resolution is a vector, the
input signal must equal an element of the resolution vector. If the verification condition
is true, the block does nothing. If not, the block halts the simulation, by default, and
displays an error message.

The Check Input Resolution block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

1 Blocks — Alphabetical List

1-168

Data Type Support

The Check Input Resolution block accepts input signals of data type double and of
any dimension. If the input signal is nonscalar, the block checks the resolution of each
element of the input test signal.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Check Input Resolution

1-169

Resolution
Specify the resolution that the input signal must have.

Enable assertion
Clearing this check box disables the Check Input Resolution block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Input Resolution blocks, regardless of
the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Input Resolution block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Input Resolution block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Characteristics

Data Types Double
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No

1 Blocks — Alphabetical List

1-170

Code Generation Yes

Introduced before R2006a

 Check Static Gap

1-171

Check Static Gap
Check that gap exists in signal's range of amplitudes

Library

Model Verification

Description

The Check Static Gap block checks that each element of the input signal is less than (or
optionally equal to) a static lower bound or greater than (or optionally equal to) a static
upper bound at the current time step. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model Verification library
are intended to facilitate creation of self-validating models. For example, you can use
model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Static Gap block accepts input signals of any dimensions and of any numeric
data type that Simulink supports.

1 Blocks — Alphabetical List

1-172

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Check Static Gap

1-173

Upper bound
Specify the upper bound of the gap in the input signal's range of amplitudes.

Inclusive upper bound
Selecting this check box specifies that the gap includes the upper bound.

Lower bound
Specify the lower bound of the gap in the input signal's range of amplitudes.

Inclusive lower bound
Selecting this check box specifies that the gap includes the lower bound.

Enable assertion
Clearing this check box disables the Check Static Gap block, that is, causes the
model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Gap blocks, regardless of the
setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Gap block to halt the simulation
when the block's output is zero and display an error in the Diagnostic Viewer.
Otherwise, the block displays a warning message in the MATLAB Command Window
and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Static Gap block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion

1 Blocks — Alphabetical List

1-174

condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Static Lower Bound

1-175

Check Static Lower Bound
Check that signal is greater than (or optionally equal to) static lower bound

Library
Model Verification

Description
The Check Static Lower Bound block checks that each element of the input signal is
greater than (or optionally equal to) a specified lower bound at the current time step. Use
the block parameter dialog box to specify the value of the lower bound and whether the
lower bound is inclusive. If the verification condition is true, the block does nothing. If
not, the block halts the simulation, by default, and displays an error message.

The Check Static Lower Bound block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support
The Check Static Lower Bound block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1 Blocks — Alphabetical List

1-176

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Lower bound
Specify the lower bound on the range of amplitudes that the input signal can have.

Inclusive boundary
Selecting this check box makes the range of valid input amplitudes include the lower
bound.

 Check Static Lower Bound

1-177

Enable assertion
Clearing this check box disables the Check Static Lower Bound block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Lower Bound blocks, regardless
of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Lower Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Static Lower Bound block to output
a Boolean signal that is true (1) at each time step if the assertion succeeds and
false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

1 Blocks — Alphabetical List

1-178

Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Static Range

1-179

Check Static Range
Check that signal falls inside fixed range of amplitudes

Library
Model Verification

Description
The Check Static Range block checks that each element of the input signal falls inside
the same range of amplitudes at each time step. Use the block parameter dialog box to
specify the upper and lower bounds of the valid amplitude range and whether the range
includes the bounds. If the verification condition is true, the block does nothing. If not,
the block halts the simulation, by default, and displays an error message.

The Check Static Range block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support
The Check Static Range block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1 Blocks — Alphabetical List

1-180

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Check Static Range

1-181

Upper bound
Specify the upper bound of the range of valid input signal amplitudes.

Inclusive upper bound
Selecting this check box specifies that the valid signal range includes the upper
bound.

Lower bound
Specify the lower bound of the range of valid input signal amplitudes.

Inclusive lower bound
Selecting this check box specifies that the valid signal range includes the lower
bound.

Enable assertion
Clearing this check box disables the Check Static Range block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Range blocks, regardless of the
setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Range block to halt the simulation
when the block's output is zero and display an error in the Diagnostic Viewer.
Otherwise, the block displays a warning message in the MATLAB Command Window
and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Static Range block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

1 Blocks — Alphabetical List

1-182

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Examples

The sldemo_fuelsys model shows how you can use the Check Static Range block to
verify that the sample time is consistent throughout the model.

The Check Static Range block appears in the sldemo_fuelsys/fuel_rate_control/
validate_sample_time subsystem.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Check Static Upper Bound

1-183

Check Static Upper Bound
Check that signal is less than (or optionally equal to) static upper bound

Library
Model Verification

Description
The Check Static Upper Bound block checks that each element of the input signal is
less than (or optionally equal to) a specified upper bound at the current time step. Use
the block parameter dialog box to specify the value of the upper bound and whether the
bound is inclusive. If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support
The Check Static Upper Bound block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1 Blocks — Alphabetical List

1-184

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Upper bound
Specify the upper bound on the range of amplitudes that the input signal can have.

Inclusive boundary

 Check Static Upper Bound

1-185

Selecting this check box makes the range of valid input amplitudes include the upper
bound.

Enable assertion
Clearing this check box disables the Check Static Upper Bound block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Upper Bound blocks, regardless
of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails
Selecting this check box causes the Check Static Upper Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Static Upper Bound block to output
a Boolean signal that is true (1) at each time step if the assertion succeeds and
false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type
Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

1 Blocks — Alphabetical List

1-186

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Chirp Signal

1-187

Chirp Signal
Generate sine wave with increasing frequency

Library

Sources

Description

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate
with time. You can use this block for spectral analysis of nonlinear systems. The block
generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at target time,
determine the block's output. You can specify any or all of these variables as scalars or
arrays. All the parameters specified as arrays must have the same dimensions. The block
expands scalar parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you select the Interpret
vector parameters as 1-D check box. If you select this check box and the parameters
are row or column vectors, the block outputs a vector (1-D array) signal.

The following limitations apply to the Chirp Signal block:

• The start time of the simulation must be 0. To confirm this value, go to the Solver
pane in the Configuration Parameters dialog box and view the Start time field.

• Suppose that you use a Chirp Signal block in an enabled subsystem. Whenever the
subsystem is enabled, the block output matches what would appear if the subsystem
were enabled throughout the simulation.

Data Type Support

The Chirp Signal block outputs a real-valued signal of type double.

1 Blocks — Alphabetical List

1-188

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix value. The default
is 0.1 Hz.

Target time
The time at which the frequency reaches the Frequency at target time parameter
value, a scalar or matrix value. The frequency continues to change at the same rate
after this time. The default is 100 seconds.

 Chirp Signal

1-189

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix value. The default is
1 Hz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial frequency, Target
time, and Frequency at target time parameters result in a vector output
whose elements are the elements of the row or column. For more information,
see “Determining the Output Dimensions of Source Blocks” in the Simulink
documentation.

Characteristics

Data Types Double
Sample Time Continuous
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-190

Clock

Display and provide simulation time

Library

Sources

Description

The Clock block outputs the current simulation time at each simulation step. This block
is useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock
block.

Data Type Support

The Clock block outputs a real-valued signal of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Clock

1-191

Parameters and Dialog Box

Display time
Select this check box to display the current simulation time inside the Clock block
icon.

Decimation
Specify a positive integer for the interval at which Simulink updates the Clock icon
when you select Display time.

Suppose that the decimation is 1000. For a fixed integration step of 1 millisecond, the
Clock icon updates at 1 second, 2 seconds, and so on.

Examples

The following Simulink examples show how to use the Clock block:

• sldemo_tonegen_fixpt

• penddemo

1 Blocks — Alphabetical List

1-192

Characteristics

Data Types Double
Sample Time Continuous
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Digital Clock

Introduced before R2006a

 Combinatorial Logic

1-193

Combinatorial Logic
Implement truth table

Library
Logic and Bit Operations

Description
The Combinatorial Logic block implements a standard truth table for modeling
programmable logic arrays (PLAs), logic circuits, decision tables, and other Boolean
expressions. You can use this block in conjunction with Memory blocks to implement
finite-state machines or flip-flops.

You specify a matrix that defines all possible block outputs as the Truth table
parameter. Each row of the matrix contains the output for a different combination of
input elements. You must specify outputs for every combination of inputs. The number of
columns is the number of block outputs.

The relationship between the number of inputs and the number of rows is:

number of rows = 2 ^ (number of inputs)

Simulink returns a row of the matrix by computing the row's index from the input vector
elements. Simulink computes the index by building a binary number where input vector
elements having zero values are 0 and elements having nonzero values are 1, then
adding 1 to the result. For an input vector, u, of m elements:

row index = 1 + u(m)*20 + u(m-1)*21 + ... + u(1)*2m-1

Two-Input AND Logic

This example builds a two-input AND function, which returns 1 when both input
elements are 1, and 0 otherwise. To implement this function, specify the Truth table

1 Blocks — Alphabetical List

1-194

parameter value as [0; 0; 0; 1]. The portion of the model that provides the inputs to
and the output from the Combinatorial Logic block might look like this:

The following table indicates the combination of inputs that generate each output. The
input signal labeled “Input 1” corresponds to the column in the table labeled Input 1.
Similarly, the input signal “Input 2” corresponds to the column with the same name. The
combination of these values determines the row of the Output column of the table that is
passed as block output.

For example, if the input vector is [1 0], the input references the third row:

(2^1*1 + 1)

The output value is 0.

Row Input 1 Input 2 Output

1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Circuit Logic

This sample circuit has three inputs: the two bits (a and b) to be summed and a carry-in
bit (c). It has two outputs: the carry-out bit (c') and the sum bit (s).

 Combinatorial Logic

1-195

The truth table and corresponding outputs for each combination of input values for this
circuit appear in the following table.

Inputs Outputs

a b c c' s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

To implement this adder with the Combinatorial Logic block, you enter the 8-by-2 matrix
formed by columns c' and s as the Truth table parameter.

You can also implement sequential circuits (that is, circuits with states) with the
Combinatorial Logic block by including an additional input for the state of the block and
feeding the output of the block back into this state input.

Data Type Support

The type of signals accepted by a Combinatorial Logic block depends on whether you
selected the Boolean logic signals option (see “Implement logic signals as Boolean data

1 Blocks — Alphabetical List

1-196

(vs. double) ”). If this option is enabled, the block accepts real signals of type Boolean or
double. The Truth table parameter can have Boolean values (0 or 1) of any data type,
including fixed-point data types. If the table contains non-Boolean values, the data type
of the table must be double.

The type of the output is the same as that of the input except that the block outputs
double if the input is Boolean and the truth table contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic block accepts only
signals of type Boolean. The block outputs double if the truth table contains non-
Boolean values of type double. Otherwise, the output is Boolean.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Truth table

 Combinatorial Logic

1-197

Specify the matrix of outputs. Each column corresponds to an element of the output
vector and each row corresponds to a row of the truth table.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

Usage with the Memory Block to Implement a Finite-State Machine

The sldemo_clutch model shows how you can use the Combinatorial Logic block with
the Memory block to implement a finite-state machine.

The finite-state machine appears in the Friction Mode Logic/Lockup FSM
subsystem.

Usage with a Stateflow Chart to Implement a Finite-State Machine

The powerwindow model shows how you can use two Combinatorial Logic blocks as
inputs to a Stateflow chart to implement a finite-state machine.

1 Blocks — Alphabetical List

1-198

Characteristics

Data Types Double | Boolean
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

 Combinatorial Logic

1-199

Introduced before R2006a

1 Blocks — Alphabetical List

1-200

Compare To Constant
Determine how signal compares to specified constant

Library

Logic and Bit Operations

Description

The Compare To Constant block compares an input signal to a constant. Specify the
constant in the Constant value parameter. Specify how the input is compared to the
constant value with the Operator parameter. The Operator parameter can have the
following values:

• == — Determine whether the input is equal to the specified constant.
• ~= — Determine whether the input is not equal to the specified constant.
• < — Determine whether the input is less than the specified constant.
• <= — Determine whether the input is less than or equal to the specified constant.
• > — Determine whether the input is greater than the specified constant.
• >= — Determine whether the input is greater than or equal to the specified constant.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type Support

The Compare To Constant block accepts inputs of any data type that Simulink supports,
including fixed-point and enumerated data types. The block first converts its Constant
value parameter to the input data type, and then performs the specified operation. The
block output is uint8 or boolean as specified by the Output data type parameter.

 Compare To Constant

1-201

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Operator
Specify how the input is compared to the constant value, as discussed in Description.

Constant value
Specify the constant value to which the input is compared.

Output data type
Specify the data type of the output, boolean or uint8.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

1 Blocks — Alphabetical List

1-202

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

See Also

Compare To Zero

Introduced before R2006a

 Compare To Zero

1-203

Compare To Zero
Determine how signal compares to zero

Library

Logic and Bit Operations

Description

The Compare To Zero block compares an input signal to zero. Specify how the input is
compared to zero with the Operator parameter. The Operator parameter can have the
following values:

• == — Determine whether the input is equal to zero.
• ~= — Determine whether the input is not equal to zero.
• < — Determine whether the input is less than zero.
• <= — Determine whether the input is less than or equal to zero.
• > — Determine whether the input is greater than zero.
• >= — Determine whether the input is greater than or equal to zero.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type Support

The Compare To Zero block accepts inputs of the following data types:

• Floating point
• Built-in integer
• Fixed point

1 Blocks — Alphabetical List

1-204

• Boolean

The block output is uint8 or boolean, depending on your selection for the Output data
type parameter. For more information, see “ Data Types Supported by Simulink” in the
Simulink documentation.

Tip If the input data type cannot represent zero, parameter overflow occurs. To detect
this overflow, go to the Diagnostics > Data Validity pane of the Configuration
Parameters dialog box and set Parameters > Detect overflow to warning or error.

In this case, the block compares the input signal to the ground value of the input data
type. For example, if you have an input signal of type fixdt(0,8,2^0,10), the input
data type can represent unsigned 8-bit integers from 10 to 265 due to a bias of 10. The
ground value is 10, instead of 0.

Parameters and Dialog Box

Operator
Specify how the input is compared to zero, as discussed in Description.

 Compare To Zero

1-205

Output data type
Specify the data type of the output, boolean or uint8.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

See Also

Compare To Constant

Introduced before R2006a

1 Blocks — Alphabetical List

1-206

Complex to Magnitude-Angle

Compute magnitude and/or phase angle of complex signal

Library

Math Operations

Description

The Complex to Magnitude-Angle block accepts a complex-valued signal of type double
or single. It outputs the magnitude and/or phase angle of the input signal, depending
on the setting of the Output parameter. The outputs are real values of the same data
type as the block input. The input can be an array of complex signals, in which case the
output signals are also arrays. The magnitude signal array contains the magnitudes
of the corresponding complex input elements. The angle output similarly contains the
angles of the input elements.

Data Type Support

See the preceding description.

 Complex to Magnitude-Angle

1-207

Parameters and Dialog Box

Output
Determines the output of this block. Choose from the following values: Magnitude
and angle (outputs the input signal's magnitude and phase angle in radians),
Magnitude (outputs the input's magnitude), Angle (outputs the input's phase angle
in radians).

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-208

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Complex to Real-Imag

1-209

Complex to Real-Imag

Output real and imaginary parts of complex input signal

Library

Math Operations

Description

The Complex to Real-Imag block accepts a complex-valued signal of any data type that
Simulink supports, including fixed-point data types. It outputs the real and/or imaginary
part of the input signal, depending on the setting of the Output parameter. The real
outputs are of the same data type as the complex input. The input can be an array (vector
or matrix) of complex signals, in which case the output signals are arrays of the same
dimensions. The real array contains the real parts of the corresponding complex input
elements. The imaginary output similarly contains the imaginary parts of the input
elements.

Data Type Support

See the preceding description. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-210

Parameters and Dialog Box

Output
Determines the output of this block. Choose from the following values: Real and
imag (outputs the input signal's real and imaginary parts), Real (outputs the input's
real part), Imag (outputs the input's imaginary part).

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block

 Complex to Real-Imag

1-211

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-212

Configurable Subsystem
Represent any block selected from user-specified library of blocks

Library
Ports & Subsystems

Description
The Configurable Subsystem block represents one of a set of blocks contained in a
specified library of blocks. The block's context menu lets you choose which block the
configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that represent families of
designs. For example, suppose that you want to model an automobile that offers a choice
of engines. To model such a design, you would first create a library of models of the
engine types available with the car. You would then use a Configurable Subsystem block
in your car model to represent the choice of engines. To model a particular variant of the
basic car design, a user need only choose the engine type, using the configurable engine
block's dialog.

To create a configurable subsystem in a model, you must first create a library containing
a master configurable subsystem and the blocks that it represents. You can then
create configurable instances of the master subsystem by dragging copies of the master
subsystem from the library and dropping them into models.

You can add any type of block to a master configurable subsystem library. Simulink
derives the port names for the configurable subsystem by making a unique list from
the port names of all the choices. However, Simulink uses default port names for non-
subsystem block choices.

Note that you cannot break library links in a configurable subsystem because Simulink
uses those links to reconfigure the subsystem when you choose a new configuration.

 Configurable Subsystem

1-213

Breaking links would be useful only if you do not intend to reconfigure the subsystem. In
this case, you can replace the configurable subsystem with a nonconfigurable subsystem
that implements the permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

1 Create a library of blocks representing the various configurations of the configurable
subsystem.

2 Save the library.
3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the Simulink Ports
& Subsystems library into the library you created in the previous step.

4 Display the Configurable Subsystem block dialog by double-clicking it. The dialog
displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that represent the
various configurations of the configurable subsystems you are creating.

6 Click the OK button to apply the changes and close the dialog box.
7 Select Block Choice from the Configurable Subsystem block's context menu.

The context menu displays a submenu listing the blocks that the subsystem can
represent.

8 Select the block that you want the subsystem to represent by default.
9 Save the library.

Note: If you add or remove blocks from a library, you must recreate any Configurable
Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a configurable subsystem,
the change does not immediately propagate to the configurable subsystem. To propagate
this change, do one of the following:

• Change the default block choice to another block in the subsystem, then change the
default block choice back to the original block.

• Recreate the configurable subsystem block, including the selection of the updated
block as the default block choice.

1 Blocks — Alphabetical List

1-214

If a configurable subsystem in your model contains a broken link to a library block,
editing the link and saving the model does not fix the broken link the next time you open
the model. To fix a broken library link in your configurable subsystem, use one of the
following approaches.

• Convert the configurable subsystem to a variant subsystem. Right-click the
configurable subsystem, and select Subsystem and Model Reference > Convert
Subsystem to > Variant Subsystem.

• Remove the library block from the master configurable subsystem library, add the
library block back to the master configurable subsystem library, and then resave the
master configurable subsystem library.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model:

1 Open the library containing the master configurable subsystem.
2 Drag a copy of the master into the model.
3 Select Block Choice from the copy's context menu.
4 Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog box of the
block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a configurable subsystem
instance to set the instance's parameters interactively and the set_param command
to set the parameters from the MATLAB command line or in a MATLAB file. If you use
set_param, you must specify the full path name of the configurable subsystem's current
block choice as the first argument of set_param, for example:
curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');

curr_choice = ['mymod/myconfigsys/' curr_choice];

set_param(curr_choice, 'MaskValues', ...);

Mapping I/O Ports

A configurable subsystem displays a set of input and output ports corresponding to input
and output ports in the selected library. Simulink uses the following rules to map library
ports to Configurable Subsystem block ports:

 Configurable Subsystem

1-215

• Map each uniquely named input/output port in the library to a separate input/output
port of the same name on the Configurable Subsystem block.

• Map all identically named input/output ports in the library to the same input/output
ports on the Configurable Subsystem block.

• Terminate any input/output port not used by the currently selected library block with
a Terminator/Ground block.

This mapping allows a user to change the library block represented by a Configurable
Subsystem block without having to rewire connections to the Configurable Subsystem
block.

For example, suppose that a library contains two blocks A and B and that block A has
input ports labeled a, b, and c and an output port labeled d and that block B has input
ports labeled a and b and an output port labeled e. A Configurable Subsystem block
based on this library would have three input ports labeled a, b, and c, respectively, and
two output ports labeled d and e, respectively, as illustrated in the following figure.

In this example, port a on the Configurable Subsystem block connects to port a of the
selected library block no matter which block is selected. On the other hand, port c on the
Configurable Subsystem block functions only if library block A is selected. Otherwise, it
simply terminates.

Note: A Configurable Subsystem block does not provide ports that correspond to non-I/O
ports, such as the trigger and enable ports on triggered and enabled subsystems. Thus,
you cannot use a Configurable Subsystem block directly to represent blocks that have
such ports. You can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-I/O ports.

Convert to Variant Subsystem

Right-click a configurable subsystem and select Subsystems and Model Reference >
Convert Subsystem To > Variant Subsystem.

1 Blocks — Alphabetical List

1-216

Simulink copies the block choices of the configurable subsystem to a new variant
subsystem and adds the appropriate number of inports and outports to the variant
subsystem. The current block choice of the configurable subsystem is made the active
variant selection.

See Variant Subsystem for more information on variant choices.

Data Type Support
The Configurable Subsystem block accepts and outputs signals of the same types that are
accepted or output by the block that it currently represents. The data types can be any
that Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Configurable Subsystem

1-217

List of block choices
Select the blocks you want to include as members of the configurable subsystem. You
can include user-defined subsystems as blocks.

Port names
Lists of input and output ports of member blocks. In the case of multiports, you can
rearrange selected port positions by clicking the Up and Down buttons.

Characteristics

A Configurable Subsystem block has the characteristics of the block that it currently
represents. Double-clicking the block opens the dialog box for the block that it currently
represents.

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-218

Constant
Generate constant value

Library

Sources

Description

The Constant block generates a real or complex constant value.

The block generates scalar, vector, or matrix output, depending on:

• The dimensionality of the Constant value parameter
• The setting of the Interpret vector parameters as 1-D parameter

The output of the block has the same dimensions and elements as the Constant value
parameter. If you specify for this parameter a vector that you want the block to interpret
as a vector, select the Interpret vector parameters as 1-D parameter. Otherwise, if
you specify a vector for the Constant value parameter, the block treats that vector as a
matrix.

Data Type Support

By default, the Constant block outputs a signal whose data type and complexity are the
same as those of the Constant value parameter. However, you can specify the output
to be any data type that Simulink supports, including fixed-point and enumerated data
types. The Enumerated Constant block can be more convenient than the Constant
block for outputting a constant enumerated value. You can also use a bus object as the
output data type, which can help to simplify a model (see “Bus Support” on page 1-235
for details).

 Constant

1-219

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information about data type support, see “ Data Types Supported by Simulink”
in the Simulink documentation.

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-220

Constant value

Specify the constant value output of the block.

Settings

Default: 1

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

• You can enter any expression that MATLAB evaluates as a matrix, including the
Boolean keywords true and false.

• If you set the Output data type to be a bus object, you can specify either:

• A full MATLAB structure corresponding to the bus object
• 0 to indicate a structure corresponding to the ground value of the bus object

For details, see “Bus Support” on page 1-235.
• For non-bus data types, Simulink converts this parameter from its value data type to

the specified output data type offline, using round toward nearest and saturation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Constant

1-221

Interpret vector parameters as 1-D

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

Settings

Default: On

 On
Outputs a vector of length N if the Constant value parameter evaluates to an N-
element row or column vector. For example, the block outputs a matrix of dimension
1-by-N or N-by-1.

 Off
Does not output a vector of length N if the Constant value parameter evaluates to
an N-element row or column vector.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Specify the interval between times that the Constant block output can change during
simulation (for example, due to tuning the Constant value parameter).

Settings

Default: inf

This setting indicates that the block output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute the block output.

See “ Specify Sample Time” in the online documentation for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-222

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum parameter for a bus element, see Simulink.BusElement.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Constant

1-223

1 Blocks — Alphabetical List

1-224

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum parameter for a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

 Constant

1-225

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Output data type

Specify the output data type.

1 Blocks — Alphabetical List

1-226

Settings

Default: Inherit: Inherit from 'Constant value'

Inherit: Inherit from 'Constant value'

Use data type of Constant value.
Inherit: Inherit via back propagation

Use data type of the driving block.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
boolean

Output data type is boolean.
fixdt(1,16)

Output data type is fixed point fixdt(1,16).
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0))

 Constant

1-227

Output data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

Use an enumerated data type, for example, Enum: BasicColors.
Bus: <object name>

Data type is a bus object.
<data type expression>

Data type is data type object, for example Simulink.NumericType.

Do not specify a bus object as the expression.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Control Signal Data Types” for more information.

1 Blocks — Alphabetical List

1-228

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Constant

1-229

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit from 'Constant value' (default)
• Inherit via back propagation

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.

1 Blocks — Alphabetical List

1-230

If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Constant

1-231

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-232

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Constant

1-233

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-234

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Constant

1-235

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

Bus Support

Using Bus Objects as the Output Data Type

The Constant block supports nonvirtual buses as the output data type. If you use a bus
object as the data type, set Constant value to 0 or a MATLAB structure that matches
the bus object.

Using Structures for the Constant Value

The structure you specify must contain a value for every element of the bus represented
by the bus object.

1 Blocks — Alphabetical List

1-236

You can use the Simulink.Bus.createMATLABStruct to create a full structure that
corresponds to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB
structure.

If the signal elements in the output bus use numeric data types other than double,
you can specify the structure fields by using typed expressions such as uint16(37) or
untyped expressions such as 37. To decide whether to use typed or untyped expressions,
see “Decide Whether to Specify Data Types for Structure Fields”.

Example of Using a Bus Object for a Constant Block

The following example illustrates how using a bus object as an output data type for a
Constant block can help to simplify a model.

1 Open the ex_busic model and update it.

This model uses six Constant blocks. For details about the model, see “Examples of
Partial Structures”.

 Constant

1-237

2 Open the ex_constantbus model and update it. This model uses one Constant block
that replaces the six Constant blocks in the ex_busic model.

1 Blocks — Alphabetical List

1-238

3 Simulate the ex_constantbus model. To verify that the output from the Constant
block reflects the values from constant_value_struct, perform the next two
steps.

4 At the MATLAB command line, examine the constant_value_struct structure
that the Constant block uses for its Constant value parameter.

constant_value_struct

constant_value_struct =

 A: [1x1 struct]

 B: 5

 C: [1x1 struct]

5 Examine the logged data in the logsout variable, focusing on the B element of the
A1 bus signal. The constant_value_struct structure sets the B element to 5.

logsout.A1.B.Data

Group Constant Signals into an Array of Buses

You can use a Constant block to compactly represent multiple constant-valued signals
as an array of buses. You can use this technique to reduce the number of signal lines
in a model and the number of variables that the model uses, especially when the model
repeats an algorithm with different parameter values.

To generate a constant-valued array of bus signals, use an array of MATLAB structures
in a Constant block. The block output is an array of buses, and each field in the array of
structures provides the simulation value for the corresponding signal element.

 Constant

1-239

You can also use an array of structures to specify the Value property of a
Simulink.Parameter object, and use the parameter object in a Constant block.

1 Open the example model ex_constantbus_array.

The variables ParamBus and const_param_struct appear in the base workspace.
The variable const_param_struct contains a structure whose field names match
the elements of the bus type that ParamBus defines.

2 Update the diagram to view the signal line widths.

The output of the Constant block is a single scalar bus of type ParamBus. The
structure variable const_param_struct specifies the constant value in the block.

3 At the command prompt, create an array of two structures by copying the structure
const_param_struct. Customize the field values by indexing into the individual
structures in the array.

const_struct_array =...

 [const_param_struct const_param_struct];

const_struct_array(2).Offset = 158;

const_struct_array(2).Gain = 3.83;

const_struct_array(2).Threshold = 1039.77

const_struct_array =

1x2 struct array with fields:

 Offset

 Gain

 Threshold

4 In the Constant block dialog box, set Constant value to const_struct_array.
5 Add two Selector blocks to the model, and connect the Constant block as shown.

1 Blocks — Alphabetical List

1-240

6 In the Selector block dialog box, set Index to 1 and Input port size to 2.
7 In the Selector1 block dialog box, set Index to 2 and Input port size to 2.
8 Copy the block algorithm in the model, and connect the blocks as shown.

 Constant

1-241

9 Update the diagram. The signal line width and style indicate that the output of the
Constant block is an array of buses. The Selector blocks each extract one of the buses
in the array.

Each copy of the algorithm uses the constant values provided by the corresponding
structure in the variable const_struct_array.

To create an array of structures for a bus that uses a large hierarchy of signal elements,
consider using the function Simulink.Bus.createMATLABStruct. You can also use
this technique to create an array of structures if you do not have a scalar structure that
you can copy.

Setting Configuration Parameters to Support Using a Bus Object Data
Type

To enable the use of a bus object as an output data type, before you start a simulation,
set the following diagnostics as indicated:

• In the Diagnostics > Connectivity pane of the Configuration Parameters dialog
box, set “Mux blocks used to create bus signals” to error.

• In the Diagnostics > Data Validity pane of the Configuration Parameters dialog
box, set “Underspecified initialization detection” to simplified.

1 Blocks — Alphabetical List

1-242

The documentation for these diagnostics explains how to convert your model to handle
error messages the diagnostics generate.

Examples

The following Simulink examples show how to use the Constant block:

• sldemo_auto_climatecontrol

• sldemo_boiler

• sldemo_bounce

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Direct Feedthrough N/A
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Enumerated Constant | Simulink.Parameter

More About
• “Bus Objects”

Introduced before R2006a

 Coulomb and Viscous Friction

1-243

Coulomb and Viscous Friction
Model discontinuity at zero, with linear gain elsewhere

Library

Discontinuities

Description

The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic)
friction. The block models a discontinuity at zero and a linear gain otherwise.

The block output matches the MATLAB result for:

y = sign(x) .* (Gain .* abs(x) + Offset)

where y is the output, x is the input, Gain is the signal gain for nonzero input values,
and Offset is the Coulomb friction.

The block accepts one input and generates one output. The input can be a scalar, vector,
or matrix with real and complex elements.

• For a scalar input, Gain and Offset can have dimensions that differ from the input.
The output is a scalar, vector, or matrix depending on the dimensions of Gain and
Offset.

• For a vector or matrix input, Gain and Offset must be scalar or have the same
dimensions as the input. The output is a vector or matrix of the same dimensions as
the input.

Data Type Support

The Coulomb and Viscous Friction block supports real inputs of the following data types:

1 Blocks — Alphabetical List

1-244

• Floating point
• Built-in integer
• Fixed point

The block supports complex inputs only for floating-point data types, double and
single. The output uses the same data type as the input.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Coulomb friction value
Specify the offset that applies to all input values.

Coefficient of viscous friction

 Coulomb and Viscous Friction

1-245

Specify the signal gain for nonzero input values.

Examples

Scalar Input

Suppose that you have the following model:

In this model, block input x and Gain are scalar values, but Offset is a vector.
Therefore, the block uses element-wise scalar expansion to compute the output.

Vector Input

Suppose that you have the following model:

In this model, vector dimensions for block input x and Offset are the same.

Matrix Input

Suppose that you have the following model:

1 Blocks — Alphabetical List

1-246

In this model, matrix dimensions for block input x and Offset are the same.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes
Code Generation Yes

Introduced before R2006a

 Counter Free-Running

1-247

Counter Free-Running

Count up and overflow back to zero after reaching maximum value for specified number
of bits

Library

Sources

Description

The Counter Free-Running block counts up until reaching the maximum value, 2Nbits

– 1, where Nbits is the number of bits. Then the counter overflows to zero and begins
counting up again.

After overflow, the counter always initializes to zero. However, if you select the global
doubles override, the Counter Free-Running block does not wrap back to zero.

Data Type Support

The Counter Free-Running block outputs an unsigned integer.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-248

Parameters and Dialog Box

Number of Bits
Specify the number of bits.

When you use... Such as... The block counts up to... Which is...

A positive integer 8 28 – 1 255

An unsigned
integer expression

uint8(8) uint8(2uint8(8) – 1) 254

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the Simulink documentation.

 Counter Free-Running

1-249

Examples

Bit Specification Using a Positive Integer

Suppose that you have the following model:

The block parameters are:

Parameter Setting

Number of Bits 8

Sample time -1

The solver options for the model are:

Parameter Setting

Stop time 255

Type Fixed-step

Solver discrete (no continuous states)

Fixed-step size 1

At t = 255, the counter reaches the maximum value:
28 – 1

If you change the stop time of the simulation to 256, the counter wraps to zero.

Bit Specification Using an Unsigned Integer Expression

Suppose that you have the following model:

1 Blocks — Alphabetical List

1-250

The block parameters are:

Parameter Setting

Number of Bits uint8(8)

Sample time -1

The solver options for the model are:

Parameter Setting

Stop time 254

Type Fixed-step

Solver discrete (no continuous states)

Fixed-step size 1

At t = 254, the counter reaches the maximum value:
uint8(2uint8(8) – 1)

If you change the stop time of the simulation to 255, the counter wraps to zero.

Characteristics

Data Types Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

 Counter Free-Running

1-251

See Also

Counter Limited

Introduced before R2006a

1 Blocks — Alphabetical List

1-252

Counter Limited

Count up and wrap back to zero after outputting specified upper limit

Library

Sources

Description

The Counter Limited block counts up until the specified upper limit is reached. Then the
counter wraps back to zero, and restarts counting up. The counter always initializes to
zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A Sample time of
-1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest number of bits
needed to represent the upper limit.

Data Type Support

The Counter Limited block outputs an unsigned integer.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Counter Limited

1-253

Parameters and Dialog Box

Upper limit
Specify the upper limit.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the Simulink documentation.

Examples

The following Simulink examples show how to use the Counter Limited block:

• sldemo_tonegen_fixpt

1 Blocks — Alphabetical List

1-254

Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Counter Free-Running

Introduced before R2006a

 Dashboard Scope

1-255

Dashboard Scope

Trace signals during simulation

Library

Dashboard

Description

The Dashboard Scope block displays connected signals during simulation on a scope
display.

To view data from signals, double-click the Dashboard Scope block to open the dialog
box. Select signals in the model. The signals appear in the Connection table. Select the
check box next to each signal you want to display in the scope. Click Apply to connect
the signals.

You can also add data cursors to the Dashboard Scope to inspect signal data. To add a
data cursor, select the Dashboard Scope block and right-click. Select Data Cursors >
One from the menu.

To change zoom and pan modes, select the Dashboard Scope block, right-click, and select
the zoom or pan mode you want.

Limitations

The Dashboard Scope block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

1 Blocks — Alphabetical List

1-256

If you turn off streaming for a signal connected to the Dashboard Scope block, then signal
data does not stream to the block. To view signal data again, double-click the Dashboard
Scope block and reconnect the signal.

The External simulation mode is not supported for the Dashboard Scope block.

Data Type Support

The Dashboard Scope block accepts real (not complex) signals of any data type that
Simulink supports, including enumerated data types.

For more information on data types in Simulink, see “ Data Types Supported by
Simulink”.

 Dashboard Scope

1-257

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-258

Connection

Select signals to connect and display.

To view data from signals, double-click the Dashboard Scope block to open the dialog
box. Select signals in the model. The signals appear in the Connection table. Select the
check box next to each signal you want to display in the scope. Click Apply to connect
the signals.

Settings

The table has a row for the signals connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

T-Axis Limits

Horizontal axis time span.

Settings

Default: auto

Specify this number as a finite, real, double, scalar value. Specify auto for the
Dashboard Scope to set the time span to the model simulation stop time.

Y-Axis Limits

Vertical axis range.

Settings

Default: –3 and 3

Specify this number as a finite, real, double, scalar value.

Dependencies

The Min value must be less than the Max value.

Legend

Position of the line legend.

 Dashboard Scope

1-259

Settings

Default: Top

Top
Show the legend at the top of the plot.

Right
Show the legend at the right of the plot.

Hide
Do not show the legend.

Scale axes limits at stop

Perform a fit-to-view on the data displayed in the scope when the simulation has stopped.

Settings

Default: On

 On
Perform a fit-to-view on the data displayed in the scope when the simulation has
stopped.

 Off
Do not perform a fit-to-view on the data displayed in the scope when the simulation
has stopped.

Show “Double-click to connect” message

Show instructional text if the block is not connected. You can clear the check box to hide
the text when the block is not connected.

Settings

Default: On

 On
Show the instructional text if the block is not connected.

1 Blocks — Alphabetical List

1-260

 Off
Do not show the instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Data Store Memory

1-261

Data Store Memory
Define data store

Library

Signal Routing

Description

The Data Store Memory block defines and initializes a named shared data store, which is
a memory region usable by Data Store Read and Data Store Write blocks that specify the
same data store name.

The location of the Data Store Memory block that defines a data store determines which
Data Store Read and Data Store Write blocks can access the data store:

• If the Data Store Memory block is in the top-level system, Data Store Read and Data
Store Write blocks anywhere in the model can access the data store.

• If the Data Store Memory block is in a subsystem, Data Store Read and Data Store
Write blocks in the same subsystem or in any subsystem below it in the model
hierarchy can access the data store.

Data Store Read or Data Store Write blocks cannot access a Data Store Memory block
that is either in a model that contains a Model block or in a referenced model.

Do not include a Data Store Memory block in a subsystem that a For Each Subsystem
block represents.

Use the Initial value parameter to initialize the data store. Specify a scalar value or an
array of values in the Initial value parameter. The dimensions of the array determine
the dimensionality of the data store. Any data written to the data store must have the
dimensions designated by the Initial value parameter. Otherwise, an error occurs.

1 Blocks — Alphabetical List

1-262

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. For details, see:

• “Order Data Store Access”
• “Data Store Diagnostics”
• “Log Data Stores”

You can use Simulink.Signal objects in addition to, or instead of, Data Store Memory
blocks to define data stores. A data store defined in the base workspace with a signal
object is a global data store. Global data stores are accessible to every model, including
all referenced models. See “Data Stores” for more information.

Data Type Support

The Data Store Memory block stores real or complex signals of these data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated
• Bus

The block does not support variable-size signals.

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Data Store Memory

1-263

You can use arrays of buses with a Data Store Memory block. For details about defining
and using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Main pane of the Data Store Memory block dialog box appears as follows:

1 Blocks — Alphabetical List

1-264

Data store name
Specify a name for the data store you are defining with this block. Data Store Read
and Data Store Write blocks with the same name can read from, and write to, the

 Data Store Memory

1-265

data store initialized by this block. The name can represent a Data Store Memory
block or a sign object defined to be a data store.

Rename All
Rename the data store everywhere the Data Store Read and Data Store Write blocks
use it in a model.

You cannot use Rename All to rename a data store if you:

• Use a Simulink.Signal object in a workspace to control the code generated for
the data store

• Use a Simulink.Signal object instead of a Data Store Memory block to define
the data store

You must instead rename the corresponding Simulink.Signal object from Model
Explorer. For an example, see “Rename Data Store Defined by Signal Object”.

Corresponding Data Store Read/Write blocks
List all the Data Store Read and Data Store Write blocks that have the same
data store name as the current block, and that are in the current system or in
any subsystem below it in the model hierarchy. Double-click a block in this list to
highlight the block and bring it to the foreground.

The Signal Attributes pane of the Data Store Memory block dialog box appears as
follows:

1 Blocks — Alphabetical List

1-266

Initial value
Specify the initial value or values of the data store. The dimensions of this value
determine the dimensions of data that may be written to the data store. The

 Data Store Memory

1-267

Minimum parameter specifies the minimum value for this parameter, and the
Maximum parameter specifies the maximum value.

Initial value dimensions must match the dimensions that you specify in the Signal
Attributes > Dimensions parameter, unless the initial value is a MATLAB
structure.

To use this block to initialize a nonvirtual bus signal, specify the initial value as
a MATLAB structure and set the model configuration parameter “Underspecified
initialization detection” to Simplified. For more information about initializing
nonvirtual bus signals using structures, see “Specify Initial Conditions for Bus
Signals”.

Minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the
minimum value for bus data on the block. Simulink ignores this setting. Instead, set
the minimum values for bus elements of the bus object specified as the data type. For
information on the Minimum property of a bus element, see Simulink.BusElement.

Simulink uses the minimum value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set
the maximum value for bus data on the block. Simulink ignores this setting.
Instead, set the maximum values for bus elements of the bus object specified as
the data type. For information on the Maximum property of a bus element, see
Simulink.BusElement.

1 Blocks — Alphabetical List

1-268

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Data type
Specify the output data type. You can set it to:

• A rule that inherits a data type (for example, Inherit: auto)
• The name of a built-in data type (for example, single)
• The name of a data type object (for example, a Simulink.NumericType object)
• An expression that evaluates to a data type (for example, fixdt(1,16,0)). Do

not specify a bus object as the data type in an expression; use Bus: <object
name> to specify a bus data type.

• Bus: <object name>; enter the name of a bus object that you want to use to
define the structure of the bus. The bus must be a nonvirtual bus. If you need
to create or change a bus object, click the Show data type assistant button
and then click the Edit button to the right of the Bus object field to open the
Simulink Bus Editor. For details about the Bus Editor, see “Manage Bus Objects
with the Bus Editor”

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Data type parameter.

See “Control Signal Data Types”.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Signal type
Specify the numeric type, real or complex, of the values in the data store.

Dimensions (-1 to infer from Initial value)
Specify dimensions that match the dimensions of the Initial value dimensions,
unless you specify a MATLAB structure for the initial value. For example, if you use

 Data Store Memory

1-269

a MATLAB structure for the initial value, then you need to specify dimensions to
initialize an array of buses with this MATLAB structure.

Interpret vector parameters as 1-D
If you enable this option and specify the Initial value parameter as a column or row
matrix, Simulink initializes the data store to a 1-D array whose elements are equal to
the elements of the row or column vector. See “Determining the Output Dimensions
of Source Blocks”.

Data store must resolve to Simulink signal object
Specify that Simulink software, when compiling the model, searches the model and
base workspace for a Simulink.Signal object having the same name, as described
in “Symbol Resolution”. If Simulink does not find such an object, the compilation
stops, with an error. Otherwise, Simulink compares the attributes of the signal object
to the corresponding attributes of the Data Store Memory block. If the block and the
object attributes are inconsistent, Simulink halts model compilation and displays an
error.

Package
Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Storage class
Select a custom storage class for the signal object. When no Package is
selected, setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Storage type qualifier.

Storage type qualifier
Specify the Simulink Coder storage type qualifier.

See “Discrete Block State Naming in Generated Code” in the Simulink Coder
documentation for more information.

The Diagnostics pane of the Data Store Memory block dialog box appears as follows:

1 Blocks — Alphabetical List

1-270

Detect read before write
Select the diagnostic action to take if the model attempts to read data from a data
store to which it has not written data in this time step. See also the “Detect read

 Data Store Memory

1-271

before write” diagnostic in the Data Store Memory Block section of the Model
Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

Take no action.
warning

Display a warning.
error

Terminate the simulation and display an error message.

Detect write after read
Select the diagnostic action to take if the model attempts to write data to the data
store after previously reading data from it in the current time step. See also the
“Detect write after read” diagnostic in the Data Store Memory Block section of the
Model Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

Take no action.
warning

Display a warning.
error

Terminate the simulation and display an error message.

Detect write after write
Select the diagnostic action to take if the model attempts to write data to the
data store twice in succession in the current time step. See also the “Detect write
after write” diagnostic in the Data Store Memory Block section of the Model
Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

1 Blocks — Alphabetical List

1-272

Take no action.
warning

Display a warning.
error

Terminate the simulation and display an error message.

The Logging pane of the Data Store Memory block dialog box appears as follows:

 Data Store Memory

1-273

Log signal data
Select this option to save the values of this signal to the MATLAB workspace during
simulation. See “Signal Logging” for details.

1 Blocks — Alphabetical List

1-274

Logging name
Use this pair of controls, consisting of a list box and an edit field, to specify the name
associated with logged signal data.

Simulink uses the signal name as its logging name by default. To specify a custom
logging name, select Custom from the list box and enter the custom name in the
adjacent edit field.

Data
Use this group of controls to limit the amount of data that Simulink logs for this
signal.

• Limit data points to last: Discard all but the last N data points, where N is the
number that you enter in the adjacent edit field.

• Decimation: Log every Nth data point, where N is the number that you enter in
the adjacent edit field. For example, suppose that your model uses a fixed-step
solver with a step size of 0.1 s. If you select this option and accept the default
decimation value (2), Simulink records data points for this signal at times 0.0,
0.2, 0.4, and so on.

For more information, see “Log Data Stores”

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also

• “Data Stores”
• “Access Data Stores with Simulink Blocks”
• Data Store Read

 Data Store Memory

1-275

• Data Store Write

• “Log Data Stores”

Introduced before R2006a

1 Blocks — Alphabetical List

1-276

Data Store Read
Read data from data store

Library

Signal Routing

Description

The Data Store Read block copies data from the named data store to its output. More
than one Data Store Read block can read from the same data store.

The data store from which the data is read is determined by the location of the Data
Store Memory block or signal object that defines the data store. For more information,
see “Data Stores” and Data Store Memory.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. See “Order Data Store Access” and “Data Store
Diagnostics” for details.

Data Type Support

The Data Store Read block can output a real or complex signal of these data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

 Data Store Read

1-277

• Bus

The block does not support variable-size signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

You can use arrays of buses with a Data Store Read block. For details about defining and
using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Parameters pane of the Data Store Read block dialog box appears as follows:

Data store name
Specifies the name of the data store from which this block reads data. The adjacent
pull-down list lists the names of Data Store Memory blocks that exist at the same
level in the model as the Data Store Read block or at higher levels. The pulldown list

1 Blocks — Alphabetical List

1-278

also includes all Simulink.Signal objects in the base and model workspaces. To
change the name, select a name from the pull-down list or enter the name directly in
the edit field.

When Simulink software compiles the model containing this block, Simulink
software searches the model upwards from this block's level for a Data Store Memory
block having the specified data store name. If Simulink software does not find
such a block, it searches the model workspace and the MATLAB workspace for a
Simulink.Signal object having the same name. See “Symbol Resolution” for more
information about the search path.

If Simulink software finds the signal object, it creates a hidden Data Store Memory
block at the model's root level having the properties specified by the signal object and
an initial value of 0. If Simulink software finds neither the Data Store Memory block
nor the signal object, it halts the compilation and displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the store from which this
block reads.

Data store write blocks
This parameter lists all the Data Store Write blocks with the same data store name
as this block that are in the same (sub)system or in any subsystem below it in the
model hierarchy. Double-click any entry on this list to highlight the block and bring it
to the foreground.

Sample time
The sample time, which controls when the block reads from the data store. A value of
-1 indicates that the sample time is inherited. See “ Specify Sample Time” for more
information.

The Element Selection pane of the Data Store Read block dialog box appears as
follows:

 Data Store Read

1-279

Use the Element Selection pane to select a subset of the bus or matrix elements
defined for the associated data store. The Data Store Read block icon reflects the
elements that you specify. For details, see “Accessing Specific Bus and Matrix Elements”.

Elements in the array or Signals in the bus (Prompt is specific to the type of data.)
For bus signals, lists the elements in the associated data store. The list displays the
maximum dimensions for each element, in parentheses.

For data stores with a bus data type, you can expand the tree to view the bus
elements. For data stores with arrays, you can read the whole data store, or you can
specify one or more elements of the whole data store.

You can select an element and then use one of the following approaches:

• Click Select>> to display that element (and all its subelements) in the Selected
element(s) list.

• Use the Specify element(s) to select edit box to specify the bus or matrix
elements that you want to select for reading. Then click Select>>.

To refresh the display to reflect modifications to the bus or matrix used in the data
store, click Refresh.

1 Blocks — Alphabetical List

1-280

Specify element(s) to select
Enter a MATLAB expression to define the specific element that you want to read. For
example, for a data store named DSM that has maximum dimensions of [3,5], you
could enter expressions such as DSM(2, 4) or DSM([1 3], 2) in the edit box and
then click Select>>.

To apply the element selection, click OK.
Selected Element(s)

Displays the elements that you select. The Data Store Read block icon displays a port
for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the
list and click Up or Down. Changing the order of the elements in the list changes the
order of the ports. To remove an element, click Remove.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also

• “Data Stores”
• “Rename Data Stores”
• “Access Data Stores with Simulink Blocks”
• Data Store Memory

• Data Store Write

Introduced before R2006a

 Data Store Write

1-281

Data Store Write

Write data to data store

Library

Signal Routing

Description

The Data Store Write block copies the value at its input to the named data store. Each
write operation performed by a Data Store Write block writes over the data store,
replacing the previous contents.

The data store to which this block writes is determined by the location of the Data Store
Memory block or signal object that defines the data store. For more information, see
“Data Stores” and Data Store Memory. The size of the data store is set by the signal
object or the Data Store Memory block that defines and initializes the data store. Each
Data Store Write block that writes to that data store must write the same amount of
data.

More than one Data Store Write block can write to the same data store. However, if
two Data Store Write blocks attempt to write to the same data store during the same
simulation step, results are unpredictable.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. For details, see “Order Data Store Access” and “Data
Store Diagnostics”.

You can log the values of a local or global data store data variable for all the steps in a
simulation. For details, see “Log Data Stores”.

1 Blocks — Alphabetical List

1-282

Data Type Support

The Data Store Write block accepts a real or complex signal of these data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated
• Bus

The block does not support variable-size signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

You can use an array of buses with a Data Store Write block. For details about defining
and using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Parameters pane of the Data Store Write block dialog box appears as follows:

 Data Store Write

1-283

Data store name
Specifies the name of the data store to which this block writes data. The adjacent
pull-down list lists the names of Data Store Memory blocks that exist at the same
level in the model as the Data Store Write block or at higher levels. The pulldown list
also includes all Simulink.Signal objects in the base and model workspaces. To
change the name, select a name from the pull-down list or enter the name directly in
the edit field.

When Simulink software compiles the model containing this block, Simulink software
searches the model upwards from this block's level for a Data Store Memory block
having the specified data store name. If Simulink does not find such a block, it
searches the model workspace and the MATLAB workspace for a Simulink.Signal
object having the same name. If Simulink software finds neither the Data Store
Memory block nor the signal object, it halts the compilation and displays an error.
See “Symbol Resolution” for more information about the search path.

If Simulink finds a signal object, it creates a hidden Data Store Memory block at the
model's root level having the properties specified by the signal object and an initial
value set to a matrix of zeros. The dimensions of that matrix are inherited from the
Dimensions property of the signal object.

Data store memory block

1 Blocks — Alphabetical List

1-284

This field lists the Data Store Memory block that initialized the store to which this
block writes.

Data store read blocks
This parameter lists all the Data Store Read blocks with the same data store name as
this block that are in the same (sub)system or in any subsystem below it in the model
hierarchy. Double-click any entry on this list to highlight the block and bring it to the
foreground.

Sample time
Specify the sample time that controls when the block writes to the data store. A value
of -1 indicates that the sample time is inherited. See “ Specify Sample Time” for
more information.

The Element Assignment pane of the Data Store Write block dialog box appears as
follows:

Use the Element Assignment pane to assign a subset of the bus or matrix elements
defined for writing to the associated data store. The Data Store Write block icon reflects
the elements that you specify. For details, see “Accessing Specific Bus and Matrix
Elements”.

 Data Store Write

1-285

Elements in the array or Signals in the bus (Prompt is specific to the type of data.)
For bus signals, lists the elements in the associated data store. The list displays the
maximum dimensions for each element, in parentheses.

For data stores with a bus data type, you can expand the tree to view the bus
elements. For data stores with arrays, you can write the whole data store, or you can
assign one or more elements to the whole data store.

You can select an element and then use one of the following approaches:

• Click Select>> to display that element (and all its subelements) in the Assigned
element(s) list.

• Use the Specify element(s) to assign edit box to specify the bus or matrix
elements that you want to select for reading. Then click Select>>.

To refresh the display to reflect modifications to the bus or matrix used in the data
store, click Refresh.

Specify element(s) to assign
Enter a MATLAB expression to define the specific element that you want to write.
For example, for a data store named DSM that has maximum dimensions of [3,5],
you could enter expressions such as DSM(2, 4) or DSM([1 3], 2) in the edit box.
Then click Select>>.

To apply the element selection, click OK.
Assigned Element(s)

Displays the elements that you selected for assignment. The Data Store Write block
icon displays a port for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the
list and click Up or Down. Changing the order of the elements in the list changes the
order of the ports. To remove an element, click Remove.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter

1 Blocks — Alphabetical List

1-286

Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also

• “Data Stores”
• “Rename Data Stores”
• “Access Data Stores with Simulink Blocks”
• Data Store Memory

• Data Store Read

• “Log Data Stores”

Introduced before R2006a

 Data Type Conversion

1-287

Data Type Conversion

Convert input signal to specified data type

Library

Signal Attributes

Description

The Data Type Conversion block converts an input signal of any Simulink data type to
the data type that you specify.

The input can be any real- or complex-valued signal. If the input is real, the output is
real. If the input is complex, the output is complex.

Note To control the output data type by specifying block parameters, or to inherit a data
type from a downstream block, use the Data Type Conversion block. To inherit a data
type from a different signal in the model, use the Data Type Conversion Inherited
block.

Convert Fixed-Point Signals

When you convert between fixed-point data types, the Input and output to have equal
parameter controls block behavior. If neither input nor output use fixed-point scaling,
because they are not of a fixed-point data type or have trivial fixed-point scaling, this
parameter does not change the behavior of the block. For more information about fixed-
point numbers, see “Fixed-Point Numbers” in the Fixed-Point Designer documentation.

1 Blocks — Alphabetical List

1-288

To convert a signal from one data type to another by attempting to preserve the real-
world value of the input signal, select Real World Value (RWV), the default setting.
The block accounts for the scaling of the input and output and, within the limits of the
specified data types, attempts to generate an output of equal real-world value.

To change the real-world value of the input signal by performing a scaling
reinterpretation of the stored integer value, select Stored Integer (SI). Within the
limits of the specified data types, the block attempts to preserve the stored integer value
of the signal during conversion. A best practice is to specify input and output data types
using the same word length and signedness so that the block changes only the scaling
of the signal. Specifying a different signedness or word length for the input and output
could produce unexpected results such as range loss or unexpected sign extensions. For
an example, see “Reinterpret Signal Using a Fixed-Point Data Type” on page 1-313.

If you select Stored Integer (SI), the block does not perform a lower-level bit
reinterpretation of a floating-point input signal. For example, if the input is of the data
type single and has value 5, the bits that store the input in memory are given in
hexadecimal by the following command.

num2hex(single(5))

40a00000

However, the Data Type Conversion block does not treat the stored integer value as
40a00000, but instead as the real-world value, 5. After conversion, the stored integer
value of the output is 5.

Cast Enumerated Signals

Use a Data Type Conversion block to cast enumerated signals as follows:

1 To cast a signal of enumerated type to a signal of any numeric type.

The underlying integers of all enumerated values input to the Data Type Conversion
block must be within the range of the numeric type. Otherwise, an error occurs
during simulation.

2 To cast a signal of any integer type to a signal of enumerated type.

The value input to the Data Type Conversion block must match the underlying value
of an enumerated value. Otherwise, an error occurs during simulation.

 Data Type Conversion

1-289

You can enable the block’s Saturate on integer overflow parameter so that
Simulink uses the default value of the enumerated type when the value input to
the block does not match the underlying value of an enumerated value. See “Type
Casting for Enumerations”.

You cannot use a Data Type Conversion block in the following cases:

• To cast a non-integer numeric signal to an enumerated signal.
• To cast a complex signal to an enumerated signal, regardless of the data types of the

complex signal’s real and imaginary parts.

See “Simulink Enumerations” for information on working with enumerated types.

Data Type Support

The Data Type Conversion block handles any data type that Simulink supports,
including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-290

Parameters and Dialog Box

 Data Type Conversion

1-291

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-292

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

 Data Type Conversion

1-293

Input and output to have equal

Specify which type of input and output must be equal, in the context of fixed point data
representation.

Settings

Default: Real World Value (RWV)

Real World Value (RWV)

Specifies the goal of making the Real World Value (RWV) of the input equal to
the Real World Value (RWV) of the output.

Stored Integer (SI)

Specifies the goal of making the Stored Integer (SI) value of the input equal to
the Stored Integer (SI) value of the output.

Command-Line Information

For the command-line information, see “Block-Specific Parameters” on page 6-96.

1 Blocks — Alphabetical List

1-294

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

 Data Type Conversion

1-295

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1 Blocks — Alphabetical List

1-296

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

 Data Type Conversion

1-297

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-298

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Data Type Conversion

1-299

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-300

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via back propagation

Inherit: Inherit via back propagation

Use data type of the driving block.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
boolean

Output data type is boolean. The Data Type Conversion block converts real, nonzero
numeric values (including NaN and Inf) to boolean true (1).

fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).

 Data Type Conversion

1-301

Enum: <class name>

Use an enumerated data type, for example, Enum: BasicColors.
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-302

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables Inherit via back
propagation.

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

 Data Type Conversion

1-303

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-304

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Data Type Conversion

1-305

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-306

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Data Type Conversion

1-307

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-308

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Data Type Conversion

1-309

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

Real-World Values and Stored Integers

The example model ex_data_type_conversion_rwv_si uses Data Type Conversion blocks
to show the meaning of the real-world value and the stored integer of a signal. For

1 Blocks — Alphabetical List

1-310

basic information about fixed-point scaling, see “Scaling” in the Fixed-Point Designer
documentation.

Conversion Between Fixed-Point Data Types

The Fixed-Point Constant block represents the real-world value 15 by using a fixed-point
data type with binary-point scaling 2-5. Due to the scaling, the output signal uses a stored
integer value of 480.

The model uses Data Type Conversion blocks to convert the signal to a fixed-point data
type with binary-point scaling 2-2.

• The Fixed to Fixed: Preserve RWV block converts the input signal by preserving the
real-world value, 15. The parameter Input and output to have equal is set to Real
World Value (RWV).

The output signal has the same real-world value as the input, that is, 15. Due to the
fixed-point scaling, the output uses a stored integer value of 60.

• The Fixed to Fixed: Preserve SI block converts the input signal by preserving the
stored integer value, 480. The parameter Input and output to have equal is set to
Stored Integer (SI).

The output signal uses the same stored integer value as the input, that is, 480. Due to
the fixed-point scaling, the output has a real-world value of 120.

The figure shows the conversion mechanism for the two blocks.

 Data Type Conversion

1-311

Conversion Between Floating-Point and Fixed-Point Data Type

The Double Constant block represents the real-world value 15 by using the floating-point
data type double. The output signal does not use fixed-point scaling.

The model uses Data Type Conversion blocks to convert the double signal to a fixed-
point data type with binary-point scaling 2-2.

• The Float to Fixed: Preserve RWV block converts the input signal by preserving the
real-world value, 15. The output signal has the same real-world value. Due to the
fixed-point scaling, the output uses a stored integer value of 60.

1 Blocks — Alphabetical List

1-312

• The Float to Fixed: Preserve SI block converts the input signal by attempting to
preserve the stored integer value. However, the block does not use the underlying bits
that store the floating-point signal in memory. Instead, the block uses the real-world
value of the input, 15, as the stored integer of the output signal. Due to the fixed-
point scaling, the real-world value of the output is 3.75.

The figure shows the conversion mechanism for the two blocks. The blocks also use these
mechanisms if the input uses the floating-point data type single.

 Data Type Conversion

1-313

Reinterpret Signal Using a Fixed-Point Data Type

Suppose your hardware uses the data type uint8 to store data from a temperature
sensor. Also suppose that the minimum stored integer value 0 represents –20 degrees
Celsius while the maximum 255 represents 60 degrees. The following model uses a Data
Type Conversion block to convert the stored integer value of the sensor data to degrees
Celsius.

The Data Type Conversion block parameter Input and output to have equal is set to
Stored Integer (SI). The block output signal is of a fixed-point data type with word
length 8, slope 80/255, and bias -20.

The Data Type Conversion block reinterprets the integer input, 127, as a Celsius output,
19.84 degrees. The block output uses the specified slope and bias to scale the stored
integer of the input.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-314

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Data Type Conversion Inherited | Data Type Propagation

Related Examples
• “Control Signal Data Types”

More About
• “About Data Types in Simulink”
• “Fixed Point”

Introduced before R2006a

 Data Type Conversion Inherited

1-315

Data Type Conversion Inherited
Convert from one data type to another using inherited data type and scaling

Library

Signal Attributes

Description

The Data Type Conversion Inherited block forces dissimilar data types to be the same.
The first input is used as the reference signal and the second input is converted to the
reference type by inheriting the data type and scaling information. (See “How to Rotate a
Block” in the Simulink documentation for a description of the port order for various block
orientations.) Either input undergoes scalar expansion such that the output has the same
width as the widest input.

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.
• It allows you to create new fixed-point models with less effort since you can avoid the

detail of specifying the associated parameters.

Data Type Support

The Data Type Conversion Inherited block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

1 Blocks — Alphabetical List

1-316

• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Input and Output to have equal
Specify whether the Real World Value (RWV) or the Stored Integer (SI)
of the input and output should be the same. Refer to Description in the Data Type
Conversion block reference page for more information about these choices.

Integer rounding mode

 Data Type Conversion Inherited

1-317

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also
Data Type Conversion | Data Type Propagation

Related Examples
• “Control Signal Data Types”

More About
• “About Data Types in Simulink”
• “Fixed Point”

Introduced before R2006a

1 Blocks — Alphabetical List

1-318

Data Type Duplicate
Force all inputs to same data type

Library

Signal Attributes

Description

The Data Type Duplicate block forces all inputs to have exactly the same data type.
Other attributes of input signals, such as dimension, complexity, and sample time, are
completely independent.

You can use the Data Type Duplicate block to check for consistency of data types among
blocks. If all signals do not have the same data type, the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to the block controls
the data type for all other blocks. The other blocks are set to inherit their data types via
back propagation.

The block is also used in a user created library. These library blocks can be placed in any
model, and the data type for all library blocks are configured according to the usage in
the model. To create a library block with more complex data type rules than duplication,
use the Data Type Propagation block.

Data Type Support

The Data Type Duplicate block accepts signals of the following data types:

• Floating point
• Built-in integer

 Data Type Duplicate

1-319

• Fixed point
• Boolean
• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Number of input ports
Specify the number of inputs to this block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Multidimensional Signals Yes

1 Blocks — Alphabetical List

1-320

Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Data Type Conversion | Data Type Propagation

Related Examples
• “Control Signal Data Types”

More About
• “About Data Types in Simulink”
• “Fixed Point”

Introduced before R2006a

 Data Type Propagation

1-321

Data Type Propagation
Set data type and scaling of propagated signal based on information from reference
signals

Library

Signal Attributes

Description

The Data Type Propagation block allows you to control the data type and scaling of
signals in your model. You can use this block in conjunction with fixed-point blocks that
have their Output data type parameter configured to Inherit: Inherit via back
propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs, while the Prop input
back propagates the data type and scaling information gathered from the reference
inputs. This information is then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type and scaling
information. For example, you can:

• Use the number of bits from the Ref1 reference signal, or use the number of bits from
widest reference signal.

• Use the range from the Ref2 reference signal, or use the range of the reference signal
with the greatest range.

• Use a bias of zero, regardless of the biases used by the reference signals.
• Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the Propagated data type
parameter list. If the parameter list is configured as Specify via dialog, then

1 Blocks — Alphabetical List

1-322

you manually specify the data type via the Propagated data type edit field. If the
parameter list is configured as Inherit via propagation rule, then you must use
the parameters described in “Parameters and Dialog Box” on page 1-323.

You specify how scaling information is propagated with the Propagated scaling
parameter list. If the parameter list is configured as Specify via dialog, then you
manually specify the scaling via the Propagated scaling edit field. If the parameter list
is configured as Inherit via propagation rule, then you must use the parameters
described in “Parameters and Dialog Box” on page 1-323.

After you use the information from the reference signals, you can apply a second level of
adjustments to the data type and scaling by using individual multiplicative and additive
adjustments. This flexibility has a variety of uses. For example, if you are targeting
a DSP, then you can configure the block so that the number of bits associated with a
MAC (multiply and accumulate) operation is twice as wide as the input signal, and has a
certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force the computed
number of bits to a useful value. For example, if you are targeting a 16-bit micro, then
the target C compiler is likely to support sizes of only 8 bits, 16 bits, and 32 bits. The
block will force these three choices to be used. For example, suppose the block computes a
data type size of 24 bits. Since 24 bits is not directly usable by the target chip, the signal
is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals. This makes it
easier to create designs that are easily retargeted from fixed-point chips to floating-point
chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful subsystems
that will be properly configured based on the connected signals. Without this data type
propagation process, a subsystem that you use from a library will almost certainly not
work as desired with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can eliminate the
manual intervention in many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to bottom. Additionally:

• Double-precision reference inputs have precedence over all other data types.

 Data Type Propagation

1-323

• Single-precision reference inputs have precedence over integer and fixed-point data
types.

• Multiplicative adjustments are carried out before additive adjustments.
• The number of bits is determined before the precision or positive range is inherited

from the reference inputs.

Data Type Support

The Data Type Propagation block accepts signals of the following data types:

• Floating-point
• Built-in integer
• Fixed-point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Propagated type pane of the Data Type Propagation block dialog box appears as
follows:

1 Blocks — Alphabetical List

1-324

 Data Type Propagation

1-325

Propagated data type
Use the parameter list to propagate the data type via the dialog box, or inherit the
data type from the reference signals. Use the edit field to specify the data type via the
dialog box.

If any reference input is double, output is
Specify single or double. This parameter makes it easier to create designs that are
easily retargeted from fixed-point chips to floating-point chips or vice versa.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

If any reference input is single, output is
Specify single or double. This parameter makes it easier to create designs that are
easily retargeted from fixed-point chips to floating-point chips or visa versa.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Is-Signed
Specify the sign of Prop as one of the following values:

Parameter Value Description

IsSigned1 Prop is a signed data type if Ref1 is a signed data type.
IsSigned2 Prop is a signed data type if Ref2 is a signed data type.
IsSigned1 or

IsSigned2

Prop is a signed data type if either Ref1 or Ref2 are signed
data types.

TRUE Ref1 and Ref2 are ignored, and Prop is always a signed data
type.

FALSE Ref1 and Ref2 are ignored, and Prop is always an unsigned
data type.

For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and the
Is-Signed parameter is IsSigned1 or IsSigned2, then Prop is forced to be a
signed data type.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

1 Blocks — Alphabetical List

1-326

Number-of-bits: Base
Specify the number of bits used by Prop for the base data type as one of the following
values:

Parameter Value Description

NumBits1 The number of bits for Prop is given by the number of
bits for Ref1.

NumBits2 The number of bits for Prop is given by the number of
bits for Ref2.

max([NumBits1

NumBits2])

The number of bits for Prop is given by the reference
signal with largest number of bits.

min([NumBits1

NumBits2])

The number of bits for Prop is given by the reference
signal with smallest number of bits.

NumBits1+NumBits2 The number of bits for Prop is given by the sum of the
reference signal bits.

For more information about the base data type, refer to Targeting an Embedded
Processor in the Simulink Fixed Point™ documentation.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Number-of-bits: Multiplicative adjustment
Specify the number of bits used by Prop by including a multiplicative adjustment
that uses a data type of double. For example, suppose you want to guarantee that
the number of bits associated with a multiply and accumulate (MAC) operation is
twice as wide as the input signal. To do this, you configure this parameter to the
value 2.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Number-of-bits: Additive adjustment
Specify the number of bits used by Prop by including an additive adjustment that
uses a data type of double. For example, if you are performing multiple additions
during a MAC operation, the result might overflow. To prevent overflow, you can
associate guard bits with the propagated data type. To associate four guard bits, you
specify the value 4.

 Data Type Propagation

1-327

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Number-of-bits: Allowable final values
Force the computed number of bits used by Prop to a useful value. For example, if
you are targeting a processor that supports only 8, 16, and 32 bits, then you configure
this parameter to [8,16,32]. The block always propagates the smallest specified
value that fits. If you want to allow all fixed-point data types, you would specify the
value 1:128.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

The Propagated scaling pane of the Data Type Propagation block dialog box appears as
follows:

1 Blocks — Alphabetical List

1-328

 Data Type Propagation

1-329

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box, inherit the scaling
from the reference signals, or calculate the scaling to obtain best precision.

Propagated scaling (Slope or [Slope Bias])
Specify the scaling as either a slope or a slope and bias.

This parameter is visible only when you set Propagated scaling to Specify via
dialog.

Values used to determine best precision scaling
Specify any values to be used to constrain the precision, such as the upper and lower
limits on the propagated input. Based on the data type, the scaling will automatically
be selected such that these values can be represented with no overflow error and
minimum quantization error.

This parameter is visible only when you set Propagated scaling to Obtain via
best precision.

Slope: Base
Specify the slope used by Prop for the base data type as one of the following values:

Parameter Value Description

Slope1 The slope of Prop is given by the slope of Ref1.
Slope2 The slope of Prop is given by the slope of Ref2.
max([Slope1 Slope2]) The slope of Prop is given by the maximum slope of

the reference signals.
min([Slope1 Slope2]) The slope of Prop is given by the minimum slope of

the reference signals.
Slope1*Slope2 The slope of Prop is given by the product of the

reference signal slopes.
Slope1/Slope2 The slope of Prop is given by the ratio of the Ref1

slope to the Ref2 slope.
PosRange1 The range of Prop is given by the range of Ref1.
PosRange2 The range of Prop is given by the range of Ref2.
max([PosRange1

PosRange2])

The range of Prop is given by the maximum range of
the reference signals.

1 Blocks — Alphabetical List

1-330

Parameter Value Description

min([PosRange1

PosRange2])

The range of Prop is given by the minimum range of
the reference signals.

PosRange1*PosRange2 The range of Prop is given by the product of the
reference signal ranges.

PosRange1/PosRange2 The range of Prop is given by the ratio of the Ref1
range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and you control the
range of Prop with PosRange1 and PosRange2. Additionally, PosRange1 and
PosRange2 are one bit higher than the maximum positive range of the associated
reference signal.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Slope: Multiplicative adjustment
Specify the slope used by Prop by including a multiplicative adjustment that uses a
data type of double. For example, if you want 3 bits of additional precision (with a
corresponding decrease in range), the multiplicative adjustment is 2^-3.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Slope: Additive adjustment
Specify the slope used by Prop by including an additive adjustment that uses a data
type of double. An additive slope adjustment is often not needed. The most likely
use is to set the multiplicative adjustment to 0, and set the additive adjustment to
force the final slope to a specified value.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Base
Specify the bias used by Prop for the base data type. The parameter values are
described as follows:

Parameter Value Description

Bias1 The bias of Prop is given by the bias of Ref1.
Bias2 The bias of Prop is given by the bias of Ref2.

 Data Type Propagation

1-331

Parameter Value Description

max([Bias1 Bias2]) The bias of Prop is given by the maximum bias of the
reference signals.

min([Bias1 Bias2]) The bias of Prop is given by the minimum bias of the
reference signals.

Bias1*Bias2 The bias of Prop is given by the product of the reference
signal biases.

Bias1/Bias2 The bias of Prop is given by the ratio of the Ref1 bias to
the Ref2 bias.

Bias1+Bias2 The bias of Prop is given by the sum of the reference
biases.

Bias1-Bias2 The bias of Prop is given by the difference of the reference
biases.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative adjustment that uses a
data type of double.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Additive adjustment
Specify the bias used by Prop by including an additive adjustment that uses a data
type of double.

If you want to guarantee that the bias associated with Prop is zero, you should
configure both the multiplicative adjustment and the additive adjustment to 0.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

1 Blocks — Alphabetical List

1-332

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Ye
Zero-Crossing Detection No
Code Generation Yes

See Also
Data Type Conversion | Data Type Conversion Inherited | Data Type
Duplicate

Related Examples
• “Control Signal Data Types”

More About
• “About Data Types in Simulink”
• “Fixed Point”

Introduced before R2006a

 Data Type Scaling Strip

1-333

Data Type Scaling Strip

Remove scaling and map to built in integer

Library

Signal Attributes

Description

The Scaling Strip block strips the scaling off a fixed point signal. It maps the input
data type to the smallest built in data type that has enough data bits to hold the input.
The stored integer value of the input is the value of the output. The output always has
nominal scaling (slope = 1.0 and bias = 0.0), so the output does not make a distinction
between real world value and stored integer value.

Data Type Support

The Data Type Scaling Strip block accepts signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-334

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Dead Zone

1-335

Dead Zone
Provide region of zero output

Library

Discontinuities

Description

The Dead Zone block generates zero output within a specified region, called its dead zone.
You specify the lower limit (LL) and upper limit (UL) of the dead zone as the Start of
dead zone and End of dead zone parameters, respectively. The block output depends
on the input (U) and the values for the lower and upper limits:

Input Output

U >= LL and U <= UL Zero
U > UL U – UL
U < LL U – LL

Data Type Support

The Dead Zone block accepts and outputs real signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-336

Parameters and Dialog Box

Start of dead zone
Specify the lower limit of the dead zone. The default is -0.5.

End of dead zone
Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation

Overflows saturate to
either the minimum or

The maximum value
that the int8 (signed,
8-bit integer) data type

 Dead Zone

1-337

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

protection in the
generated code.

maximum value that the
data type can represent.

can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Treat as gain when linearizing
The linearization commands in Simulink software treat this block as a gain in state
space. Select this check box to cause the commands to treat the gain as 1; otherwise,
the commands treat the gain as 0.

1 Blocks — Alphabetical List

1-338

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following model uses lower and upper limits of -0.5 and 0.5, with a sine wave as
input.

This plot shows the effect of the Dead Zone block on the sine wave. When the input sine
wave is between –0.5 and 0.5, the output is zero.

 Dead Zone

1-339

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

See Also

Dead Zone Dynamic

Introduced before R2006a

1 Blocks — Alphabetical List

1-340

Dead Zone Dynamic
Set inputs within bounds to zero

Library

Discontinuities

Description

The Dead Zone Dynamic block dynamically bounds the range of the input signal,
providing a region of zero output. The bounds change according to the upper and lower
limit input signals where

• The input within the bounds is set to zero.
• The input below the lower limit is shifted down by the lower limit.
• The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is the lo
port.

Data Type Support

The Dead Zone Dynamic block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Dead Zone Dynamic

1-341

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Dead Zone

Introduced before R2006a

1 Blocks — Alphabetical List

1-342

Decrement Real World

Decrease real world value of signal by one

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Decrement Real World block decreases the real world value of the signal by one.
Overflows always wrap.

Data Type Support

The Decrement Real World block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Decrement Real World

1-343

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Stored Integer, Decrement Time To Zero, Decrement To Zero,
Increment Real World

Introduced before R2006a

1 Blocks — Alphabetical List

1-344

Decrement Stored Integer

Decrease stored integer value of signal by one

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Decrement Stored Integer block decreases the stored integer value of a signal by one.

Floating-point signals also decrease by one, and overflows always wrap.

Data Type Support

The Decrement Stored Integer block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Decrement Stored Integer

1-345

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Decrement Time To Zero, Decrement To Zero,
Increment Stored Integer

Introduced before R2006a

1 Blocks — Alphabetical List

1-346

Decrement Time To Zero

Decrease real-world value of signal by sample time, but only to zero

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Decrement Time To Zero block decreases the real-world value of the signal by the
sample time, Ts. The output never goes below zero. This block works only with fixed
sample rates and does not work inside a triggered subsystem.

Data Type Support

The Decrement Time To Zero block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Decrement Time To Zero

1-347

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Decrement Stored Integer, Decrement To Zero

Introduced before R2006a

1 Blocks — Alphabetical List

1-348

Decrement To Zero

Decrease real-world value of signal by one, but only to zero

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Decrement To Zero block decreases the real-world value of the signal by one. The
output never goes below zero.

Data Type Support

The Decrement To Zero block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Decrement To Zero

1-349

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Decrement Stored Integer, Decrement Time To Zero

Introduced before R2006a

1 Blocks — Alphabetical List

1-350

Delay
Delay input signal by fixed or variable sample periods

Library

Discrete

Description

The Delay block outputs the input of the block after a delay. The block determines the
delay time based on the value of the Delay length parameter. The block supports:

• Variable delay length
• Specification of the initial condition from an input port
• State storage
• Using a circular buffer instead of an array buffer for state storage
• Resetting the state to the initial condition with an external reset signal
• Controlling execution of the block at every time step with an external enable signal

The initial block output depends on a number of factors such as the Initial condition
parameter and the simulation start time. For more information, see “Initial Block
Output” on page 1-350. The External reset parameter determines if the block
output resets to the initial condition on triggering. The Show enable port parameter
determines if the block execution is controlled in every time step by an external enable
signal.

Initial Block Output

The output of the Delay block in the first few time steps of the simulation depends on the
block sample time, the delay length, and the simulation start time. The block supports
specifying or inheriting discrete sample times to determine the time interval between
samples. For more information, see “ Specify Sample Time”.

 Delay

1-351

Suppose that the block inherits a discrete sample time as [Tsampling,Toffset],
where Tsampling is the sampling period and Toffset is the initial time offset. n is the
value of the block’s Delay length parameter and Tstart is the simulation start time for
the model.

The table shows the Delay block output for the first few time steps.

Simulation Time Range Block Output

(Tstart) to (Tstart + Toffset) Zero
(Tstart + Toffset) to (Tstart + Toffset + n *
Tsampling)

Initial condition
parameter

After (Tstart + Toffset + n * Tsampling) Input signal

Data Type Support

The block’s parameters have these dimensional requirements:

• Delay length and External reset must be scalar.
• Initial condition can be scalar or nonscalar.
• For frame-based processing, signal dimensions of the data input port u cannot be

larger than two.

The block supports input signals with these data types.

Input Signal Supported Data Types

Data input port u • Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

Delay length d • Floating point
• Fixed-point integer
• Built-in integer

Enable port
• Floating point
• Built-in integer

1 Blocks — Alphabetical List

1-352

Input Signal Supported Data Types

• Fixed point Integer (only ufix1)
• Boolean

External reset port
• Floating point
• Built-in integer
• Fixed point Integer (only ufix1)
• Boolean

Initial condition x0 • Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

When u is Boolean, x0 must be Boolean. When u uses an enumerated type, x0 must use
the same enumerated type. Otherwise, x0 can use a floating-point, built-in integer, or
fixed-point data type that fits in the data type of u. For example, when u uses int32, x0
can use int8 but not double.

The data type of the output signal is the same as the input signal u.

For more information, see “ Data Types Supported by Simulink”.

Variable-Size Support

The Delay block provides the following support for variable-size signals:

• The data input port u accepts variable-size signals. The other input ports do not
accept variable-size signals.

• The output port has the same signal dimensions as the data input port u for variable-
size inputs.

The rules that apply to variable-size signals depend on the input processing mode of the
Delay block.

 Delay

1-353

Input Processing Mode Rules for Variable-Size Signal Support

Elements as

channels (sample

based)

• The signal dimensions change only during state reset
when the block is enabled.

• The initial condition must be scalar.
Columns as channels

(frame based)

• No support

Inherited

(where input is a sample-
based signal)

• The signal dimensions change only during state reset
when the block is enabled.

• The initial condition must be scalar.
Inherited

(where input is a frame-
based signal)

• The channel size changes only during state reset when the
block is enabled.

• The initial condition must be scalar.
• The frame size must be constant.

Bus Support

The Delay block provides the following support for bus signals:

• The data input port u accepts virtual and nonvirtual bus signals. The other input
ports do not accept bus signals.

• The output port has the same bus type as the data input port u for bus inputs.
• Buses work with:

• Sample-based and frame-based processing
• Fixed and variable delay length
• Array and circular buffers

To use a bus signal as the input to a Delay block, you should specify the initial condition
on the dialog box. In other words, the initial condition cannot come from the input port
x0. Support for virtual and nonvirtual buses depends on the initial condition that you
specify and whether the State name parameter is empty or not.

1 Blocks — Alphabetical List

1-354

State NameInitial Condition

Empty Not Empty

Zero Virtual and nonvirtual bus
support

Nonvirtual bus support only

Nonzero scalar Virtual and nonvirtual bus
support

No bus support

Nonscalar No bus support No bus support
Structure Virtual and nonvirtual bus

support
Nonvirtual bus support only

Partial structure Virtual and nonvirtual bus
support

Nonvirtual bus support only

 Delay

1-355

Parameters and Dialog Box

Delay length
Specify whether to enter the delay length directly on the dialog box (fixed delay) or to
inherit the delay from an input port (variable delay).

1 Blocks — Alphabetical List

1-356

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay

length for the d input port. You can also specify its maximum value by specifying
the parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or
non-integer value in the dialog box (fixed delay) returns an error. An out-of-range
value from an input port (variable delay) casts it into the range. A non-integer value
from an input port (variable delay) truncates it to the integer.

This parameter is not tunable for simulation or code generation.
Initial condition

Specify whether to enter the initial condition directly on the dialog box or to inherit
the initial condition from an input port.

• If you set Source to Dialog, enter the initial condition in the edit field under
Value.

• If you set Source to Input port, verify that an upstream signal supplies an
initial condition for the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the
input signal u using a round-to-nearest operation and saturation.

Note: When State name must resolve to Simulink signal object is selected on
the State Attributes pane, the block copies the initial value of the signal object to
the Initial condition parameter. However, when the source for Initial condition is
Input port, the block ignores the initial value of the signal object.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

 Delay

1-357

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Use circular buffer for state
Select to use a circular buffer for storing the state in simulation and code generation.
Otherwise, an array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large.
For an array buffer, the number of copy operations increases as the delay length goes
up. For a circular buffer, the number of copy operations is constant for increasing
delay length.

1 Blocks — Alphabetical List

1-358

If one of the following conditions is true, an array buffer always stores the state
because a circular buffer does not improve execution speed:

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Prevent direct feedthrough by increasing delay length to lower limit
Select to increase the delay length from zero to the lower limit for the Input
processing mode:

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the
output port. However, this check box cannot prevent direct feedthrough from the
initial condition port, x0, to the output port.

This check box is available when you set Delay length: Source to Input port.
Remove protection against out-of-range delay length in generated code

Select to remove code that checks for out-of-range delay length.

Check Box Result When to Use

Selected Generated code does
not include conditional
statements to check for
out-of-range delay length.

For code efficiency

Cleared Generated code includes
conditional statements
to check for out-of-range
delay length.

For safety-critical
applications

This check box is available when you set Delay length: Source to Input port.
Diagnostic for out-of-range delay length

Specify whether to produce a warning or error when the input d is less than the
lower limit or greater than the Delay length: Upper limit. The lower limit depends
on the setting for Prevent direct feedthrough by increasing delay length to
lower limit.

• If the check box is cleared, the lower limit is zero.

 Delay

1-359

• If the check box is selected, the lower limit is 1 for sample-based signals and
frame length for frame-based signals.

Options for the diagnostic include:

• None — No warning or error appears.
• Warning — Display a warning in the MATLAB Command Window and continue

the simulation.
• Error — Stop the simulation and display an error in the Diagnostic Viewer.

This parameter is available when you set Delay length: Source to Input port.
Show enable port

Select to show an enable port for this block. This port can control execution of the
block. The block is considered enabled when the input to this port is nonzero, and is
disabled when the input is 0. The value of the input is checked at the same time step
as the block execution.

External reset
Specify the trigger event to use to reset the states. The reset trigger resets the state
to the initial condition and then copies it to the output at that time step.

Reset Mode Behavior

None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when there is a nonzero at the current
time step

• when the time step value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when nonzero at the current time
step.

Sample time (-1 for inherited)

1 Blocks — Alphabetical List

1-360

Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. This block supports discrete sample time, but not continuous
sample time.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class
Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

 Delay

1-361

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

1 Blocks — Alphabetical List

1-362

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is ' '. When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

Examples

Variable-Size Signals for Sample-Based Processing

This model shows how the Delay block supports variable-size signals for sample-based
processing.

The Switch block controls whether the input signal to the enabled subsystem is a 3-by-3
or 3-by-2 matrix. The Delay block appears inside the enabled subsystem.

 Delay

1-363

The model follows the rules for variable-size signals when the Delay block uses sample-
based processing.

Rule How the Model Follows the Rule

The signal dimensions change only
during state reset when the block is
enabled.

The Enable block sets Propagate sizes
of variable-size signals to Only when
enabling.

The initial condition must be scalar. The Delay block sets Initial condition to 0.0, a
scalar value.

Bus Signals for Frame-Based Processing

This model shows how the Delay block supports bus signals for frame-based processing.

1 Blocks — Alphabetical List

1-364

Each Constant block supplies an input signal to the Bus Creator block, which outputs a
two-dimensional bus signal. After the Delay block delays the bus signal by three sample
periods, the Bus Selector block separates the bus back into the two original signals.

The model follows the rules for bus signals when the Delay block uses frame-based
processing.

Rule How the Model Follows the Rule

For the initial condition, set the value
on the dialog box.

The Delay block sets Initial condition to 0, a
scalar value.

For frame-based processing, signal
dimensions of the data input port u
cannot be larger than two. (This rule
applies to all inputs for the port u, not
just bus signals.)

The bus input to the Delay block has two
dimensions.

Enable or Disable Execution of the Delay Block

This example shows how you can enable or disable the execution of the Delay block
using the enable port of the block. Consider this model. A ramp input signal feeds into a
Delay block whose execution is controlled by an enabling signal. A Pulse Generator block
generates this enabling signal.

 Delay

1-365

The Scope block displays the output of the Delay block along with the enabling signal
and the ramp input. Simulating the model and viewing the scope output shows the
following graph.

The magenta marks show that the Delay block outputs the input signal delayed by one
time step only while the enabling signal is 1. At t=5 sec, the enabling signal becomes 0
and the Delay block does not execute. Hence, the output is held constant until the next
time the enabling signal becomes 1.

1 Blocks — Alphabetical List

1-366

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, when you clear Prevent direct feedthrough

by increasing delay length to lower limit
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Resettable Delay | Tapped Delay | Unit Delay | Variable Integer Delay

 Demux

1-367

Demux

Extract and output elements of vector signal

Library

Signal Routing

Description

The Demux block extracts the components of an input signal and outputs the components
as separate signals. The output signals are ordered from top to bottom output port. See
“How to Rotate a Block” for a description of the port order for various block orientations.
To avoid adding clutter to a model, Simulink hides the name of a Demux block when you
copy it from the Simulink library to a model. See “Mux Signals” for information about
creating and decomposing vectors.

The Number of outputs parameter allows you to specify the number and, optionally,
the dimensionality of each output port. If you do not specify the dimensionality of the
outputs, the block determines the dimensionality of the outputs for you.

The Demux block operates in either vector mode or bus selection mode, depending on
whether you selected the Bus selection mode parameter. The two modes differ in the
types of signals they accept. Vector mode accepts only a vector-like signal, that is, either
a scalar (one-element array), vector (1-D array), or a column or row vector (one row or one
column 2-D array). Bus selection mode accepts only a bus signal.

Note: MathWorks discourages enabling Bus selection mode and using a Demux block
to extract elements of a bus signal. Muxes and buses should not be intermixed in new
models. See “Prevent Bus and Mux Mixtures” for more information.

1 Blocks — Alphabetical List

1-368

The Number of outputs parameter determines the number and dimensionality of the
block outputs, depending on the mode in which the block operates.

Specifying the Number of Outputs in Vector Mode

In vector mode, the value of the parameter can be a scalar specifying the number of
outputs or a vector whose elements specify the widths of the block's output ports. The
block determines the size of its outputs from the size of the input signal and the value of
the Number of outputs parameter.

The following table summarizes how the block determines the outputs for an input vector
of width n.

Parameter Value Block outputs... Comments

p = n p scalar signals For example, if the input is a
three-element vector and you
specify three outputs, the block
outputs three scalar signals.

p > n Error
p < n

n mod p = 0

p vector signals each having n/
p elements

If the input is a six-element
vector and you specify three
outputs, the block outputs three
two-element vectors.

p < n

n mod p = m

m vector signals each having
(n/p)+1 elements and p-m
signals having n/p elements

If the input is a five-element
vector and you specify three
outputs, the block outputs two
two-element vector signals and
one scalar signal.

[p1 p2 ... pm]

p1+p2+...+pm=n

pi > 0

m vector signals having widths
p1, p2, ... pm

If the input is a five-element
vector and you specify [3, 2]
as the output, the block outputs
three of the input elements
on one port and the other two
elements on the other port.

[p1 p2 ... pm]

p1+p2+...+pm=n

m vector signals If pi is greater than zero,
the corresponding output has
width pi. If pi is -1, the width

 Demux

1-369

Parameter Value Block outputs... Comments

some or all

pi = -1

of the corresponding output is
dynamically sized.

[p1 p2 ... pm]

p1+p2+...+pm!=n

pi = > 0

Error

Note that you can specify the number of outputs as fewer than the number of input
elements, in which case the block distributes the elements as evenly as possible over the
outputs as illustrated in the following example:

You can use –1 in a vector expression to indicate that the block should dynamically size
the corresponding port. For example, the expression [-1, 3 -1] causes the block to
output three signals where the second signal always has three elements. The sizes of the
first and third signals depend on the size of the input signal.

If a vector expression comprises positive values and –1 values, the block assigns as many
elements as needed to the ports with positive values and distributes the remain elements
as evenly as possible over the ports with –1 values. For example, suppose that the block
input is seven elements wide and you specify the output as [-1, 3 -1]. In this case,
the block outputs two elements on the first port, three elements on the second, and two
elements on the third.

1 Blocks — Alphabetical List

1-370

Specifying the Number of Outputs in Bus Selection Mode

In bus selection mode, the value of the Number of outputs parameter can be a:

• Scalar specifying the number of output ports

The specified value must equal the number of input signals. For example, if the input
bus comprises two signals and the value of this parameter is a scalar, the value must
equal 2.

• Vector each of whose elements specifies the number of signals to output on the
corresponding port

For example, if the input bus contains five signals, you can specify the output as [3,
2], in which case the block outputs three of the input signals on one port and the
other two signals on a second port.

• Cell array each of whose elements is a cell array of vectors specifying the dimensions
of the signals output by the corresponding port

 Demux

1-371

The cell array format constrains the Demux block to accept only signals of specified
dimensions. For example, the cell array {{[2 2], 3} {1}} tells the block to accept
only a bus signal comprising a 2-by-2 matrix, a three-element vector, and a scalar
signal. You can use the value –1 in a cell array expression to let the block determine
the dimensionality of a particular output based on the input. For example, the following
diagram uses the cell array expression {{–1}, {–1,–1}} to specify the output of the
leftmost Demux block.

In bus selection mode, if you specify the dimensionality of an output port (that is, specify
any value other than –1), the corresponding input element must match the specified
dimensionality.

Note: MathWorks discourages enabling Bus selection mode and using a Demux block
to extract elements of a bus signal. Muxes and buses should not be intermixed in new
models. See “Prevent Bus and Mux Mixtures” for more information.

Data Type Support

The Demux block accepts and outputs complex or real signals of any data type that
Simulink supports, including fixed-point and enumerated data types.

1 Blocks — Alphabetical List

1-372

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Demux

1-373

Number of outputs

Specify the number and dimensions of outputs.

Settings

Default: 2

This block interprets this parameter depending on the Bus selection mode parameter.
See the block description for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See the Demux block reference page for more information.

1 Blocks — Alphabetical List

1-374

Display option

Select options to display the Demux block. The options are

Settings

Default: bar

bar

Display the icon as a solid bar of the block's foreground color.

none

Display the icon as a box containing the block's type name.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See the Demux block reference page for more information.

 Demux

1-375

Bus selection mode

Enable bus selection mode.

Settings

Default: Off

 On
Enable bus selection mode.

 Off
Disable bus selection mode.

Tips

MathWorks discourages enabling Bus selection mode and using a Demux block to
extract elements of a bus signal. Muxes and buses should not be intermixed in new
models. See “Prevent Bus and Mux Mixtures” for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Mux

Introduced before R2006a

1 Blocks — Alphabetical List

1-376

Derivative
Output time derivative of input

Library

Continuous

Description

The Derivative block approximates the derivative of the input signal u with respect to
the simulation time t. You obtain the approximation of

du

dt
,

by computing a numerical difference D Du t , where Du is the change in input value and
Dt is the change in time since the previous simulation (major) time step.

This block accepts one input and generates one output. The initial output for the block is
zero.

The precise relationship between the input and output of this block is:

y t
u

t

u t u T

t T
t T

previous

previous
previous()

() ()
,=

D

D

=

-

-

>

where t is the current simulation time and Tprevious is the time of the last output time of
the simulation. The latter is the same as the time of the last major time step.

 Derivative

1-377

The Derivative block output might be very sensitive to the dynamics of the entire model.
The accuracy of the output signal depends on the size of the time steps taken in the
simulation. Smaller steps allow a smoother and more accurate output curve from this
block. However, unlike with blocks that have continuous states, the solver does not take
smaller steps when the input to this block changes rapidly. Depending on the dynamics
of the driving signal and model, the output signal of this block might contain unexpected
fluctuations. These fluctuations are primarily due to the driving signal output and solver
step size.

Because of these sensitivities, structure your models to use integrators (such as
Integrator blocks) instead of Derivative blocks. Integrator blocks have states that
allow solvers to adjust step size and improve accuracy of the simulation. See “Circuit
Model” for an example of choosing the best-form mathematical model to avoid using
Derivative blocks in your models,

If you must use the Derivative block with a variable step solver, set the solver maximum
step size settings to a value such that the Derivative block can generate answers with
adequate accuracy. To determine this value, you might need to repeatedly run the
simulation using different solver settings.

When the input to this block is a discrete signal, the continuous derivative of the
input exhibits an impulse when the value of the input changes. Otherwise, it is 0.
Alternatively, you can define the discrete derivative of a discrete signal using the
difference of the last two values of the signal, as follows:

y k
t

u k u k() (() ())=

D

- -

1
1

Taking the z-transform of this equation results in:

Y z

u z

z

t

z

t z

()

()
.=

-

D

=

-

D ◊

-

1 1
1

The Discrete Derivative block models this behavior. Use this block instead of the
Derivative block to approximate the discrete-time derivative of a discrete signal.

Improved Linearization with Transfer Fcn Blocks

The Laplace domain transfer function for the operation of differentiation is:

1 Blocks — Alphabetical List

1-378

Y s
X s

s
()

()
=

This equation is not a proper transfer function, nor does it have a state-space
representation. As such, the Simulink software linearizes this block as an effective gain
of 0 unless you explicitly specify that a proper first-order transfer function should be
used to approximate the linear behavior of this block (see “Coefficient c in the transfer
function approximation s/(c*s + 1) used for linearization” on page 1-380).

To improve linearization, you can also try to incorporate the derivative term in other
blocks. For example, if you have a Derivative block in series with a Transfer Fcn block,
try using a single Transfer Fcn block of the form

s

s a+

.

For example, you can replace the first set of blocks in this figure with the blocks below
them.

Data Type Support

The Derivative block accepts and outputs a real signal of type double. For more
information, see “ Data Types Supported by Simulink”.

 Derivative

1-379

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-380

Coefficient c in the transfer function approximation s/(c*s + 1) used for
linearization

Specify the time constant c to approximate the linearization of your system.

Settings

Default: inf

• The exact linearization of the Derivative block is difficult, because the dynamic
equation for the block is y u= & , which you cannot represent as a state-space system.
However, you can approximate the linearization by adding a pole to the Derivative to
create a transfer function s c s/ ().* +1 The addition of a pole filters the signal before
differentiating it, which removes the effect of noise.

• The default value inf corresponds to a linearization of 0.

Tips

• A best practice is to change the value of c to 1

fb
, where fb is the break frequency for

the filter.
• Coefficient c in the transfer function approximation s/(c*s+1) used for

linearization must be a finite positive value. This value must be nonzero.

Command-Line Information
Parameter: CoefficientInTFapproximation
Type: string
Value: 'inf'
Default: 'inf'

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Yes
Multidimensional Signals No

 Derivative

1-381

Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Discrete Derivative

Introduced before R2006a

1 Blocks — Alphabetical List

1-382

Deserializer1D

Convert scalar stream or smaller vectors to vector signal

Library

HDL Coder / HDL Operations

Description

The Deserializer1D block buffers a faster, scalar stream or vector signals into a larger,
slower vector signal. The faster input signal is converted to a slower signal based on
the Ratio and Idle Cycle values, the conversion changes sample time. Also, the output
signal is delayed one slow signal cycle because the serialized data needs to be collected
before it can be output as a vector. See the examples below for more details.

You can configure the deserialization to depend on a valid input signal ValidIn and a
start signal StartIn. If the ValidIn and StartIn block parameters are both selected, data
collection starts only if both ValidIn and StartIn signals are true. Consider this example:

 Deserializer1D

1-383

• Ratio is 2 and Idle Cycles is 0, so each output cycle is two input signals long with all
data points considered.

• ValidIn and StartIn are selected, so data collection can begin only when both StartIn
and ValidIn signals are true.

• ValidOut is selected.

In the first cycle, ValidIn and StartIn are true, so data collection begins for A and B. The
block outputs the deserialized vector in the next valid cycle, so the AB vector is output in
the next cycle. This is also true in the second cycle for C and D.

In the third cycle, starting at E, StartIn is true, but ValidIn is not. E is dropped. At F,
ValidIn is true, but StartIn is not, so F is also dropped. Since it cannot collect data for E
or F, Deserializer1D outputs the previous cycle vector, CD, but ValidOut changes to false.

Another scenario to consider is when the StartIn signal arrives too early. If the length
between two StartIn signals is not long enough to collect a full ratio cycle, the insufficient
signal data is dropped. Consider this example:

1 Blocks — Alphabetical List

1-384

• Ratio is 3, so each cycle is two sections long.
• Idle Cycles is 0, so all data inputs are considered.
• ValidIn and StartIn are selected, so data collection can begin only when both StartIn

and ValidIn signals are true.
• ValidOut is selected.

In the first cycle, ValidIn and StartIn are true, so data collection can begin for A
and B. However, at C another StartIn signal arrives before three signals can be
collected. Because the StartIn arrived early, A and B are dropped and no valid vector
is collected during the first cycle. Therefore, the output of the second cycle is still zero.
Deserialization begins at the StartIn at C, for C, D, and E. This vector is output at the
next valid cycle, which is cycle 3. Similarly, deserialization starts again at the StartIn at
F, and outputs the FGH vector in the fourth cycle.

You specify the block output for the first sampling period with the value of the Initial
condition parameter.

 Deserializer1D

1-385

Dialog Box and Parameters

Ratio
Enter the deserialization ratio. Default is 1.

The ratio is the output vector size, divided by the input vector size. The ratio must be
divisible by the input vector size.

Idle Cycles
Enter the number of idle cycles added to the end of each serialized input. Default is 0.

The value of Idle Cycles affects the deserialized output rate. For example, if Ratio
is 2 and the input signal is A, B, B, C, D, D, ..., without idle cycles the output

1 Blocks — Alphabetical List

1-386

would be AB, BC, DD.... However for the same input and ratio with Idle Cycles
set to 1, the output is AB, CD.... The idle cycles, B and D, are dropped.

The Deserializer1D behavior changes if Idle Cycles is not zero, and ValidIn or
StartIn are on. The idle cycles value affects only the output rate, while ValidIn and
StartIn control what input data is deserialized.

Initial condition
Specify the initial output of the simulation. Default is 0.

StartIn
Select to activate the StartIn port. Default is off.

ValidIn
Select to activate the ValidIn port. Default is off.

ValidOut
Select to activate ValidOut port. Default is off.

 Deserializer1D

1-387

Input data port dimensions (-1 for inherited)
Enter the size of the input data signal. The input size must be divisible by the ratio
plus the number of idle cycles. By default, the block inherits size based on context
within the model.

Input sample time (-1 for inherited)
Enter the time interval between sample time hits or specify another appropriate
sample time such as continuous. By default, the block inherits its sample time based
on context within the model. For more information, see “Sample Time”.

Input signal type
Specify the input signal type of the block as auto, real, or complex.

Ports
S

Input signal to deserialize. Bus data types are not supported.
ValidIn

Indicates valid input signal. Use with the Serializer1D block. This port is
available when you select the ValidIn check box.

Data type: Boolean
StartOut

Indicates where to start deserialization. Use with the Serializer1D block. This port
is available when you select the StartOut check box.

Data type: Boolean
P

Deserialized output signal. Bus data types are not supported.
ValidOut

Indicates valid output signal. This port is available when you select the ValidOut
check box.

Data type: Boolean

See Also
Serializer1D

1 Blocks — Alphabetical List

1-388

Introduced in R2014b

 Detect Change

1-389

Detect Change

Detect change in signal value

Library

Logic and Bit Operations

Description

The Detect Change block determines if an input does not equal its previous value.

• The output is true (equal to 1) when the input signal does not equal its previous
value.

• The output is false (equal to 0) when the input signal equals its previous value.

Data Type Support

The Detect Change block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-390

Parameters and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

 Detect Change

1-391

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes

1 Blocks — Alphabetical List

1-392

Code Generation Yes

See Also

Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

 Detect Decrease

1-393

Detect Decrease

Detect decrease in signal value

Library

Logic and Bit Operations

Description

The Detect Decrease block determines if an input is strictly less than its previous value.

• The output is true (equal to 1) when the input signal is less than its previous value.
• The output is false (equal to 0) when the input signal is greater than or equal to its

previous value.

Data Type Support

The Detect Decrease block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-394

Parameters and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

 Detect Decrease

1-395

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes

1 Blocks — Alphabetical List

1-396

Code Generation Yes

See Also

Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

 Detect Fall Negative

1-397

Detect Fall Negative
Detect falling edge when signal value decreases to strictly negative value, and its
previous value was nonnegative

Library

Logic and Bit Operations

Description

The Detect Fall Negative block determines if the input is less than zero, and its previous
value was greater than or equal to zero.

• The output is true (equal to 1) when the input signal is less than zero, and its
previous value was greater than or equal to zero.

• The output is false (equal to 0) when the input signal is greater than or equal to zero,
or if the input signal is negative, its previous value was also negative.

Data Type Support

The Detect Fall Negative block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-398

Parameters and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z < 0.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

 Detect Fall Negative

1-399

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-400

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

 Detect Fall Nonpositive

1-401

Detect Fall Nonpositive
Detect falling edge when signal value decreases to nonpositive value, and its previous
value was strictly positive

Library

Logic and Bit Operations

Description

The Detect Fall Nonpositive block determines if the input is less than or equal to zero,
and its previous value was greater than zero.

• The output is true (equal to 1) when the input signal is less than or equal to zero, and
its previous value was greater than zero.

• The output is false (equal to 0) when the input signal is greater than zero, or if it is
nonpositive, its previous value was also nonpositive.

Data Type Support

The Detect Fall Nonpositive block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-402

Parameters and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z <= 0.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

 Detect Fall Nonpositive

1-403

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-404

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase,
Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

 Detect Increase

1-405

Detect Increase
Detect increase in signal value

Library

Logic and Bit Operations

Description

The Detect Increase block determines if an input is strictly greater than its previous
value.

• The output is true (equal to 1) when the input signal is greater than its previous
value.

• The output is false (equal to 0) when the input signal is less than or equal to its
previous value.

Data Type Support

The Detect Increase block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-406

Parameters and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

 Detect Increase

1-407

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes

1 Blocks — Alphabetical List

1-408

Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

 Detect Rise Nonnegative

1-409

Detect Rise Nonnegative
Detect rising edge when signal value increases to nonnegative value, and its previous
value was strictly negative

Library

Logic and Bit Operations

Description

The Detect Rise Nonnegative block determines if the input is greater than or equal to
zero, and its previous value was less than zero.

• The output is true (equal to 1) when the input signal is greater than or equal to zero,
and its previous value was less than zero.

• The output is false (equal to 0) when the input signal is less than zero, or if the input
signal is nonnegative, its previous value was also nonnegative.

Data Type Support

The Detect Rise Nonnegative block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-410

Parameters and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

 Detect Rise Nonnegative

1-411

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-412

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Positive

Introduced before R2006a

 Detect Rise Positive

1-413

Detect Rise Positive
Detect rising edge when signal value increases to strictly positive value, and its previous
value was nonpositive

Library

Logic and Bit Operations

Description

The Detect Rise Positive block determines if the input is strictly positive, and its previous
value was nonpositive.

• The output is true (equal to 1) when the input signal is greater than zero, and the
previous value was less than or equal to zero.

• The output is false (equal to 0) when the input is negative or zero, or if the input is
positive, the previous value was also positive.

Data Type Support

The Detect Rise Positive block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-414

Parameters and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

 Detect Rise Positive

1-415

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type
Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-416

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Nonnegative

Introduced before R2006a

 Difference

1-417

Difference

Calculate change in signal over one time step

Library

Discrete

Description

The Difference block outputs the current input value minus the previous input value.

Data Type Support

The Difference block accepts signals of any numeric data type that Simulink supports,
including fixed-point data types. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

Parameters and Dialog Box

The Main pane of the Difference block dialog box appears as follows:

1 Blocks — Alphabetical List

1-418

Initial condition for previous input
Set the initial condition for the previous input.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame

 Difference

1-419

based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

The Signal Attributes pane of the Difference block dialog box appears as follows:

1 Blocks — Alphabetical List

1-420

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is[]
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

 Difference

1-421

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-422

Introduced before R2006a

 Digital Clock

1-423

Digital Clock

Output simulation time at specified sampling interval

Library

Sources

Description

The Digital Clock block outputs the simulation time only at the specified sampling
interval. At other times, the block holds the output at the previous value. To control the
precision of this block, set the Sample time parameter in the block dialog box.

Use this block rather than the Clock block (which outputs continuous time) when you
need the current simulation time within a discrete system.

Data Type Support

The Digital Clock block outputs a real signal of type double. For more information, see “
Data Types Supported by Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-424

Parameters and Dialog Box

Sample time
Specify the sampling interval. The default value is 1 second. For more information,
see Specifying Sample Time in the Simulink documentation.

Do not specify a continuous sample time, either 0 or [0,0]. Also, avoid specifying -1
(inheriting the sample time) because this block is a source.

Examples

In the following model, the Scope block shows the output of a Digital Clock block with a
Sample time of 0.2.

The Digital Clock block outputs the simulation time every 0.2 seconds. Otherwise, the
block holds the output at the previous value.

 Digital Clock

1-425

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Clock

Introduced before R2006a

1 Blocks — Alphabetical List

1-426

Direct Lookup Table (n-D)
Index into N-dimensional table to retrieve element, column, or 2-D matrix

Library

Lookup Tables

Description

Block Inputs and Outputs

The Direct Lookup Table (n-D) block uses inputs as zero-based indices into an n-
dimensional table. The number of inputs varies with the shape of the output: an element,
column, or 2-D matrix.

You define a set of output values as the Table data parameter. The first input
specifies the zero-based index to the table dimension that is one higher than the
output dimensionality. The next input specifies the zero-based index to the next table
dimension, and so on.

Output Shape Output Dimensionality Table Dimension That Maps to the First Input

Element 0 1
Column 1 2
Matrix 2 3

Suppose that you want to select a column of values from a 4-D table:

 Direct Lookup Table (n-D)

1-427

The following mapping of block input port to table dimension applies:

This input port... Is the index for this table dimension...

1 2
2 3
3 4

Changes in Block Icon Appearance

Depending on parameters you set, the block icon changes appearance. For table
dimensions higher than 4, the icon matches the 4-D version but shows the exact number
of dimensions in the top text.

When you use the Table data parameter, you see the following icons:

Number of Table DimensionsObject That Inputs
Select from the
Table

1 2 3 4

Element

Column

2-D Matrix Not applicable

When you use the table input port, you see the following icons:

1 Blocks — Alphabetical List

1-428

Number of Table DimensionsObject That Inputs
Select from the
Table

1 2 3 4

Element

Column

2-D Matrix Not applicable

Data Type Support

The Direct Lookup Table (n-D) block accepts input signals of different data types.

Type of Input Port Data Types Supported

Index port • Floating point
• Built-in integer
• Boolean
• Enumerated data types

Table port (with the label T) • Floating point
• Built-in integer
• Fixed point
• Boolean

 Direct Lookup Table (n-D)

1-429

Type of Input Port Data Types Supported

• Enumerated data types

The output data type is the same as the table data type. Inputs for indexing must be real,
but table data can be complex.

When the table data is... The block inherits the output type from...

Not an input The Table data type parameter
An input The table input port

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-430

Parameters and Dialog Box

• “Main tab” on page 1-430
• “Table Attributes tab” on page 1-432

Main tab

Number of table dimensions
Specify the number of dimensions that the Table data parameter must have. This
value determines the number of independent variables for the table and the number
of inputs to the block.

 Direct Lookup Table (n-D)

1-431

To specify... Do this...

1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the

field.

The maximum number of table
dimensions that this block supports is 30.

Inputs select this object from table
Specify whether the output data is a single element, a column, or a 2-D matrix. The
number of input ports for indexing depends on your selection.

Selection Number of Input Ports for Indexing

Element Number of table dimensions
Column Number of table dimensions – 1
2-D Matrix Number of table dimensions – 2

This numbering matches MATLAB indexing. For example, if you have a 4-D table of
data, follow these guidelines:

To access... Specify... As in...

An element Four indices array(1,2,3,4)

A column Three indices array(:,2,3,4)

A 2-D matrix Two indices array(:,:,3,4)

Make table an input
Select this check box to force the Direct Lookup Table (n-D) block to ignore the Table
data parameter. Instead, a new input port appears with T next to it. Use this port to
input table data.

Table data
Specify the table of output values. The matrix size must match the dimensions of the
Number of table dimensions parameter. The Table data field is available only if
you clear the Make table an input check box.

1 Blocks — Alphabetical List

1-432

Tip During block diagram editing, you can leave the Table data field empty. But
for simulation, you must match the number of dimensions in Table data to the
Number of table dimensions. For details on how to construct multidimensional
MATLAB arrays, see “Multidimensional Arrays” in the MATLAB documentation.

Click Edit to open the Lookup Table Editor. For more information, see “Edit Lookup
Tables” in the Simulink documentation.

Diagnostic for out-of-range input
Specify whether to show a warning or error when an index is out of range with
respect to the table dimension. Options include:

• None — do not display any warning or error message
• Warning — display a warning message in the MATLAB Command Window and

continue the simulation
• Error — halt the simulation and display an error in the Diagnostic Viewer

When you select None or Warning, the block clamps out-of-range indices to fit table
dimensions. For example, if the specified index is 5.3 and the maximum index for
that table dimension is 4, the block clamps the index to 4.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Table Attributes tab

Note: The parameters in the Table Attributes pane are not available if you select Make
table an input. In this case, the block inherits all table attributes from the input port
with the label T.

Table minimum
Specify the minimum value for table data. The default value is [] (unspecified).

Table maximum

 Direct Lookup Table (n-D)

1-433

Specify the maximum value for table data. The default value is [] (unspecified).
Table data type

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit from 'Table
data'

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Table data type parameter.

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Examples

When Table Data Is Not an Input

Suppose that you have the following model:

The Direct Lookup Table (n-D) block parameters are:

1 Blocks — Alphabetical List

1-434

Block Parameter Value

Number of table dimensions 4

Inputs select this object from table Column

Make table an input off

Table data a

Diagnostic for out-of-range input Warning

Sample time –1

Table minimum []

Table maximum []

Table data type int16

Lock data type settings against
changes by the fixed-point tools

off

In this example, a is a 4-D array of linearly increasing values that you define with the
following model preload function:

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

Because the Direct Lookup Table (n-D) block uses zero-based indexing, the output is:

a(:,2,4,3)

The output has the same data type as the table: int16.

 Direct Lookup Table (n-D)

1-435

When Table Data Is an Input

Suppose that you have the following model:

The Direct Lookup Table (n-D) block parameters are:

Block Parameter Value

Number of table dimensions 4

Inputs select this object from table Column

Make table an input on

Diagnostic for out-of-range input Warning

Sample time –1

The key parameters of the Constant3 block are:

Block Parameter Value

Constant value a

Output data type fixdt(1,16,2)

In this example, a is a 4-D array of linearly increasing values that you define with the
following model preload function:

1 Blocks — Alphabetical List

1-436

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

The Constant3 block feeds the 4-D array to the Direct Lookup Table (n-D) block, using
the fixed-point data type fixdt(1,16,2). Because the Direct Lookup Table (n-D) block
uses zero-based indexing, the output is:

a(:,2,4,3)

The output has the same data type as the table: fixdt(1,16,2).

Characteristics

Data Types Double | Single | Boolean | Base Integer |
Enumerated

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No

 Direct Lookup Table (n-D)

1-437

Code Generation Yes

See Also

n-D Lookup Table

Introduced before R2006a

1 Blocks — Alphabetical List

1-438

Discrete Derivative

Compute discrete-time derivative

Library

Discrete

Description

The Discrete Derivative block computes an optionally scaled discrete time derivative as
follows

y t
Ku t

T

Ku t

T
n

n

s

n

s

()
() ()

= -
-1

where

• u t
n

() and y tn() are the block's input and output at the current time step,
respectively.

• u t
n

()
-1 is the block's input at the previous time step.

• K is a scaling factor.
• T

s is the simulation's discrete step size, which must be fixed.

Note: Do not use this block in subsystems with a non-periodic trigger (for example, non-
periodic function-call subsystems). This configuration will produce inaccurate results.

 Discrete Derivative

1-439

Data Type Support

The Discrete Derivative block supports all numeric Simulink data types, including fixed-
point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Discrete Derivative block dialog box appears as follows:

Gain value

1 Blocks — Alphabetical List

1-440

Scaling factor used to weight the block's input at the current time step.
Initial condition for previous weighted input K*u/Ts

Set the initial condition for the previous scaled input.
Input processing

Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Inherited Yes

 Discrete Derivative

1-441

Input Signal u Input Processing Mode Block Works?

Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

The Signal Attributes pane of the Discrete Derivative block dialog box appears as
follows:

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)

1 Blocks — Alphabetical List

1-442

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

 Discrete Derivative

1-443

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Derivative

Introduced before R2006a

1 Blocks — Alphabetical List

1-444

Discrete Filter
Model Infinite Impulse Response (IIR) filters

Library

Discrete

Description

The Discrete Filter block independently filters each channel of the input signal with
the specified digital IIR filter. You can specify the filter structure as one of | Direct
form I | Direct form I transposed | Direct form II | Direct form II
transposed. The block implements static filters with fixed coefficients. You can tune the
coefficients of these static filters.

This block filters each channel of the input signal independently over time. The Input
processing parameter allows you to specify how the block treats each element of the
input. You can specify treating input elements as an independent channel (sample-based
processing), or treating each column of the input as an independent channel (frame-based
processing). To perform frame-based processing, you must have a DSP System Toolbox
license.

The output dimensions equal those of the input, except when you specify a matrix of
filter taps for the Numerator coefficients parameter. When you do so, the output
dimensions depend on the number of different sets of filter taps you specify.

Use the Numerator coefficients parameter to specify the coefficients of the discrete
filter numerator polynomial. Use the Denominator coefficients parameter to specify
the coefficients of the denominator polynomial of the function. The Denominator
coefficients parameter must be a vector of coefficients.

Specify the coefficients of the numerator and denominator polynomials in ascending
powers of z-1. The Discrete Filter block lets you use polynomials in z-1 (the delay operator)

 Discrete Filter

1-445

to represent a discrete system. This method is the one that signal processing engineers
typically use. Conversely, the Discrete Transfer Fcn block lets you use polynomials in z
to represent a discrete system. This method is the one that control engineers typically
use. When the numerator and denominator polynomials have the same length, the two
methods are identical.

Specifying Initial States

In Dialog parameters and Input port(s) modes, the block initializes the internal filter
states to zero by default, which is equivalent to assuming past inputs and outputs are
zero. You can optionally use the Initial states parameter to specify nonzero initial states
for the filter delays.

To determine the number of initial state values you must specify, and how to specify
them, see the following table on Valid Initial States and Number of Delay Elements
(Filter States). The Initial states parameter can take one of four forms as described in
the following table.

Valid Initial States

Initial state Examples Description

Scalar 5

Each delay element for each
channel is set to 5.

The block initializes all delay elements in
the filter to the scalar value.

Vector
(for applying
the same delay
elements to
each channel)

For a filter with two delay
elements: [d1 d2]

The delay elements for all channels
are d1 and d2.

Each vector element specifies a unique
initial condition for a corresponding delay
element. The block applies the same vector
of initial conditions to each channel of the
input signal. The vector length must equal
the number of delay elements in the filter
(specified in the table Number of Delay
Elements (Filter States)).

Vector or
matrix
(for applying
different delay
elements to
each channel)

For a 3-channel input signal and a
filter with two delay elements:

[d1 d2 D1 D2 d1 d2] or

Each vector or matrix element specifies a
unique initial condition for a corresponding
delay element in a corresponding channel:

• The vector length must be equal to the
product of the number of input channels
and the number of delay elements in the

1 Blocks — Alphabetical List

1-446

Initial state Examples Description

d D d

d D d

1 1 1

2 2 2

È

Î
Í

˘

˚
˙

• The delay elements for channel
1 are d1 and d2.

• The delay elements for channel
2 are D1 and D2.

• The delay elements for channel
3 are d1and d2.

filter (specified in the table Number of
Delay Elements (Filter States)).

• The matrix must have the same number
of rows as the number of delay elements
in the filter (specified in the table
Number of Delay Elements (Filter
States)), and must have one column for
each channel of the input signal.

Empty matrix []

Each delay element for each
channel is set to 0.

The empty matrix, [], is equivalent to
setting the Initial conditions parameter to
the scalar value 0.

The number of delay elements (filter states) per input channel depends on the filter
structure, as indicated in the following table.

Number of Delay Elements (Filter States)

Filter Structure Number of Delay Elements per Channel

Direct form I

Direct form I transposed

• number of zeros - 1

• number of poles - 1

Direct form II

Direct form II transposed

max(number of zeros, number of

poles)-1

The following tables describe the valid initial states for different sizes of input and
different number of channels. These tables provide this information according to whether
you set the Input processing parameter to frame based or sample based.

Frame-Based Processing

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Column vector
(K-by-1)

• Unoriented vector
(K)

1 • Scalar
• Column vector

(M-by-1)

• Scalar
• Column vector

(M-by-1)

 Discrete Filter

1-447

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Row vector (1-
by-M)

• Row vector (1-
by-N)

• Matrix (K-by-N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)
• Matrix (M-by-N)

• Scalar
• Matrix (M-by-N)

Sample-Based Processing

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Scalar 1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)

• Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)
• Row vector (1-

by-N)
• Column vector

(N-by–1)
• Unoriented vector

(N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)
• Matrix (M-by-N)

• Scalar

• Matrix (K-by-N) K×N • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)
• Matrix (M-by-

(K×N))

• Scalar

1 Blocks — Alphabetical List

1-448

When the Initial states is a scalar, the block initializes all filter states to the same
scalar value. Enter 0 to initialize all states to zero. When the Initial states is a vector or
a matrix, each vector or matrix element specifies a unique initial state. This unique state
corresponds to a delay element in a corresponding channel:

• The vector length must equal the number of delay elements in the filter, M =
max(number of zeros, number of poles).

• The matrix must have the same number of rows as the number of delay elements in
the filter, M = max(number of zeros, number of poles). The matrix must also
have one column for each channel of the input signal.

The following example shows the relationship between the initial filter output and the
initial input and state. Given an initial input u1, the first output y1 is related to the
initial state [x1, x2] and initial input by:

y b
u a x a x

a
b x b x

1 1

1 2 1 3 2

1

2 1 3 2
=

- -()È

Î
Í
Í

˘

˚
˙
˙

+ +

+ 1/a1

b 2

b 1 +

-a 2

-a 3 b 3

z-1

z-1

x
1

x
2

yu

To see an example of how to set initial conditions as a vector:

• Click on the model ex_discretefilter_nonzero_ic, or type it at the MATLAB
command prompt.

• Double-click on the Discrete Filter block, and set the parameters. The following shows
how to set the initial conditions of the Discrete Filter block to [1 2].

 Discrete Filter

1-449

• Simulate the model, by left-clicking the green simulation icon.

1 Blocks — Alphabetical List

1-450

• Double-click the scope. You can see that the difference between the signal filtered by
the Discrete Filter block, and the signal from the filter’s building blocks, is zero.

 Discrete Filter

1-451

This demonstrates that you can enter the initial conditions of the Discrete Filter block
as a vector of [1 2]. You can also set the initial condition of the first Unit Delay to 1
and the second Unit Delay to 2. The resulting outputs are the same.

1 Blocks — Alphabetical List

1-452

Data Type Support

The Discrete Filter block accepts and outputs real and complex signals of any signed
numeric data type that Simulink supports. The block supports the same types for the
numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity. They can have
different word lengths and fraction lengths.

The following diagrams show the filter structure and the data types used within the
Discrete Filter block for fixed-point signals.

Input

1

Output

1

z-1

z-1

+

+
+

+

-
-

b 0

b 1a 1

aM
b N

1/a
0

The block omits the dashed divide when you select the Optimize by skipping divide
by leading denominator coefficient (a0) parameter.

 Discrete Filter

1-453

Input

Input

data type

Output

data type

Numerator

coefficient

data type

1 b0

Denominator

coefficient

data type

Denominator

accumulator

data type

b1

b2

+

+

+

+

z-1

Cast

Cast

a1

a2

Cast

z-1

Output

1+

-

+

-

Cast Cast

State

data type

Numerator

product output

data type

Numerator

accumulator

data type
CastCast

Denominator

product output

data type

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

coefficient

data type

Numerator

coefficient

data type

Cast

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

accumulator

data type

Denominator

product output

data type

Denominator

accumulator

data type

1 Blocks — Alphabetical List

1-454

Parameters and Dialog Box

Numerator
Numerator coefficients of the discrete filter. To specify the coefficients, set the
Source to Dialog. Then, enter the coefficients in Value as descending powers of z.
Use a row vector to specify the coefficients for a single numerator polynomial.

Denominator
Denominator coefficients of the discrete filter. To specify the coefficients, set the
Source to Dialog. Then, enter the coefficients in Value as descending powers of z.
Use a row vector to specify the coefficients for a single denominator polynomial.

 Discrete Filter

1-455

Initial states
If the Source is Dialog, then, in Value, specify the initial states of the filter states.
To learn how to specify initial states, see “Specifying Initial States” on page 1-445.

If the Source is Input port, then you do not need to specify Value.
External reset

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior

None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when there is a nonzero at the current
time step

• when the time step value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when nonzero at the current time
step.

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for ufix1, are not supported.

Input processing
Specify whether the block performs sample- or frame-based processing.

• Elements as channels (sample based) — Process each element of the
input as an independent channel.

• Columns as channels (frame based) — Process each column of the input as
an independent channel.

Note: Frame-based processing requires a DSP System Toolbox license.

1 Blocks — Alphabetical List

1-456

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Optimize by skipping divide by leading denominator coefficient (a0)
Select when the leading denominator coefficient, a0, equals 1. This parameter
optimizes your code.

When you select this check box, the block does not perform a divide-by-a0 either in
simulation or in the generated code. An error occurs if a0 is not equal to one.

When you clear this check box, the block is fully tunable during simulation. It
performs a divide-by-a0 in both simulation and code generation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

State
Specify the state data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator coefficients

Specify the numerator coefficient data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object

 Discrete Filter

1-457

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator coefficient minimum

Specify the minimum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Numerator coefficient maximum
Specify the maximum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Numerator product output
Specify the product output data type for the numerator coefficients. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator accumulator

Specify the accumulator data type for the numerator coefficients. You can set this
parameter to:

1 Blocks — Alphabetical List

1-458

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator coefficients

Specify the denominator coefficient data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator coefficient minimum

Specify the minimum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Denominator coefficient maximum
Specify the maximum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)

 Discrete Filter

1-459

• Automatic scaling of fixed-point data types

Denominator product output
Specify the product output data type for the denominator coefficients. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator accumulator

Specify the accumulator data type for the denominator coefficients. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Output

Specify the output data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8

1 Blocks — Alphabetical List

1-460

• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” for more information.
Output minimum

Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.

 Discrete Filter

1-461

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

1 Blocks — Alphabetical List

1-462

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class
Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

 Discrete Filter

1-463

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is ' '. When this field is
blank, no qualifier is assigned.

1 Blocks — Alphabetical List

1-464

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name resolves
• Minimum and maximum values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Only when the leading numerator coefficient does not

equal zero
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Filter Structure Diagrams

The diagrams in the following sections show the filter structures supported by the Digital
Filter block. They also show the data types used in the filter structures for fixed-point
signals. You can set the coefficient, output, accumulator, product output, and state data
types shown in these diagrams in the block dialog.

• “IIR direct form I” on page 1-465
• “IIR direct form I transposed” on page 1-467

 Discrete Filter

1-465

• “IIR direct form II” on page 1-470
• “IIR direct form II transposed” on page 1-472

IIR direct form I

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

1 Blocks — Alphabetical List

1-466

• When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.

• Numerator and denominator coefficients must have the same word length. They can
have different fraction lengths.

• The State data type cannot be specified on the block mask for this structure. Doing so
is not possible because the input and output states have the same data types as the
input and output buffers.

 Discrete Filter

1-467

IIR direct form I transposed

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.

1 Blocks — Alphabetical List

1-468

• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.

• States are complex when either the input or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can

have different fraction lengths.

 Discrete Filter

1-469

1 Blocks — Alphabetical List

1-470

IIR direct form II

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.

 Discrete Filter

1-471

• States are complex when either the inputs or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can

have different fraction lengths.

1 Blocks — Alphabetical List

1-472

IIR direct form II transposed

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity

characteristics.

 Discrete Filter

1-473

• When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.

• States are complex when either the inputs or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can

have different fraction lengths.

1 Blocks — Alphabetical List

1-474

 Discrete Filter

1-475

Supported Data Types

• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

See Also

Allpole Filter DSP System Toolbox
Digital Filter Design DSP System Toolbox
Discrete FIR Filter Simulink
Filter Realization

Wizard

DSP System Toolbox

dsp.IIRFilter DSP System Toolbox
dsp.AllpoleFilter DSP System Toolbox
fdatool DSP System Toolbox
fvtool Signal Processing Toolbox

Introduced before R2006a

1 Blocks — Alphabetical List

1-476

Discrete FIR Filter

Model FIR filters

Library

Discrete

Description

The Discrete FIR Filter block independently filters each channel of the input signal
with the specified digital FIR filter. The block can implement static filters with fixed
coefficients, as well as time-varying filters with coefficients that change over time. You
can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time. The Input
processing parameter allows you to specify whether the block treats each element of the
input as an independent channel (sample-based processing), or each column of the input
as an independent channel (frame-based processing). To perform frame-based processing,
you must have a DSP System Toolbox license.

The output dimensions equal those of the input, except when you specify a matrix of
filter taps for the Coefficients parameter. When you do so, the output dimensions
depend on the number of different sets of filter taps you specify.

The outputs of this block numerically match the outputs of the DSP System Toolbox
Digital Filter Design block and of the Signal Processing Toolbox™ dfilt object.

This block supports the Simulink state logging feature. See “States” in the Simulink
User's Guide for more information.

 Discrete FIR Filter

1-477

Filter Structure Support

You can change the filter structure implemented with the Discrete FIR Filter block by
selecting one of the following from the Filter structure parameter:

• Direct form

• Direct form symmetric

• Direct form antisymmetric

• Direct form transposed

• Lattice MA

You must have an available DSP System Toolbox license to run a model with any of these
filter structures other than direct form.

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to zero by default,
which has the same effect as assuming that past inputs and outputs are zero. You can
optionally use the Initial states parameter to specify nonzero initial conditions for the
filter delays.

To determine the number of initial states you must specify and how to specify them, see
the table on valid initial states. The Initial states parameter can take one of the forms
described in the next table.

Valid Initial States

Initial Condition Description

Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different
delay elements to each
channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel:

• The vector length equal the product of the number of input
channels and the number of delay elements in the filter,
#_of_filter_coeffs-1 (or #_of_reflection_coeffs for
Lattice MA).

• The matrix must have the same number of rows as the number
of delay elements in the filter, #_of_filter_coeffs-1

1 Blocks — Alphabetical List

1-478

Initial Condition Description

(#_of_reflection_coeffs for Lattice MA), and must have one
column for each channel of the input signal.

Data Type Support

The Discrete FIR Filter block accepts and outputs real and complex signals of any
numeric data type supported by Simulink. The block supports the same types for the
coefficients.

The following diagrams show the filter structure and the data types used within the
Discrete FIR Filter block for fixed-point signals.

Direct Form

You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

Input

1 b0

z-1

b1

bN

+

+
+

z-1

Output

1

z-1

 Discrete FIR Filter

1-479

Input

Input

data type

Output

data type

Numerator

coefficient

data type

Product output

data type

Accumulator

data type

Accumulator

data type
1 b0

z-1

Numerator

coefficient

data type

Product output

data type

Accumulator

data type

Numerator

coefficient

data type

Product output

data type

Accumulator

data type

b1

bN

+

+

+

+

Cast Cast

Cast

Cast

z-1

Output

1

1 Blocks — Alphabetical List

1-480

Direct Form Symmetric

You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

It is assumed that the filter coefficients are symmetric. The block only uses the first half
of the coefficients for filtering.

Input

1 b0

b1

+

+
+

z-1

z-1

Output

1

z-1

+

+

+

+

z-1

bM

Input

2 b0

b1

+

+
+

z-1

z-1

Output

2

z-1

+

+

+

+

z-1 bM

Even Order - Type I

+

+

z-1

Odd Order - Type II

 Discrete FIR Filter

1-481

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

+

+

+

z-1

bM

Even Order - Type I

Input

data type
Cast

CastCast

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

1 Blocks — Alphabetical List

1-482

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

+

+

+

z-1

bM

Odd Order - Type II

Input

data type
Cast

Cast

Cast

Cast

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

z-1

Cast

+

+

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Tap sum

data type

 Discrete FIR Filter

1-483

Direct Form Antisymmetric

You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

It is assumed that the filter coefficients are antisymmetric. The block only uses the first
half of the coefficients for filtering.

Input

1 b0

b1

+

+
+

z-1

z-1

Output

1

z-1

+

-

+

-

z-1

bM

Input

2 b0

b1

+

+
+

z-1

z-1

Output

2

z-1

+

-

+

-

z-1 bM

Even Order - Type III

+

-

z-1

Odd Order - Type IV

1 Blocks — Alphabetical List

1-484

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

-

+

-

z-1

bM

Even Order - Type III

Input

data type
Cast

CastCast

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

 Discrete FIR Filter

1-485

Input

1 b0

b1

z-1

z-1

Output

1

z-1

+

-

+

-

z-1

bM

Odd Order - Type IV

Input

data type
Cast

Cast

Cast

Cast

Tap sum

data type

Tap sum

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type
+

+

Numerator

coefficient

data type

Numerator

coefficient

data type

Product output

data type
Cast

Accumulator

data type

Product output

data type
Cast

Accumulator

data type

+

+

Cast

Output

data type

z-1

Cast

+

-

Cast

Tap sum

data type

Tap sum

data type

Tap sum

data type

Tap sum

data type

1 Blocks — Alphabetical List

1-486

Direct Form Transposed

States are complex when either the inputs or the coefficients are complex.

Section

input

1 b0

b1

+

+

Section

output

1

+

+

bN

z-1

z-1

+

+

bN-1

z-1

 Discrete FIR Filter

1-487

Input

1 b0

z-1

z-1

b1

bN

+

+

+

+

+

+

Input

data type
Cast

Product output

data type

Accumulator

data type
Cast

Output

1

Ouput

data type

Cast

Accumulator

data type

Product output

data type

Numerator

coefficient

data type

Accumulator

data type

Cast

Product output

data type

Accumulator

data type

Numerator

coefficient

data type

Accumulator

data type

Accumulator

data type

z-1

bN-1 Cast

Product output

data type

Numerator

coefficient

data type

Accumulator

data type

Accumulator

data type

1 Blocks — Alphabetical List

1-488

Lattice MA

Input

1

k1

+

+

+

+

z-1z-1

Output

1

CONJ(k0)

+

+

k0

Input

Input

data type

Accumulator

data type

Accumulator

data type

1

Coefficient

data type

Product output

data type

Accumulator

data type

Product output

data type

Accumulator

data type

k1

+

+

+

+

z-1

Cast

Cast

Cast

Castz-1

Output

1

Cast

Cast

CONJ(k0)

State

data type

+

+

Cast

k0

State

data type

Product output

data type

Coefficient

data type

Accumulator

data type

 Discrete FIR Filter

1-489

Parameters and Dialog Box

Coefficient source
Select whether you want to specify the filter coefficients on the block mask or
through an input port.

Filter structure
Select the filter structure you want the block to implement. You must have an
available DSP System Toolbox license to run a model with a Discrete FIR Filter block
that implements any filter structure other than direct form.

Coefficients
Specify the vector coefficients of the filter's transfer function. Filter coefficients must
be specified as a row vector. When you specify a row vector of filter taps, the block
applies a single filter to the input. To apply multiple filters to the same input, specify
a matrix of coefficients, where each row represents a different set of filter taps. This

1 Blocks — Alphabetical List

1-490

parameter is visible only when Coefficient source is set to Dialog parameters .
For multiple filter, Filter structure must be Direct form, and the input must be a
scalar.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as an independent channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as
an independent channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Initial states
Specify the initial conditions of the filter states. To learn how to specify initial states,
see “Specifying Initial States” on page 1-477.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

Tap sum
Specify the tap sum data type of a direct form symmetric or direct form
antisymmetric filter, which is the data type the filter uses when it sums the inputs
prior to multiplication by the coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is either Direct
form symmetric or Direct form antisymmetric.

 Discrete FIR Filter

1-491

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Tap sum parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Coefficients

Specify the coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same word length as
input

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Coefficients minimum

Specify the minimum value that a filter coefficient should have. The default value is
[] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Coefficients maximum
Specify the maximum value that a filter coefficient should have. The default value is
[] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Product output
Specify the product output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object

1 Blocks — Alphabetical List

1-492

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Accumulator

Specify the accumulator data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
State

Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is Lattice MA.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Output

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator

 Discrete FIR Filter

1-493

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Output minimum

Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.

1 Blocks — Alphabetical List

1-494

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

protection in the
generated code.

Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point

 Discrete FIR Filter

1-495

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced in R2008a

1 Blocks — Alphabetical List

1-496

Discrete State-Space
Implement discrete state-space system

Library

Discrete

Description

Block Behavior for Non-Empty Matrices

The Discrete State-Space block implements the system described by

x n Ax n Bu n

y n Cx n Du n

() () ()

() () (),

+ = +

= +

1

where u is the input, x is the state, and y is the output. The matrix coefficients must have
these characteristics, as illustrated in the following diagram:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

The block accepts one input and generates one output. The width of the input vector is
the number of columns in the B and D matrices. The width of the output vector is the

 Discrete State-Space

1-497

number of rows in the C and D matrices. To define the initial state vector, use the Initial
conditions parameter.

To specify a vector or matrix of zeros for A, B, C, D, or Initial conditions, use the
zeros function.

Block Behavior for Empty Matrices

When the matrices A, B, and C are empty (for example, []), the functionality of the block
becomes y(n) = Du(n). If the Initial conditions vector is also empty, the block uses
an initial state vector of zeros.

Data Type Support

The Discrete State Space block accepts and outputs a real signal of type single or
double. For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-498

Parameters and Dialog Box

A, B, C, D
Specify the matrix coefficients, as defined in the Description section.

Initial conditions

 Discrete State-Space

1-499

Specify the initial state vector. The default value is 0. Simulink does not allow the
initial states of this block to be inf or NaN.

Sample time (–1 for inherited)
Specify the time interval between samples. See “ Specify Sample Time”.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class
Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

1 Blocks — Alphabetical List

1-500

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

 Discrete State-Space

1-501

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is ' '. When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single
Sample Time Specified in the Sample time parameter
Direct Feedthrough Only if D ≠ 0
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-502

Discrete-Time Integrator

Perform discrete-time integration or accumulation of signal

Library

Discrete

Description

Capabilities of the Discrete-Time Integrator Block

You can use the Discrete-Time Integrator block in place of the Integrator block to
create a purely discrete system. With the Discrete-Time Integrator block, you can:

• Define initial conditions on the block dialog box or as input to the block.
• Define an input gain (K) value.
• Output the block state.
• Define upper and lower limits on the integral.
• Reset the state depending on an additional reset input.

Output Equations

The block starts from the first time step, n = 0, with either initial output y(0) = IC or
initial state x(0) = IC, depending on the Initial condition setting parameter value.

For a given step n > 0 with simulation time t(n), Simulink updates output y(n) as
follows:

• Forward Euler method:

 Discrete-Time Integrator

1-503

y(n) = y(n-1) + K*[t(n)-t(n-1)]*u(n-1)

• Backward Euler method:

y(n) = y(n-1) + K*[t(n)-t(n-1)]*u(n)

• Trapezoidal method:

y(n) = y(n-1) + K*[t(n)-t(n-1)]*[u(n)+u(n-1)]/2

Simulink automatically selects a state-space realization of these output equations
depending on the block sample time, which can be explicit or triggered. When using
explicit sample time, t(n)-t(n-1) reduces to the sample time T for all n > 0. For more
information on these methods, see “Integration and Accumulation Methods” on page
1-503.

Integration and Accumulation Methods

The block can integrate or accumulate using the forward Euler, backward Euler, and
trapezoidal methods. Assume that u is the input, y is the output, and x is the state. For
a given step n, Simulink updates y(n) and x(n+1). In integration mode, T is the block
sample time (delta T in the case of triggered sample time). In accumulation mode, T = 1.
The block sample time determines when the output is computed but not the output value.
K is the gain value. Values clip according to upper or lower limits.

• Forward Euler method (default), also known as forward rectangular, or left-hand
approximation

For this method, the software approximates 1/s as T/(z-1). The expressions for the
output of the block at step n are:

x(n+1) = x(n) + K*T*u(n)

y(n) = x(n)

The block uses the following steps to compute the output:

Step 0: y(0) = IC (clip if necessary)

 x(1) = y(0) + K*T*u(0)

Step 1: y(1) = x(1)

 x(2) = x(1) + K*T*u(1)

Step n: y(n) = x(n)

1 Blocks — Alphabetical List

1-504

 x(n+1) = x(n) + K*T*u(n) (clip if necessary)

Using this method, input port 1 does not have direct feedthrough.
• Backward Euler method, also known as backward rectangular or right-hand

approximation

For this method, the software approximates 1/s as T*z/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n).

Let x(n) = y((n)-1). The block uses these steps to compute the output.

If the parameter Initial condition setting is set to Output:

Step 0: y(0) = IC (clipped if necessary)

 x(1) = y(0)

If the parameter Initial condition setting is set to State (most efficient):

Step 0: x(0) = IC (clipped if necessary)

 x(1) = y(0) = x(0) + K*T*u(0)

Step 1: y(1) = x(1) + K*T*u(1)

 x(2) = y(1)

Step n: y(n) = x(n) + K*T*u(n)

 x(n+1) = y(n)

Using this method, input port 1 has direct feedthrough.
• Trapezoidal method

For this method, the software approximates 1/s as T/2*(z+1)/(z-1).

When T is fixed (equal to the sampling period), the expressions to compute the output
are:

x(n) = y(n-1) + K*T/2 * u(n-1)

y(n) = x(n) + K*T/2*u(n)

If the Initial condition setting parameter is set to Output:

Step 0: y(0) = IC (clipped if necessary)

 Discrete-Time Integrator

1-505

 x(1) = y(0) + K*T/2*u(0)

If the Initial condition setting parameter is set to State (most efficient):

Step 0: x(0) = IC (clipped if necessary)

 y(0) = x(0) + K*T/2*u(0)

 x(1) = y(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2*u(1)

 x(2) = y(1) + K*T/2*u(1)

Step n: y(n) = x(n) + K*T/2*u(n)

 x(n+1) = y(n) + K*T/2*u(n)

Here, x(n+1) is the best estimate of the next output. It is not the same as the state,
in that x(n) is not equal to y(n).

If T is variable (for example, obtained from the triggering times), the block uses these
steps to compute the output.

If the Initial condition setting parameter is set to Output:

Step 0: y(0) = IC (clipped if necessary)

 x(1) = y(0)

If the Initial condition setting parameter is set to State (most efficient):

Step 0: x(0) = IC (clipped if necessary)

 x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + T/2*(u(1) + u(0))

 x(2) = y(1)

Step n: y(n) = x(n) + T/2*(u(n) + u(n-1))

 x(n+1) = y(n)

Using this method, input port 1 has direct feedthrough.

Define Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them
from an external signal:

1 Blocks — Alphabetical List

1-506

• To define the initial conditions as a block parameter, set the Initial condition
source parameter to internal and enter the value in the Initial condition text
box.

• To provide the initial conditions from an external source, set the Initial condition
source parameter to external. An additional input port appears on the block.

When to Use the State Port

Use the state port instead of the output port:

• When the output of the block is fed back into the block through the reset port
or the initial condition port, causing an algebraic loop. For an example, see the
sldemo_bounce_two_integrators model.

• When you want to pass the state from one conditionally executed subsystem to
another, which can cause timing problems. For an example, see the sldemo_clutch
model.

You can work around these problems by passing the state through the state port rather
than the output port. Simulink generates the state at a slightly different time from the
output, which protects your model from these problems. To output the block state, select
the Show state port check box. The state port appears on the top of the block

Limit the Integral

To keep the output within certain levels, select the Limit output check box and enter
the limits in the corresponding text box. Doing so causes the block to function as a
limited integrator. When the output reaches the limits, the integral action turns off to

 Discrete-Time Integrator

1-507

prevent integral windup. During a simulation, you can change the limits but you cannot
change whether the output is limited. The table shows how the block determines output.

Integral Output

Less than or equal to the Lower
saturation limit and the input is negative

Held at the Lower saturation limit

Between the Lower saturation limit and
the Upper saturation limit

The integral

Greater than or equal to the Upper
saturation limit and the input is positive

Held at the Upper saturation limit

To generate a signal that indicates when the state is being limited, select the Show
saturation port check box. A new saturation port appears below the block output port:

The signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• -1 indicates that the lower limit is being applied.

Reset the State

The block can reset its state to the initial condition you specify, based on an external
signal. To cause the block to reset its state, select one of the External reset parameter
options. A reset port appears that indicates the reset trigger type:

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results.

1 Blocks — Alphabetical List

1-508

To resolve this loop, feed the output of the block state port into the reset port instead. To
access the block state, select the Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the reset signal that
triggers the reset. The trigger options include:

• rising – Resets the state when the reset signal has a rising edge. For example, this
figure shows the effect that a rising reset trigger has on backward Euler integration.

Reset

Input

No IntegrationRising
Reset

Integrate

• falling – Resets the state when the reset signal has a falling edge. For example,
this figure shows the effect that a falling reset trigger has on backward Euler
integration.

Reset

Input

No IntegrationFalling
Reset

Integrate

 Discrete-Time Integrator

1-509

• either – Resets the state when the reset signal rises or falls. For example, the
following figure shows the effect that an either reset trigger has on backward Euler
integration.

Reset

Input

No IntegrationEither
Reset

Integrate

• level – Resets and holds the output to the initial condition while the reset signal
is nonzero. For example, this figure shows the effect that a level reset trigger has on
backward Euler integration.

Reset

Input

No IntegrationLevel
Reset

Integrate

• sampled level – Resets the output to the initial condition when the reset signal is
nonzero. For example, this figure shows the effect that a sampled level reset trigger
has on backward Euler integration.

1 Blocks — Alphabetical List

1-510

Input

Reset

IntegrateSampled
Level Reset No Integration

The sampled level reset option requires fewer computations, making it more
efficient than the level reset option. However, the sampled level reset option can
introduce a discontinuity when integration resumes.

Note: For the discrete-time integrator block, all trigger detections are based on
signals with positive values. For example, a signal changing from -1 to 0 is not
considered a rising edge, but a signal changing from 0 to 1 is.

Behavior in Simplified Initialization Mode

Simplified initialization mode is enabled when you set Configuration Parameters >
Diagnostics > Data Validity > Underspecified initialization detection is set to
Simplified. If you use simplified initialization mode, the behavior of the Discrete-Time
Integrator block differs from classic initialization mode. The new initialization behavior
is more robust and provides more consistent behavior in these cases:

• In algebraic loops
• On enable and disable
• When comparing results using triggered sample time against explicit sample time,

where the block is triggered at the same rate as the explicit sample time

Simplified initialization mode enables easier conversion from Continuous-Time
Integrator blocks to Discrete-Time Integrator blocks, because the initial conditions have
the same meaning for both blocks.

 Discrete-Time Integrator

1-511

For more information on classic and simplified initialization modes, see “Underspecified
initialization detection”.

Enable and Disable Behavior with Initial Condition Setting set to Output

When you use simplified initialization mode with Initial condition setting set to
Output, the enable and disable behavior of the block is simplified as follows:

At disable time td:

 y(td) = y(td-1)

At enable time te:

• If the parent subsystem control port has States when enabling set to reset:

y(te) = IC.

• If the parent subsystem control port has States when enabling set to held:

y(te) = y(td).

The following figure shows this condition.

1 Blocks — Alphabetical List

1-512

Iterator Subsystems

When using simplified initialization mode, you cannot place the Discrete-Time Integrator
block in an Iterator Subsystem.

In simplified initialization mode, Iterator subsystems do not maintain elapsed time.
Thus, if a Discrete-Time Integrator block, which needs elapsed time, is placed inside an
Iterator Subsystem block, Simulink reports an error.

 Discrete-Time Integrator

1-513

Triggered Subsystems and Function-Call Subsystems

Simulink does not support model simulation when all the following conditions are true:

• A Discrete-Time Integrator block is placed within a triggered subsystem or a function-
call subsystem.

• The block’s Initial condition setting parameter is set to State (most
efficient).

• Simplified initialization mode is enabled.

Behavior in an Enabled Subsystem Inside a Function-Call Subsystem

Suppose that you have a function-call subsystem that contains an enabled subsystem,
which contains a Discrete-Time Integrator block. The following behavior applies.

Integrator Method Sample Time Type of
Function-Call Trigger Port

Value of delta T When
Function-Call Subsystem
Executes for the First
Time After Enabled

Reason for Behavior

Forward Euler Triggered t — tstart When the function-call
subsystem executes
for the first time, the
integrator algorithm
uses tstart as the
previous simulation
time.

Backward Euler and
Trapezoidal

Triggered t — tprevious When the function-call
subsystem executes
for the first time, the
integrator algorithm
uses tprevious as the
previous simulation
time.

Forward Euler,
Backward Euler, and
Trapezoidal

Periodic Sample time of the
function-call generator

In periodic mode,
the Discrete-Time
Integrator block uses
sample time of the

1 Blocks — Alphabetical List

1-514

Integrator Method Sample Time Type of
Function-Call Trigger Port

Value of delta T When
Function-Call Subsystem
Executes for the First
Time After Enabled

Reason for Behavior

function-call generator
for delta T.

Data Type Support

The Discrete-Time Integrator block accepts real signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Discrete-Time Integrator

1-515

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-516

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

 Discrete-Time Integrator

1-517

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-518

Integrator method

Specify the integration or accumulation method.

Settings

Default: Integration: Forward Euler

Integration: Forward Euler

Integrator method is Forward Euler.
Integration: Backward Euler

Integrator method is Backward Euler.
Integration: Trapezoidal

Integrator method is Trapezoidal.
Accumulation: Forward Euler

Accumulation method is Forward Euler.
Accumulation: Backward Euler

Accumulation method is Backward Euler.
Accumulation: Trapezoidal

Accumulation method is Trapezoidal.

Command-Line Information
Parameter: IntegratorMethod
Type: string
Value: 'Integration: Forward Euler' | 'Integration: Backward Euler'
| 'Integration: Trapezoidal' | 'Accumulation: Forward Euler' |
'Accumulation: Backward Euler' | 'Accumulation: Trapezoidal'
Default: 'Integration: Forward Euler'

 Discrete-Time Integrator

1-519

Gain value

Specify a scalar, vector, or matrix by which to multiply the integrator input. Each
element of the gain must be a positive real number.

Settings

Default: 1.0

• Specifying a value other than 1.0 (the default) is semantically equivalent to
connecting a Gain block to the input of the integrator.

• Valid entries include:

• double(1.0)

• single(1.0)

• [1.1 2.2 3.3 4.4]

• [1.1 2.2; 3.3 4.4]

• Using this parameter to specify the input gain eliminates a multiplication operation
in the generated code. However, this parameter must be nontunable to realize this
benefit. If you want to tune the input gain, set this parameter to 1.0 and use an
external Gain block to specify the input gain.

Command-Line Information
Parameter: gainval
Type: string
Value: '1.0'
Default: '1.0'

1 Blocks — Alphabetical List

1-520

External reset

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Settings

Default: none

none

Do not reset the state to initial conditions.
rising

Reset the state when the reset signal has a rising edge.
falling

Reset the state when the reset signal has a falling edge.
either

Reset the state when the reset signal rises or falls.
level

Reset and holds the output to the initial condition while the reset signal is nonzero.
sampled level

Reset the output to the initial condition when the reset signal is nonzero.

Command-Line Information
Parameter: ExternalReset
Type: string
Value: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'sampled
level'

Default: 'none'

 Discrete-Time Integrator

1-521

Initial condition source

Get the initial conditions of the states.

Settings

Default: internal

internal

Get the initial conditions of the states from the Initial condition parameter.
external

Get the initial conditions of the states from an external block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter.

Command-Line Information

Parameter: InitialConditionSource
Type: string
Value: 'internal' | 'external'
Default: 'internal'

1 Blocks — Alphabetical List

1-522

Initial condition

Specify the states' initial conditions.

Settings

Default: 0

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source to internal enables this parameter.

Setting Initial condition source to external disables this parameter.

Command-Line Information
Parameter: InitialCondition
Type: scalar or vector
Value: '0'
Default: '0'

 Discrete-Time Integrator

1-523

Initial condition setting

Specify whether to apply the Initial condition parameter to the block state or output.
This initial condition is also used as the reset value. This parameter was named Use
initial condition as initial and reset value for in Simulink before R2014a.

Settings

Default: State (most efficient)

State (most efficient)

Use this option in all situations except when the block is in a triggered subsystem or
a function-call subsystem and Integrator method is set to an integration method.

Set the following initial conditions:

x(0) = IC

At reset:

x(n) = IC

Output

Use this option when the block is in a triggered subsystem or a function-call
subsystem and Integrator method is set to an integration method.

Set the following initial conditions:

y(0) = IC

At reset:

y(n) = IC

Compatibility

This option is present to provide backward compatibility. You cannot select this
option for Discrete-Time Integrator blocks in Simulink models but you can select
it for Discrete-Time Integrator blocks in a library. Use this option to maintain
compatibility with Simulink models created before R2014a.

Prior to R2014a, the option State (most efficient) was known as State only
(most efficient). The option Output was known as State and output. The
behavior of the block with the option Compatibility is as follows.

1 Blocks — Alphabetical List

1-524

• If Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection is set to Classic, the Initial
condition setting parameter behaves as State (most efficient).

• If Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection is set to Simplified, the Initial
condition setting parameter behaves as Output.

Command-Line Information
Parameter: InitialConditionSetting
Type: string
Value: 'State (most efficient)' | 'Output' | 'Compatibilty'
Default: 'Output'

 Discrete-Time Integrator

1-525

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits.

Settings

Default: 1

By default, the block uses a discrete sample time of 1. To set a different sample time,
enter another discrete value, such as 0.1.

See also “ Specify Sample Time” in the online documentation for more information.

Tips

• Do not specify a sample time of 0. This value specifies a continuous sample time,
which the Discrete-Time Integrator block does not support.

• Do not specify a sample time of inf or NaN because these values are not discrete.
• If you specify -1 to inherit the sample time from an upstream block, verify that

the upstream block uses a discrete sample time. For example, the Discrete-Time
Integrator block cannot inherit a sample time of 0.

Command-Line Information
Parameter: SampleTime
Type: string
Value: '1'
Default: '1'

1 Blocks — Alphabetical List

1-526

Limit output

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

Settings

Default: Off

 On
Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

 Off
Do not limit the block's output to a value between the Lower saturation limit and
Upper saturation limit parameters.

Dependencies

This parameter enables Upper saturation limit.

This parameter enables Lower saturation limit.

Command-Line Information
Parameter: LimitOutput
Type: string
Value: 'off' | 'on'
Default: 'off'

 Discrete-Time Integrator

1-527

Upper saturation limit

Specify the upper limit for the integral.

Settings

Default: inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

Limit output enables this parameter.

Command-Line Information
Parameter: UpperSaturationLimit
Type: scalar or vector
Value: 'inf'
Default: 'inf'

1 Blocks — Alphabetical List

1-528

Lower saturation limit

Specify the lower limit for the integral.

Settings

Default: -inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

Limit output enables this parameter.

Command-Line Information
Parameter: LowerSaturationLimit
Type: scalar or vector
Value: '-inf'
Default: '-inf'

 Discrete-Time Integrator

1-529

Show saturation port

Add a saturation output port to the block.

Settings

Default: Off

 On
Add a saturation output port to the block.

 Off
Do not add a saturation output port to the block.

Command-Line Information
Parameter: ShowSaturationPort
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-530

Show state port

Add an output port to the block for the block's state.

Settings

Default: Off

 On
Add an output port to the block for the block's state.

 Off
Do not add an output port to the block for the block's state.

Command-Line Information
Parameter: ShowStatePort
Type: string
Value: 'off' | 'on'
Default: 'off'

 Discrete-Time Integrator

1-531

Ignore limit and reset when linearizing

Cause Simulink linearization commands to treat this block as not resettable and as
having no limits on its output, regardless of the settings of the block reset and output
limitation options.

Settings

Default: Off

 On
Cause Simulink linearization commands to treat this block as not resettable and as
having no limits on its output, regardless of the settings of the block reset and output
limitation options.

 Off
Do not cause Simulink linearization commands to treat this block as not resettable
and as having no limits on its output, regardless of the settings of the block reset and
output limitation options.

Tips

Ignoring the limit and resetting allows you to linearize a model around an operating
point. This point may cause the integrator to reset or saturate.

Command-Line Information
Parameter: IgnoreLimit
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-532

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

 Discrete-Time Integrator

1-533

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

1 Blocks — Alphabetical List

1-534

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

 Discrete-Time Integrator

1-535

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-536

State name

Use this parameter to assign a unique name to each state.

Settings

Default: ' '

• If left blank, no name is assigned.

Tips

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

Dependency

This parameter enables State name must resolve to Simulink signal object when
you click the Apply button.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Command-Line Information
Parameter: StateIdentifier
Type: string
Value: ' '
Default: ' '

 Discrete-Time Integrator

1-537

State name must resolve to Simulink signal object

Require that state name resolve to Simulink signal object.

Settings

Default: Off

 On
Require that state name resolve to Simulink signal object.

 Off
Do not require that state name resolve to Simulink signal object.

Dependencies

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Command-Line Information
Parameter: StateMustResolveToSignalObject
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-538

Package

Select a package that defines the custom storage class you want to apply.

Settings

Default: ---None---

---None---

Sets internal storage class attributes.
mpt

Applies the built-in mpt package.
Simulink

Applies the built-in Simulink package.

Dependencies

If you have defined any packages of your own, click Refresh. This action adds all user-
defined packages on your search path to the package list.

 Discrete-Time Integrator

1-539

Code generation storage class

Select state storage class.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.

Dependencies

State name enables this parameter.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Command-Line Information

Command-Line Information
Parameter: StateStorageClass
Type: string
Value: 'Auto' | 'ExportedGlobal' | 'ImportedExtern' |
'ImportedExternPointer'

Default: 'Auto'

1 Blocks — Alphabetical List

1-540

Code generation storage class

Select custom storage class for state.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are included.
FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

 Discrete-Time Integrator

1-541

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

Dependencies

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer and Package to ---None--- enables Code generation
storage type qualifier.

See Also

“Storage Classes for Block States” in the Simulink Coder documentation.

1 Blocks — Alphabetical List

1-542

Code generation storage type qualifier

Specify the Simulink Coder storage type qualifier.

Settings

Default: ' '

If left blank, no qualifier is assigned.

Dependency

Setting Package to ---None--- and Code generation storage class to
ExportedGlobal, ImportedExtern, or ImportedExternPointer enables this
parameter.

Command-Line Information
Parameter: RTWStateStorageTypeQualifier
Type: string
Value: ' '
Default: ' '

 Discrete-Time Integrator

1-543

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-544

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

 Discrete-Time Integrator

1-545

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

1 Blocks — Alphabetical List

1-546

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information
Parameter: OutDataTypeStr
Type: string
Value: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'
Default: 'Inherit: Inherit via internal rule'

See Also

For more information, see “Control Signal Data Types”.

 Discrete-Time Integrator

1-547

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

1 Blocks — Alphabetical List

1-548

Command-Line Information
Parameter: OutDataTypeStr
Type: string
Value: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'
Default: 'Inherit: Inherit via internal rule'

See Also

See “Specify Data Types Using Data Type Assistant”.

 Discrete-Time Integrator

1-549

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

1 Blocks — Alphabetical List

1-550

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Discrete-Time Integrator

1-551

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-552

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Discrete-Time Integrator

1-553

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-554

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

The sldemo_fuelsys model uses a Discrete-Time Integrator block in the
fuel_rate_control/airflow_calc subsystem. This block uses the Forward Euler
integration method.

 Discrete-Time Integrator

1-555

When the Switch block feeds a nonzero value into the Discrete-Time Integrator block,
integration occurs. Otherwise, integration does not occur.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, of the reset and external initial condition source

ports. The input has direct feedthrough for every
integration method except Forward Euler and
accumulation Forward Euler.

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

1 Blocks — Alphabetical List

1-556

See Also

Integrator

Introduced before R2006a

 Discrete Transfer Fcn

1-557

Discrete Transfer Fcn

Implement discrete transfer function

Library

Discrete

Description

The Discrete Transfer Fcn block implements the z-transform transfer function:

H z
num z

den z

num z num z num

den z den z

m m

m

n n
()

()

()

...
= =

+ + +

+ +

-

-

0 1
1

0 1
1

....+ denn

where m+1 and n+1 are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and denominator
in descending powers of z. num can be a vector or matrix, den must be a vector, and you
specify both as parameters on the block dialog box. The order of the denominator must be
greater than or equal to the order of the numerator.

Specify the coefficients of the numerator and denominator polynomials in descending
powers of z. This block lets you use polynomials in z to represent a discrete system, a
method that control engineers typically use. Conversely, the Discrete Filter block lets
you use polynomials in z-1 (the delay operator) to represent a discrete system, a method
that signal processing engineers typically use. The two methods are identical when the
numerator and denominator polynomials have the same length.

The Discrete Transfer Fcn block applies the z-transform transfer function to each
independent channel of the input. The Input processing parameter allows you to

1 Blocks — Alphabetical List

1-558

specify whether the block treats each element of the input as an individual channel
(sample-based processing), or each column of the input as an individual channel (frame-
based processing). To perform frame-based processing, you must have a DSP System
Toolbox license.

Specifying Initial States

Use the Initial states parameter to specify initial filter states. To determine the number
of initial states you must specify and how to specify them, see the following tables.

Frame-Based Processing

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Column vector
(K-by-1)

• Unoriented vector
(K)

1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)

• Scalar
• Column vector

(M-by-1)

• Row vector (1-
by-N)

• Matrix (K-by-N)

N • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)
• Matrix (M-by-N)

• Scalar
• Matrix (M-by-N)

Sample-Based Processing

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Scalar 1 • Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)

• Scalar
• Column vector

(M-by-1)
• Row vector (1-

by-M)
• Row vector (1-

by-N)
N • Scalar • Scalar

 Discrete Transfer Fcn

1-559

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Column vector
(N-by-1)

• Unoriented vector
(N)

• Column vector
(M-by-1)

• Row vector (1-
by-M)

• Matrix (M-by-N)
• Matrix (K-by-N) K×N • Scalar

• Column vector
(M-by-1)

• Row vector (1-
by-M)

• Matrix (M-by-
(K×N))

• Scalar

When the Initial states is a scalar, the block initializes all filter states to the same
scalar value. Enter 0 to initialize all states to zero. When the Initial states is a
vector or a matrix, each vector or matrix element specifies a unique initial state for a
corresponding delay element in a corresponding channel:

• The vector length must equal the number of delay elements in the filter, M =
max(number of zeros, number of poles).

• The matrix must have the same number of rows as the number of delay elements in
the filter, M = max(number of zeros, number of poles). The matrix must also
have one column for each channel of the input signal.

The following example shows the relationship between the initial filter output and the
initial input and state. Given an initial input u1, the first output y1 is related to the
initial state [x1, x2] and initial input by:

y x

x u x

1 1

2 1 1

4

1 2 3

=

= -/ ()

1 Blocks — Alphabetical List

1-560

Data Type Support

The Discrete Transfer Function block accepts and outputs real and complex signals of
any signed numeric data type that Simulink supports. The block supports the same types
for the numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity. They can have
different word lengths and fraction lengths.

 Discrete Transfer Fcn

1-561

States are complex when either the input or the coefficients are complex.

The following diagrams show the filter structure and the data types that the block uses
for floating-point and fixed-point signals.

Input

1

Output

1

z-1

z-1

+

+

+

-
-

b 0

a 1

a 3
b 1

1/a
0

z-1

a 2

-

The block omits the dashed divide when you select the Optimize by skipping divide
by leading denominator coefficient (a0) parameter.

1 Blocks — Alphabetical List

1-562

Input

Input

data type

Output

data type
1

b0

Denominator

coefficient

data type

Denominator

accumulator

data type
+

+

z-1

Cast

Cast

a1

a2

z-1

Output

1+

-

+

-

Cast

State

data type
CastCast

Denominator

product output

data type

Denominator

coefficient

data type

Numerator

coefficient

data type

Cast

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

accumulator

data type

Denominator

product output

data type

Denominator

accumulator

data type

+

-

b1Cast a2

Denominator

coefficient

data type

Numerator

coefficient

data type

Cast

Numerator

product output

data type

Numerator

accumulator

data type

Denominator

product output

data type

z-1Denominator

accumulator

data type

Parameters and Dialog Box

The Main pane of the Discrete Transfer Fcn block dialog box appears as follows.

 Discrete Transfer Fcn

1-563

Numerator
Numerator coefficients of the discrete transfer function. To specify the coefficients,
set the Source to Dialog. Then enter the coefficients in Value as descending
powers of z. Use a row vector to specify the coefficients for a single numerator
polynomial. Use a matrix to specify coefficients for multiple filters to be applied to the
same input. Each matrix row represents a set of filter taps.

Denominator
Denominator coefficients of the discrete transfer function. To specify the coefficients,
set the Source to Dialog. Then, enter the coefficients in Value as descending
powers of z. Use a row vector to specify the coefficients for a single denominator

1 Blocks — Alphabetical List

1-564

polynomial. Use a matrix to specify coefficients for multiple filters to be applied to the
same input. Each matrix row represents a set of filter taps.

Initial states
If the Source is Dialog, then, in Value, specify the initial states of the filter states.
To learn how to specify initial states, see “Specifying Initial States” on page 1-558.

If the Source is Input port, then there is nothing to be specified for Value.
External reset

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior

None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when there is a nonzero at the current
time step

• when the time step value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when nonzero at the current time
step.

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for ufix1, are not supported.

Input processing
Specify whether the block performs sample- or frame-based processing.

• Elements as channels (sample based) — Process each element of the
input as an independent channel.

• Columns as channels (frame based) — Process each column of the input as
an independent channel.

 Discrete Transfer Fcn

1-565

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Optimize by skipping divide by leading denominator coefficient (a0)
Select when the leading denominator coefficient, a0, equals one. This parameter
optimizes your code.

When you select this check box, the block does not perform a divide-by-a0 either in
simulation or in the generated code. An error occurs if a0 is not equal to one.

When you clear this check box, the block is fully tunable during simulation, and
performs a divide-by-a0 in both simulation and code generation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

The Data Types pane of the Discrete Transfer Function block dialog box appears as
follows.

1 Blocks — Alphabetical List

1-566

State
Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

 Discrete Transfer Fcn

1-567

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Numerator coefficients
Specify the numerator coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Numerator coefficient minimum
Specify the minimum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Numerator coefficient maximum
Specify the maximum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Numerator product output
Specify the product output data type for the numerator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

1 Blocks — Alphabetical List

1-568

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator product output parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Numerator accumulator
Specify the accumulator data type for the numerator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Denominator coefficients
Specify the denominator coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator coefficients parameter.

 Discrete Transfer Fcn

1-569

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Denominator coefficient minimum
Specify the minimum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Denominator coefficient maximum
Specify the maximum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Denominator product output
Specify the product output data type for the denominator coefficients. You can set it
to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator product output parameter.

See “Specify Data Types Using Data Type Assistant” in theSimulink User's Guide for
more information.

Denominator accumulator
Specify the accumulator data type for the denominator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object

1 Blocks — Alphabetical List

1-570

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Denominator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Output
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Output minimum

Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

 Discrete Transfer Fcn

1-571

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

1 Blocks — Alphabetical List

1-572

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

The State Attributes pane of the Discrete Filter block dialog box appears as follows.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

 Discrete Transfer Fcn

1-573

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class
Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.

1 Blocks — Alphabetical List

1-574

Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is ' '. When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

 Discrete Transfer Fcn

1-575

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name resolves
• Minimum and maximum values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Specified in the Sample time parameter
Direct Feedthrough Only when the leading numerator coefficient is not

equal to zero and the numerator order equals the
denominator order

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-576

Discrete Zero-Pole

Model system defined by zeros and poles of discrete transfer function

Library

Discrete

Description

The Discrete Zero-Pole block models a discrete system defined by the zeros, poles, and
gain of a z-domain transfer function. This block assumes that the transfer function has
the following form:

H z K
Z z

P z
K

z Z z Z z Z

z P z P z P

m

n

()
()

()

()()...()

()()...()
= =

- - -

- - -

1 2

1 2

,,

where Z represents the zeros vector, P the poles vector, and K the gain. The number of
poles must be greater than or equal to the number of zeros (n ≥ m). If the poles and zeros
are complex, they must be complex conjugate pairs.

The block displays the transfer function depending on how the parameters are specified.
See Zero-Pole for more information.

Data Type Support

The Discrete Zero-Pole block accepts and outputs real signals of type double and
single. For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Discrete Zero-Pole

1-577

Parameters and Dialog Box

Zeros
Specify the matrix of zeros. The default is [1].

Poles
Specify the vector of poles. The default is [0 0.5].

Gain
Specify the gain. The default is 1.

Sample time

1 Blocks — Alphabetical List

1-578

Specify the time interval between samples. See Specifying Sample Time in the “How
Simulink Works” chapter of the Simulink documentation.

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class
Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.

 Discrete Zero-Pole

1-579

ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

1 Blocks — Alphabetical List

1-580

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is ' '. When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single
Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, if the number of zeros and poles are equal
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Display

1-581

Display
Show value of input

Library

Sinks

Description

Format Options

You control the display format using the Format parameter:

If you select... The block displays...

short A 5-digit scaled value with fixed decimal
point

long A 15-digit scaled value with fixed decimal
point

short_e A 5-digit value with a floating decimal
point

long_e A 16-digit value with a floating decimal
point

bank A value in fixed dollars and cents format
(but with no $ or commas)

hex (Stored Integer) The stored integer value of a fixed-point
input in hexadecimal format

binary (Stored Integer) The stored integer value of a fixed-point
input in binary format

1 Blocks — Alphabetical List

1-582

If you select... The block displays...

decimal (Stored Integer) The stored integer value of a fixed-point
input in decimal format

octal (Stored Integer) The stored integer value of a fixed-point
input in octal format

If the input to a Display block has an enumerated data type (see “Simulink
Enumerations” and “Define Simulink Enumerations”):

• The block displays enumerated values, not the values of underlying integers.
• Setting Format to any of the Stored Integer settings causes an error.

Display Abbreviations

The following abbreviations appear on the Display block to help you identify the format
of the value.

When you see... The value that appears is...

(SI) The stored integer value

Note: (SI) does not appear when the signal is of an integer
data type.

hex In hexadecimal format
bin In binary format
oct In octal format

Frequency of Data Display

The amount of data that appears and the time steps at which the data appears depend on
the Decimation block parameter and the SampleTime property:

• The Decimation parameter enables you to display data at every nth sample, where n
is the decimation factor. The default decimation, 1, displays data at every time step.

Note: The Display block updates its display at the initial time, even when the
Decimation value is greater than one.

 Display

1-583

• The SampleTime property, which you can set with set_param, enables you to specify
a sampling interval at which to display points. This property is useful when you are
using a variable-step solver where the interval between time steps is not the same.
The default sample time, -1, causes the block to ignore the sampling interval when
determining the points to display.

Resizing Options

If the block input is an array, you can resize the block to show more than just the first
element. You can resize the block vertically or horizontally, and the block adds display
fields in the appropriate direction. A black triangle indicates that the block is not
displaying all input array elements.

The Display block shows the first 200 elements of a vector signal and the first 20 rows
and 10 columns of a matrix signal.

Floating Display

To use the block as a floating display, select the Floating display check box. The block
input port disappears and the block displays the value of the signal on a selected line.

If you select Floating display:

• Turn off signal storage reuse for your model. See “Signal storage reuse ” in the
Simulink documentation for more information.

• Do not connect a multidimensional signal to a floating display. Otherwise, you get a
simulation error because the block does not support multidimensional signals.

Data Type Support

The Display block accepts real or complex signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

1 Blocks — Alphabetical List

1-584

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Format
Specify the format of the data that appears, as discussed in “Format Options” on page
1-581. The default is short.

Decimation
Specify how often to display data, as discussed in “Frequency of Data Display” on
page 1-582. The default is 1.

Floating display
Select to use the block as a floating display, as discussed in “Floating Display” on
page 1-583.

Examples

The sldemo_auto_climatecontrol model shows how you can use the Display block.

 Display

1-585

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Use set_param to specify the SampleTime property
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation No

See Also

Scope

1 Blocks — Alphabetical List

1-586

Introduced before R2006a

 Divide

1-587

Divide
Divide one input by another

Library

Math Operations

Description

The Product and Product of Elements blocks are variants of the Divide block.

• For information on the Product block, see Product.
• For information on the Product of Elements block, see Product of Elements.

Supported Block Operations

The Divide block outputs the result of dividing its first input by its second. The
inputs can be scalars, a scalar and a nonscalar, or two nonscalars that have the same
dimensions. The Divide block is functionally a Product block that has two block
parameter values preset:

• Multiplication: Element-wise(.*)
• Number of Inputs: */

Setting non-default values for either of those parameters can change a Divide block to be
functionally equivalent to a Product block or a Product of Elements block. See the
documentation of those two blocks for more information.

Expected Differences Between Simulation and Code Generation

If any of the Divide block inputs contains a NaN or inf value, or if the block generates
NaN or inf during execution, you might see different results when you compare the block

1 Blocks — Alphabetical List

1-588

simulation results with the generated code. This difference is due to the nonfinite NaN or
inf values. In such cases, inspect your model configuration and eliminate the conditions
that produce NaN or inf.

Code Optimizations

The Simulink Coder build process provides efficient code for matrix inverse and division
operations. The following summary describes the benefits and when each benefit is
available:

Benefit Small matrices
(2-by-2 to 5-by-5)

Medium matrices
(6-by-6 to 20-by-20)

Large matrices
(larger than 20-by-20)

Faster code
execution time,
compared to R2011a
and earlier releases

Yes No Yes

Reduced ROM
and RAM usage,
compared to R2011a
and earlier releases

Yes, for real values Yes, for real values Yes, for real values

Reuse of variables Yes Yes Yes
Dead code
elimination

Yes Yes Yes

Constant folding Yes Yes Yes
Expression folding Yes Yes Yes
Consistency with
MATLAB Coder
results

Yes Yes Yes

For blocks that have three or more inputs of different dimensions, the code might include
an extra buffer to store temporary variables for intermediate results.

 Divide

1-589

Parameters and Dialog Box

Show data type assistant

Display the Data Type Assistant.

1 Blocks — Alphabetical List

1-590

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Number of inputs

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

Settings

Default: */

• 1 or * or /

Has one input. In element-wise mode, processes the input as described for the
Product of Elements block. In matrix mode, if the parameter value is 1 or *, the
block outputs the input value. If the value is /, the input must be a square matrix
(including a scalar as a degenerate case) and the block outputs the matrix inverse.
See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page 1-1425 for
more information.

• Integer value > 1

Has the number of inputs given by the integer value. The inputs are multiplied
together in element-wise mode or matrix mode, as specified by the Multiplication
parameter. See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page
1-1425 for more information.

• Unquoted string of two or more * and / characters

Has the number of inputs given by the length of the string. Each input that
corresponds to a * character is multiplied into the output. Each input that
corresponds to a / character is divided into the output. The operations occur in
element-wise mode or matrix mode, as specified by the Multiplication parameter.
See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page 1-1425 for
more information.

 Divide

1-591

Dependency

Setting Number of inputs to * and selecting Element-wise(.*) for Multiplication
enables the Multiply over parameter:

•

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiplication

Specify whether the Product block operates in Element-wise mode or Matrix mode.

Settings

Default: Element-wise(.*)

Element-wise(.*)

Operate in Element-wise mode.
Matrix(*)

Operate in Matrix mode.

Dependency

Selecting Element-wise(.*) and setting Number of inputs to * enable the following
parameter:

• Multiply over

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiply over

Affect multiplication on matrix input.

Settings

Default: All dimensions

1 Blocks — Alphabetical List

1-592

All dimensions

Output a scalar that is product of all elements of the matrix, or the product of their
inverses, depending on the value of Number of inputs.

Specified dimension

Output a vector, the composition of which depends on the value of the Dimension
parameter.

Dependencies

• Enable this parameter by selecting Element-wise(.*) for Multiplication and
setting Number of inputs to * or 1 or /.

• Setting this parameter to Specified dimension enables the Dimension
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Dimension

Affect multiplication on matrix input.

Settings

Default: 1

Minimum: 1

Maximum: 2

1

Output a vector that contains an element for each column of the input matrix.
2

Output a vector that contains an element for each row of the input matrix.

Tips

Each element of the output vector contains the product of all elements in the
corresponding column or row of the input matrix, or the product of the inverses of those
elements, depending on the value of Number of inputs:

 Divide

1-593

• 1 or *

Multiply the values of the column or row elements
• /

Multiply the inverses of the column or row elements

Dependency

Enable this parameter by selecting Specified dimension for Multiply over.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

 On
Require that all inputs have the same data type.

 Off
Do not require that all inputs have the same data type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-594

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

 Divide

1-595

Floor

Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Rounding”.

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

1 Blocks — Alphabetical List

1-596

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)

 Divide

1-597

• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-598

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code

 Divide

1-599

efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as first input

Use data type of the first input signal.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

1 Blocks — Alphabetical List

1-600

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

• Same as first input

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

 Divide

1-601

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

1 Blocks — Alphabetical List

1-602

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

 Divide

1-603

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-604

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

 Divide

1-605

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

The following examples show the output of the Divide block for some typical inputs using
default block parameter values.

Introduced before R2006a

1 Blocks — Alphabetical List

1-606

DocBlock

Create text that documents model and save text with model

Library

Model-Wide Utilities

Description

The DocBlock allows you to create and edit text that documents a model, and save that
text with the model. Double-clicking an instance of the block creates a temporary file
containing the text associated with this block and opens the file in an editor. Use the
editor to modify the text and save the file. Simulink software stores the contents of the
saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII text document types.
The default editors for these different document types are

• HTML — Microsoft® Word (if available). Otherwise, the DocBlock opens HTML
documents using the editor specified on the Editor/Debugger Preferences pane of
the Preferences dialog box.

• RTF — Microsoft Word (if available). Otherwise, the DocBlock opens RTF documents
using the editor specified on the Editor/Debugger Preferences pane of the
Preferences dialog box.

• Text — The DocBlock opens text documents using the editor specified on the Editor/
Debugger Preferences pane of the Preferences dialog box.

Use the docblock command to change the default editors.

 DocBlock

1-607

Data Type Support

Not applicable.

Parameters and Dialog Box

Double-clicking an instance of the DocBlock opens an editor. To access the DocBlock
parameter dialog box, select the block in the Model Editor and then select Mask
Parameters from either the Edit menu or the block's context menu.

Code generation template symbol (Embedded Coder® license required)
Enter a template symbol name in this field. Embedded Coder software uses this
symbol to add comments to the code generated from the model. For more information,
see “Add Global Comments”.

Document type
Select the type of document associated with the DocBlock. The options are:

1 Blocks — Alphabetical List

1-608

• Text (the default)
• RTF

• HTML

Note If you are using a DocBlock to add comments to your code during code
generation, ensure that you set the Document Type as Text. If you set the
Document Type as RTF or HTML, your comments will not appear in the code.

Characteristics

Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 Dot Product

1-609

Dot Product
Generate dot product of two vectors

Library

Math Operations

Description

The Dot Product block generates the dot product of the vectors at its inputs. The scalar
output, y, is equal to the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the vectors at the block's top and bottom inputs, respectively.
(See “How to Rotate a Block” in the Simulink documentation for a description of the port
order for various block orientations.) The inputs can be vectors, column vectors (single-
column matrices), or scalars. If both inputs are vectors or column vectors, they must be
the same length. If u1 and u2 are both column vectors, the block outputs the equivalent
of the MATLAB expression u1'*u2.

The elements of the input vectors can be real- or complex-valued signals. The signal type
(complex or real) of the output depends on the signal types of the inputs.

Input 1 Input 2 Output

real real real
real complex complex
complex real complex
complex complex complex

To perform element-by-element multiplication without summing, use the Product block.

1 Blocks — Alphabetical List

1-610

Data Type Support
The Dot Product block accepts and outputs signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box
The Main pane of the Dot Product block dialog box appears as follows:

 Dot Product

1-611

The Signal Attributes pane of the Dot Product block dialog box appears as follows:

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs to have same data type

1 Blocks — Alphabetical List

1-612

Select to require all inputs to have the same data type.
Output minimum

Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

 Dot Product

1-613

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

1 Blocks — Alphabetical List

1-614

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Product

Introduced before R2006a

 Dual Port RAM

1-615

Dual Port RAM

Dual port RAM with two output ports

Library

HDL Coder / HDL Operations

Description

The Dual Port RAM block models a RAM that supports simultaneous read and write
operations, and has both a read data output port and write data output port. You can use
this block to generate HDL code that maps to RAM in most FPGAs.

If you do not need to use the write output data, wr_dout, you can achieve better RAM
inference with synthesis tools by using the Simple Dual Port RAM block.

Read-During-Write Behavior

During a write, new data appears at the output of the write port (wr_dout) of the Dual
Port RAM block. If a read operation occurs simultaneously at the same address as a write
operation, old data appears at the read output port (rd_dout).

1 Blocks — Alphabetical List

1-616

Dialog Box and Parameters

Address port width
Address bit width. Minimum bit width is 2, and maximum bit width is 29. The
default is 8.

Ports

The block has the following ports:

wr_din

Write data input. The data can be any width. It inherits the width and data type
from the input signal.

Data type: scalar fixed point, integer, or complex
wr_addr

Write address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

 Dual Port RAM

1-617

wr_en

Write enable.

Data type: Boolean
rd_addr

Read address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

wr_dout

Output data from write address, wr_addr.
rd_dout

Output data from read address, rd_addr.

See Also
Dual Rate Dual Port RAM | Simple Dual Port RAM | Single Port RAM

Introduced in R2014a

1 Blocks — Alphabetical List

1-618

Dual Rate Dual Port RAM
Dual Port RAM that supports two rates

Library

HDL Coder / HDL Operations

Description

The Dual Rate Dual Port RAM block models a RAM that supports simultaneous read and
write operations to different addresses at two clock rates. Port A of the RAM can run at
one rate, and port B can run at a different rate.

In high-performance hardware applications, you can use this block to access the RAM
twice per clock cycle. If you generate HDL code, this block maps to a dual-clock dual-port
RAM in most FPGAs.

Simultaneous Access

You can access different addresses from ports A and B simultaneously. You can also read
the same address from ports A and B simultaneously.

However, do not access an address from one RAM port while it is being written from the
other RAM port. During simulation, if you access an address from one RAM port at the

 Dual Rate Dual Port RAM

1-619

same time as you write that address from the other RAM port, the software reports an
error.

Read-During-Write Behavior

The RAM has write-first behavior. When you write to the RAM, the new write data is
immediately available at the output port.

HDL Code Generation

For simulation results that match the generated HDL code, in the Configuration
Parameters dialog box, in the Solver pane, Tasking mode for periodic sample times
must be SingleTasking.

If you simulate this block using MultiTasking mode, the output data can update in the
same cycle, but in the generated HDL code, the output data is updated one cycle later.

Dialog Box and Parameters

Address port width

1 Blocks — Alphabetical List

1-620

Address bit width. Minimum bit width is 2, and maximum bit width is 28. The
default value is 8.

Ports

The block has the following ports:

din_A

Write data input for RAM port A. The data can be any width. It inherits the width
and data type from the input signal.

Data type: scalar fixed point, integer, or complex
addr_A

Write address for RAM port A.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

we_A

Write enable for RAM port A. Set we_A to true for a write operation, or false for a
read operation.

Data type: Boolean
din_B

Write data input for RAM port B. The data can be of any width, and inherits the
width and data type from the input signal.

Data type: scalar fixed point, integer, or complex
addr_B

Write address for RAM port B.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

we_B

Write enable for RAM port B. Set we_B to true for a write operation, or false for a
read operation.

Data type: Boolean

 Dual Rate Dual Port RAM

1-621

dout_A

Output data from RAM port A address, addr_A.
dout_B

Output data from RAM port B address, addr_B.

See Also
Dual Port RAM | HDL FIFO | Simple Dual Port RAM | Single Port RAM

Introduced in R2014a

1 Blocks — Alphabetical List

1-622

Enable
Add enabling port to system

Library

Ports & Subsystems

Description

Adding an Enable block to a subsystem or at the root level of a model makes it an
enabled system. A subsystem can contain no more than one Enable block. An enabled
system executes while the input received at the Enable port is greater than zero.

At the start of a simulation, Simulink software initializes the states of blocks inside an
enabled system to their initial conditions.

If you use an enable port for a root-level model:

• For multi-rate enabled models, set the solver to single-tasking.
• If the enabled model has a fixed-step size, at least one block in that model must run at

that fixed-step size rate.

The Enable block supports signal label propagation.

Data Type Support

The Enable block accepts signals of supported Simulink numeric data types, including
fixed-point data types. For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box

The Main pane of the Enable block dialog box appears as follows:

 Enable

1-623

Placing the Enable block at the root of a model enables the Signal Attributes pane:

1 Blocks — Alphabetical List

1-624

• “States when enabling” on page 1-626
• “Propagate sizes of variable-size signals” on page 1-627
• “Show output port” on page 1-628
• “Enable zero-crossing detection” on page 1-629
• “Port dimensions” on page 1-630
• “Sample time” on page 1-631
• “Minimum” on page 1-632
• “Maximum” on page 1-633

 Enable

1-625

• “Data type” on page 1-634
• “Show data type assistant” on page 1-128
• “Mode” on page 1-637
• “Interpolate data” on page 1-639

1 Blocks — Alphabetical List

1-626

States when enabling

At the instant when an enabled system is being disabled, specify what happens to the
states of blocks in the enabled system.

Settings

Default: held

held

Holds the states at their previous values.
reset

Resets the states to their initial conditions (zero if not defined).

Command-Line Information
Parameter: StatesWhenEnabling
Type: string
Value: 'held' | 'reset'
Default: 'held'

 Enable

1-627

Propagate sizes of variable-size signals

Specify when to propagate a variable-size signal.

Settings

Default: Only when enabling

Only when enabling

Propagates variable-size signals only when reenabling the system containing the
Enable Port block. When you select this option, sample time must be periodic.

During execution

Propagates variable-size signals at each time step.

Command-Line Information
Parameter: PropagateVarSize
Type: string
Value: 'Only when enabling' | 'During execution'
Default: 'Only when enabling'

1 Blocks — Alphabetical List

1-628

Show output port

Select this check box to output the enabling signal.

Settings

Default: On

 On
Shows the Enable block output port and outputs the enabling signal. Selecting this
option allows the system to process the enabling signal.

 Off
Removes the output port from the Enable block.

Command-Line Information
Parameter: ShowOutputPort
Type: string
Value: 'on' | 'off'
Default: 'on'

 Enable

1-629

Enable zero-crossing detection

Select this check box to enable zero-crossing detection.

Settings

Default: On

 On
Detect zero crossings.

 Off
Do not detect zero crossings.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-630

Port dimensions

Specify the dimensions of the input signal to the block.

Settings

Default: 1

Valid values are:

n Vector signal of width n accepted
[m n] Matrix signal having m rows and n columns accepted

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Enable

1-631

Sample time

Specify the time interval between samples.

Settings

Default: -1

See “ Specify Sample Time” in the online documentation for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-632

Minimum

Specify the minimum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Enable

1-633

Maximum

Specify the maximum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-634

Data type

Specify the output data type of the external input.

Settings

Default: double

double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.
boolean

Data type is boolean.
fixdt(1,16,0)

Data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

The name of a data type object, for example Simulink.NumericType

 Enable

1-635

Do not specify a bus object as the expression.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-636

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Enable

1-637

Mode

Select the category of data to specify.

Settings

Default: double

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-638

See Also

See “Specify Data Types Using Data Type Assistant”.

 Enable

1-639

Interpolate data

Cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

Settings

Default: On

 On
Cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

 Off
Do not cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Determined by the signal at the enable port
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-640

Enabled and Triggered Subsystem
Represent subsystem whose execution is enabled and triggered by external input

Library

Ports & Subsystems

Description

This block is a Subsystem block that is preconfigured to serve as the starting point
for creating an enabled and triggered subsystem. For more information, see “Create a
Triggered and Enabled Subsystem” in the online Simulink help.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

 Enabled Subsystem

1-641

Enabled Subsystem
Represent subsystem whose execution is enabled by external input

Library

Ports & Subsystems

Description

This block is a Subsystem block that is preconfigured to serve as the starting point
for creating an enabled subsystem. For more information, see “Create an Enabled
Subsystem” in the “Creating a Model” chapter of the Simulink documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-642

Enumerated Constant

Generate enumerated constant value

Library

Sources

Description

The Enumerated Constant block outputs a scalar, array, or matrix of enumerated
values. You can also use the Constant block to output enumerated values, but it
provides block parameters that do not apply to enumerated types, such as Output
minimum and Output maximum. When you need a block that outputs only constant
enumerated values, preferably use Enumerated Constant rather than Constant. For
more information, see “Simulink Enumerations”.

Data Type Support

The Enumerated Constant block supports only enumerated data types. Use the
Constant block to output constant data of other types. For more information, see “ Data
Types Supported by Simulink”.

Parameters and Dialog Box

The Enumerated Constant block dialog box initially appears as follows:

 Enumerated Constant

1-643

Output data type

The Output data type field specifies the enumerated type from which you want the
block to output one or more values. The initial value, Enum: SlDemoSign, is a dummy
enumerated type that prevents a newly cloned block from causing an error. To specify
the desired enumerated type, select it from the pulldown or enter Enum: ClassName in
the Output data type field, where ClassName is the name of the MATLAB class that
defines the type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-644

Value

The Value field specifies the value(s) that the block outputs. The output of the block
has the same dimensions and elements as the Value parameter. The initial value,
SlDemoSign.Positive, is a dummy enumerated value that prevents a newly cloned
block from causing an error.

To specify the desired enumerated value(s), select from the pulldown or enter any
MATLAB expression that evaluates to the desired result, including an expression that
uses tunable parameters. All values specified must be of the type indicated by the
Output data type. To specify an array that includes every value in the enumerated
type, use the enumeration function.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Specify the interval between times that the Constant block output can change during
simulation (for example, due to tuning the Constant value parameter).

Settings

Default: inf

This setting indicates that the block output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute the block output. See “
Specify Sample Time” for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Enumerated
Sample Time Specified in the Sample time parameter
Direct Feedthrough Not applicable

 Enumerated Constant

1-645

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Related Examples
• “Use Enumerated Data in Simulink Models”

More About
• “Simulink Enumerations”

Introduced in R2009b

1 Blocks — Alphabetical List

1-646

Environment Controller
Create branches of block diagram that apply only to simulation or only to code generation

Library

Signal Routing

Description

This block outputs the signal at its Sim port only if the model that contains it is being
simulated. It outputs the signal at its Coder port only if code is being generated from the
model. This option enables you to create branches of a block diagram that apply only to
simulation or code generation. The table below describes various scenarios where either
the Sim or Coder port applies.

Scenario Output

Normal mode simulation Sim
Accelerator mode simulation Sim
Rapid Accelerator mode simulation Sim
Simulation of a referenced model (Normal
or Accelerator modes)

Sim

Simulation of a referenced model
(Processor-in-the-loop (PIL) mode)

Coder
(uses the same code generated for a
referenced model)

External mode simulation Coder
Standard code generation Coder
Code generation of a referenced model Coder

Simulink Coder software does not generate code for blocks connected to the Sim port if
these conditions hold:

 Environment Controller

1-647

• On the Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box, you set Default parameter behavior to Inlined.

• The blocks connected to the Sim port do not have external signals.
• The Sim port input path does not contain a MATLAB S-function or an Interpreted

MATLAB Function block.

If you enable block reduction optimization, Simulink eliminates blocks in the branch
connected to the Coder port when compiling the model for simulation. For information
about block reduction, see “Block reduction” in the online Simulink documentation.

Note Simulink Coder code generation eliminates the blocks connected to the Sim branch
only if the Sim branch has the same signal dimensions as the Coder branch. Regardless
of whether it eliminates the Sim branch, Simulink Coder uses the sample times on the
Sim branch as well as the Coder branch to determine the fundamental sample time of
the generated code and might, in some cases, generate sample-time handling code that
applies only to sample times specified on the Sim branch.

Data Type Support

The Environment Controller block accepts signals of any data type that Simulink
supports. The output uses the same data type as the input.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-648

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 Extract Bits

1-649

Extract Bits
Output selection of contiguous bits from input signal

Library

Logic and Bit Operations

Description

The Extract Bits block allows you to output a contiguous selection of bits from the stored
integer value of the input signal. Use the Bits to extract parameter to define the
method for selecting the output bits.

• Select Upper half to output the half of the input bits that contain the most
significant bit. If there is an odd number of bits in the input signal, the number of
output bits is given by the equation
number of output bits = ceil(number of input bits/2)

• Select Lower half to output the half of the input bits that contain the least
significant bit. If there is an odd number of bits in the input signal, the number of
output bits is given by the equation
number of output bits = ceil(number of input bits/2)

• Select Range starting with most significant bit to output a certain number
of the most significant bits of the input signal. Specify the number of most significant
bits to output in the Number of bits parameter.

• Select Range ending with least significant bit to output a certain number
of the least significant bits of the input signal. Specify the number of least significant
bits to output in the Number of bits parameter.

• Select Range of bits to indicate a series of contiguous bits of the input to output in
the Bit indices parameter. You indicate the range in [start end] format, and the
indices of the input bits are labeled contiguously starting at 0 for the least significant
bit.

1 Blocks — Alphabetical List

1-650

Data Type Support

The Extract Bits block accepts inputs of any numeric data type that Simulink supports,
including fixed-point data types. Floating-point inputs are passed through the block
unchanged. Boolean inputs are treated as uint8 signals.

Note: Performing bit operations on a signed integer is difficult. You can avoid difficulty
by converting the data type of your input signals to unsigned integer types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Bits to extract
Select the method for extracting bits from the input signal.

Number of bits

 Extract Bits

1-651

(Not shown on dialog above.) Select the number of bits to output from the input
signal. Signed integer data types can have no less than two bits in them. Unsigned
data integer types can be as short as a single bit.

This parameter is only visible if you select Range starting with most
significant bit or Range ending with least significant bit for the
Bits to extract parameter.

Bit indices
(Not shown on dialog above.) Specify a contiguous range of bits of the input signal to
output. Specify the range in [start end] format. The indices are assigned to the
input bits starting with 0 at the least significant bit.

This parameter is only visible if you select Range of bits for the Bits to extract
parameter.

Output scaling mode
Select the scaling mode to use on the output bits selection:

• When you select Preserve fixed-point scaling, the fixed-point scaling of the
input is used to determine the output scaling during the data type conversion.

• When you select Treat bit field as an integer, the fixed-point scaling of the
input is ignored, and only the stored integer is used to compute the output data type.

Example

Consider an input signal that is represented in binary by 110111001:

• If you select Upper half for the Bits to extract parameter, the output is 11011 in
binary.

• If you select Lower half for the Bits to extract parameter, the output is 11001 in
binary.

• If you select Range starting with most significant bit for the Bits to
extract parameter, and specify 3 for the Number of bits parameter, the output is
110 in binary.

• If you select Range ending with least significant bit for the Bits to
extract parameter, and specify 8 for the Number of bits parameter, the output is
10111001 in binary.

1 Blocks — Alphabetical List

1-652

• If you select Range of bits for the Bits to extract parameter, and specify [4 7]
for the Bit indices parameter, the output is 1011 in binary.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Fcn

1-653

Fcn
Apply specified expression to input

Library
User-Defined Functions

Description
The Fcn block applies the specified mathematical expression to its input. The expression
can include one or more of these components:

• u — The input to the block. If u is a vector, u(i) represents the ith element of the
vector; u(1) or u alone represents the first element.

• Numeric constants.
• Arithmetic operators (+ - * / ^).
• Relational operators (== != > < >= <=) — The expression returns 1 if the relation

is true; otherwise, it returns 0.
• Logical operators (&& || !) — The expression returns 1 if the relation is true;

otherwise, it returns 0.
• Parentheses.
• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos, cosh, exp,

floor, hypot, log, log10, power, rem, sgn (equivalent to sign in MATLAB), sin,
sinh, sqrt, tan, and tanh.

Note: The Fcn block does not support round and fix. Use the Rounding Function
block to apply these rounding modes.

• Workspace variables — Variable names that are not recognized in the preceding list
of items are passed to MATLAB for evaluation. Matrix or vector elements must be
specifically referenced (e.g., A(1,1) instead of A for the first element in the matrix).

1 Blocks — Alphabetical List

1-654

The Fcn block observes the following rules of operator precedence:

1 ()

2 ^

3 + - (unary)
4 !

5 * /

6 + -

7 > < <= >=

8 == !=

9 &&

10 ||

The expression differs from a MATLAB expression in that the expression cannot perform
matrix computations. Also, this block does not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector output,
consider using the Math Function block. If a block input is a vector and the function
operates on input elements individually (for example, the sin function), the block
operates on only the first vector element.

Limitations

The Fcn block has the following limitations:

• You cannot tune the expression during simulation in Normal or Accelerator mode
(see “How Acceleration Modes Work”), or in generated code. To implement tunable
expressions, tune the expression outside the Fcn block. For example, use the
Relational Operator block to evaluate the expression outside.

• The Fcn block does not support custom storage classes. See “Custom Storage Classes”
in the Embedded Coder documentation.

Data Type Support
The Fcn block accepts and outputs signals of type single or double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Fcn

1-655

Parameters and Dialog Box

Expression
Specify the mathematical expression to apply to the input. Expression components
are listed above. The expression must be mathematically well-formed (uses matched
parentheses, proper number of function arguments, and so on). The expression has
restrictions on tunability (see “Limitations” on page 1-654)

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following example models show how to use the Fcn block:

• sldemo_absbrake

1 Blocks — Alphabetical List

1-656

• sldemo_enginewc (Throttle & Manifold/Throttle subsystem)

Characteristics

Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Find

1-657

Find

Find nonzero elements in array

Library

Math Operations

Description

The Find block locates all nonzero elements of the input signal and returns the linear
indices of those elements. If the input is a multidimensional signal, the Find block can
also return the subscripts of the nonzero input elements. In both cases, you can show an
output port with the nonzero input values.

Data Type Support

The Find block accepts and outputs real values of any numeric data type that Simulink
supports.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Find block dialog box appears as follows:

1 Blocks — Alphabetical List

1-658

The Signal Attributes pane of the Find block dialog appears as follows:

 Find

1-659

• “Index output format” on page 1-661
• “Number of input dimensions” on page 1-662
• “Index mode” on page 1-663
• “Show output port for nonzero input values” on page 1-664
• “Sample time” on page 1-297
• “Output data type” on page 1-666
• “Mode” on page 1-668
• “Data type override” on page 1-230
• “Signedness” on page 1-671
• “Word length” on page 1-672
• “Scaling” on page 1-673

1 Blocks — Alphabetical List

1-660

 Find

1-661

Index output format

Select the output format for the indices of the nonzero input values.

Settings

Default: Linear indices

Linear indices

Provides the element indices of any dimension signal in a vector form. For one
dimension (vector) signals, indices correspond to the position of nonzero values
within the vector. For signals with more than one dimension, the conversion of
subscripts to indices is along the first dimension. You do not need to know the signal
dimension of the input signal.

Subscripts

Provides the element indices of a two-dimension or larger signal in a subscript form.
Because the block shows an output port for each dimension, this option requires you
to know the number of dimensions for the input signal.

Dependencies

Selecting Subscripts from the Index output format list enables the Number of
input dimensions parameter.

Command-Line Information
Parameter: IndexOutputFormat
Type: string
Value: Linear indices | Subscripts
Default: Linear indices

1 Blocks — Alphabetical List

1-662

Number of input dimensions

Specify the number of dimensions for the input signal.

Settings

Default: 1

Minimum: 1

Maximum: 32

Dependencies

Selecting Subscripts from the Index output format list enables this parameter.

Command-Line Information
Parameter: NumberOfInputDimensions
Type: int
Value: positive integer value
Default: 1

 Find

1-663

Index mode

Specify the indexing mode.

Settings

Default: Zero-based

Zero-based

An index of 0 specifies the first element of the input vector. An index of 1 specifies
the second element, and so on.

One-based

An index of 1specifies the first element of the input vector. An index of 2, specifies
the second element , and so on.

Command-Line Information
Parameter: IndexMode
Type: string
Value: Zero-based | One-based
Default: Zero-based

1 Blocks — Alphabetical List

1-664

Show output port for nonzero input values

Show or hide the output port for nonzero input values.

Settings

Default: Off

 On
Display the output port for nonzero input values. The additional output port provides
the values of the nonzero input elements.

 Off
Hide the output port for nonzero input values.

Command-Line Information
Parameter: ShowOutputPortForNonzeroInputValues
Type: string
Value: 'on' | 'off'
Default: 'off'

 Find

1-665

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-666

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Output data type is defined by the target.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is unt32.
fixdt(1,16)

Output data type is fixed point, fixdt(1,16).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Click the Show data type assistant button to display additional
parameters for the Output data type parameter.

Command-Line Information
Parameter: OutDataTypeStr
Type: string

 Find

1-667

Value: 'Inherit: Inherit via internal rule' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32'| 'fixdt(1,16)'| '<data type

expression>'

Default: 'Inherit: Inherit via internal rule'

See Also

“Control Signal Data Types”, “Specify Data Types Using Data Type Assistant”

1 Blocks — Alphabetical List

1-668

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second list of the
possible values:

• Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum,
Switch block default)

Built in

Built-in data types. Selecting Built in enables a second list of the possible values:

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second text
box, where you can enter the expression.

Dependencies

Clicking the Show data type assistant button enables this parameter.

Selecting Fixed point from the Mode list enables the following parameters:

• Signed
• Scaling

 Find

1-669

• Word length

See Also

“Specify Data Types Using Data Type Assistant”

1 Blocks — Alphabetical List

1-670

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Find

1-671

Signedness

Specify whether the fixed-point data is signed or unsigned.

Settings

Default: Signed

Signed

Specifies the fixed-point data as signed.
Unsigned

Specifies the fixed-point data as unsigned.

Dependency

Selecting Fixed point from the Mode list enables this parameter.

1 Blocks — Alphabetical List

1-672

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependency

Selecting Fixed point from the Mode list enables this parameter.

 Find

1-673

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Integer

Integer

Specifies a binary point location for fixed-point data and sets the fraction length to 0.

The Scaling list has only one item for you to select.

Dependency

Selecting Fixed point from the Mode list enables this parameter.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced in R2010a

1 Blocks — Alphabetical List

1-674

First-Order Hold

Implement first-order sample-and-hold

Library

Discrete

Description

The First-Order Hold block implements a first-order sample-and-hold that operates at
the specified sampling interval. This block has little value in practical applications and is
included primarily for academic purposes.

This figure compares the output from a Sine Wave block and a First-Order Hold block.

Data Type Support

The First-Order Hold block accepts and outputs signals of type double. For more
information, see “ Data Types Supported by Simulink” in the Simulink documentation.

 First-Order Hold

1-675

Parameters and Dialog Box

Sample time
The time interval between samples. See “ Specify Sample Time” in the online
documentation for more information.

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Direct Feedthrough No
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Zero-Order Hold

1 Blocks — Alphabetical List

1-676

Introduced before R2006a

 Fixed-Point State-Space

1-677

Fixed-Point State-Space
Implement discrete-time state space

Library

Additional Math & Discrete / Additional Discrete

Description

The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n+1) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations have the same
data type.

The matrices A, B, C and D have the following characteristics:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

In addition:

• The state x must be an n-by-1 vector.
• The input u must be an m-by-1 vector.
• The output y must be an r-by-1 vector.

1 Blocks — Alphabetical List

1-678

The block accepts one input and generates one output. The block determines the input
vector width by the number of columns in the B and D matrices. Similarly, the block
determines the output vector width by the number of rows in the C and D matrices.

Data Type Support

The Fixed-Point State-Space block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Fixed-Point State-Space block dialog box appears as follows:

 Fixed-Point State-Space

1-679

State Matrix A
Specify the matrix of states.

Input Matrix B
Specify the column vector of inputs.

Output Matrix C
Specify the column vector of outputs.

Direct Feedthrough Matrix D
Specify the matrix for direct feedthrough.

Initial condition for state

1 Blocks — Alphabetical List

1-680

Specify the initial condition for the state.

The Signal Attributes pane of the Fixed-Point State-Space block dialog box appears as
follows:

Data type for internal calculations
Specify the data type for internal calculations.

Scaling for State Equation AX+BU
Specify the scaling for state equations.

Scaling for Output Equation CX+DU

 Fixed-Point State-Space

1-681

Specify the scaling for output equations.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Discrete State-Space

Introduced before R2006a

1 Blocks — Alphabetical List

1-682

Floating Scope and Scope Viewer
Display signals generated during simulation

Library

Sinks

Description

The Simulink Floating Scope block and Scope Viewer display time domain signals with
respect to simulation time.

Input signal characteristics:

• Signal — Continuous (sample-based) or discrete (sample-based and frame-based).
• Signal data type — Any data type that Simulink supports including real, complex,

fixed-point, and enumerated data types. See “ Data Types Supported by Simulink”.
• Signal dimension — Scalar, one-dimensional (vector), two dimensional (matrix),

or multidimensional. Display multiple channels within a signal depending on its
dimension. See “Signal Dimensions” and “Determine Output Signal Dimensions”.

Floating Scope block characteristics:

• Multiple y-axes (displays) — Display multiple y-axes with multiple input ports. All
of the y-axes have a common time range on the x-axis.

• Multiple signals — Show multiple signals on the same y-axis (display) from one or
more input ports.

• Modify parameters — Modify scope parameter values before and during a
simulation.

• Display data after simulation — If a Floating Scope is closed at the start of a
simulation, scope data is still written to the scope during a simulation. As a result, if

 Floating Scope and Scope Viewer

1-683

you open the Floating Scope after a simulation, the scope displays simulation results
for input signals.

Note: A Floating Scope block and Scope Viewer have the same functionality as a Scope
block, but they are not connected to signal lines. Use the Signal Selector to add and
display signals on a Floating Scope.

Note: A Floating Scope does not have a toolbar Back button. If you step back using the
Back button from your model, stepping back appears to work with Floating Scopes due to
the data buffer, but it may not work in all cases.

Note: For information on controlling a Floating Scope programmatically, see “Control
Scopes Programmatically ” in the Simulink documentation.

1 Blocks — Alphabetical List

1-684

Configuration Properties

Open at simulation start

Specify when a Scope window opens.

Settings

Default: Clear for Scope block. Select for Time Scope block.

 Select
Open Scope window when simulation starts.

 Clear
Do not open a closed Scope at the start of a simulation.

 Floating Scope and Scope Viewer

1-685

Display the full path

Display full block path on Scope title bar.

Settings

Default: Clear

 Select
Display block path and name.

 Clear
Display block name.

Scope Configuration property: No corresponding property.

Number of input ports

Specify number of input ports on a Scope block, specified by a positive integer string.
Maximum number of input ports is 96. This property does not apply to floating scopes
and scope viewers..

Default: 1

Scope Configuration property: NumInputPorts.

Layout button

Specify number of displays. The maximum layout dimension is four rows by four
columns.

• If the number of y-axes are equal to the number of ports, signals from each port
appear on separate displays.

• If the number of y-axes are less than the number of ports, signals from additional
ports appear on the last y-axis.

Settings

Default: 1 display

1 Blocks — Alphabetical List

1-686

Scope Configuration property: LayoutDimensions.

Sample time

Specify time interval between Scope block updates during a simulation, specified as a
positive real string. This property does not apply to floating scopes and scope viewers.

Settings

Default: -1 for inherited

Scope Configuration property: SampleTime.

Input processing

Specify sample-based or frame-based processing of signals.

Settings

Default: Elements as channels (sample based) for Scope block. Columns as
channels (frame based) for Time Scope block.

Elements as channels (sample based)

Process signal values in a channel at each time interval.
Columns as channels (frame based)

Process signal values in a channel as a group of values from multiple time intervals.
Frame-based processing is available only with discrete input signals.

Scope Configuration property: FrameBasedProcessing.

Maximize axes

Maximize size of signal plots. Each of the plots expands to fit the full display. Maximizing
the size of signal plots removes the background area around the plots.

Settings

Default: Off for Scope block. Auto for Time Scope block.

Auto

 Floating Scope and Scope Viewer

1-687

If Title and Y-label properties are not specified, maximize all plots.
On

Maximize all plots. Values in Title and Y-label are hidden
Off

Do not maximize plots.

Scope Configuration property: MaximizeAxes.

Axes scaling

Specify when to scale y-axis to include all signal values.

Settings

Default: Manual

Manual

Manually scale y-axis range with Scale Y-axis Limits toolbar button.
Auto

Scale y-axis range during and after simulation. Selecting this option displays the Do
not allow Y-axis limits to shrink check box.

After N Updates

Scale y-axes after specified number of block updates (time intervals). Selecting this
option displays the Number of updates text box.

Do not allow Y-axis limits to shrink

Specify when y-axis range limits can change.

Settings

Default: Select

 Select
Allow y-axis range limits to increase but not decrease during a simulation.

 Clear

1 Blocks — Alphabetical List

1-688

Allow y-axis range limits to increase and decrease..

Dependency

Click the Configure link to the right of the Axes scaling property and set the Axes
scaling property to Auto to display this property.

Number of updates

Specify the number of updates that occur during a simulation before a Scope scales the y-
axes, specified as a positive integer string.

Settings

Default: 10

Dependency

Display and activate this property by clicking the Configure link to the right of the
Axes scaling property and set the Axes scaling property to After N Updates.

Scope Configuration property: AxesScalingNumUpdates.

Scale axes limits at stop

Specify when to scale axes.

Settings

Default: Select

 Select
Scale axes when simulation stops.

 Clear
Always scale axes.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

 Floating Scope and Scope Viewer

1-689

The y-axes limits are always scaled. The x-axis limits are scaled only if you also select the
Autoscale X-axis limits check box.

Y-axis Data range (%)

Specify percentage of y-axis range for plotting data. For example, if you set this property
to 100, plotted data uses the entire y-axis range.

Settings

Default: 80

Values are 1 through 100.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

Y-axis Align

Specify where to align plotted data along the y-axis data range when Y-axis Data range
is set to less than 100 percent.

Settings

Default: Center

Top

Align signals with maximum values at top of y-axis range.
Center

Align signals with maximum and minimum values centered.
Bottom

Align signals with minimum values at bottom of y-axis range.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

1 Blocks — Alphabetical List

1-690

Autoscale X-axis limits

Scale x-axis range limits when scaling axes.

Settings

Default: Clear

 Select
Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, scales the
data currently within the axes, not the entire signal in the data buffer.

 Clear
Do not scale x-axis range.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

X-axis Data range (%)

Specify percentage of x-axis range for plotting data. For example, if you set this property
to 100, plotted data uses the entire x-axis range.

Settings

Default: 100

Values are 1 through 100.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

X-axis Align

Specify where to align plotted data along the x-axis when X-axis Data range is set to
less than 100 percent.

 Floating Scope and Scope Viewer

1-691

Settings

Default: Center

Top

Align signals with maximum values at top of x-axis range.
Center

Align signals with maximum and minimum values centered.
Bottom

Align signals with minimum values at bottom of x-axis range.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

Time span

Specify length of x-axis range to display.

The block calculates the beginning and end times of the time range using the Time
display offset and Time span properties. For example, if you set the Time display
offset to 10 and the Time span to 20, the scope sets the time range from 10 to 30.

Settings

Default: Auto

Auto

Difference between the simulation start and stop times.
User defined

Value less than the total simulation time.

Scope Configuration property: TimeSpan.

Time span overrun action

Specify how to display data beyond the visible x-axis range.

1 Blocks — Alphabetical List

1-692

You can see the effects of this option only when plotting is slow with large models or
small step sizes.

Settings

Default: Wrap

Wrap

Draw a full screen of data from left to right, clear the screen, and then restart
drawing of data.

Scroll

Move data to the left as new data is drawn on the right. This mode is graphically
intensive and can affect run-time performance.

Scope Configuration property: TimeSpanOverrunAction.

Time units

Display units for the x-axis.

Settings

Default: None for Scope block. Metric for Time Scope block.

Metric

Display time units based on the length of Time span.
Seconds

Display Time (seconds).
None

Do not display time units.

Scope Configuration property: TimeUnits.

Time display offset

Offset the x-axis by a specified time value, specified as a real number or vector of real
numbers.

 Floating Scope and Scope Viewer

1-693

For input signals with multiple channels, you can enter a scaler or vector.

• Scaler — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

Settings

Default: 0

Scope Configuration property: TimeDisplayOffset.

Time-axis labels

Specify how x-axis (time) labels dispaly

Settings

Default: Bottom Displays Only for Scope block. All for Time Scope block.

All

Display x-axis labels on all y-axes.
None

Do not display labels. Selecting None also clears the Show time-axis label check
box.

Bottom Displays Only

Display x-axis label on the bottom y-axis.

Dependency

Set Active display before setting this property. Activate this property by selecting
Show time-axis label and setting Maximize axes to off.

Scope Configuration property: TimeAxisLabels.

Show time-axis label

Display or hide x-axis (time) labels.

1 Blocks — Alphabetical List

1-694

Settings

Default: Clear for Scope block. Select for Time Scope block.

Select
Display x-axis label for the active display

 Clear
Hide x-axis labels.

Dependency

Set Active display before setting this property. If you select this property and set the
Time-axis labels is set to None, this property is deactivated.

Scope Configuration property: ShowTimeAxisLabel.

Active display

Display for setting display-specific properties, specified as a positive integer. The number
of a display corresponds to its column-wise placement index.

Settings

Default: 1

Dependency

Setting this property selects the display for setting the properties Show Grid, Show
legend, Title, Plot signals as magnitude and phase, Y-label, and Y-Limits.

Scope Configuration property: ActiveDisplay.

Title

Specify a title for display, specified as a character string. The default value
%<SignalLabel> uses the input signal name for the title..

Settings

Default: %<SignalLabel>

 Floating Scope and Scope Viewer

1-695

Dependency

Set Active display before setting this property.

Scope Configuration property: Title.

Show legend

Show signal legend. The names listed in the legend are the signal names from the model.
For signals with multiple channels, a channel index is appended after the signal name.
See the Scope block reference for an example.

Settings

Default: Clear

 Select
Display signal legend. Continuous signals have straight lines before their names and
discrete signals have step-shaped lines.

 Clear
Hide signal legend.

Dependency

Set Active Display before setting this property.

Scope Configuration property: ShowLegend.

Example

Connect a Sine Wave block to a Scope. Set the Amplitude parameter for the Sine Wave
to [1 2]. Select the Legends check box for the Scope. Set the Signal name property for
the signal to MySignal.

1 Blocks — Alphabetical List

1-696

After simulating this model, the Scope window displays a sine wave for the two signal
channels in MySignal, MySignal:1, and MySignal:2.

Edit the name of any channel in the legend by double-clicking the current name and
entering a new channel name.

See also “Signal Dimensions”and “Determine Output Signal Dimensions”.

Show grid

Show vertical and horizontal grid lines.

Settings

Default: Select

 Select
Display grid lines.

 Clear
Hide grid lines.

Dependency

Set Active Display before setting this property.

Scope Configuration property: ShowGrid.

 Floating Scope and Scope Viewer

1-697

Plot signals as magnitude and phase

Split display into magnitude and phase plots.

Settings

Default: Clear

 Select
Display magnitude and phase plots. If the signal is real, plots the absolute value
of the signal for the magnitude. The phase is 0 degrees for positive values and 180
degrees for negative values.

 Clear
Display signal plot. If the signal is complex, plots the real and imaginary parts on the
same y-axis.

Dependency

Set Active Display before setting this property.

Scope Configuration property: PlotAsMagnitudePhase.

Y-limits (Minimum)

Specify minimum value of y-axis.

Settings

Default: -10

Dependency

Set Active display before setting this property. Selecting Plot signals as magnitude
and phase applies this property value to the magnitude plot. The y-axis limits of the
phase plot are always [-180 180].

Scope Configuration property: YLimits.

Y-limits (Maximum)

Specify maximum value of y-axis, specified as real number.

1 Blocks — Alphabetical List

1-698

Settings

Default: +10

Dependency

Set Active display before setting this property. Selecting Plot signals as magnitude
and phase applies this property value to the magnitude plot. The y-axis limits of the
phase plot are always [-180 180].

Scope Configuration property: YLimits.

Y-label

Specify y-axis label, specified as a character string.

Settings

Default: No label for Scope block. Amplitude for Time Scope block.

Dependency

Set Active display before setting this property. Selecting Plot signals as magnitude
and phase hides this property and plots are labeled Magnitude and Phase.

Scope Configuration property: YLabel.

Limit data points to last

Specify to limit buffered data values before plotting and saving signals.

Settings

Default: Clear, 5000

 Select
Save specified number of data values for each signal. If the signal is frame-based, the
number of buffered data values is the specified number of data values multiplied by
the frame size.

For simulations with Stop time set to inf, consider selecting Limit data points to
last.

 Floating Scope and Scope Viewer

1-699

In some cases, for example where the sample time is small, selecting this parameter
can have the effect of plotting signals for less than the entire time range of a
simulation. If a scope plots a portion of your signals, consider increasing the number
of data values to save.

 Clear
Save and plot all data values. Clearing Limit data points to last can cause an out-
of-memory error for simulations that generate a large amount of data or for systems
without enough available memory.

Dependency

If this property is selected, also specify the number of data points by entering a positive
integer in the text box. This property limits the data values a scope plots and the data
values saved in the MATLAB variable specified in Variable name. Data values are from
the end of a simulation.

Scope Configuration properties: DataLoggingLimitDataPoints and
DataLoggingMaxPoints.

Decimation

Reduce the amount of scope data to display and save.

Settings

Default: Clear, 2

 Select
Plot and Log (save) scope data every Nth data point, where N is the decimation factor
entered in the text box.

 Clear
Save all scope data values.

Dependency

If this property is selected, also specify the decimation factor by entering a positive
integer in the text box. The scope buffers every Nth data point, where N is the decimation
factor you specify. A value of 1 buffers all data values. This property limits the data

1 Blocks — Alphabetical List

1-700

values a scope plots and the data values saved in the MATLAB variable specified in
Variable name.

Log/Unlog Viewed Signals to Workspace

For signals selected with the Signal Selector, clicking this button selects the Log signal
data check boxes in the Signals Properties dialog boxes.

Clicking the button a second time clears the Log signal data check boxes.

Style Properties

Open the Style dialog box:

• From the menu, select View > Style.
• From the Configuration Properties button arrow. select the Style button .

 Floating Scope and Scope Viewer

1-701

Figure color

Select background color for display.

Plot type

Specify how to plot a signal.

Default: Auto for Scope block. Line for Time Scope block.

• Line — Line graph.
• Stairs — Stair-step graph.
• Auto — Line graph if it is a continuous signal or a stair-step graph if it is a discrete

signal.

Active display

Select active display for setting style properties.

Default: 1

Axes colors

Select the background color for axes (displays) with the first color pallet. Select the grid
and label color with the second color pallet.

Properties for line

Select active line for setting line style properties.

Visible

Plot signal on active display.

Default: Select

 Select
Plot signal.

 Clear
Hide signal.

1 Blocks — Alphabetical List

1-702

Line

Select line style, width, and color.

Marker

Select marker style.

Default: None

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation No

See Also
Scope

How To
• “Scope Blocks and Scope Viewer Overview”
• “Simulate a Model Interactively”
• “Step Through a Simulation”
• “Scope Tasks”
• “Floating Scope and Scope Viewer Tasks”
• “Scope Trigger Panel”
• “Scope Measurement Panels”
• “Control Scopes Programmatically ”

Introduced in R2015b

 For Each

1-703

For Each
Enable blocks inside For Each Subsystem to process elements or subarrays of a mask
parameter or input signal independently

Library

Ports & Subsystems

Description

The For Each block serves as a control block for the For Each Subsystem block.
Specifically, the For Each block enables the blocks inside the For Each Subsystem to
process elements of the mask parameters or input signals independently. Each block
inside this subsystem that has states maintains a separate set of states for each element
or subarray it processes. As the set of blocks in the subsystem process the elements (or
subarrays), the subsystem concatenates the results to form output signals.

Iterations in the For Each Subsystem

You can use a For Each subsystems to iteratively compute output after changing inputs
or mask parameters. This is done by configuring the partitioning them in the For Each
block dialog box.

Partition Input Signals to the Subsystem

In a For Each subsystem, you can specify which input signals to partition for each
iteration, using the Input Partition tab in the dialog box of the For Each block.
When specifying a signal to be partitioned, you also have to specify the Partition
Dimension and Partition Width parameters. For more information, see “Select
Partition Parameters” on page 1-704.

1 Blocks — Alphabetical List

1-704

Partition Parameters in the For Each block

You can partition the mask parameters of For Each subsystems. Partitioning is useful for
systems that have identical structures in each iteration but different parameter values.
In this case, changing the model to partition extra input signals for each parameter is
cumbersome. Instead, add a mask parameter to a For Each subsystems, see “Mask a
Block”. To select the mask parameter for partitioning, use the Parameter Partition tab on
the For Each block dialog box. For more information, see “Select Partition Parameters”
on page 1-704

Concatenate Output

You define the dimension along which to concatenate the results by specifying the
Concatenation Dimension in the Output Concatenation tab.

The results generated by the block for each subarray stack along the concatenation
dimension, d1 (y-axis). Whereas, if you specify d2 by setting the concatenation dimension
to 2, the results concatenate along the d2 direction (x-axis). Thus if the process generates
row vectors, then the concatenated result is a row vector.

Select Partition Parameters

When selecting an input signal or subsystem mask parameter for partitioning, you
need specify how to decompose it into elements or subarrays for each iteration. Do this
by setting integer values for the Partition Dimension and the Partition Width
parameters.

As an illustration, consider a mask parameter A of the form:

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

d
1

d
2

 For Each

1-705

The labels d1 and d2, respectively define dimension 1 and dimension 2. If you retain
the default setting of 1 for both the partition dimension and the partition width, then
Simulink slices perpendicular to partition dimension d1 at a width equal to the partition
width, one element.

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

Partition

dimension

set to 1

Mask parameter A decomposes into the following three row vectors:

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

If instead you specify d2 as the partition dimension by entering the value 2, Simulink
slices perpendicular to d2 to form three column vectors:

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

Note: Only signals are considered one-dimensional in Simulink. Mask parameters are
row or column vectors according to their orientation. To partition a row vector, specify
the partition dimension as 2 (along the columns). To partition a column vector, specify
the partition dimension as 1 (along the rows).

1 Blocks — Alphabetical List

1-706

Parameters and Dialog Box

• “Input Partition Tab” on page 1-707
• “Output Concatenation Tab” on page 1-707

 For Each

1-707

• “Parameter Partition Tab” on page 1-708

Input Partition Tab

Use this tab to select each input signal you need to partition and to specify the
corresponding Partition Dimension and Partition Width parameters. See the Inport
block reference page for more information.

Port
The Port column displays the input index and the name of the input port connected
to the For Each Subsystem block.

Partition
Select the check box beside each input signal that you want to partition into
subarrays or elements. Selecting this check box enables Partition Dimension and
Partition Width for that input signal.

Default: Off
Partition Dimension

Specify the dimension through which to slice the input signal array. The resulting
slices are perpendicular to the dimension that you specify. The slices also partition
the array into subarrays or elements, as appropriate.

Default: 1

Minimum: 1
Partition Width

Specify the width of each partition slice of the input signal. The default width of 1
represents a width of one element.

Default: 1

Minimum: 1

Output Concatenation Tab

For each output port, specify the dimension along which to stack (concatenate) the For
Each Subsystem results. See the Outport block reference page for more information.

Port

1 Blocks — Alphabetical List

1-708

The Port column displays the output index and the name of the output port
connected to the For Each Subsystem block. You can have any number of ports.

Concatenation Dimension
Specify the dimension along which to stack the results of the For Each Subsystem.

Default: 1

Minimum: 1

If you specify the default, the results stack in the d1 direction. Thus if the block
generates column vectors, the concatenation process results in a single column
vector. If you specify 2, the results stack in the d2 direction. Thus if the block
generates row vectors, the concatenation process results in a single row vector.

Parameter Partition Tab

Use this tab to select each mask parameter to partition and to specify the corresponding
Partition Dimension and Partition Width parameters. Parameters appear in the
list only if you have added an editable parameter to the mask of the parent For Each
subsystem.

Parameter
The Parameter column displays the name of the mask parameter of the For Each
Subsystem block.

Partition
Select the check box next to each mask parameter that you want to partition into
subarrays or elements. Selecting this check box makes the Partition Dimension
and Partition Width parameters available for that mask parameter.

Default: Off
Partition Dimension

Specify the dimension through which to slice the input signal array. The resulting
slices are perpendicular to the dimension that you specify. The slices also partition
the array into subarrays or elements, as appropriate.

Default: 1

Minimum: 1

 For Each

1-709

Partition Width
Specify the width of each partition slice of the input signal. The default width of 1
represents a width of one element.

Default: 1

Minimum: 1

1 Blocks — Alphabetical List

1-710

Examples

The following model demonstrates the partitioning of an input signal by a For Each
block. Each row of this 2-by-3 input array contains three integers that represent the (x,
y, z)-coordinates of a point. The goal is to translate each of these points based on a new
origin at (–20, –10, –5) and to display the results.

By placing the process of summing an input signal and the new origin inside of a For
Each Subsystem, you can operate on each set of coordinates by partitioning the input
signal into two row vectors. To accomplish such partitioning, use the default settings of
1 for both the partition dimension and the partition width. If you also use the default
concatenation dimension of 1, each new set of coordinates stacks in the d1 direction,
making your display a 2-by-3 array.

Alternatively, if you specify a concatenation dimension of 2, then you get a single row
vector because each set of results stacks in the d2 direction.

This example shows how to partition an input signal. To learn how the For Each
block and subsystem handle a model with states, see the For Each Subsystem
documentation.

See Also

For Each Subsystem

“Repeat an Algorithm Using a For Each Subsystem”

 For Each

1-711

Introduced in R2010a

1 Blocks — Alphabetical List

1-712

For Each Subsystem
Repeatedly perform algorithm on each element or subarray of input signal and
concatenate results

Library

Ports & Subsystems

Description

The For Each Subsystem block is useful in modeling scenarios where you need to repeat
the same algorithm for individual elements (or subarrays) of an input signal. The set
of blocks within the subsystem represents the algorithm applied to a single element (or
subarray) of the original signal. The For Each block inside the subsystem allows you to
configure the decomposition of the subsystem inputs into elements (or subarrays), and to
configure the concatenation of the individual results into output signals.

Inside this subsystem, each block that has states maintains separate sets of states
for each element or subarray that it processes. Consequently, the operation of this
subsystem is similar in behavior to copying the contents of the subsystem for each
element in the original input signal and then processing each element using its
respective copy of the subsystem.

An additional benefit of the For Each Subsystem is that, for certain models, it improves
the code reuse in Simulink Coder generated code. Consider a model containing two
reusable Atomic Subsystems with the same scalar algorithm applied to each element of
the signal. If the input signal dimensions of these subsystems are different, Simulink
Coder generated code includes two distinct functions. You can replace these two
subsystems with two identical For Each Subsystems that are configured to process each
element of their respective inputs using the same algorithm. For this case, Simulink
Coder generated code consists of a single function parameterized by the number of input

 For Each Subsystem

1-713

signal elements. This function is invoked twice — once for each unique instance of the
For Each Subsystem in the model. For each of these cases, the input signal elements
have different values.

Limitations

The For Each Subsystem block has these limitations, which you can work around.

Limitation Workaround

You cannot log any signals in the
subsystem.

Pull the signal outside the subsystem using
an output port for logging.

You cannot log the states of the blocks
in the model in array format. Also, you
cannot log the states of the blocks in the
subsystem, even if you are using structure
format.

Save and restore the simulation state
(SimState).

Reusable code is generated for two For
Each Subsystems with identical contents if
their input and output signals are vectors
(1-D or 2-D row or column vector). For
n-D input and output signals, reusable
code is generated only when the dimension
along which the signal is partitioned is the
highest dimension.

Permute the signal dimensions to
transform the partition dimension and the
concatenation dimension to the highest
nonsingleton dimension for n-D signals.

The For Each Subsystem block does not support the following features:

• You cannot include the following blocks or S-functions inside a For Each Subsystem:

• Data Store Memory, Data Store Read, or Data Store Write blocks inside the
subsystem

• The From Workspace block if the input is a Structure with Time that has an
empty time field.

• The To Workspace and To File data saving blocks
• Model Reference block with simulation mode set to 'Normal'
• Shadow Inports
• ERT S-functions

1 Blocks — Alphabetical List

1-714

For a complete list of the blocks that support the For Each Subsystem, type
showblockdatatypetable at the MATLAB command line.

• You cannot use the following kinds of signals:

• Test-pointed signals or signals with an external storage class inside the system
• Frame signals on subsystem input and output boundaries
• Variable-size signals
• Function-call signals crossing the boundaries of the subsystem

• Creation of a linearization point inside the subsystem
• Setting the initial state of blocks inside the model if the format of the data is in either

of the following formats:

• Array
• Structure that includes data for a block inside of the For Each subsystem

• Propagating the Jacobian flag for the blocks inside the subsystem. You can check
this condition in MATLAB using J.Mi.BlockAnalyticFlags.jacobian, where J is the
Jacobian object. To verify the correctness of the Jacobian of the For Each Subsystem,
perform the following steps

• Look at the tag of the For Each Subsystem Jacobian. If it is “not_supported”, then
the Jacobian is incorrect.

• Move each block out of the For Each Subsystem and calculate its Jacobian. If any
block is “not_supported” or has a warning tag, the For Each Subsystem Jacobian is
incorrect.

• You cannot perform the following kinds of code generation:

• Generation of a Simulink Coder S-function target
• Simulink Coder code generation under both of the following conditions:

• A Stateflow or MATLAB Function block resides in the subsystem.
• This block tries to access global data outside the subsystem, such as Data Store

Memory blocks or Simulink.Signal objects of ExportedGlobal storage
class.

• HDL code generation
• PLC code generation

 For Each Subsystem

1-715

S-Function Support

The For Each Subsystem block supports both C-MEX S-functions and Level-2 MATLAB
S-functions, provided that the S-function supports multiple execution instances using one
of the following techniques:

• A C-MEX S-function must declare ssSupportsMultipleExecInstances(S, true) in the
mdlSetWorkWidths method.

• A Level-2 MATLAB S-function must declare 'block.SupportsMultipleExecInstances =
true' in the Setup method.

If you use the above specifications:

• Do not cache run-time data, such as DWork and Block I/O, using global or persistent
variables or within the userdata of the S-function.

• Every S-function execution method from mdlStart up to mdlTerminate is called once
for each element processed by the S-function, when it is in a For Each Subsystem.
Consequently, you need to be careful not to free the same memory on repeated calls to
mdlTerminate. For example, consider a C-MEX S-function that allocates memory for
a run-time parameter within mdlSetWorkWidths. The memory only needs to be freed
once in mdlTerminate. As a solution, set the pointer to be empty after the first call to
mdlTerminate.

Data Type Support

The For Each Subsystem block accepts real or complex signals of the following data
types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-716

Examples of Working with For Each Subsystems

Vectorize Algorithms Using For Each Subsystems

This example shows how to simplify modeling of vectorized algorithms. Using For Each
subsystem blocks simplifies a model where three input signals are filtered by three
identical Transfer Fcn blocks. This example also shows how to add more control to the
filters by changing their coefficients for each iteration of the subsystem.

This model uses identical Transfer Fcn blocks to independently process each element of
the input sine wave signal. A Vector Concatenate block concatenates the resulting output
signals. This repetitive process is graphically complex and difficult to maintain. Also,
adding another element to the signal requires significant reworking of the model.

You can simplify this model by replacing the repetitive operations with a single For Each
Subsystem block.

 For Each Subsystem

1-717

The For Each subsystem contains a For Each block and a model representing the
algorithm of the three blocks it replaces by way of the Transfer Fcn block. The For Each
block specifies how to partition the input signal vector into individual elements and how
to concatenate the processed signals to form the output signal vector. Every block that
has a state maintains a separate set of states for each input element processed during a
given execution step.

For this example, the input signal is selected for partitioning. The Partition Dimension
and the Partition Width parameters on the For Each block are both set to 1 for the
input.

1 Blocks — Alphabetical List

1-718

You can scale up this approach to add more signals without having to change the model
significantly. This approach is considered easily scalable and graphically simpler.

Model Parameter Variation Without Changing Model Structure

This example shows how to model parameter variation in an algorithm. It uses the
For Each Subsystem partitioning model from “Vectorize Algorithms Using For Each
Subsystems” on page 1-716 and creates different filters for each input signal while
retaining model simplicity. You do this by feeding an array of filter coefficients to the For
Each subsystem as a mask parameter marked for partitioning. In each iteration of the
For Each subsystem, a partition of the filter coefficients is fed to the Transfer Fcn block.

 For Each Subsystem

1-719

1 Open the model ex_ForEachSubsystem_Partitioning. Create a mask for the For
Each Subsystem block and add an editable mask parameter. Set the name to
FilterCoeffs and the prompt to Filter Coefficient Matrix. For information
on how to add a mask parameter, see “Define mask parameters”.

2 Open the For Each subsystem. Inside the subsystem, open the For Each block dialog
box.

3 In the Parameter Partition tab, select the check box next to the FilterCoeffs
parameter to enable partitioning of this parameter. Keep the Partition Width and
Partition Dimension parameters at their default value of 1.

1 Blocks — Alphabetical List

1-720

4 Double-click the For Each Subsystem block and enter your filter coefficient matrix,
having one row of filter coefficients for each input signal. For example, enter
[0.0284 0.2370 0.4692 0.2370 0.0284; -0.0651 0 0.8698 0 -0.0651;

0.0284 -0.2370 0.4692 -0.2370 0.0284] to implement different fourth-order
filters for each input signal.

5 In the For Each subsystem, double-click the Transfer Fcn block and enter
FilterCoeffs for the Denominator Coefficients parameter. This setting causes
the block to get its coefficients from the mask parameter.

The For Each subsystem slices the input parameter into horizontal partitions of width 1,
which is equivalent to one row of coefficients. The parameter of coefficients transforms
from a single array:

 For Each Subsystem

1-721

Partition

dimension

set to 1

 0.0284

0.2370

0.4692 0.2370 0.0284

-0.0651

0.0000

0.8698 0.0000 -0.0651

0.0284

-0.2370

0.4692 -0.2370 0.0284

into three rows of parameters:

 0.0284

0.2370

0.4692 0.2370 0.0284

-0.0651

0.0000

0.8698 0.0000 -0.0651

0.0284

-0.2370

0.4692 -0.2370 0.0284

Improved Code Reuse Using For Each Subsystems

This example shows how you can improve code reuse when you have two or more
identical For Each subsystems. Consider the following model, rtwdemo_foreachreuse.

The intent is for the three subsystems — Vector SS1, Vector SS2, and Vector SS3 — to
apply the same processing to each scalar element of the vector signal at their respective
inputs. Because these three subsystems perform the same processing, it is desirable for
them to produce a single shared Output (and Update) function for all three subsystems

1 Blocks — Alphabetical List

1-722

in the code generated for this model. For example, the Vector SS3 subsystem contains the
following blocks:

To generate a single shared function for the three subsystems, the configuration of
the partitioning they perform on their input signals must be the same. For Vector SS1
and Vector SS3, this configuration is straightforward because you can set the partition
dimension and width to 1. However, in order for Vector SS2 to also partition its input
signal along dimension 1, you must insert a Math Function block to transpose the 1-
by-8 row vector into an 8-by-1 column vector. You can then convert the output of the
subsystem back to a 1-by-8 row vector using a second Math Function block set to the
transpose operator.

If you use the Build button on the Code Generation pane of the Configuration
Parameters dialog box to generate code, the resulting code uses a single Output function.
This function is shared by all three For Each Subsystem instances.

/*

 * Output and update for iterator system:

 * '<Root>/Vector SS1'

 * '<Root>/Vector SS2'

 * '<Root>/Vector SS3'

 */

void VectorProcessing(int32_T NumIters, const real_T rtu_In1[],

 real_T rty_Out1[],

 rtDW_VectorProcessing *localDW)

 For Each Subsystem

1-723

The function has an input parameter NumIters that indicates the number of
independent scalars that each For Each Subsystem is to processes. This function is called
three times with the parameter NumIters set to 10, 8, and 7 respectively.

The remaining two subsystems in this model show how reusable code can also be
generated for matrix signals that are processed using the For Each Subsystem block.
Again, using the Build button to generate the code provides code reuse of a single
function.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also

For Each

“Repeat an Algorithm Using a For Each Subsystem”

Introduced in R2010a

1 Blocks — Alphabetical List

1-724

For Iterator
Repeatedly execute contents of subsystem at current time step until iteration variable
exceeds specified iteration limit

Library
Ports & Subsystems

Description
The For Iterator block, when placed in a subsystem, repeatedly executes the contents
of the subsystem at the current time step until an iteration variable exceeds a specified
iteration limit. You can use this block to implement the block diagram equivalent of a
for loop in the C programming language.

The output of a For Iterator subsystem can not be a function-call signal. Simulink
software will display an error message if the simulation is run or the diagram updated.

The block's parameter dialog allows you to specify the maximum value of the iteration
variable or an external source for the maximum value and an optional external source
for the next value of the iteration variable. If you do not specify an external source for
the next value of the iteration variable, the next value is determined by incrementing the
current value:

in+1 = in +1

Suppose that you have the following model:

 For Iterator

1-725

Over 20 iterations, the For Iterator block increments a value by 10 at each time step:

The following figure shows the result.

1 Blocks — Alphabetical List

1-726

The For Iterator subsystem in this example is equivalent to the following C code.

sum = 0;

iterations = 20;

sum_increment = 10;

for (i = 0; i < iterations; i++) {

 sum = sum + sum_increment;

}

Note Placing a For Iterator block in a subsystem makes it an atomic subsystem if it is
not already an atomic subsystem.

Data Type Support

The following rules apply to the data type of the number of iterations (N) input port:

• The input port accepts data of mixed numeric types.

 For Iterator

1-727

• If the input port value is noninteger, it is first truncated to an integer.
• Internally, the input value is cast to an integer of the type specified for the iteration

variable output port.
• If no output port is specified, the input port value is cast to type int32.
• If the input port value exceeds the maximum value of the output port's type, it is

truncated to that maximum value.

Data output for the iterator value can be selected as double, int32, int16, or int8 in
the block parameters dialog box.

The following rules apply to the iteration variable input port:

• It can appear only if the iteration variable output port is enabled.
• The data type of the iteration variable input port is the same as the data type of the

iteration variable output port.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-728

Parameters and Dialog Box

States when starting

 For Iterator

1-729

Set this field to reset if you want the states of the For subsystem to be reinitialized
before the first iteration at each time step. Otherwise, set this field to held (the
default) to make sure that these subsystem states retain their values from the last
iteration at the previous time step.

Iteration limit source
If you set this field to internal, the value of the Iteration limit field determines
the number of iterations. If you set this field to external, the signal at the For
Iterator block's N port determines the number of iterations. The iteration limit source
must reside outside the For Iterator subsystem.

Iteration limit
Set the number of iterations by specifying a number or a named constant. This field
appears only if you selected internal for the Iteration limit source field. This
parameter supports storage classes. You can define the named constant in the base
workspace of the Model Explorer as a Simulink.Parameter object of the built-in
storage class Define (custom) type. For more information, see “Apply a Custom
Storage Class from the Simulink Package Using Data Objects” in the Embedded
Coder documentation.

Set next i (iteration variable) externally
This option can be selected only if you select the Show iteration variable option.
If you select this option, the For Iterator block displays an additional input for
connecting an external iteration variable source. The value of the input at the
current iteration is used as the value of the iteration variable at the next iteration.

Show iteration variable
If you select this check box, the For Iterator block outputs its iteration value.

Index mode
If you set this field to Zero-based, the iteration number starts at zero. If you set
this field to One-based, the iteration number starts at one.

Iteration variable data type
Set the type for the iteration value output from the iteration number port to double,
int32, int16, or int8.

Characteristics

Direct Feedthrough No

1 Blocks — Alphabetical List

1-730

Sample Time Inherited from driving blocks
Scalar Expansion No
Dimensionalized No
Zero Crossing No

Introduced before R2006a

 For Iterator Subsystem

1-731

For Iterator Subsystem
Represent subsystem that executes repeatedly during simulation time step

Library

Ports & Subsystems

Description

The For Iterator Subsystem block is a Subsystem block that is preconfigured to serve as a
starting point for creating a subsystem that executes repeatedly during a simulation time
step.

For more information, see the For Iterator block in the online Simulink block reference
and “Use Control Flow Logic” in the Simulink documentation.

When using simplified initialization mode, you cannot place any block needing elapsed
time within an Iterator Subsystem. In simplified initialization mode, Iterator subsystems
do not maintain elapsed time, so Simulink will report an error if any such block (such as
the Discrete-Time Integrator block) is placed within the subsystem. For more information
on simplified initialization modes, see “Underspecified initialization detection”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-732

Introduced before R2006a

 From

1-733

From
Accept input from Goto block

Library
Signal Routing

Description
The From block accepts a signal from a corresponding Goto block, then passes it as
output. The data type of the output is the same as that of the input from the Goto block.
From and Goto blocks allow you to pass a signal from one block to another without
actually connecting them. To associate a Goto block with a From block, enter the Goto
block's tag in the Goto Tag parameter.

A From block can receive its signal from only one Goto block, although a Goto block can
pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent to connecting
the blocks to which those blocks are connected. In the model at the left, Block1 passes
a signal to Block2. That model is equivalent to the model at the right, which connects
Block1 to the Goto block, passes that signal to the From block, then on to Block2.

The visibility of a Goto block tag determines the From blocks that can receive its signal.
For more information, see Goto and Goto Tag Visibility. The block indicates the visibility
of the Goto block tag:

• A local tag name is enclosed in brackets ([]).
• A scoped tag name is enclosed in braces ({}).
• A global tag name appears without additional characters.

1 Blocks — Alphabetical List

1-734

The From block supports signal label propagation.

Data Type Support
The From block outputs real or complex signals of any data type that Simulink supports,
including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Goto Tag
The tag of the Goto block that forwards its signal to this From block.

 From

1-735

To change the tag, select a new tag from this control's drop-down list. The drop-down
list displays the Goto tags that the From block can currently see. An item labeled
<More Tags...> appears at the end of the list the first time you display the list
in a Simulink session. Selecting this item causes the block to update the tags list
to include the tags of Goto blocks residing in library subsystems referenced by the
model containing this From block. Simulink software displays a progress bar while
building the list of library tags. Simulink software saves the updated tags list for
the duration of the Simulink session or until the next time you select the adjacent
Update Tags button. You need to update the tags list again in the current session
only if the libraries referenced by the model have changed since the last time you
updated the list.

If you use multiple From and Goto Tag Visibility blocks to refer to the same Goto
tag, you can simultaneously rename the tag in all of the blocks. Use the Rename
All button in the Goto block dialog box. To find the Goto block, use the Goto Source
hyperlink.

Update Tags
Updates the list of tags visible to this From block, including tags residing in libraries
referenced by the model containing this From block.

Goto Source
Path of the Goto block connected to this From block. Clicking the path displays and
highlights the Goto block.

Icon Display
Specifies the text to display on the From block's icon. The options are the block's tag,
the name of the signal that the block represents, or both the tag and the signal name.

Examples
The following models show how to use the From block:

• sldemo_auto_climatecontrol

• sldemo_hardstop

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus

1 Blocks — Alphabetical List

1-736

Sample Time Inherited from the block driving the Goto block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Goto

Introduced before R2006a

 From File

1-737

From File

Read data from MAT-file

Library

Sources

Description

The From File block reads data from a MAT-file and outputs the data as a signal. The
data is a sequence of samples. Each sample consists of a time stamp and an associated
data value.

The From File block icon shows the name of the MAT-file that supplies the data.

You can have multiple From File blocks that read from the same MAT-file.

Storage Formats

When the From File block reads data from a MAT-file, that data must be stored in one of
two formats:

• MATLAB timeseries object
• Array

Use array format only for vector, double, noncomplex signals. To load a bus signal, use a
MATLAB structure that matches the bus hierarchy, where each leaf of the structure is a
MATLAB timeseries object.

The MATLAB timeseries format supports the following simulation and code
generation modes:

1 Blocks — Alphabetical List

1-738

• Normal
• Accelerator
• Rapid Accelerator
• Rapid simulation target (RSim)
• Model Reference Accelerator

MATLAB timeseries format data can have:

• Any dimensionality and complexity
• Any built-in data type, including Boolean
• A fixed-point data type with a word length of up to 32 bits
• An enumerated data type

The array format for stored data is a matrix containing two or more rows. The matrix in
the MAT-file must have the following form:

t t t

u u u

un un un

final

final

final

1 2

1 2

1 2

1 1 1

…

…

…

…

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The first element of each column contains a time stamp. The remainder of the column
contains data for the corresponding output values. Each element must be a double and
cannot include a NaN, Inf, or -Inf.

For data stored using the array format, the width of the From File output depends on
the number of rows in the matrix. Given a matrix containing m rows, the block outputs a
vector of length m–1.

MAT-File Variable that From File Uses

If a MAT-file contains only one variable, then the From File block uses that variable.

If the MAT-file contains more than one variable:

 From File

1-739

• For Version 7.3 MAT-files, the From File block uses the variable that is first
alphabetically.

• For Version 7.0 or earlier MAT-files, the From File also uses the first variable.
However, for Version 7.0 and earlier, the ordering algorithm for variables is
complicated. Use a MAT-file that contains just the variable with the data that you
want the From File block to read into the model.

For more information about MAT-files, see “MAT-File Versions”.

Simulation

For a Version 7.3 MAT-file, the From File block incrementally reads data from the MAT-
file during simulation.

Tip For faster data loading, consider upgrading Version 7.0 or earlier MAT-files to
Version 7.3. For details, see “Convert Version 7.0 and Earlier Version MAT-Files” on
page 1-741.

The Sample time parameter specifies the sample time that the From File block uses
to read data from a MAT-file. For details, see “Parameters and Dialog Box”. The time
stamps in the file must be monotonically nondecreasing.

For each simulation time hit for which the MAT-file contains no matching time
stamp, Simulink software interpolates or extrapolates to obtain the needed data using
the method that you select. For details, see “Simulation Time Hits That Have No
Corresponding MAT-File Time Stamps.”

During simulation, the From File block cannot read data from a MAT-file that is being
written to by a To File block.

Simulation Time Hits That Have No Corresponding MAT-File Time Stamps

If the simulation time hit does not have a corresponding MAT-file time stamp, then the
From File block output depends on :

• Whether the simulation time hit occurs before the first time stamp, within the range
of time stamps, or after the last time stamp.

• The interpolation or extrapolation methods that you select

1 Blocks — Alphabetical List

1-740

• The data type of the MAT-file data

For details about interpolation and extrapolation options, see the descriptions of the
following parameters in “Parameters and Dialog Box”:

• Data extrapolation before first data point
• Data interpolation within time range
• Data extrapolation after last data point

Sometimes the MAT-file includes duplicate time stamps (two or more data values that
have the same time stamp). In such cases, the From File block action depends when the
simulation time hit occurs, relative to the duplicate time stamps in the MAT-file.

For example, suppose the MAT-file contains the following data, with three data values
having a time stamp value of 2:

time stamps: 0 1 2 2 2 3 4

data values: 2 3 6 4 9 1 5

The following table describes the From File block output.

Simulation Time, Relative to Duplicate Time
Stamp Values in MAT-File

From File Block Action

Before the duplicate time stamps Performs the same actions as when the
time stamps are distinct, using the first
of the duplicate time stamp values as the
basis for interpolation. (In this example,
that time stamp value is 6.)

At or after the duplicate time stamps Performs the same actions as when the
times stamps are distinct, using the last
of the duplicate time stamp values as the
basis for interpolation. (In this example,
that time stamp value is 9.)

Using Data Saved by a To File Block

The From File block reads data written by a To File block without any modifications to
the data or other special provisions.

 From File

1-741

Using Bus Data

The From File block supports loading nonvirtual bus signals.

The data must be in a MATLAB structure that matches the bus hierarchy. Each leaf of
the structure must be a MATLAB timeseries object.

The data can underspecify the bus signal, but cannot overspecify the bus signal. The
structure cannot have any elements that do not have corresponding signals in the bus.

The structure does not require data for every element in the bus hierarchy, but the
structure must have data for at least one of the signals in the bus. For signals that do not
specify data, the From File block outputs the ground values.

Code Generation Requirements

For a From File block, simulating in Accelerator, Rapid Accelerator, or model reference
Accelerator mode or building an RSim target behaves the same way, and has the same
requirements, as simulating in Normal mode.

For a From File block, generating code that involves building ERT or GRT targets, or
using SIL or PIL simulation modes, requires that:

• The MAT-file contains a non-empty finite real matrix with at least two rows.

• The matrix must have a data type of double.
• The matrix does not have any NaN, Inf, or -Inf elements.

• The From File block parameters dialog box has the following settings:

• Set the Data extrapolation before first data point and Data extrapolation
after last data point parameters to Linear extrapolation.

• Set tthe Data interpolation within time range parameter to Linear
interpolation

• Clear the Enable zero-crossing detection parameter.

Convert Version 7.0 and Earlier Version MAT-Files

For Version 7.0 or an earlier version of a MAT-file, the From File block reads only array-
format data. The complete, uncompressed data from a MAT-file loads into memory at the
start of the simulation.

1 Blocks — Alphabetical List

1-742

If you have a Version 7.0 or earlier version MAT-file that you want to use with the From
File block, consider converting the file to a Version 7.3 MAT-file. Use a Version 7.3 MAT-
file if you want the From File block to incrementally read the data during simulation or
you want to use MATLAB timeseries data. For example, to convert a Version 7.0 file
named my_data_file.mat that contains the variable var, at the MATLAB command
line, enter:

load('my_data_file.mat')

save('my_data_file.mat', 'var', '-v7.3')

Data Type Support

For timeseries data, the From File block can read real or complex signal data of any data
type that Simulink supports, except that fixed-point data cannot have a word length
that exceeds 32 bits. The From File block supports reading nonvirtual bus signals in
timeseries format.

For array data, the From File block can read only double signal data.

 From File

1-743

Parameters and Dialog Box

File name

The path or file name of the MAT-file that contains the data used as input. You can
specify a path or file name in one of these ways:

• Browse to a folder that contains a valid MAT-file.

1 Blocks — Alphabetical List

1-744

On UNIX® systems, the path name can start with a tilde (~) character to mean your
home folder.

• Enter the name in the text box.

The default file name is untitled.mat. If you specify a file name without path
information, Simulink reads the file in the current folder or on the MATLAB path. (To
determine the current folder, enter pwd at the MATLAB command prompt.)

To preview the data in the Signal Preview window, click the view button .

Use the Signal Preview window to plot and inspect data.

1 To plot the signal, click the check box next to the signal. If the format is a bus, click
the expander to see the elements of the bus and select them.

 From File

1-745

2 Explore the plots using the Measure and Zoom & Pan sections of the toolstrip.

• In the Measure section, use the Data Cursors button to display one or two
cursors for the plot. These cursors display the T and Y values of a data point in
the plot. Click a point on the line to view a data point.

• In the Zoom & Pan section, select how you want to zoom and pan the signal
plots. Zooming is only for the selected axis.

Zoom Action Button

Zoom in along the T and Y axes.

Zoom in along the time axis. Click the
button. Then, on the graph, drag the
mouse to select an area to enlarge.
Zoom in along the data value axis.
Click the button. Then, on the graph,
drag the mouse to select an area to
enlarge.
Zoom out from the graph.

Fit the plot to the graph. Click the
button. Then, click the graph to enlarge
the plot to fill the graph.
Pan the graph up, down, left, or right.
Click the button. Then, on the graph,
drag the mouse to the area of the graph
that you want to view.

Output data type

The data type for the data that the From File block outputs. For nonbus types, you can
use Inherit: auto to skip any data type verification. If you specify an output data
type, then the From File block verifies that the data in the file matches the data type
that you specified. For more information, see “Control Signal Data Types”.

If you set Output data type to be a bus object, the bus object must be available when
you compile the model. For each signal in bus data, the From File block verifies that the
data type, dimension, and complexity of the data matches the data type, dimension, and

1 Blocks — Alphabetical List

1-746

complexity that the bus object defines for the signal. For more information, see “Using
Bus Data” on page 1-741.

• Inherit: auto — Default
• double

• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

• fixdt(1,16,0) — Data type is fixed-point (1,16,0).
• fixdt(1,16,2^0,0) — Data type is fixed-point (1,16,2^0,0).
• Enum: <class_name> — Data type is enumerated.
• Bus: <bus_object> — Data type is a bus object. For details, see the “Using Bus

Data” section.
• <data type expression> — The name of a data type object, for example

Simulink.NumericType. Do not specify a bus object as the expression.

>> (Show data type assistant)

Displays the Data Type Assistant, to help you to set the Output data type parameter.

Mode

The category of data to specify. For more information, see “Control Signal Data Types”.

• Inherit — Inheritance rule for data types. Selecting Inherit enables a second
menu/text box to the right. (Default)

• Built in — Built-in data types. Selecting Built in enables a second menu/text box
to the right. Select one of the following choices:

• double — Default
• single

 From File

1-747

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

• Fixed point — Fixed-point data types
• Enumerated — Enumerated data types. Selecting Enumerated enables a second

menu/text box to the right, where you can enter the class name.
• Bus — Bus object. Selecting Bus enables a Bus object parameter to the right,

where you enter the name of a bus object that you want to use to define the
structure of the bus. If you need to create or change a bus object, click Edit to the
right of the Bus object field to open the Simulink Bus Editor. For details, see
“Manage Bus Objects with the Bus Editor”.

• Expression — Expression that evaluates to a data type. Selecting Expression
enables a second menu/text box to the right, where you enter the expression. Do
not specify a bus object as the expression.

Sample time

The sample period and offset.

The From File block reads data from a MAT-file using a sample time that either:

• You specify for the From File block
• The From File block inherits from the blocks into which the From File block feeds

data

The default is 0, which specifies a continuous sample time. The MAT-file is read at the
base (fastest) rate of the model. For details, see “ Specify Sample Time”.

Data extrapolation before first data point

Extrapolation method that Simulink uses for a simulation time hit that is before the first
time stamp in the MAT-file. Choose one of the following extrapolation methods.

1 Blocks — Alphabetical List

1-748

Method Description

Linear extrapolation (Default)

If the MAT-file contains only one sample, then the From File
block outputs the corresponding data value.

If the MAT-file contains more than one sample, then the
From File block linearly extrapolates using the first two
samples:

• For double data, linearly extrapolates the value using
the first two samples

• For Boolean data, outputs the first data value
• For a built-in data type other than double or

Boolean, upcasts the data to double, performs linear
extrapolation (as described above for double data),
and then downcasts the extrapolated data value to the
original data type

You cannot use the Linear extrapolation option with
enumerated (enum) data. All signals in a bus use the same
extrapolation setting, so if any signal in a bus uses enum
data, then you cannot use the Linear extrapolation
option.

Hold first value Uses the first data value in the file
Ground value Uses a value that depends on the data type of MAT-file

sample data values:

• Fixed-point data types — uses the ground value
• Numeric types other than fixed–point — uses 0
• Boolean — uses false
• Enumerated data types — uses default value

Data interpolation within time range

The interpolation method that Simulink uses for a simulation time hit between two time
stamps in the MAT-file. Choose one of the following interpolation methods.

 From File

1-749

Method Description

Linear interpolation (Default)

The From File block interpolates using the two
corresponding MAT-file samples:

• For double data, linearly interpolates the value using
the two corresponding samples

• For Boolean data, uses false for the first half of the
sample and true for the second half.

• For a built-in data type other than double or
Boolean, upcasts the data to double, performs linear
interpolation (as described above for double data), and
then downcasts the interpolated value to the original
data type

You cannot use the Linear interpolation option with
enumerated (enum) data. All signals in a bus use the same
interpolation setting, so if any signal in a bus uses enum
data, then you cannot use the Linear interpolation
option.

Zero order hold Uses the data from the first of the two samples

Data extrapolation after last data point

The extrapolation method that Simulink uses for a simulation time hit that is after the
last time stamp in the MAT-file. Choose one of the following extrapolation methods.

Method Description

Linear extrapolation (Default)

If the MAT-file contains only one sample, then the From File
block outputs the corresponding data value.

If the MAT-file contains more than one sample, then the
From File block linearly extrapolates using data values of
the last two samples:

1 Blocks — Alphabetical List

1-750

Method Description

• For double data, extrapolates the value using the last
two samples

• For Boolean data, outputs the last data value
• For a built-in data type other than double or

Boolean, upcasts the data to double, performs linear
extrapolation (as described above for double data), and
then downcasts the extrapolated value to the original
data type

You cannot use the Linear extrapolation option with
enumerated (enum) data. All signals in a bus use the same
extrapolation setting, so if any signal in a bus uses enum
data, then you cannot use the Linear extrapolation
option.

Hold last value Uses the last data value in the file
Ground value Uses a value that depends on the data type of MAT-file

sample data values:

• Fixed-point data types — uses the ground value
• Numeric types other than fixed–point — uses 0
• Boolean — uses false
• Enumerated data types — uses default value

Enable zero-crossing detection

Select to enable zero-crossing detection.

The “Zero-Crossing Detection” parameter applies only if the Sample time parameter is
set to 0 (continuous).

Simulink uses a technique known as zero-crossing detection to accurately locate a
discontinuity, without resorting to excessively small time steps. This section uses “zero-
crossing” to represent discontinuities.

For the From File block, zero-crossing detection can only occur at time stamps in the file.
Simulink examines only the time stamps, not the data values.

 From File

1-751

For bus signals, Simulink detects zero-crossings across all leaf bus elements.

If the input array contains duplicate time stamps (more than one entry with the same
time stamp), Simulink detects a zero crossing at that time stamp. For example, suppose
the input array has this data:

time: 0 1 2 2 3

signal: 2 3 4 5 6

At time 2, there is a zero crossing from the input signal discontinuity.

For data with nonduplicate time stamps, zero-crossing detection depends on the settings
of the following parameters:

• Data extrapolation before first data point
• Data interpolation within time range
• Data extrapolation after last data point

The From File block applies the following rules when determining when zero-crossing
occurs for the first time stamp, for time stamps between the first and last time stamp,
and for the last time stamp.

Time Stamp When Zero-Crossing Detection Occurs

First Data extrapolation before first data point is set to Ground
value.

Between first and
last

Data interpolation within time range is set to Zero-order
hold.

Last One or both of these settings occur:

• Data extrapolation after last data point is set to Ground
value.

• Data interpolation within time range is set to Zero-order
hold.

The following figure illustrates zero-crossing detection for data accessed by a From File
block that has the following settings:

• Data extrapolation before first data point — Linear extrapolation

1 Blocks — Alphabetical List

1-752

• Data interpolation within time range (for internal points) — Zero order hold
• Data extrapolation after last data point — Linear extrapolation

The following figure is another illustration of zero-crossing detection for data accessed by
a From File block. The block has the following settings for the time stamps (points):

• Data extrapolation before first data point — Hold first value
• Data interpolation within time range — Zero order hold
• Data extrapolation after last data point — Hold last value

 From File

1-753

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

1 Blocks — Alphabetical List

1-754

See Also

“Load Signal Data for Simulation”, From Workspace, To File, To Workspace, From
Spreadsheet

Introduced before R2006a

 From Workspace

1-755

From Workspace
Read data from workspace

Library

Sources

Description

The From Workspace block reads data from a workspace and outputs the data as a
signal.

The From Workspace icon displays the expression specified in the Data parameter. For
details about how Simulink software evaluates this expression, see “Symbol Resolution”.

Specifying the Workspace Data

In the Data parameter of the block, enter a MATLAB expression that specifies the
workspace data. The expression must evaluate to one of the following:

• A MATLAB timeseries object
• A structure of MATLAB timeseries objects
• An array or structure containing an array of simulation times and corresponding

signal values

The format of a MATLAB timeseries object, array, or structure loaded (imported) by
a From Workspace block is the same as that used to load root-level input port data from
the workspace.

• To load any non-bus data from the workspace, use a MATLAB timeseries object or
a structure with time. For guidelines on choosing time vectors for discrete systems,
see “Techniques for Importing Signal Data”.

1 Blocks — Alphabetical List

1-756

• To load bus data, use a structure of MATLAB timeseries objects. For details, see
“Import Bus Data to Root-Level Input Ports”.

Using Data Saved by a To File Block

You can use the From Workspace block to load MATLAB timeseries object data that
was saved by a To File block, without making any changes to the data.

To use the From Workspace block to load Array format data, transpose the array
data before the From Workspace block loads the data that a To File block saved.
The data saved by the To File block contains columns with consecutive time stamps,
followed by the corresponding data. The transposed data contains rows with consecutive
time stamps, followed by the corresponding data. To provide the required format,
use MATLAB load and transpose commands with the MAT-file (see “Reshaping a
Matrix”). To avoid having to transpose the data again later, resave the transposed data
for future use.

Using Data Saved by a To Workspace Block

To use the From Workspace block to load data exported by a To Workspace block in a
previous simulation for use in a later simulation, save the To Workspace block data in
either Timeseries or Structure with Time format. For details, see “Techniques for
Importing Signal Data”.

Loading Variable-Size Signals

You can use a To Workspace block (with Structure or Structure With Time format)
or a root Outport block to log variable-size signals. You can then use the To Workspace
variable with the From Workspace block.

Alternatively, you can create a MATLAB structure to contain variable-size signal data.
For each values field in the structure, include a valueDimensions field that specifies
the run-time dimensions for the signal. For details, see Simulink Models Using Variable-
Size Signals.

Interpolating Missing Data Values

If you select the Interpolate data option, the block uses linear Lagrangian interpolation
to compute data values for time hits that occur between time hits for which the
workspace supplies data.

 From Workspace

1-757

For variable-size signals, clear Interpolate data.

Specifying Output After Final Data

Combine the settings of the Form output after final data value by and Interpolate
data parameters to determine the block output after the last time hit for which
workspace data is available. For details, see the Form output after final data value
by parameter.

Detecting Zero Crossings

The Enable zero-crossing detection parameter applies only if the sample time is
continuous (0).

If you select the Enable zero-crossing detection parameter, and if the input array
contains more than one entry for the same time hit, Simulink detects a zero crossing at
that time hit.

For bus signals, Simulink detects zero crossings across all leaf bus elements.

Data Type Support

The From Workspace block accepts data from the workspace and outputs real or complex
signals of any type supported by Simulink, including fixed-point and enumerated data
types.

The From Workspace block also accepts a bus object as a data type. To load bus data, use
a structure of MATLAB timeseries objects. For details, see “Import Bus Data to Root-
Level Input Ports”.

Real signals of type double can be in any format that the From Workspace block
supports. For complex signals and real signals of a data type other than double, use any
format except Array.

1 Blocks — Alphabetical List

1-758

Parameters and Dialog Box

Data

A MATLAB expression that evaluates to one of the following:

• A MATLAB timeseries object
• A structure of MATLAB timeseries objects

To load bus data, use a structure of MATLAB timeseries objects. For details, see
“Import Bus Data to Root-Level Input Ports”.

• A two-dimensional matrix:

• The first element of each matrix row is a time stamp.

 From Workspace

1-759

• The rest of each row is a scalar or vector of signal values.
• A structure, with or without time, which contains:

• A signals.values field, which contains a vector of signal values
• An optional signals.dimensions array, which contains the dimensions of the

signal
• An optional time vector, which contains time stamps

If you do not specify a time vector:

• Set Sample time (-1 for inherited) to a value other than 0 (continuous).
• Clear Interpolate data.
• Set Form output after final data value by to a value other than

Extrapolation.

The nth time element is the time stamp of the nth signals.values element. For
details, see “Techniques for Importing Signal Data”.

For example, suppose that the workspace contains a column vector of times named T
and a column vector of corresponding signal values named U. Entering the expression [T
U] for this parameter yields the required input array. If the required array or structure
already exists in the workspace, enter the name of the structure or matrix in this field.

Output data type

The required data type for the data for the workspace variable that the From Workspace
block loads. For non-bus types, you can use Inherit: auto to skip any data type
verification. For more information, see “Control Signal Data Types”.

To load bus data, use a structure of MATLAB timeseries objects. For details, see “Import
Bus Data to Root-Level Input Ports”.

• Inherit: auto — Default.
• double

• single

• int8

• uint8

• int16

1 Blocks — Alphabetical List

1-760

• uint16

• int32

• uint32

• boolean

• fixdt(1,16,0) — Data type is fixed-point (1,16,0).
• fixdt(1,16,2^0,0) — Data type is fixed-point (1,16,2^0,0).
• Enum: <class_name> — Data type is enumerated, for example, Enum: Basic

Colors.
• Bus: <bus_object> — Data type is a bus object.
• <data type expression> — The name of a data type object, for example

Simulink.NumericType. Do not specify a bus object as the expression.

>> (Show data type assistant)

Displays the Data Type Assistant, to help you to set the Output data type parameter.

Mode

The category of data to specify. For more information, see “Control Signal Data Types”.

• Inherit — Inheritance rule for data types. Selecting Inherit enables a second
menu/text box to the right. (Default)

• Built in — Built-in data types. Selecting Built in enables a second menu/text box
to the right. Select one of the following choices:

• double — Default
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

 From Workspace

1-761

• Fixed point — Fixed-point data types
• Enumerated — Enumerated data types. Selecting Enumerated enables a second

menu/text box to the right, where you can enter the class name.
• Bus — Bus object. Selecting Bus enables a Bus object parameter to the right,

where you enter the name of a bus object that you want to use to define the
structure of the bus. If you need to create or change a bus object, click Edit (to the
right of the Bus object field) to open the Simulink Bus Editor. For details, see
“Manage Bus Objects with the Bus Editor”.

• Expression — Expression that evaluates to a data type. Selecting Expression
enables a second menu/text box to the right, where you enter the expression. Do
not specify a bus object as the expression.

Sample time

Sample rate of loaded data. For details, see “ Specify Sample Time”.

Interpolate data

Select this option to have the block linearly interpolate at time hits for which no
corresponding workspace data exists. Otherwise, the current output equals the output at
the most recent time for which data exists.

The From Workspace block interpolates using the two corresponding workspace samples:

• For double data, linearly interpolates the value using the two corresponding samples
• For Boolean data, uses false for the first half of the time between two time stamps

and true for the second half
• For a built-in data type other than double or Boolean, upcasts the data to double,

performs linear interpolation (as described above for double data), and then
downcasts the interpolated value to the original data type

You cannot use linear interpolation with enumerated (enum) data.

The block uses the value of the last known data point as the value of time hits that occur
after the last known data point.

Combine the settings of the Interpolate data and Form output after final data
value by parameters to determine the block output after the last time hitfor which

1 Blocks — Alphabetical List

1-762

workspace data is available. For details, see the Form output after final data value
by parameter.

Enable zero-crossing detection

If you select the Enable zero-crossing detection parameter, then when the input
array contains more than one entry for the same time hit, Simulink detects a zero
crossing at that time. For example, suppose the input array has this data:

time: 0 1 2 2 3

signal: 2 3 4 5 6

At time 2, there is a zero crossing from input signal discontinuity. For more information,
see “Zero-Crossing Detection”.

For bus signals, Simulink detects zero crossings across all leaf bus elements.

Form output after final data value by

Combine the settings of the Form output after final data value by and Interpolate
data parameters to determine the block output after the last time hit for which
workspace data is available. The following table describes the block output based on the
values of the two options:

Setting for Form Output After
Final Data Value By

Setting for
Interpolate Data

Block Output After Final Data

On Extrapolated from final data valueExtrapolation
Off Error
On ZeroSetting to zero
Off Zero
On Final value from workspaceHolding final value
Off Final value from workspace
On ErrorCyclic repetition
Off Repeated from workspace if the

workspace data is in structure-without-
time format. Error otherwise.

 From Workspace

1-763

For example, if Form output after final data value by is Extrapolation and
Interpolate data is selected, the block uses the last two known data points to
extrapolate data points that occur after the last known point. Consider the following
model.

In this model, the From Workspace block reads data from the workspace consisting of
the output of the Simulink Sine block sampled at one-second intervals. The workspace
contains the first 16 samples of the output. The top and bottom X-Y plots display the
output of the Sine Wave and From Workspace blocks, respectively, from 0 to 20 seconds.
The straight line in the output of the From Workspace block reflects the block's linear
extrapolation of missing data points at the end of the simulation.

Examples
The From Workspace block allows you to read 1-D and 2-D signals into Simulink. The
From Workspace block does not read n-D signals into Simulink.

1 Blocks — Alphabetical List

1-764

Reading 1-D Signals in Array Format

Create two signals x and y with a time vector t, and then import the values into
Simulink with an array.

1 In the MATLAB Command Window, enter

t = [0:0.2:10]';

x = sin(t);

y = 10*sin(t);

The time vector must be a column vector.
2 Add a From Workspace block to your model.
3 Double-click the block to open the block parameters dialog. In the Data field, enter

the array [t,x,y],

Reading 1-D Signals in Structure Format

Create two signals x and y with a time vector t, and then import the values into
Simulink with a structure.

 From Workspace

1-765

1 In the MATLAB Command Window, enter

t = [0:0.2:10]';

x = sin(t);

y = 10*sin(t);

wave.time = t;

wave.signals.values = [x,y];

wave.signals.dimensions =2;

The time vector must be a column vector. The signals.dimensions field for the
signal is a scalar corresponding to number of columns in the signals.values field.

2 Add a From Workspace block to your model.
3 Double-click the block to open the block parameters dialog. In the Data field, enter

the structure name.

Using Sample Time from Model
If you do not have a time vector, you can define the sample time in your model.

1 In the MATLAB Command Window, enter

wave.time = [];

1 Blocks — Alphabetical List

1-766

2 Double-click the From Workspace block to open the block parameters dialog. In
the Sample time field, enter a time interval. For example, enter 0.2. Clear the
Interpolate data check box. From the Form output after final data value by,
select either Setting to zero, Holding final value, or Cyclic repetition.
Do not select Extrapolation.

Reading 2-D Signals in Structure Format

To load 2-D signals from the MATLAB workspace into Simulink, you must have the
signals in a structure format. This example creates a 10–by–10 matrix (2-D signal) using
the magic function, and then creates a 3-D matrix by adding a time vector.

1 In the MATLAB Command Window, enter

t1 = [0:0.2:10]';

m = magic(10);

M = repmat(m,[1 1 length(t1)]);

data.time=t1;

data.signals.values = M;

data.signals.dimensions=[10 10];

 From Workspace

1-767

The time vector must be a column vector. The signals.values field is a 3-D
matrix where the third dimension corresponds to time. The signals.dimensions
field is a two element vector where the first element is the number of rows and the
second element is the number of columns in the signals.values field.

2 Double-click the From Workspace block to open the block parameters dialog. In the
Data field, enter the name of the structure.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation No

1 Blocks — Alphabetical List

1-768

See Also

“Load Signal Data for Simulation”, “Import Data for an Input Test Case”, From File, To
File, To Workspace

Introduced before R2006a

 Function-Call Feedback Latch

1-769

Function-Call Feedback Latch

Break feedback loop involving data signals between function-call blocks

Library

Ports & Subsystems

Description

Use the Function-Call Feedback Latch block to break a feedback loop of data signals
between one or more function-call blocks. Specifically, break a loop formed in one of the
following ways.

• When function-call blocks connect to branches of the same function-call
signal

Place the Function-Call Feedback Latch block on the feedback signal between the
branched blocks. As a result, the latch block delays the signal at the input of the
destination function-call block, and the destination function-call block executes prior
to the source function-call block of the latch block.

1 Blocks — Alphabetical List

1-770

• When the loop involves parent and child function-call blocks, where the
child initiator is inside the parent

Place the Function-Call Feedback Latch block on the feedback signal between the
child and the parent. This arrangement prevents the signal value, read by the parent
(FCSS1), from changing during execution of the child. In other words, the parent
reads the value from the previous execution of the child (FCSS2).

 Function-Call Feedback Latch

1-771

Using the latch block is equivalent to selecting the Latch input for function-call
feedback signals check box on the Inport block in the destination function-call
subsystem. However, an advantage of the latch block over the dialog parameter is that
one can design the destination function-call subsystem (or model) in a modular fashion
and then use it either in or out of the context of loops.

The Function-Call Feedback Latch block is better suited than the Unit Delay or Memory
blocks in breaking function-call feedback loops for the following reasons:

• The latch block delays the feedback signal for exactly one execution of the source
function-call block. This behavior is different from the Unit Delay or Memory blocks
for cases where the function-call subsystem blocks may execute multiple times in a
given simulation step.

• Unlike the Unit Delay or Memory blocks, the latch block may be used to break loops
involving asynchronous function-call subsystems.

• The latch block can result in better performance, in terms of memory optimization, for
generated code.

1 Blocks — Alphabetical List

1-772

Data Type Support

The Function-Call Feedback Latch block accepts real or complex signals of the following
data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

In addition, the latch block accepts bus signals provided that they do not contain any
variable-sized signals.

This block does not accept:

• Function-call signals
• Action signals
• Variable-sized signals

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Function-Call Feedback Latch block dialog box appears as follows:

 Function-Call Feedback Latch

1-773

Examples

In the following model, a single function-call subsystem output serves as its own input.

1 Blocks — Alphabetical List

1-774

A more complex case occurs when a merged signal serves as the input to a function-call
subsystem. Latching is necessary if one of the signals entering the Merge block forms a
feedback loop with the function-call subsystem. In this example, one of the output signals
from FCSS2 combines with the output of an Enabled Subsystem block and then feeds
back into an inport of FCSS2.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

 Function-Call Feedback Latch

1-775

See Also

Function-Call Subsystem block

Introduced in R2011a

1 Blocks — Alphabetical List

1-776

Function-Call Generator

Execute function-call subsystem specified number of times at specified rate

Library

Ports & Subsystems

Description

The Function-Call Generator block executes a function-call subsystem (for example, a
Stateflow chart acting as a function-call subsystem) at the rate that you specify with the
Sample time parameter. To iteratively execute each function-call block connected to this
block multiple times at each time step, use the ‘Number of Iterations’ parameter.

To execute multiple function-call subsystems or models in a prescribed order, use the
Function-Call Generator block in conjunction with a Function-Call Split block. For an
example, see the Function-Call Split block documentation.

Data Type Support

The Function-Call Generator block outputs a signal of type fcn_call.

 Function-Call Generator

1-777

Parameters and Dialog Box

Sample time
Specify the time interval between samples. See “ Specify Sample Time” in the online
documentation for more information.

Number of iterations
Number of times to execute the block per time step. The value of this parameter can
be a vector where each element of the vector specifies a number of times to execute
a function-call subsystem. The total number of times that a function-call subsystem
executes per time step equals the sum of the values of the elements of the generator
signal entering its control port.

1 Blocks — Alphabetical List

1-778

Suppose that you specify the number of iterations to be [2 2] and connect the
output of this block to the control port of a function-call subsystem. In this case, the
function-call subsystem executes four times at each time step.

Characteristics

Data Types Not applicable
Sample Time Specified in the Sample time parameter
Direct Feedthrough No
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Function-Call Split

1-779

Function-Call Split

Provide junction for splitting function-call signal

Library

Ports & Subsystems

Description

The Function-Call Split block allows a function-call signal to be branched and connected
to several function-call subsystems and models.

Several Function-Call Split blocks may be cascaded one after another to create multiple
branches for a function-call signal. An advantage of the Function-Call Split block is
that in some cases, using this block eliminates the need for the initiator block to create
multiple function-call signals for invoking a set of function-call subsystems or models.

Function-call subsystems or models connected to the output port of the Function-Call
Split block marked with a dot execute before the subsystems or models connected to
the other output port. If any data dependencies between these subsystems (or between
models) do not support the specified execution order, then an error occurs. This implies
that an error will always occur when you create a data-dependency loop involving
function-call subsystems or models connected to branches of the same function-call
signal. To eliminate this error, consider turning on the Latch input for feedback
signals of function-call subsystem outputs on one or more Inport blocks of the
function-call subsystems (or models) involved in the loop. Setting this option to on has
the effect of delaying the corresponding input signal, thereby eliminating the data-
dependency loop.

In order for a model to contain Function-Call Split blocks, you must set the following
diagnostic to error: Model Configuration Parameters > Diagnostics >
Connectivity > Invalid function-call connection.

1 Blocks — Alphabetical List

1-780

If you turn on the model option Format > Block Displays > Sorted Order, then the
execution order of function-call subsystems connected to branches of a given function-
call signal displays on the blocks . Each subsystem has an execution order of the form
S:B#{C}. Here, # is a number that ranges from 0 to one less than the total number of
subsystems (or models) connected to branches of a given signal. The subsystems execute
in ascending order based on this number.

The Function-Call Split block supports signal label propagation.

Limitations

The Function-Call Split block has these limitations:

Limitations

All function-call subsystems and models connected to a given function-call signal must
reside within the same nonvirtual layer of the model hierarchy.
Branched function-call subsystems (or models) and their children cannot be connected
directly back to the initiator.
Function-call subsystems and models connected to branches of a function-call signal
cannot have multiple (muxed) initiators.
A Function-call split block cannot have its input from a signal with multiple function-
call elements.

Data Type Support

The Function-Call Split block accepts periodic and asynchronous function-call signals
only.

Parameters and Dialog Box

The Function-Call Split block dialog box appears as follows:

 Function-Call Split

1-781

Examples

The following model shows how to apply the Latch input for feedback signals of
function-call subsystem outputs parameter to work around a data-dependency error
caused by using a Function-Call Split block. By turning this parameter on in the f1
subsystem Inport block, the Function-Call Split block ignores the data dependency of
signal b and thus breaks the loop of data dependencies between subsystems f1 and g1.
The model thus achieves the desired behavior of consistently calling f1 to execute before
g1. For a given execution step, subsystem f1 uses the g1 output computed at the previous
execution step.

1 Blocks — Alphabetical List

1-782

Characteristics

Data Types Double
Sample Time Inherited from the block driving the function-call split
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Function-Call Subsystem | Function-Call Generator

Introduced in R2010a

 Function-Call Subsystem

1-783

Function-Call Subsystem
Represent subsystem that can be invoked as function by another block

Library

Ports & Subsystems

Description

The Function-Call Subsystem block is a Subsystem block that is preconfigured to serve
as a starting point for creating a function-call subsystem. For more information, see
“Create a Function-Call Subsystem” in the “Creating a Model” chapter of the Simulink
documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-784

Function Caller

Call Simulink or Stateflow function

Library

User-Defined Functions

Description

A Function Caller block calls and executes a function defined in a Simulink Function
block or by calling an exported Stateflow function.

Data Type Support

A Function Caller block accepts a real or complex scalar, vector, or matrix of any numeric
data type that Simulink supports. It also supports fixed-point, bus, and enumerated data
types. For more information, see “ Data Types Supported by Simulink”.

 Function Caller

1-785

Parameters and Dialog Box

Function prototype
Specify the function name, input arguments, and output arguments for the function
implementation. The arguments must also match the argument definition for the
function the block calls.

The function prototype uses MATLAB syntax to identify input and output arguments
and the name of the called function. Each of these must be a valid MATLAB
identifier.

The function prototype determines the number and name of input ports and output
ports that appear on the Function Caller block. Connect signal lines to the ports to
pass data to and from a function through the function arguments. For example, y =
myfunction(u) creates one input port (u) and one output port (y) on the Function
Caller block.

Input argument specifications

1 Blocks — Alphabetical List

1-786

Specify a comma-separated list of MATLAB expressions that combine data type,
dimensions, and complexity (real or imaginary) of each input argument. This
specification must match the Simulink Function block data types specified with the
Data type parameter in the Source Block Parameters blocks.

Output argument specifications
Specify a comma-separated list of MATLAB expressions that combine data type,
dimensions, and complexity (real or imaginary) of each output argument. This
specification must match the Simulink Function block data types specified with the
Data type parameter in the Sink Block Parameters blocks.

When you can optionally specify arguments — When a Simulink Function block is
within the scope of a Function Caller block, the Function Caller block can determine
the input and output argument specifications without you specifying the parameters.

When you must specify arguments — When a Simulink Function block is outside
the scope of a Function Caller block, you must specify the Input argument
specifications and Output argument specifications parameters. This can
happen when a Function Caller block and a Simulink Function block are in separate
models that are referenced by a common parent model.

The following table includes a list of possible input and output argument
specifications.

Simulink Function Block
Data Type

Function Caller Block
Expression

Description

double double(1.0) Double-precision scalar.
double double(ones(12,1)) Double-precision column vector

of length 12.
single single(1.0) Single-precision scalar.
int8, int16, int32 int8(1), int16(1),

int32(1)

Integer scalars.

 int32([1 1 1]) Integer row vector of length 3.
 int32(1+1i) Complex scalar whose real

and imaginary parts are 32-bit
integers.

uint8, int16, int32 uint8(1), uint16(1),

uint32(1)

Unsigned integer scalers.

 Function Caller

1-787

Simulink Function Block
Data Type

Function Caller Block
Expression

Description

boolean boolean(true)boolean(false)Booleans, initialized to true (1)
or false (0).

fixdt(1,16)

fixdt (signed,

word_length)

fi(0,1,16)

fi (value, signed,

word_length)

16-bit fixed-point signed scalar
with binary point set to zero.

Fixed-point numbers can have a
word size up to 128 bits.

fixdt(1,16,4) fi(0,1,16,4) 16-bit fixed-point signed scalar
with binary point set to 4.

fixdt(1,16,2^0,0) fi(0,1,16,2^0,0) 16-bit fixed-point signed scalar
with slope set to 2^0 and bias
set to 0.

Bus: <object name> parameter object

name

Simulink.Parameter object
with the Value parameter set
to a MATLAB structure for the
bus.

Enum: <class name> parameter object

name

Simulink.Parameter object
with the Value parameter set
to an enumerated value.

<alias name> parameter object

name

Simulink.Parameter object
with the DataType parameter
set to a Simulink.AliasType
object and the Value parameter
set to a value.

Sample time (-1 for inherited)
Specify the time interval between function calls. To inherit sample time, set this
parameter to -1. If the Function Caller block has any inputs, it is a nonsource block.
In this case, you must set Sample time to -1. See “ Specify Sample Time” for more
information.

1 Blocks — Alphabetical List

1-788

Examples

Specify Input Specification for a Bus Data Type

Create a bus with two signals, and then specify the Input argument specification
parameter for a Function Caller block. The Function Caller block calls a Simulink
Function block that accepts the bus as input.

1 Create a Simulink bus object myBus.

myBus = Simulink.Bus;

2 Add elements A and B.

myBus.Elements(1).Name = 'A';

myBus.Elements(2).Name = 'B';

3 Create a MATLAB structure myBus_MATLABstruct with fields A and B.

myBus_MATLABStruct.A = 0;

myBus_MATALBStruct.B = 0;

4 Create a Simulink parameter object myBus_parameter and assign the MATLAB
structure to the Value parameter.

myBus_parameter = Simulink.Parameter;

myBus_parameter.Value = myBus_MATLABStruct;

5 In the Function Caller block dialog box, set the Input argument specification
parameter to myBus_parameter.

6 In the Argument In block dialog box within a Simulink Function, set the Data type
parameter to Bus: myBus.

Specify Input Specification for an Enumerated Data Type

Create an enumerated data type for the three primary colors, and then specify the Input
argument specification parameter for a Function Caller block. The Function Caller
block calls a Simulink Function block that accepts a signal with the enumerated type as
input.

1 Create a MATLAB file for saving the data type definition. On the MATLAB toolstrip,
select New > Class.

 Function Caller

1-789

2 In the MATLAB editor, define the elements of an enumerated data type. The class
BasicColors is a subclass of the class Simulink.IntEnumType.

classdef BasicColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 end

end

3 Save the class definition in a file named BasicColors.m.
4 Create a Simulink parameter object myEnum_parameter and assign one of the

enumerated values to the Value parameter.

myEnum_parameter = Simulink.Parameter;

myEnum_parameter.Value = BasicColors.Red;

5 For the Function Caller block dialog box, set the Input argument specification. to
myEnum_parameter.

6 For the Argument In block dialog box within a Simulink Function block, set the
Data type parameter to Enum: BasicColors.

Specify Input Specification for an Alias Data Type

Create an alias name for the data type single, and then specify the Input argument
specification parameter for a Function Caller block. The Simulink Function block
called by the Function Caller block also uses the alias name to define the input data type.

1 Create a Simulink alias data type object myAlias.

myAlias = Simulink.AliasType;

2 Assign a data type.

myAlias.BaseType = 'single';

3 Create a Simulink parameter object myAlias_parameter and assign the alias
name to the DataType parameter.

myAlias_parameter = Simulink.Parameter;

myAlias_parameter.DataType = myAlias;

myAlias_parameter.Value = 1;

4 In the Function Caller block dialog box, set the Input argument specification
parameter to myAlias_parameter.

1 Blocks — Alphabetical List

1-790

5 In the Argument In block dialog box within a Simulink Function block, set the Data
type parameter to myAlias.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also
Function-Call Subsystem | Simulink Function

Related Examples
• “Simulink Functions and Function Callers”

Introduced in R2014b

 Gain

1-791

Gain
Multiply input by constant

Library
Math Operations

Description
The Gain block multiplies the input by a constant value (gain). The input and the gain
can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The Multiplication parameter
lets you specify element-wise or matrix multiplication. For matrix multiplication, this
parameter also lets you indicate the order of the multiplicands.

The gain is converted from doubles to the data specified in the block mask offline using
round-to-nearest and saturation. The input and gain are then multiplied, and the result
is converted to the output data type using the specified rounding and overflow modes.

Data Type Support
The Gain block accepts a real or complex scalar, vector, or matrix of any numeric data
type that Simulink supports. The Gain block supports fixed-point data types. If the input
of the Gain block is real and the gain is complex, the output is complex.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box
The Main pane of the Gain block dialog box appears as follows:

1 Blocks — Alphabetical List

1-792

The Signal Attributes pane of the Gain block dialog box appears as follows:

 Gain

1-793

The Parameter Attributes pane of the Gain block dialog box appears as follows:

1 Blocks — Alphabetical List

1-794

 Gain

1-795

Gain

Specify the value by which to multiply the input.

Settings
Default: 1
Minimum: value of Parameter minimum parameter
Maximum: value of Parameter maximum parameter

The gain can be a scalar, vector, or matrix.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-796

Multiplication

Specify the multiplication mode.

Settings

Default: Element-wise(K.*u)

Element-wise(K.*u)

Each element of the input is multiplied by each element of the gain. The block
performs expansions, if necessary, so that the input and gain have the same
dimensions.

Matrix(K*u)

The input and gain are matrix multiplied with the input as the second operand.
Matrix(u*K)

The input and gain are matrix multiplied with the input as the first operand.
Matrix(K*u)(u vector)

The input and gain are matrix multiplied with the input as the second operand. This
mode is identical to Matrix(K*u), except for how dimensions are determined.

Suppose that K is an m-by-n matrix. Matrix(K*u)(u vector) sets the input to a
vector of length n and the output to a vector of length m. In contrast, Matrix(K*u)
uses propagation to determine dimensions for the input and output. For an m-by-n
gain matrix, the input can propagate to an n-by-q matrix, and the output becomes
an m-by-q matrix.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Gain

1-797

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-798

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Gain

1-799

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-800

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type
int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type,
the output data type is sfix24. If Unspecified (assume 32-bit Generic),
i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output
data type is int32. If none of the word lengths provided by the target microprocessor
can accommodate the output range, Simulink software displays an error in the
Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as input

Use data type of input signal.
double

 Gain

1-801

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Control Signal Data Types” for more information.

1 Blocks — Alphabetical List

1-802

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

• Same as input

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

 Gain

1-803

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-804

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Gain

1-805

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-806

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Gain

1-807

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Binary point

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-808

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Gain

1-809

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-810

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

 Gain

1-811

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

1 Blocks — Alphabetical List

1-812

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

 Gain

1-813

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-814

Parameter minimum

Specify the minimum value of the gain.

Settings
Default: []

The default value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Gain

1-815

Parameter maximum

Specify the maximum value of the gain.

Settings
Default: []

The default value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-816

Parameter data type

Specify the data type of the Gain parameter.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Use an internal rule to inherit the data type.
Inherit: Same as input

Use data type of sole input signal.
Inherit: Inherit from 'Gain'

Use data type of the Gain value. For example:

If you set Gain to... The parameter data type inherits...

2 double

single(2) single

int8(2) int8

double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

 Gain

1-817

Data type is int32.
uint32

Data type is uint32.
fixdt(1,16)

Data type is fixdt(1,16).
fixdt(1,16,0)

Data type is fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-818

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Same as input

• Inherit from 'Gain'

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

 Gain

1-819

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant” in the Simulink documentation.

1 Blocks — Alphabetical List

1-820

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

The following Simulink examples show how to use the Gain block:

 Gain

1-821

• sldemo_bounce

• sldemo_tonegen_fixpt

• sldemo_hardstop

• sldemo_enginewc

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-822

Gauge
Display input value on circular scale

Library

Dashboard

Description

The Gauge block displays connected signals during simulation on a circular gauge.

To view data from a signal on the Gauge block, double-click the Gauge block to open
the dialog box. Select a signal in the model. The signal appears in the dialog box
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal to the block.

You can modify the tick range by modifying the Minimum, Maximum, and Tick
Interval values.

You can also add scale colors that appear on the outside of the Gauge block scale using
the Scale Colors table.

Limitations

The Gauge block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

 Gauge

1-823

If you turn off streaming for a signal connected to any dashboard gauge, then the
connection shows as broken. Signal data does not stream to the block. To view signal
data again, double-click the gauge and reconnect the signal.

The External simulation mode is not supported for the Gauge block.

1 Blocks — Alphabetical List

1-824

Parameters and Dialog Box

 Gauge

1-825

Connection

Select a signal to connect and display.

To view the data from a signal, select a signal in the model. The signal appears in the
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal.

Settings

The table has a row for the signal connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

Minimum

Minimum tick mark value.

Settings

Default: 0

Specify this number as a finite, real, double, scalar value.

Dependencies

The Minimum tick value must be less than the Maximum tick value.

Maximum

Maximum tick mark value.

Settings

Default: 100

Specify this number as a finite, real, double, scalar value.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

1 Blocks — Alphabetical List

1-826

Tick Interval

Interval between major tick marks.

Settings

Default: auto

Specify this number as a finite, real, positive, integer, scalar value. Specify as auto for
the block to adjust the tick interval automatically.

Scale Colors

Specify ranges of color bands on the outside of the scale. Specify the minimum and
maximum color range to display on the gauge.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Goto

1-827

Goto
Pass block input to From blocks

Library

Signal Routing

Description

The Goto block passes its input to its corresponding From blocks. The input can be a real-
or complex-valued signal or vector of any data type. From and Goto blocks allow you to
pass a signal from one block to another without actually connecting them.

A Goto block can pass its input signal to more than one From block, although a From
block can receive a signal from only one Goto block. The input to that Goto block is
passed to the From blocks associated with it as though the blocks were physically
connected. Goto blocks and From blocks are matched by the use of Goto tags.

The Tag Visibility parameter determines whether the location of From blocks that
access the signal is limited:

• local, the default, means that From and Goto blocks using the same tag must be in
the same subsystem. A local tag name is enclosed in brackets ([]).

• scoped means that From and Goto blocks using the same tag must be in the same
subsystem or at any level in the model hierarchy below the Goto Tag Visibility block
that does not entail crossing a nonvirtual subsystem boundary, i.e., the boundary of
an atomic, conditionally executed, or function-call subsystem or a model reference. A
scoped tag name is enclosed in braces ({}).

• global means that From and Goto blocks using the same tag can be anywhere in the
model except in locations that span nonvirtual subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual subsystem
boundaries has the following exception. A Goto block connected to a state port in one

1 Blocks — Alphabetical List

1-828

conditionally executed subsystem is visible to a From block inside another conditionally
executed subsystem. For more information about conditionally executed subsystems, see
“Conditional Execution Behavior”.

Note: A scoped Goto block in a masked system is visible only in that subsystem and in
the nonvirtual subsystems it contains. Simulink generates an error if you run or update
a diagram that has a Goto Tag Visibility block at a higher level in the block diagram than
the corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name reside in the
same subsystem. You must use global or scoped tags when the Goto and From blocks
using the same tag name reside in different subsystems. When you define a tag as global,
all uses of that tag access the same signal. A tag defined as scoped can be used in more
than one place in the model.

The Goto block supports signal label propagation.

Data Type Support

The Goto block accepts real or complex signals of any data type that Simulink supports,
including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Goto

1-829

Parameters and Dialog Box

Goto Tag
The Goto block identifier. This parameter identifies the Goto block whose scope is
defined in this block.

Rename All

1 Blocks — Alphabetical List

1-830

Rename the Goto tag. The new name propagates to the From and Goto Tag Visibility
blocks that are listed in the Corresponding blocks box.

Tag Visibility
The scope of the Goto block tag: local, scoped, or global. The default is local.

Corresponding blocks
List of the From blocks and Goto Tag Visibility blocks connected to this Goto block.
Click an entry in the list to display and highlight the corresponding From or Goto
Tag Visibility block.

Icon Display
Specifies the text to display on the block's icon. The options are the block's tag, the
name of the signal that the block represents, or both the tag and the signal name.

Examples

The following models show how to use the Goto block:

• sldemo_auto_climatecontrol

• sldemo_hardstop

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

From Goto Tag Visibility

 Goto

1-831

Introduced before R2006a

1 Blocks — Alphabetical List

1-832

Goto Tag Visibility

Define scope of Goto block tag

Library

Signal Routing

Description

The Goto Tag Visibility block defines the accessibility of Goto block tags that have
scoped visibility. The tag specified as the Goto tag parameter is accessible by From
blocks in the same subsystem that contains the Goto Tag Visibility block and in
subsystems below it in the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag Visibility parameter
value is scoped. No Goto Tag Visibility block is needed if the tag visibility is either
local or global. The block shows the tag name enclosed in braces ({}).

Data Type Support

Not applicable.

 Goto Tag Visibility

1-833

Parameters and Dialog Box

Goto tag
The Goto block tag whose visibility is defined by the location of this block.

If you use multiple From and Goto Tag Visibility blocks to refer to the same Goto
tag, you can simultaneously rename the tag in all of the blocks. Use the Rename All
button in the Goto block dialog box.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Not applicable
Multidimensional Signals No
Variable-Size Signals No

1 Blocks — Alphabetical List

1-834

Code Generation Yes

Introduced before R2006a

 Ground

1-835

Ground
Ground unconnected input port

Library

Sources

Description

The Ground block connects to blocks whose input ports do not connect to other blocks.
If you run a simulation with blocks having unconnected input ports, Simulink issues
warnings. Using a Ground block to ground those unconnected blocks can prevent these
warnings.

The Ground block outputs a signal of the same data type as the port to which it connects.
For example, consider the following model:

In this example, the output of the Constant block determines the data type (int8) of the
port to which the Ground block is connected. That port determines the output data type
of the Ground block.

The Ground block outputs a signal with zero value. When the output data type cannot
represent zero exactly, the Ground block outputs a nonzero value that is the closest
possible value to zero. This behavior applies only to fixed-point data types with nonzero
bias. The following expressions are examples of fixed-point data types that cannot
represent zero:

1 Blocks — Alphabetical List

1-836

• fixdt(0, 8, 1, 1) — an unsigned 8-bit type with slope of 1 and bias of 1
• fixdt(1, 8, 6, 3) — a signed 8-bit type with slope of 6 and bias of 3

If the output is an enumerated data type, the Ground block outputs the default value of
the enumeration. This behavior applies whether or not:

• The enumeration can represent zero.
• The default value of the enumeration is zero.

If the enumerated type does not have a default value, the Ground block outputs the first
enumeration value in the type definition.

Data Type Support

The Ground block supports all data types that Simulink supports, including fixed-
point and enumerated data types. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

Parameters and Dialog Box

Examples

The following Simulink examples show how to use the Ground block:

 Ground

1-837

• sldemo_doublebounce

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Constant (inf)
Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-838

Half Gauge
Display input value on semicircular scale

Library

Dashboard

Description

The Half Gauge block displays connected signals during simulation on a semicircular
gauge.

To view data from a signal on the Half Gauge block, double-click the Half Gauge block to
open the dialog box. Select a signal in the model canvas. The signal appears in the dialog
box Connection table. Select the option button next to the signal you want to display.
Click Apply to connect the signal to the block.

You can modify the tick range by modifying the Minimum, Maximum, and Tick
Interval values.

You can also add scale colors that appear on the outside of the Half Gauge block scale
using the Scale Colors table.

Limitations

The Half Gauge block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

 Half Gauge

1-839

If you turn off streaming for a signal connected to any dashboard gauge, then the
connection shows as broken. Signal data does not stream to the block. To view signal
data again, double-click the gauge and reconnect the signal.

The External simulation mode is not supported for the Half Gauge block.

1 Blocks — Alphabetical List

1-840

Parameters and Dialog Box

 Half Gauge

1-841

Connection

Select a signal to connect and display.

To view the data from a signal, select a signal in the model. The signal appears in the
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal.

Settings

The table has a row for the signal connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

Minimum

Minimum tick mark value.

Settings

Default: 0

Specify this number as a finite, real, double, scalar value.

Dependencies

The Minimum tick value must be less than the Maximum tick value.

Maximum

Maximum tick mark value.

Settings

Default: 100

Specify this number as a finite, real, double, scalar value.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

1 Blocks — Alphabetical List

1-842

Tick Interval

Interval between major tick marks.

Settings

Default: auto

Specify this number as a finite, real, positive, integer, scalar value. Specify as auto for
the block to adjust the tick interval automatically.

Scale Colors

Specify ranges of color bands on the outside of the scale. Specify the minimum and
maximum color range to display on the gauge.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 HDL Counter

1-843

HDL Counter
Free-running or count-limited hardware counter

Library
HDL Coder / HDL Operations

Description
The HDL Counter block models a free-running or count-limited hardware counter that
supports signed and unsigned integer and fixed-point data types.

The counter emits its value for the current sample time.

Control Ports

By default, the counter does not have input ports. Optionally, you can add control ports
that enable, disable, load, reset or set the direction of the counter.

The table shows the priority of the control signals and how the counter value is updated
in relation to the control signals.

Local reset,
rst

Load trigger,
load

Count
enable, enb

Count
direction,
dir

Next Counter Value

1 – – – initial value

1 Blocks — Alphabetical List

1-844

Local reset,
rst

Load trigger,
load

Count
enable, enb

Count
direction,
dir

Next Counter Value

0 1 – – load_val value
0 0 0 – current value
0 0 1 1 current value + step value
0 0 1 0 current value - step value

Count direction

The Step value parameter and optional count direction port, dir, interact to determine
the actual count direction.

dir Signal Value Step Value Sign Actual Count Direction

1 + (positive) Up
1 - (negative) Down
0 + (positive) Down
0 - (negative) Up

 HDL Counter

1-845

Dialog Box and Parameters

Counter type

1 Blocks — Alphabetical List

1-846

Counter behavior.

• Free running (default): The counter continues to increment or decrement by the
Step value until reset.

• Count limited: The counter increments or decrements by the Step value until
it is exactly equal to the Count to value.

Initial value
Counter value after reset. The default is 0.

Step value
Value added to counter at each sample time. The default is 1.

Count to value
When the count is exactly equal to Count to value, the count restarts at the Initial
value. This option is available when Counter type is set to Count limited. The
default is 100.

Count from
Specifies the parameter that sets the start value after rollover. When set to Specify,
the Count from value parameter is the start value after rollover. The default is
Initial value.

Count from value
Counter value after rollover when Count from is set to Specify. The default is 0.

Local reset port
When selected, creates a local reset port, rst.

Load ports
When selected, creates a load data port, load_val, and load trigger port, load.

Count enable port
When selected, creates a count enable port, enb.

Count direction port
When selected, creates a count direction port, dir.

Counter output data is
Output data type signedness. The default is Unsigned.

Word length

 HDL Counter

1-847

Bit width, including sign bit, for an integer counter; word length for a fixed-point
data type counter. The minimum value if Output data type is Unsigned is 1, 2 if
Signed. The maximum value is 125. The default is 8.

Fraction length
Fixed-point data type fraction length. The default is 0.

Sample time
Sample time. The default is 1.

This parameter is not available, and the block inherits its sample time from the input
ports when any of these parameters is selected:

• Local reset port
• Load ports
• Count enable port
• Count direction port

Ports

The block has the following ports:

rst

Resets the counter value. Active-high.

This port is available when you select Local reset port.

Data type: Boolean
load

Sets the counter to the load value, load_val. Active-high.

This port is available when you select Load ports.

Data type: Boolean
load_val

Data value to load.

This port is available when you select Load ports.

1 Blocks — Alphabetical List

1-848

Data type: Same as count.
enb

Enables counter operation. Active-high.

This port is available when you select Count enable port.

Data type: Boolean
dir

Count direction. This port interacts with Step value to determine count direction.

• 1: Step value is added to the current counter value to compute the next value.
• 0: Step value is subtracted from the current counter value to compute the next

value.

This port is available when you select Count direction port.

Data type: Boolean
count

Counter value.

Data type: Determined automatically based on Counter output data is, Word
length, and Fraction length.

Introduced in R2014a

 HDL FIFO

1-849

HDL FIFO

Stores sequence of input samples in first in, first out (FIFO) register

Library

HDL Coder / HDL Operations

Description

The HDL FIFO block stores a sequence of input samples in a first in, first out (FIFO)
register.

HDL Code Generation

For simulation results that match the generated HDL code, in the Configuration
Parameters dialog box, in the Solver pane, Tasking mode for periodic sample times
must be SingleTasking.

If you simulate this block using MultiTasking mode, the output data can update in the
same cycle, but in the generated HDL code, the output data is updated one cycle later.

1 Blocks — Alphabetical List

1-850

Dialog Box and Parameters

Register size
Specify the number of entries that the FIFO register can hold. The minimum is 4.
The default is 10.

The ratio of output sample time to input sample time
Inputs (In, Push) and outputs (Out, Pop) can run at different sample times. Enter
the ratio of output sample time to input sample time. Use a positive integer or 1/N,
where N is a positive integer. The default is 1.

For example:

 HDL FIFO

1-851

• If you enter 2, the output sample time is twice the input sample time, meaning
the outputs run slower.

• If you enter 1/2, the output sample time is half the input sample time, meaning
the outputs run faster.

The Full, Empty, and Num signals run at the faster rate.
Push onto full register

Response (Ignore, Error, or Warning) to a trigger received at the Push port when
the register is full. The default is Warning.

Pop empty register
Response (Ignore, Error, or Warning) to a trigger received at the Pop port when
the register is empty. The default is Warning.

Show empty register indicator port (Empty)
Enable the Empty output port, which is high (1) when the FIFO register is empty
and low (0) otherwise.

Show full register indicator port (Full)
Enable the Full output port, which is high (1) when the FIFO register is full and low
(0) otherwise.

Show number of register entries port (Num)
Enable the Num output port, which tracks the number of entries currently in the
queue.

Ports

The block has the following ports:

In

Data input signal.
Push

Control signal. When this port receives a value of 1, the block pushes the input at the
In port onto the end of the FIFO register.

Pop

Control signal. When this port receives a value of 1, the block pops the first element
off the FIFO register and holds the Out port at that value.

1 Blocks — Alphabetical List

1-852

Out

Data output signal.
Empty

The block asserts this signal when the FIFO register is empty. This port is optional.
Full

The block asserts this signal when the FIFO register is full. This port is optional.
Num

Current number of data values in the FIFO register. This port is optional.

If two or more of the control input ports are triggered in the same time step, the
operations execute in the following order:

1 Pop
2 Push

See Also
Dual Rate Dual Port RAM

Introduced in R2014a

 HDL Reciprocal

1-853

HDL Reciprocal

Calculate reciprocal using Newton-Raphson approximation method

Library

HDL Coder / HDL Operations

Description

The HDL Reciprocal block uses the Newton-Raphson method to compute the reciprocal of
the block input.

The Newton-Raphson iterative method:

x x
f x

f x
x x axi i

i

i
i i i+

= - = + -1
2()

’()
()

HDL Reciprocal implements the Newton-Raphson method with:

f x
x

a() = -

1

1 Blocks — Alphabetical List

1-854

Dialog Box and Parameters

Number of iterations
Number of Newton-Raphson iterations. The default is 3.

Sample time (-1 for inherited)
Enter the time interval between sample time hits or specify another appropriate
sample time such as continuous. By default, the block inherits its sample time based
upon its context within the model. For more information, see “Sample Time”.

Ports

The block has the following ports:

Input

• Supported data types: Fixed-point, integer (signed or unsigned), double, single

 HDL Reciprocal

1-855

• Minimum bit width: 2
• Maximum bit width: 128

Output

Input data type Output data type

double double
single single
built-in integer built-in integer
built-in fixed-point built-in fixed-point
fi (value, 0, word_length,
fraction_length)

fi (value, 0, word_length,
word_length–fraction_length–1)

fi (value, 1, word_length,
fraction_length)

fi (value, 1, word_length,
word_length–fraction_length–2)

See Also
Divide | Math Function

Introduced in R2014b

1 Blocks — Alphabetical List

1-856

Hit Crossing

Detect crossing point

Library

Discontinuities

Description

The Hit Crossing block detects when the input reaches the Hit crossing offset
parameter value in the direction specified by the Hit crossing direction property.

The block accepts one input of type double. If you select the Show output port check
box, the block output indicates when the crossing occurs. If the input signal is exactly the
value of the offset value after the hit crossing is detected, the block continues to output a
value of 1. If the input signals at two adjacent points bracket the offset value (but neither
value is exactly equal to the offset), the block outputs a value of 1 at the second time step.
If the Show output port check box is not selected, the block ensures that the simulation
finds the crossing point but does not generate output. If the input signal is constant and
equal to the offset value, the block outputs 1 only if the Hit crossing direction property
is set to either.

When the block's Hit crossing direction property is set to either, the block serves as
an "Almost Equal" block, useful in working around limitations in finite mathematics and
computer precision. Used for these reasons, this block might be more convenient than
adding logic to your model to detect this condition.

When the block's Hit crossing direction property is set to either and the model uses
a fixed-step solver, the block has the following behavior. If the output signal is 1, the
block sets the output signal to 0 at the next time step, unless the input signal equals the
offset value.

 Hit Crossing

1-857

Data Type Support

The Hit Crossing block outputs a signal of type Boolean if Boolean logic signals are
enabled (see “Implement logic signals as Boolean data (vs. double) ”). Otherwise, the
block outputs a signal of type double.

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-858

Hit crossing offset
The value whose crossing is to be detected.

Hit crossing direction
The direction from which the input signal approaches the hit crossing offset for a
crossing to be detected.

Show output port
If selected, draw an output port.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The sldemo_hardstop and sldemo_clutch models show how you can use the Hit
Crossing block.

In the sldemo_hardstop model, the Hit Crossing block is in the Friction Model
subsystem.

 Hit Crossing

1-859

In the sldemo_clutch model, the Hit Crossing block is in the Friction Mode Logic/
Lockup Detection subsystem.

1 Blocks — Alphabetical List

1-860

Characteristics

Data Types Double
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

 IC

1-861

IC

Set initial value of signal

Library

Signal Attributes

Description

The IC block sets the initial condition of the signal at its input port, for example, the
value of the signal at the simulation start time (tstart). The block does this by outputting
the specified initial condition when you start the simulation, regardless of the actual
value of the input signal. Thereafter, the block outputs the actual value of the input
signal.

Note: If an IC block has a nonzero sample time offset (toffset), the IC block outputs its
initial value at time t,

t = n * tperiod + toffset

where n is the smallest integer such that t ≥ tstart.

That is, the IC block outputs its initial value the first time blocks with sample time
[tperiod, toffset] execute, which can be after tstart.

The IC block is useful for providing an initial guess for the algebraic state variables in a
loop. For more information, see “Algebraic Loops”.

1 Blocks — Alphabetical List

1-862

Data Type Support

The IC block accepts and outputs signals of any Simulink built-in and fixed-point
data type. The Initial value parameter accepts any built-in data type that Simulink
supports. For more information, see “ Data Types Supported by Simulink” in the
Simulink documentation.

Parameters and Dialog Box

Initial value
Specify the initial value for the input signal.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following examples show how to use the IC block:

 IC

1-863

• sldemo_bounce

• sldemo_hardstop

• sldemo_enginewc

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-864

If
Model if-else control flow

Library

Ports & Subsystems

Description

The If block, along with the If Action Subsystem block containing an Action Port,
implements standard C-like if-else logic.

The following shows a completed if-else control flow statement.

 If

1-865

In this example, the inputs to the If block determine the values of conditions represented
as output ports. Each output port is attached to an If Action Subsystem, named
body_1, body_2, and body_3. The conditions are evaluated top down starting with the
if condition. If a condition is true, its If Action Subsystem is executed and the If
block does not evaluate any remaining conditions.

The preceding if-else control flow statement can be represented by the following
pseudocode.

if (u1 > 0) {

 body_1;

}

else if (u2 > 0){

 body_2;

}

else {

 body_3;

}

You construct a Simulink if-else control flow statement like the preceding example as
follows:

1 Place an If block in the current system.
2 Open the dialog of the If block and enter as follows:

• Enter the Number of inputs field with the required number of inputs necessary
to define conditions for the if-else control flow statement.

Elements of vector inputs can be accessed for conditions using (row, column)
arguments. For example, you can specify the fifth element of the vector u2 in the
condition u2(5) > 0 in an If expression or Elseif expressions field.

• Enter the expression for the if condition of the if-else control flow statement in
the If expression field.

This creates an if output port for the If block with a label of the form
if(condition). This is the only required If Action signal output for an If block.

• Enter expressions for any elseif conditions of the if-else control flow statement
in the Elseif expressions field.

Use a comma to separate one condition from another. Entering these conditions
creates an output port for the If block for each condition, with a label of the form

1 Blocks — Alphabetical List

1-866

elseif(condition). elseif ports are optional and not required for operation of
the If block.

• Check the Show else condition check box to create an else output port.

The else port is optional and not required for the operation of the If block.
3 Create If Action subsystems to connect to each of the if, else, and elseif ports.

These consist of a subsystem with an Action Port block. When you place an Action
Port block inside each subsystem, an input port named Action is added to the
subsystem.

4 Connect each if, else, and elseif port of the If block to the Action port of an If Action
subsystem.

When you make the connection, the icon for the If Action block is renamed to the
type of the condition that it attaches to.

Note During simulation of an if-else control flow statement, the Action signal
lines from the If block to the If Action subsystems turn from solid to dashed.

5 In each If Action Subsystem, enter the Simulink blocks appropriate to the body
to be executed for the condition it handles.

Limitations

The If block has the following limitations:

• You cannot tune an if or elseif expression during simulation in Normal or Accelerator
mode (see “How Acceleration Modes Work”), or in generated code. The If block does
not support tunable parameters. To implement tunable if/else expressions, tune the
expression outside the If block. For example, use the Relational operator block to
evaluate the expression outside or add the tunable parameter as an input to the If
block.

• The If block does not support custom storage classes. See “Custom Storage Classes” in
the Embedded Coder documentation.

• The If expression and Elseif expressions cannot accept certain operators, such as
+, -, *, and /. See If Expression and Elseif Expressions in “Parameters and Dialog
Box” on page 1-868

 If

1-867

Data Type Support

Inputs u1,u2,...,un can be scalars or vectors of any built-in Simulink data type and
must all be of the same data type. The inputs cannot be of any user-defined type, such as
an enumerated type. Outputs from the if, else, and elseif ports are Action signals to
If Action subsystems that you create by using Action Port blocks and subsystems.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-868

Parameters and Dialog Box

 If

1-869

Number of inputs
Specify the number of inputs to the If block. These appear as data input ports labeled
with a 'u' character followed by a number, 1,2,...,n, where n equals the number
of inputs that you specify.

If expression
Specify the condition for the if output port. This condition appears on the If block
adjacent to the if output port. The If expression can include only the operators
<, <=, ==, ~=, >, >=, &, |, ~, (), unary-minus, and cannot include
operators such as +, -, *, /, and ^. The If Action Subsystem attached to the
if port executes if its condition is true. The expression must not contain data type
expressions, for example, int8(6), and must not reference workspace variables
whose data type is other than double or single.

Note: There are limitations to the tunability of the If expression. See “Limitations”
on page 1-866 for more information.

Elseif expressions
Specify a string list of elseif conditions delimited by commas. These conditions
appear below the if port and above the else port when you select the Show else
condition check box. Elseif expressions can include only the operators <, <=,
==, ~=, >, >=, &, |, ~, (), unary-minus, and cannot include operators
such as +, -, *, /, and ^. The If Action Subsystem attached to an elseif
port executes if its condition is true and all of the if and elseif conditions are false.
The expression must not contain data type expressions, for example, int8(6), and
must not reference workspace variables whose data type is other than double or
single.

Note: There are limitations to the tunability of Elseif expressions. See
“Limitations” on page 1-866 for more information.

Show else condition
If you select this check box, an else port is created. The If Action subsystem
attached to the else port executes if the if port and all the elseif ports are false.

Enable zero-crossing detection

1 Blocks — Alphabetical List

1-870

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples
The If block does not directly support fixed-point data types. However, you can use the
Compare To Constant block to work around this limitation.

For example, consider the following floating-point model:

In this model, the If Action subsystems use their default configurations. The block and
simulation parameters for the model are set to their default values except as follows:

Block or Dialog Box Parameter Setting

Configuration Parameters
— Solver pane

Start time 0.0

 If

1-871

Block or Dialog Box Parameter Setting

Stop time 1.0

Type Fixed-step

Solver discrete (no

continuous states)

Fixed-step size 0.1

Repeating Sequence Stair Vector of output values [-2 -1 1 2].'

Repeating Sequence Stair1 Vector of output values [0 0 0 0 1 1 1 1].'

If Number of inputs 2

If expression (u1 > 0) | (u2 > 0.5)

Show else condition selected
Constant Constant value -4

Constant1 Constant value 4

Scope Number of axes 3

Time range 1

For this model, if input u1 is greater than 0 or input u2 is greater than 0.5, the output is
4. Otherwise, the output is –4. The Scope block shows the output, u1, and u2:

1 Blocks — Alphabetical List

1-872

You can implement this block diagram as a model with fixed-point data types:

 If

1-873

The Repeating Sequence Stair blocks now output fixed-point data types.

The Compare To Constant blocks implement two parts of the If expression that is used
in the If block in the floating-point version of the model, (u1 > 0) and (u2 > 0.5).
The OR operation, (u1|u2), can still be implemented inside the If block. For a fixed-point
model, the expression must be partially implemented outside of the If block as it is here.

The block and simulation parameters for the fixed-point model are the same as for the
floating-point model with the following exceptions and additions:

Block Parameter Setting

Compare To Constant Operator >

 Constant value 0

 Output data type mode Boolean

 Enable zero-crossing
detection

off

Compare To Constant1 Operator >

 Constant value 0.5

 Output data type mode Boolean

 Enable zero-crossing
detection

off

If Number of inputs 2

1 Blocks — Alphabetical List

1-874

Block Parameter Setting

 If expression u1|u2

Characteristics

Data Types Double | Single | Boolean | Base Integer
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

 If Action Subsystem

1-875

If Action Subsystem
Represent subsystem whose execution is triggered by If block

Library

Ports & Subsystems

Description

The If Action Subsystem block is a Subsystem block that is preconfigured to serve as a
starting point for creating a subsystem whose execution is triggered by an If block.

Note: All blocks in an If Action Subsystem must run at the same rate as the driving If
block. You can achieve this by setting each block's sample time parameter to be either
inherited (-1) or the same value as the If block's sample time.

For more information, see “Create an Action Subsystem”, If block and Modeling with
Control Flow Blocks in the “Creating a Model” chapter of the Simulink documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-876

Introduced before R2006a

 Increment Real World

1-877

Increment Real World

Increase real world value of signal by one

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Increment Real World block increases the real world value of the signal by one.
Overflows always wrap.

Data Type Support

The Increment Real World block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-878

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Increment Stored Integer

Introduced before R2006a

 Increment Stored Integer

1-879

Increment Stored Integer

Increase stored integer value of signal by one

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Increment Stored Integer block increases the stored integer value of a signal by one.

Floating-point signals also increase by one, and overflows always wrap.

Data Type Support

The Increment Stored Integer block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-880

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Stored Integer, Increment Real World

Introduced before R2006a

 Index Vector

1-881

Index Vector
Switch output between different inputs based on value of first input

Library

Signal Routing

Description

The Index Vector block is an implementation of the Multiport Switch block. See
Multiport Switch for more information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-882

Inport
Create input port for subsystem or external input

Library
Ports & Subsystems, Sources

Description
Inport blocks are the links from outside a system into the system.

Simulink software assigns Inport block port numbers according to these rules:

• It automatically numbers the Inport blocks within a top-level system or subsystem
sequentially, starting with 1.

• If you add an Inport block, the label is the next available number.
• If you delete an Inport block, other port numbers are automatically renumbered to

ensure that the Inport blocks are in sequence and that no numbers are omitted.
• If you copy an Inport block into a system, its port number is not renumbered unless

its current number conflicts with an Inport block already in the system. If the copied
Inport block port number is not in sequence, renumber the block. Otherwise, you get
an error message when you run the simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block using the Port
dimensions parameter. Entering a value of -1 lets Simulink determine the port
dimension.

The Sample time parameter is the rate at which the signal is coming into the system.
A value of -1 causes the block to inherit its sample time from the block driving it. You
might need to set this parameter for:

• Inport blocks in a top-level system.
• Models with blocks where Simulink cannot determine the sample time, but these

blocks drive Inport blocks.

 Inport

1-883

For more information, see “ Specify Sample Time”.

Inport Blocks in a Top-Level System

Inport blocks in a top-level system have two uses:

• To supply external inputs from the workspace, use the Configuration Parameters
dialog box (see “Techniques for Importing Signal Data”) or the ut argument of the
sim command (see sim) to specify the inputs. If no external outputs are supplied,
then the default output is the ground value.

• To provide a means for perturbation of the model by the linmod and trim analysis
functions, use Inport blocks to inject inputs into the system.

Inport Blocks in a Subsystem

Inport blocks in a subsystem represent inputs to the subsystem. A signal arriving at
an input port on a Subsystem block flows out of the associated Inport block in that
subsystem. The Inport block associated with an input port on a Subsystem block is the
block whose Port number parameter matches the relative position of the input port on
the Subsystem block. For example, the Inport block whose Port number parameter is 1
gets its signal from the block connected to the topmost port on the Subsystem block.

If you renumber the Port number of an Inport block, the block becomes connected to
a different input port, although the block continues to receive its signal from the same
block outside the subsystem.

The Inport block name appears in the Subsystem icon as a port label. To suppress display
of the label, select the Inport block and choose Format > Hide Name.

Inport blocks inside a subsystem support signal label propagation, but root-level Inport
blocks do not.

You can use a subsystem inport to supply fixed-point data in a structure or any other
format.

Creating Duplicate Inports

You can create any number of duplicates of an Inport block. The duplicates are graphical
representations of the original intended to simplify block diagrams by eliminating

1 Blocks — Alphabetical List

1-884

unnecessary lines. The duplicate has the same port number, properties, and output as
the original. Changing properties of a duplicate changes properties of the original and
vice versa.

To create a duplicate of an Inport block:

1 In the block diagram, select the block that you want to duplicate.
2 In the Model Editor menu bar, select Edit > Copy.
3 In the block diagram, place your cursor where you want to place the duplicate.
4 Select Edit > Paste Duplicate Inport.

Connecting Buses to Root Level Inports

If you want a root level Inport of a model to produce a bus signal, you must set the Data
type parameter to the name of a bus object that defines the bus that the Inport produces.
For more information, see “Bus Objects”.

Data Type Support

The Inport block accepts complex or real signals of any data type that Simulink supports,
including fixed-point and enumerated data types. The Inport block also accepts a bus
object as a data type.

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “ Data Types Supported by Simulink”.

The numeric and data types of the block output are the same as those of its input. You
can specify the signal type, data type, and sampling mode of an external input to a root-
level Inport block using the Signal type, Data type, and Sampling mode parameters.

 Inport

1-885

The elements of a signal array connected to a root-level Inport block must be of the
same numeric and data types. Signal elements connected to a subsystem input port
can be of differing numeric and data types, except in the following circumstance: If the
subsystem contains an Enable, Trigger, or Atomic Subsystem block and the input port, or
an element of the input port, connects directly to an output port, the input elements must
be of the same type. For example, consider the following enabled subsystem:

In this example, the elements of a signal vector connected to In1 must be of the same
type. The elements connected to In2, however, can be of differing types.

Parameters and Dialog Box

The Main pane of the Inport block dialog box appears as follows:

1 Blocks — Alphabetical List

1-886

The Signal Attributes pane of the Inport block dialog box appears as follows:

 Inport

1-887

• “Port number” on page 1-538
• “Icon display” on page 1-890

1 Blocks — Alphabetical List

1-888

• “Latch input by delaying outside signal” on page 1-891
• “Latch input for feedback signals of function-call subsystem outputs” on page 1-892
• “Interpolate data” on page 1-893
• “Connect Input” on page 1-894
• “Output function call” on page 1-895
• “Minimum” on page 1-896
• “Maximum” on page 1-897
• “Data type” on page 1-898
• “Show data type assistant” on page 1-128
• “Mode” on page 1-901
• “Data type override” on page 1-230
• “Signedness” on page 1-231
• “Word length” on page 1-232
• “Scaling” on page 1-225
• “Fraction length” on page 1-233
• “Slope” on page 1-234
• “Bias” on page 1-234
• “Output as nonvirtual bus” on page 1-909
• “Lock output data type setting against changes by the fixed-point tools” on page 1-235
• “Port dimensions (-1 for inherited)” on page 1-910
• “Variable-size signal” on page 1-912
• “Sample time (-1 for inherited)” on page 1-913
• “Signal type” on page 1-915
• “Sampling mode” on page 1-916

 Inport

1-889

Port number

Specify the port number of the block.

Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-890

Icon display

Specify the information to be displayed on the icon of this input port.

Settings

Default: Port number

Signal name

Display the name of the signal connected to this port (or signals if the input is a bus).
Port number

Display port number of this port.
Port number and signal name

Display both the port number and the names of the signals connected to this port.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Inport

1-891

Latch input by delaying outside signal

Output the value of the input signal at the previous time step.

Settings

Default: Off

 On
Output the value of the input signal at the previous time step.

 Off
Do not output the value of the input signal at the previous time step.

Tips

• This option applies only to triggered subsystems and is enabled only if the Inport
block resides in a triggered subsystem.

• Selecting this check box enables Simulink to resolve data dependencies among
triggered subsystems that are part of a loop.

• Type sl_subsys_semantics at the MATLAB prompt for examples using latched inputs
with triggered subsystems.

• The Inport block indicates that this option is selected by displaying <Lo>.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-892

Latch input for feedback signals of function-call subsystem outputs

Latch the value of the input to this subsystem and prevent this value from changing
during the execution of the subsystem. For a single function call that is branched to
invoke multiple function-call subsystems, this option allows you to break a loop formed
by a signal fed back from one of these function-call subsystems into the other. A second
functionality of this option is to prevent any change to the values of a feedback signal
from a function-call subsystem that is invoked during the execution of this subsystem.

Settings

Default: Off

 On
Latch the input value.

 Off
Do not latch the input value.

Tips

• This parameter applies only to function-call subsystems and is enabled only if the
Inport block resides in a function-call subsystem.

• This parameter ensures that the subsystem inputs, including those generated within
the subsystem's context, do not change during execution of the subsystem.

• The Inport block indicates that this option is selected by displaying .

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Inport

1-893

Interpolate data

When loading data from the workspace, cause the block to linearly interpolate and
extrapolate output at time steps for which no corresponding data exists.

To load discrete signal data from the workspace, in the Inport block dialog box:

1 Set the Sample time parameter to a discrete value, such as 2.
2 Clear the Interpolate data parameter.

Specifying the discrete sample time causes the simulation to have hit times exactly at
those instances when the discrete data is sampled. You only need to specify the data
values, not time values.

Turning interpolation off avoids unexpected data values at other simulation time points
as a result of double precision arithmetic processing. For more information, see “Import
Data to Test a Discrete Algorithm”.

Settings

Default: On

 On
When loading data from the workspace, cause the block to linearly interpolate and
extrapolate output at time steps for which no corresponding data exists.

 Off
When loading data from the workspace, do not cause the block to linearly interpolate
or extrapolate output at time steps for which no corresponding data exists. Simulink
uses the following interpolation and extrapolation:

• For time steps between the first specified data point and the last specified data
point — zero-order hold

• For time steps before the first specified data point and after the last specified data
point — ground value

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-894

Connect Input

To import, visualize, and map signal and bus data to root-level inports, click this button.
The Root Inport Mapping tool displays.

Dependency

This button appears only if this block is a root inport block.

 Inport

1-895

Output function call

Specify that the input signal is outputting a function-call trigger signal.

Settings

Default: Off

 On
Input signal is a function-call trigger signal.

 Off
Input signal is not a function-call trigger signal.

Tips

• Select this option if it is necessary for a current model to accept a function-call trigger
signal when referenced in the top model.

• This feature is limited to an asynchronous function call.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-896

Minimum

Specify the minimum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Inport

1-897

Maximum

Specify the maximum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-898

Data type

Specify the output data type of the external input.

Settings

Default: Inherit: auto

Inherit: auto

A rule that inherits a data type
double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.
boolean

Data type is boolean.
fixdt(1,16,0)

Data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

 Inport

1-899

Data type is enumerated, for example, Enum: Basic Colors.
Bus: <object name>

Data type is a bus object.
<data type expression>

The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-900

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Inport

1-901

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

1 Blocks — Alphabetical List

1-902

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 Inport

1-903

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

1 Blocks — Alphabetical List

1-904

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Inport

1-905

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-906

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Inport

1-907

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-908

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Inport

1-909

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

 On
Output a nonvirtual bus.

 Off
Output a virtual bus.

Tips

• Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

• All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals in the bus must have the same sample
time. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus, to allow the signal or bus to be included in
a nonvirtual bus.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-910

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

Port dimensions (-1 for inherited)

Specify the dimensions of the input signal to the block.

Settings

Default: -1

Valid values are:

-1 Dimensions are inherited from input signal
n Vector signal of width n accepted
[m n] Matrix signal having m rows and n columns accepted

 Inport

1-911

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-912

Variable-size signal

Specify the type of signals allowed into this port.

Settings

Default: Inherit

Inherit

Allow variable-size and fixed-size signals.
No

Do not allow variable-size signals.
Yes

Allow only variable-size signals.

Dependencies

When the signal at this port is a variable-size signal, the Port dimensions parameter
specifies the maximum dimensions of the signal.

Command-Line Information
Parameter: VarSizeSig
Type: string
Value: 'Inherit'| 'No' | 'Yes'
Default: 'Inherit'

 Inport

1-913

Sample time (-1 for inherited)

Specify the time interval between samples.

Settings

Default: -1

To inherit the sample time, set this parameter to -1.

See “ Specify Sample Time” in the online documentation for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-914

 Inport

1-915

Signal type

Specify the numeric type of the external input.

Settings

Default: auto

auto

Accept either real or complex as the numeric type.
real

Specify the numeric type as a real number.
complex

Specify the numeric type as a complex number.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-916

Sampling mode

Specify whether the output signal is Sample based or Frame based.

Settings

Default: auto

auto

Accept any sampling mode.
Sample based

The output signal is sample-based.
Frame based

The output signal is frame-based.

Dependency

Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP System
Toolbox documentation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

 Inport

1-917

See Also

Outport

Asynchronous Task Specification

Introduced before R2006a

1 Blocks — Alphabetical List

1-918

Integrator, Integrator Limited
Integrate signal

Library

Continuous

Description

The Integrator block outputs the value of the integral of its input signal with respect to
time.

The Integrator Limited block is identical to the Integrator block with the exception that
the output of the block is limited based on the upper and lower saturation limits. See
“Limiting the Integral” on page 1-920 for details.

Simulink treats the Integrator block as a dynamic system with one state. The block
dynamics are given by:

&x t u t

y t x t
x t x

() ()

() ()
()

=

=

Ï
Ì
Ó

= 0 0

where:

• u is the block input.
• y is the block output.
• x is the block state.
• x0 is the initial condition of x.

While these equations define an exact relationship in continuous time, Simulink uses
numerical approximation methods to evaluate them with finite precision. Simulink can
use a number of different numerical integration methods to compute the Integrator

 Integrator, Integrator Limited

1-919

block's output, each with advantages in particular applications. Use the Solver pane of
the Configuration Parameters dialog box (see “Solver Pane”) to select the technique best
suited to your application.

The selected solver computes the output of the Integrator block at the current time step,
using the current input value and the value of the state at the previous time step. To
support this computational model, the Integrator block saves its output at the current
time step for use by the solver to compute its output at the next time step. The block also
provides the solver with an initial condition for use in computing the block's initial state
at the beginning of a simulation. The default value of the initial condition is 0. Use the
block parameter dialog box to specify another value for the initial condition or create an
initial value input port on the block.

Use the parameter dialog box to:

• Define upper and lower limits on the integral
• Create an input that resets the block's output (state) to its initial value, depending on

how the input changes
• Create an optional state output so that the value of the block's output can trigger a

block reset

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them
from an external signal:

• To define the initial conditions as a block parameter, specify the Initial condition
source parameter as internal and enter the value in the Initial condition field.

• To provide the initial conditions from an external source, specify the Initial
condition source parameter as external. An additional input port appears under
the block input.

1 Blocks — Alphabetical List

1-920

Note If the integrator limits its output (see “Limiting the Integral” on page 1-920),
the initial condition must fall inside the integrator's saturation limits. If the initial
condition is outside the block saturation limits, the block displays an error message.

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit output check
box and enter the limits in the appropriate parameter fields. This action causes the block
to function as a limited integrator. When the output reaches the limits, the integral
action is turned off to prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The block determines output
as follows:

• When the integral is less than or equal to the Lower saturation limit, the output is
held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper
saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit, the
output is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited, select the Show
saturation port check box. A saturation port appears below the block output port.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• –1 indicates that the lower limit is being applied.

When you select this check box, the block has three zero crossings: one to detect when it
enters the upper saturation limit, one to detect when it enters the lower saturation limit,
and one to detect when it leaves saturation.

 Integrator, Integrator Limited

1-921

Note: For the Integrator Limited block, by default, Limit output is selected, Upper
saturation limit is set to 1, and Lower saturation limit is set to 0.

Wrapping Cyclic States

Several physical phenomena are cyclic, periodic, or rotary in nature. Objects or
machinery that exhibit rotational movement and oscillators are examples of such
phenomena.

Modeling these phenomena in Simulink involves integrating the rate of change of the
periodic or cyclic signals to obtain the state of the movement.

The drawback with this approach, however, is that over long simulation time spans,
the states representing periodic or cyclic signals integrate to large values. Further,
computing the sine or cosine of these signals takes an increasingly large amount of
time because of angle reduction. The large signals values also negatively impact solver
performance and accuracy.

One approach for overcoming this drawback is to reset the angular state to 0 when it
reaches 2π (or to –π when it reaches π, for numerical symmetry). This approach improves
the accuracy of sine and cosine computations and reduces angle reduction time. But it
also requires zero-crossing detection and introduces solver resets, which slow down the
simulation for variable step solvers, particularly in large models.

To eliminate solver resets at wrap points, the Integrator block supports wrapped states
that you can enable by checking Wrap state on the block parameter dialog box. When
you enable Wrap state, the block icon changes to indicate that the block has wrapping
states.

Simulink allows wrapping states that are bounded by upper and lower values parameters
of the wrapped state. The algorithm for determining wrapping states is given by:

1 Blocks — Alphabetical List

1-922

y

x

x x x
x x

x x

x x x
u

l

u l

l u

l

=
- -

-

-

Í

Î
Í

˙

˚
˙

Ï

Ì
Ô

Ó
Ô

Œ [)
()

, otherwise

where:

• xl is the lower value of the wrapped state.
• xu is the upper value of the wrapped state.
• y is the output.

The support for wrapping states provides these advantages.

• It eliminates simulation instability when your model approaches large angles and
large state values.

• It reduces the number of solver resets during simulation and eliminates the need for
zero-crossing detection, improving simulation time.

• It eliminates large angle values, speeding up computation of trigonometric functions
on angular states.

• It improves solver accuracy and performance and enables unlimited simulation time.

Resetting the State

The block can reset its state to the specified initial condition based on an external signal.
To cause the block to reset its state, select one of the External reset choices. A trigger
port appears below the block's input port and indicates the trigger type.

• Select rising to reset the state when the reset signal rises from a zero to a positive
value or from a negative to a positive value.

• Select falling to reset the state when the reset signal falls from a positive value to
zero or from a positive to a negative value.

• Select either to reset the state when the reset signal changes from a zero to a
nonzero value or changes sign.

 Integrator, Integrator Limited

1-923

• Select level to reset the state when the reset signal is nonzero at the current time
step or changes from nonzero at the previous time step to zero at the current time
step.

• Select level hold to reset the state when the reset signal is nonzero at the current
time step.

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results
(see “Algebraic Loops”). Use the Integrator block's state port to feed back the block's
output without creating an algebraic loop.

Note: To be compliant with the Motor Industry Software Reliability Association
(MISRA®) software standard, your model must use Boolean signals to drive the external
reset ports of Integrator blocks.

About the State Port

Selecting the Show state port check box on the Integrator block's parameter dialog box
causes an additional output port, the state port, to appear at the top of the Integrator
block.

The output of the state port is the same as the output of the block's standard output port
except for the following case. If the block is reset in the current time step, the output of
the state port is the value that would have appeared at the block's standard output if the
block had not been reset. The state port's output appears earlier in the time step than the
output of the Integrator block's output port. Use the state port to avoid creating algebraic
loops in these modeling scenarios:

• Self-resetting integrators (see “Creating Self-Resetting Integrators” on page 1-924)
• Handing off a state from one enabled subsystem to another (see “Handing Off States

Between Enabled Subsystems” on page 1-925)

1 Blocks — Alphabetical List

1-924

Note When updating a model, Simulink checks that the state port applies to one
of these two scenarios. If not, an error message appears. Also, you cannot log the
output of this port in a referenced model that executes in Accelerator mode. If logging
is enabled for the port, Simulink generates a "signal not found" warning during
execution of the referenced model.

Creating Self-Resetting Integrators

The Integrator block's state port helps you avoid an algebraic loop when creating an
integrator that resets itself based on the value of its output. Consider, for example, the
following model.

This model tries to create a self-resetting integrator by feeding the integrator's output,
subtracted from 1, back into the integrator's reset port. However, the model creates an
algebraic loop. To compute the integrator block's output, Simulink software needs to
know the value of the block's reset signal, and vice versa. Because the two values are
mutually dependent, Simulink software cannot determine either. Therefore, an error
message appears if you try to simulate or update this model.

The following model uses the integrator's state port to avoid the algebraic loop.

 Integrator, Integrator Limited

1-925

In this version, the value of the reset signal depends on the value of the state port. The
value of the state port is available earlier in the current time step than the value of the
integrator block's output port. Therefore, Simulink can determine whether the block
needs to be reset before computing the block's output, thereby avoiding the algebraic
loop.

Handing Off States Between Enabled Subsystems

The state port helps you avoid an algebraic loop when passing a state between two
enabled subsystems. Consider, for example, the following model.

1 Blocks — Alphabetical List

1-926

The enabled subsystems, A and B, contain the following blocks:

Subsystem A Subsystem B

In this model, a constant input signal drives two enabled subsystems that integrate
the signal. A pulse generator generates an enabling signal that causes execution to
alternate between the two subsystems. The enable port of each subsystem is set to reset,
which causes the subsystem to reset its integrator when it becomes active. Resetting the
integrator causes the integrator to read the value of its initial condition port. The initial
condition port of the integrator in each subsystem is connected to the output port of the
integrator in the other subsystem.

This connection is intended to enable continuous integration of the input signal as
execution alternates between two subsystems. However, the connection creates an
algebraic loop. To compute the output of A, Simulink needs to know the output of B, and
vice versa. Because the outputs are mutually dependent, Simulink cannot compute the
output values. Therefore, an error message appears if you try to simulate or update this
model.

The following version of the same model uses the integrator state port to avoid creating
an algebraic loop when handing off the state.

 Integrator, Integrator Limited

1-927

The enabled subsystems, A and B, contain the following blocks:

Subsystem A Subsystem B

In this model, the initial condition of the integrator in A depends on the value of the
state port of the integrator in B, and vice versa. The values of the state ports are updated
earlier in the simulation time step than the values of the integrator output ports.
Therefore, Simulink can compute the initial condition of either integrator without
knowing the final output value of the other integrator. For another example of using
the state port to hand off states between conditionally executed subsystems, see the
sldemo_clutch model.

1 Blocks — Alphabetical List

1-928

Note Simulink does not permit three or more enabled subsystems to hand off a model
state. If Simulink detects that a model is handing off a state among more than two
enabled subsystems, it generates an error.

Specifying the Absolute Tolerance for the Block Outputs

By default Simulink software uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “ Error Tolerances for Variable-Step Solvers”)
to compute the output of the Integrator block. If this value does not provide sufficient
error control, specify a more appropriate value in the Absolute tolerance field of the
Integrator block dialog box. The value that you specify is used to compute all the block
outputs.

Selecting All Options

When you select all options, the block icon looks like this.

Data Type Support

The Integrator block accepts and outputs signals of type double on its data ports. The
external reset port accepts signals of type double or Boolean.

 Integrator, Integrator Limited

1-929

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-930

External reset

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Settings

Default: none

none

Do not reset the state to initial conditions.
rising

Reset the state when the reset signal rises from a zero to a positive value or from a
negative to a positive value.

falling

Reset the state when the reset signal falls from a positive value to zero or from a
positive to a negative value.

either

Reset the state when the reset signal changes from a zero to a nonzero value or
changes sign.

level

Reset the state when the reset signal is nonzero at the current time step or changes
from nonzero at the previous time step to zero at the current time step.

level hold

Reset the state when the reset signal is nonzero at the current time step.

Command-Line Information
Parameter: ExternalReset
Type: string
Value: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'level hold'
Default: 'none'

 Integrator, Integrator Limited

1-931

Initial condition source

Get the initial conditions of the states.

Settings

Default: internal

internal

Get the initial conditions of the states from the Initial condition parameter.
external

Get the initial conditions of the states from an external block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter.

Command-Line Information

Parameter: InitialConditionSource
Type: string
Value: 'internal' | 'external'
Default: 'internal'

1 Blocks — Alphabetical List

1-932

Initial condition

Specify the states' initial conditions.

Settings

Default: 0

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source to internal enables this parameter.

Setting Initial condition source to external disables this parameter.

Command-Line Information

Parameter: InitialCondition
Type: scalar or vector
Value: '0'
Default: '0'

 Integrator, Integrator Limited

1-933

Limit output

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

Settings

Default: Off

 On
Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

 Off
Do not limit the block's output to a value between the Lower saturation limit and
Upper saturation limit parameters.

Dependencies

This parameter enables Upper saturation limit.

This parameter enables Lower saturation limit.

Command-Line Information
Parameter: LimitOutput
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-934

Upper saturation limit

Specify the upper limit for the integral.

Settings

Default: inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

Limit output enables this parameter.

Command-Line Information
Parameter: UpperSaturationLimit
Type: scalar or vector
Value: 'inf'
Default: 'inf'

 Integrator, Integrator Limited

1-935

Lower saturation limit

Specify the lower limit for the integral.

Settings

Default: -inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

Limit output enables this parameter.

Command-Line Information
Parameter: LowerSaturationLimit
Type: scalar or vector
Value: '-inf'
Default: '-inf'

1 Blocks — Alphabetical List

1-936

Wrap state

Enable wrapping of states between the Wrapped state upper value and Wrapped
state lower value parameters. Enabling wrap states eliminates the need for zero-
crossing detection, reduces solver resets, improves solver performance and accuracy, and
increases simulation time span when modeling rotary and cyclic state trajectories.

Settings

Default: off

 On
Enable wrap states between the Wrapped state upper value and Wrapped state
lower value parameters.

If you specify Wrapped state upper value as inf and Wrapped state lower
value as -inf, wrapping will never occur.

 Off
Do not enable wrap states.

Dependencies

This parameter enables Wrapped state upper value.

This parameter enables Wrapped state lower value.

Command-Line Information
Parameter: WrapState
Type: string
Value: 'off' | 'on'
Default: 'off'

 Integrator, Integrator Limited

1-937

Wrapped state upper value

Specify the upper value for the wrap state.

Settings

Default: 'pi'

Dependencies

Wrap state enables this parameter.

Command-Line Information
Parameter: WrappedStateUpperValue
Type: scalar or vector
Value: '2*pi'
Default: 'pi'

1 Blocks — Alphabetical List

1-938

Wrapped state lower value

Specify the lower value for the wrap state.

Settings

Default: -pi

Dependencies

Wrap state enables this parameter.

Command-Line Information
Parameter: WrappedStateLowerValue
Type: scalar or vector
Value: '0'
Default: '-pi'

 Integrator, Integrator Limited

1-939

Show saturation port

Add a saturation output port to the block.

Settings

Default: Off

 On
Add a saturation output port to the block.

 Off
Do not add a saturation output port to the block.

Command-Line Information
Parameter: ShowSaturationPort
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-940

Show state port

Add an output port to the block for the block's state.

Settings

Default: Off

 On
Add an output port to the block for the block's state.

 Off
Do not add an output port to the block for the block's state.

Command-Line Information
Parameter: ShowStatePort
Type: string
Value: 'off' | 'on'
Default: 'off'

 Integrator, Integrator Limited

1-941

Absolute tolerance

Specify the absolute tolerance for computing block states.

Settings

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute block states.
• If you enter a real scalar, then that value overrides the absolute tolerance in the

Configuration Parameters dialog box for computing all block states.
• If you enter a real vector, then the dimension of that vector must match the

dimension of the continuous states in the block. These values override the absolute
tolerance in the Configuration Parameters dialog box.

Command-Line Information
Parameter: AbsoluteTolerance
Type: string, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

1 Blocks — Alphabetical List

1-942

Ignore limit and reset when linearizing

Cause Simulink linearization commands to treat this block as unresettable and as
having no limits on its output, regardless of the settings of the block's reset and output
limitation options.

Settings

Default: Off

 On
Cause Simulink linearization commands to treat this block as unresettable and as
having no limits on its output, regardless of the settings of the block's reset and
output limitation options.

 Off
Do not cause Simulink linearization commands to treat this block as unresettable
and as having no limits on its output, regardless of the settings of the block's reset
and output limitation options.

Tip

Use this check box to linearize a model around an operating point that causes the
integrator to reset or saturate.

Command-Line Information

Parameter: IgnoreLimit
Type: string
Value: 'off' | 'on'
Default: 'off'

 Integrator, Integrator Limited

1-943

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Settings

Default: On

 On
Use zero crossings to detect and take a time step at any of the following events: reset,
entering or leaving an upper saturation state, entering or leaving a lower saturation
state.

 Off
Do not use zero crossings to detect and take a time step at any of the following
events: reset, entering or leaving an upper saturation state, entering or leaving a
lower saturation state.

If you select this check box, Limit output, and zero-crossing detection for the model as a
whole, the Integrator block uses zero crossings as described.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'off' | 'on'
Default: 'on'

1 Blocks — Alphabetical List

1-944

 Integrator, Integrator Limited

1-945

State Name (e.g., 'position')

Assign a unique name to each state.

Settings

Default: ' '

If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string, cell array, or structure.

Command-Line Information
Parameter: ContinuousStateAttributes
Type: string
Value: ' ' | user-defined
Default: ' '

Examples

The following example models show how to use the Integrator block:

• sldemo_hardstop

• sldemo_suspn

1 Blocks — Alphabetical List

1-946

• sldemo_wheelspeed_absbrake

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Yes, of the reset and external initial condition source

ports
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled and you select the Limit output check

box, one for detecting reset, one each to detect upper
and lower saturation limits, and one when leaving
saturation

Code Generation Yes

See Also

Discrete-Time Integrator

Introduced before R2006a

 Interpolation Using Prelookup

1-947

Interpolation Using Prelookup
Use precalculated index and fraction values to accelerate approximation of N-
dimensional function

Library

Lookup Tables

Description

How This Block Works with a Prelookup Block

The Interpolation Using Prelookup block works best with the Prelookup block. The
Prelookup block calculates the index and interval fraction that specify how its input
value u relates to the breakpoint data set. You feed the resulting index and fraction
values into an Interpolation Using Prelookup block to interpolate an n-dimensional table.
These two blocks have distributed algorithms. When combined together, they perform
the same operation as the integrated algorithm in the n-D Lookup Table block. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater flexibility that
can provide more efficient simulation and code generation. For more information, see
“Efficiency of Performance” in the Simulink documentation.

Supported Block Operations

To use the Interpolation Using Prelookup block, you specify a set of table data values
directly on the dialog box or feed values into the T input port. Typically, these table
values correspond to the breakpoint data sets specified in Prelookup blocks. The
Interpolation Using Prelookup block generates output by looking up or estimating table
values based on index and interval fraction values fed from Prelookup blocks. Labels for
the index and interval fraction appear as k and f on the Interpolation Using Prelookup
block icon.

1 Blocks — Alphabetical List

1-948

When inputs for index and interval fraction... The Interpolation Using Prelookup block...

Map to values in breakpoint data sets Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not map to values in breakpoint data
sets, but are within range

Interpolates appropriate table values,
using the Interpolation method you
select

Do not map to values in breakpoint data
sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

How The Block Interpolates a Subset of Table Data

You can use the Number of sub-table selection dimensions parameter to specify that
interpolation occur only on a subset of the table data. To activate this interpolation mode,
set this parameter to a positive integer. This value defines the number of dimensions to
select, starting from the highest dimension of table data. Therefore, the value must be
less than or equal to the Number of table dimensions.

Suppose that you have 3-D table data in your Interpolation Using Prelookup block. The
following behavior applies.

Number of Selection
Dimensions

Action by the Block Block Appearance

0 Interpolates the entire table
and does not activate subtable
selection

Does not change

1 Interpolates the first two
dimensions and selects the
third dimension

Displays an input port with
the label sel1 that you use
to select and interpolate 2-D
tables

2 Interpolates the first
dimension and selects the
second and third dimensions

Displays two input ports with
the labels sel1 and sel2
that you use to select and
interpolate 1-D tables

Subtable selection uses zero-based indexing. For an example of interpolating a subset of
table data, type sldemo_bpcheck at the MATLAB command prompt.

 Interpolation Using Prelookup

1-949

Data Type Support

The Interpolation Using Prelookup block accepts real signals of any numeric data type
supported by Simulink software, except Boolean. The Interpolation Using Prelookup
block supports fixed-point data types for signals, table data, and intermediate results.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-950

Parameters and Dialog Box

• “Main tab” on page 1-951

 Interpolation Using Prelookup

1-951

• “Data Types tab” on page 1-954

Main tab

Number of table dimensions
Specify the number of dimensions that the table data must have. This value defines
the number of independent variables for the table. Enter an integer between 1 and
30 into this field.

Table data
Specify whether to enter table data directly on the dialog box or to inherit the data
from an input port.

• If you set Source to Dialog, enter table data in the edit field under Value. The
size of the table data must match the Number of table dimensions. For this
option, you specify table attributes on the Data Types pane.

• If you set Source to Input port, verify that an upstream signal supplies table
data to the T input port. The size of the table data must match the Number of
table dimensions. For this option, your block inherits table attributes from the T
input port.

During block diagram editing, you can enter an empty matrix (specified as []) or
an undefined workspace variable in the edit field under Value. Use this behavior to
postpone specifying a correctly dimensioned matrix for the table data and continue
editing the block diagram. For information about how to construct multidimensional
arrays in MATLAB, see “Multidimensional Arrays” in the MATLAB documentation.

Click the Edit button to open the Lookup Table Editor (see “Edit Lookup Tables” in
the Simulink documentation).

Interpolation method
Select Flat, Nearest, or Linear. See “Interpolation Methods” in the Simulink
documentation for more information.

Extrapolation method
Select Clip or Linear. See “Extrapolation Methods” in the Simulink documentation
for more information. The Extrapolation method parameter is visible only when
you select Linear as the Interpolation method parameter.

The Interpolation Using Prelookup block does not support Linear extrapolation
when the input or output signals specify integer or fixed-point data types.

1 Blocks — Alphabetical List

1-952

Valid index input may reach last index
Specify how block inputs for index (k) and interval fraction (f) access the last
elements of n-dimensional table data. Index values are zero-based.

Check Box Block Behavior

Selected Returns the value of the last element in a dimension of its
table when:

• k indexes the last table element in the corresponding
dimension

• f is 0
Cleared Returns the value of the last element in a dimension of its

table when:

• k indexes the next-to-last table element in the
corresponding dimension

• f is 1

This check box is visible only when:

• Interpolation method is Linear.
• Extrapolation method is Clip.

Tip When you select Valid index input may reach last index for an Interpolation
Using Prelookup block, you must also select Use last breakpoint for input at or
above upper limit for all Prelookup blocks that feed it. This action allows the
blocks to use the same indexing convention when accessing the last elements of their
breakpoint and table data sets.

Diagnostic for out-of-range input
Specify whether to produce a warning or error when the input k or f is out of range.
Options include:

• None — no warning or error
• Warning — display a warning in the MATLAB Command Window and continue

the simulation

 Interpolation Using Prelookup

1-953

• Error — halt the simulation and display an error in the Diagnostic Viewer

Remove protection against out-of-range index in generated code
Specify whether or not to include code that checks for out-of-range index inputs.

Check Box Result When to Use

Selected Generated code does
not include conditional
statements to check for
out-of-range index inputs.

For code efficiency

Cleared Generated code includes
conditional statements
to check for out-of-range
index inputs.

For safety-critical
applications

Depending on your application, you can run the following Model Advisor checks to
verify the usage of this check box:

• By Product > Embedded Coder > Identify lookup table blocks that
generate expensive out-of-range checking code

• By Product > Simulink Verification and Validation > Modeling Standards
> DO-178C/DO-331 Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

This check box has no effect on generated code when one of the following is true:

• The Prelookup block feeds index values to the Interpolation Using Prelookup
block.

Because index values from the Prelookup block are always valid, no check code is
necessary.

• The data type of the input k restricts the data to valid index values.

For example, unsigned integer data types guarantee nonnegative index values.
Therefore, unsigned input values of k do not require check code for negative
values.

Number of sub-table selection dimensions

1 Blocks — Alphabetical List

1-954

Specify the number of dimensions of the subtable that the block uses to compute the
output. Follow these rules:

• To enable subtable selection, enter a positive integer.

This integer must be less than or equal to the Number of table dimensions.
• To disable subtable selection, enter 0 to interpolate the entire table.

For more information, see “How The Block Interpolates a Subset of Table Data” on
page 1-948.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Data Types tab

Note: The parameters for table attributes (data type, minimum, and maximum) are not
available when you set Source to Input port. In this case, the block inherits all table
attributes from the T input port.

Table data > Data Type
Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the table data type.

Tip Specify a table data type different from the output data type for these cases:

 Interpolation Using Prelookup

1-955

• Lower memory requirement for storing table data that uses a smaller type than
the output signal

• Sharing of prescaled table data between two Interpolation Using Prelookup blocks
with different output data types

• Sharing of custom storage table data in Simulink Coder generated code for blocks
with different output data types

Table data > Minimum
Specify the minimum value for table data. The default value is [] (unspecified).

Table data > Maximum
Specify the maximum value for table data. The default value is [] (unspecified).

Intermediate results > Data Type
Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the intermediate results data type.

Tip Use this parameter to specify higher precision for internal computations than for
table data or output data.

Output > Data Type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object

1 Blocks — Alphabetical List

1-956

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the output data type.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Output > Minimum

Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output > Maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Internal rule priority
Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Lock data type settings against changes by the fixed-point tools
Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” in the Fixed-Point Designer documentation.

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding
function in the mask field.

 Interpolation Using Prelookup

1-957

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can

1 Blocks — Alphabetical List

1-958

detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Examples

In the following model, a Constant block feeds the table data values to the T input port
of the Interpolation Using Prelookup block.

The Interpolation Using Prelookup block inherits the following table attributes from the
T input port:

Table Attribute Value

Minimum –Inf
Maximum Inf

Data type single

Similarly, a Constant block feeds the breakpoint data set to the bp input port of the
Prelookup block, which inherits the following breakpoint attributes:

Breakpoint Attribute Value

Minimum –Inf
Maximum Inf

Data type single

Simulink uses double-precision, floating-point data to perform the computations in this
model. However, the model stores the breakpoint and table data as single-precision,

 Interpolation Using Prelookup

1-959

floating-point data. Using a lower-precision data type to store breakpoint and table data
reduces the memory requirement.

For other examples, see “Prelookup and Interpolation Blocks” in the Simulink
documentation.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Prelookup

Introduced in R2006b

1 Blocks — Alphabetical List

1-960

Interpreted MATLAB Function

Apply MATLAB function or expression to input

Library

User-Defined Functions

Description

The Interpreted MATLAB Function block applies the specified MATLAB function or
expression to the input. The output of the function must match the output dimensions of
the block.

Some valid expressions for this block are:

sin

atan2(u(1), u(2))

u(1)^u(2)

Note This block is slower than the Fcn block because it calls the MATLAB parser during
each integration step. Consider using built-in blocks (such as the Fcn block or the Math
Function block) instead. Alternatively, you can write the function as a MATLAB S-
function or MEX-file S-function, then access it using the S-Function block.

Data Type Support

The Interpreted MATLAB Function block accepts one real or complex input of type
double and generates real or complex output of type double, depending on the setting
of the Output signal type parameter.

 Interpreted MATLAB Function

1-961

Parameters and Dialog Box

MATLAB function
Specify the function or expression. If you specify a function only, it is not necessary to
include the input argument in parentheses.

Output dimensions
Specify the dimensions of the block output signal, for example, 2 for a two-element
vector. The output dimensions must match the dimensions of the value returned by
the function or expression in the MATLAB function field.

1 Blocks — Alphabetical List

1-962

Specify -1 to inherit the dimensions from the output of the specified function or
expression. To determine the output dimensions, Simulink runs the function or
expression once before simulation starts.

Note: If you specify -1 for this parameter and your function has persistent variables,
then the variables might update before the simulation starts. If you need to use
persistent variables, consider setting this parameter to a value other than -1.

Output signal type
Specify the output signal type of the block as real, complex, or auto. A value of
auto sets the output type to be the same as the type of the input signal.

Collapse 2-D results to 1-D
Select this check box to output a 2-D array as a 1-D array containing the 2-D array's
elements in column-major order.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation No

Introduced in R2011a

 Interval Test

1-963

Interval Test
Determine if signal is in specified interval

Library

Logic and Bit Operations

Description

The Interval Test block outputs TRUE if the input is between the values specified by
the Lower limit and Upper limit parameters. The block outputs FALSE if the input is
outside those values. The output of the block when the input is equal to the Lower limit
or the Upper limit is determined by whether the boxes next to Interval closed on left
and Interval closed on right are selected in the dialog box.

Data Type Support

The Interval Test block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

In this case, the Upper limit and Lower limit values must be of the same
enumerated type.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-964

Parameters and Dialog Box

Interval closed on right
When you select this check box, the Upper limit is included in the interval for which
the block outputs TRUE.

Upper limit
The upper limit of the interval for which the block outputs TRUE.

Interval closed on left
When you select this check box, the Lower limit is included in the interval for which
the block outputs TRUE.

Lower limit

 Interval Test

1-965

The lower limit of the interval for which the block outputs TRUE.
Output data type

Select the output data type: boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Interval Test Dynamic

Introduced before R2006a

1 Blocks — Alphabetical List

1-966

Interval Test Dynamic
Determine if signal is in specified interval

Library

Logic and Bit Operations

Description

The Interval Test Dynamic block outputs TRUE if the input is between the values of
the external signals up and lo. The block outputs FALSE if the input is outside those
values. The output of the block when the input is equal to the signal up or the signal lo is
determined by whether the boxes next to Interval closed on left and Interval closed
on right are selected in the dialog box.

Data Type Support

The Interval Test Dynamic block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

In this case, all inputs must be of the same enumerated type.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Interval Test Dynamic

1-967

Parameters and Dialog Box

Interval closed on right
When you select this check box, the value of the signal connected to the block's “up”
input port is included in the interval for which the block outputs TRUE.

Interval closed on left
When you select this check box, the value of the signal connected to the block's “lo”
input port is included in the interval for which the block outputs TRUE.

Output data type
Select the output data type: boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes

1 Blocks — Alphabetical List

1-968

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Interval Test

Introduced before R2006a

 Knob

1-969

Knob
Set value on dial to tune parameters or variables

Library

Dashboard

Description

The Knob block enables you to control tunable parameters and variables in your model
during simulation.

To control a tunable parameter or variable using the Knob block, double-click the Knob
block to open the dialog box. Select a block in the model canvas. The tunable parameter
or variable appears in the dialog box Connection table. Select the option button next
to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable to the block.

The tick range determines the continuous values generated for the tunable parameter
or variable. You can modify the tick range by modifying the Minimum, Maximum, and
Tick Interval values.

Limitations

The Knob block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

1 Blocks — Alphabetical List

1-970

Limitation Workaround

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter
uses an index of the variable engine,
which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

 Knob

1-971

Parameters and Dialog Box

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next

1 Blocks — Alphabetical List

1-972

to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

Minimum

Minimum tick mark value.

Settings

Default: 0

Specify this number as a finite, real, double, scalar value.

Dependencies

The Minimum tick value must be less than the Maximum tick value.

Maximum

Maximum tick mark value.

Settings

Default: 100

Specify this number as a finite, real, double, scalar value.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

Tick Interval

Interval between major tick marks.

 Knob

1-973

Settings

Default: auto

Specify this number as a finite, real, positive, integer, scalar value. Specify as auto for
the block to adjust the tick interval automatically.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

1 Blocks — Alphabetical List

1-974

Lamp
Display color that reflects input value

Library

Dashboard

Description

The Lamp block displays distinct input values from connected signals during simulation
on a colored lamp.

To display data from a signal on the Lamp block, double-click the Lamp block to open
the dialog box. Select a signal in the model canvas. The signal appears in the dialog box
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal to the block.

You can add or remove input values that are indicated by the Lamp block using the
States table.

Limitations

The Lamp block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

If you turn off streaming for a signal connected to a Lamp block, then the connection
shows as broken. Signal data does not stream to the block. To view signal data again,
double-click the Lamp block and reconnect the signal.

The External simulation mode is not supported for the Lamp block.

 Lamp

1-975

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-976

Connection

Select a signal to connect and display.

To view the data from a signal, select a signal in the model. The signal appears in the
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal.

Settings

The table has a row for the signal connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

States

State values and colors indicated on the lamp.

The states defined in the table determine the distinct input values indicated by the
colored lamp, which are represented by the Color field. You can modify the input value
states by editing the State and Color in the table.

To add a state, click the + button, enter the State value, and select a Color.

To remove a state, select the state in the table, and click the - button.

Settings

Default: 0, 1, and undefined

The undefined state is indicated when values that are not defined in the states table
are input into the Lamp block.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top

 Lamp

1-977

Show the label at the top of the block.
Bottom

Show the label at the bottom of the block.
Hide

Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

1 Blocks — Alphabetical List

1-978

Level-2 MATLAB S-Function
Use Level-2 MATLAB S-function in model

Library

User-Defined Functions

Description

This block allows you to use a Level-2 MATLAB S-function (see “Write Level-2 MATLAB
S-Functions”) in a model. To do this, create an instance of this block in the model. Then
enter the name of the Level-2 MATLAB S-function in the S-function name field of the
block's parameter dialog box.

Note: Use the S-Function block to include a Level-1 MATLAB S-function in a block.

If the Level-2 MATLAB S-function defines any additional parameters, you can enter
them in the Parameters field of the block's parameter dialog box. Enter the parameters
as MATLAB expressions that evaluate to their values in the order defined by the
MATLAB S-function. Use commas to separate each expression.

If a model includes a Level-2 MATLAB S-Function block, and an error occurs in the
S-function, the Level-2 MATLAB S-Function block displays MATLAB stack trace
information for the error in a dialog box. Click OK to close the dialog box.

Data Type Support

Depends on the MATLAB file that defines the behavior of a particular instance of this
block.

 Level-2 MATLAB S-Function

1-979

Parameters and Dialog Box

S-function name
Specify the name of a MATLAB function that defines the behavior of this block. The
MATLAB function must follow the Level-2 standard for writing MATLAB S-functions
(see “Write Level-2 MATLAB S-Functions” for details).

Parameters
Specify values of the parameters of this block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Depends on the MATLAB S-function
Direct Feedthrough Depends on the MATLAB S-function
Multidimensional Signals Yes

1 Blocks — Alphabetical List

1-980

Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation No

Introduced in R2010b

 Linear Gauge

1-981

Linear Gauge

Display input value on linear scale

Library

Dashboard

Description

The Linear Gauge block displays connected signals during simulation on a linear scale.

To view data from a signal on the Linear Gauge block, double-click the Linear Gauge
block to open the dialog box. Select a signal in the model canvas. The signal appears in
the dialog box Connection table. Select the option button next to the signal you want to
display. Click Apply to connect the signal to the block.

You can modify the tick range by modifying the Minimum, Maximum, and Tick
Interval values.

You can also add scale colors that appear on the outside of the Linear Gauge block scale
using the Scale Colors table.

Limitations

The Linear Gauge block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

1 Blocks — Alphabetical List

1-982

If you turn off streaming for a signal connected to any dashboard gauge, then the
connection shows as broken. Signal data does not stream to the block. To view signal
data again, double-click the gauge and reconnect the signal.

The External simulation mode is not supported for the Linear Gauge block.

 Linear Gauge

1-983

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-984

Connection

Select a signal to connect and display.

To view the data from a signal, select a signal in the model. The signal appears in the
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal.

Settings

The table has a row for the signal connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

Minimum

Minimum tick mark value.

Settings

Default: 0

Specify this number as a finite, real, double, scalar value.

Dependencies

The Minimum tick value must be less than the Maximum tick value.

Maximum

Maximum tick mark value.

Settings

Default: 100

Specify this number as a finite, real, double, scalar value.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

 Linear Gauge

1-985

Tick Interval

Interval between major tick marks.

Settings

Default: auto

Specify this number as a finite, real, positive, integer, scalar value. Specify as auto for
the block to adjust the tick interval automatically.

Scale Colors

Specify ranges of color bands on the outside of the scale. Specify the minimum and
maximum color range to display on the gauge.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

1 Blocks — Alphabetical List

1-986

Logical Operator

Perform specified logical operation on input

Library

Logic and Bit Operations

Description

The Logical Operator block performs the specified logical operation on its inputs. An
input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator parameter
list. If you select rectangular as the Icon shape property, the block updates to display
the name of the selected operator. The supported operations are given below.

Operation Description

AND TRUE if all inputs are TRUE
OR TRUE if at least one input is TRUE
NAND TRUE if at least one input is FALSE
NOR TRUE when no inputs are TRUE
XOR TRUE if an odd number of inputs are TRUE
NXOR TRUE if an even number of inputs are TRUE
NOT TRUE if the input is FALSE

If you select distinctive as the Icon shape, the block's appearance indicates its
function. Simulink software displays a distinctive shape for the selected operator,
conforming to the IEEE Standard Graphic Symbols for Logic Functions:

 Logical Operator

1-987

The number of input ports is specified with the Number of input ports parameter. The
output type is specified with the Output data type parameter. An output value is 1 if
TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types that satisfy this
condition include signed and unsigned integers, and any floating-point data type.

The size of the output depends on input vector size and the selected operator:

• If the block has more than one input, any nonscalar inputs must have the same
dimensions. For example, if any input is a 2-by-2 array, all other nonscalar inputs
must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the nonscalar inputs.

If the block has more than one input, the output has the same dimensions as the
inputs (after scalar expansion) and each output element is the result of applying the
specified logical operation to the corresponding input elements. For example, if the
specified operation is AND and the inputs are 2-by-2 arrays, the output is a 2-by-2
array whose top left element is the result of applying AND to the top left elements of
the inputs, etc.

• For a single vector input, the block applies the operation (except the NOT operator) to
all elements of the vector. The output is always a scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector. If
the input is a vector, the output is a vector of the same size containing the logical
complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an addition- modulo-two
operation as mandated by the IEEE Standard for Logic Elements.

1 Blocks — Alphabetical List

1-988

Data Type Support

The Logical Operator block accepts real signals of any numeric data type that Simulink
supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Logical Operator block dialog box appears as follows:

The Data Type pane of the Logical Operator block dialog box appears as follows:

 Logical Operator

1-989

1 Blocks — Alphabetical List

1-990

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Logical Operator

1-991

Operator

Select logical operator to apply to block inputs.

Settings

Default: AND

AND

TRUE if all inputs are TRUE
OR

TRUE if at least one input is TRUE
NAND

TRUE if at least one input is FALSE
NOR

TRUE when no inputs are TRUE
XOR

TRUE if an odd number of inputs are TRUE
NXOR

TRUE if an even number of inputs are TRUE
NOT

TRUE if the input is FALSE

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-992

Number of input ports

Specify number of block inputs.

Settings

Default: 2

• The value must be appropriate for the selected operator.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Logical Operator

1-993

Icon shape

Specify shape of the block icon.

Settings

Default: rectangular

rectangular

Result in a rectangular block that displays the name of the selected operator.
distinctive

Use the graphic symbol for the selected operator as specified by the IEEE standard.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-994

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

 Logical Operator

1-995

Require all inputs and output to have the same data type

Require all inputs and the output to have the same data type.

Settings

Default: Off

 On
Require all inputs and the output to have the same data type.

 Off
Do not require all inputs and the output to have the same data type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-996

Output data type

Specify the output data type.

Settings

Default: boolean

Inherit: Logical (see Configuration Parameters: Optimization)

Uses the Implement logic signals as Boolean data configuration parameter (see
“Implement logic signals as Boolean data (vs. double) ”) to specify the output data
type.

Note: This option supports models created before the boolean option was available.
Use one of the other options, preferably boolean, for new models.

boolean

Specifies output data type is boolean.
fixdt(1,16)

Specifies output data type is fixdt(1,16).
<data type expression>

Uses the name of a data type object, for example, Simulink.NumericType.

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16,
int32, or uint32), enclose the expression in single quotes. For example, enter
'double' instead of double.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Logical Operator

1-997

Mode

Select the category of data to specify.

Settings

Default: Built in

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables Logical (see
Configuration Parameters: Optimization).

Built in

Specifies built-in data types. Selecting Built in enables boolean.
Fixed point

Specifies fixed-point data types.
Expression

Specifies expressions that evaluate to data types.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-998

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Logical Operator

1-999

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1000

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Logical Operator

1-1001

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Integer

Integer

Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

Examples

Logical Operator Block: AND Operator

In the sldemo_fuelsys model, the fuel_rate_control/airflow_calc subsystem uses
a Logical Operator block as an AND operator:

1 Blocks — Alphabetical List

1-1002

The output of the Logical Operator block (the enable_integration signal) feeds into
the control port of a Switch block that activates feedback control.

When the Logical Operator block output is... Feedback control...

1 Occurs
0 Does not occur

Logical Operator Block: OR Operator

In the sldemo_hardstop model, the Logical Operator block appears as an OR operator:

 Logical Operator

1-1003

The output of the Logical Operator block feeds into the trigger port of an Integrator block
to control whether velocity resets to the initial condition.

When the Logical Operator block output
changes...

The Integrator block...

From 0 to 1 Resets the velocity
From 1 to 0 Does not reset velocity

1 Blocks — Alphabetical List

1-1004

Logical Operator Block: NOT Operator

In the sldemo_clutch model, the Logical Operator block appears as a NOT operator:

 Logical Operator

1-1005

1 Blocks — Alphabetical List

1-1006

The output of the Logical Operator block (the clutch slipping signal) feeds into the
trigger port of an enabled subsystem.

When the Logical Operator block outputs... The Unlocked subsystem is...

1 Enabled
0 Disabled

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 1-D Lookup Table

1-1007

1-D Lookup Table
Approximate one-dimensional function

Library

Lookup Tables

Description

The 1-D Lookup Table block is a one-dimensional version of the n-D Lookup Table
block.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced in R2011a

1 Blocks — Alphabetical List

1-1008

2-D Lookup Table
Approximate two-dimensional function

Library

Lookup Tables

Description

The 2-D Lookup Table block is a two-dimensional version of the n-D Lookup Table
block.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced in R2011a

 n-D Lookup Table

1-1009

n-D Lookup Table
Approximate N-dimensional function

Library
Lookup Tables

Description

Supported Block Operations

The n-D Lookup Table block evaluates a sampled representation of a function in N
variables

y F x x x xN= (, , ,...,)1 2 3

where the function F can be empirical. The block maps inputs to an output value by
looking up or interpolating a table of values you define with block parameters. The block
supports flat (constant), linear, and cubic-spline interpolation methods. You can apply
these methods to a table of any dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the
second input identifies the second dimension (column) breakpoints, and so on.

See “How to Rotate a Block” in the Simulink documentation for a description of the port
order for various block orientations.

1 Blocks — Alphabetical List

1-1010

Specification of Breakpoint and Table Data

The following block parameters define the breakpoint and table data.

Block Parameter Purpose

Number of table dimensions Specifies the number of dimensions of your
lookup table.

Breakpoints Specifies a breakpoint vector that
corresponds to each dimension of your
lookup table.

Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more
information, see fixpt_evenspace_cleanup in the Simulink documentation and
“Identify questionable fixed-point operations” in the Simulink Coder documentation.

How the Block Generates Output

The n-D Lookup Table block generates output by looking up or estimating table values
based on the input values:

When block inputs... The n-D Lookup Table block...

Match the values of indices in breakpoint
data sets

Outputs the table value at the intersection
of the row, column, and higher dimension
breakpoints

Do not match the values of indices in
breakpoint data sets, but are within range

Interpolates appropriate table values,
using the Interpolation method you
select

Do not match the values of indices in
breakpoint data sets, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Other Blocks That Perform Equivalent Operations

You can use the Interpolation Using Prelookup block with the Prelookup block
to perform the equivalent operation of one n-D Lookup Table block. This combination of

 n-D Lookup Table

1-1011

blocks offers greater flexibility that can result in more efficient simulation performance
for linear interpolations.

When the lookup operation is an array access that does not require interpolation, use the
Direct Lookup Table (n-D) block. For example, if you have an integer value k and
you want the kth element of a table, y = table(k), interpolation is unnecessary.

Data Type Support

The n-D Lookup Table block supports all numeric data types that Simulink supports,
including fixed-point data types. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

For cubic spline interpolation and linear extrapolation modes, the following parameters
must use the same floating-point type:

• Table data
• Breakpoints
• Fraction
• Intermediate results
• Output

Inputs for indexing must be real, but table data can be complex.

1 Blocks — Alphabetical List

1-1012

Parameters and Dialog Box

• “Table and Breakpoints tab” on page 1-1012
• “Algorithm tab” on page 1-1014
• “Data Types tab” on page 1-1018

Table and Breakpoints tab

Number of table dimensions

 n-D Lookup Table

1-1013

Enter the number of dimensions of the lookup table by specifying an integer from 1 to
30. This parameter determines:

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint sets to specify

Table data
Enter the table of output values.

During simulation, the matrix size must match the dimensions defined by the
Number of table dimensions parameter. However, during block diagram editing,
you can enter an empty matrix (specified as []) or an undefined workspace variable.
This technique lets you postpone specifying a correctly dimensioned matrix for the
table data and continue editing the block diagram. For information about how to
construct multidimensional arrays in MATLAB, see “Multidimensional Arrays” in
the MATLAB online documentation.

Breakpoints specification
Specify whether to enter data as explicit breakpoints or as parameters that generate
evenly spaced breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values
and enter breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this
parameter to Even spacing and enter values for the First point and Spacing
parameters for each dimension of breakpoint data. The block calculates the
number of points to generate from the table data.

First point
Specify the first point in your evenly spaced breakpoint data. This parameter is
available when Breakpoints specification is set to Even spacing.

Spacing
Specify the spacing between points in your evenly-spaced breakpoint data. This
parameter is available when Breakpoints specification is set to Even spacing.

Breakpoints
Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the
value of the Breakpoints specification parameter.

• If you set Breakpoints specification to Even spacing, enter the parameters
First point and Spacing in each Breakpoints row to generate evenly-spaced

1 Blocks — Alphabetical List

1-1014

breakpoints in the respective dimension. Your table data determines the number
of evenly spaced points.

• If you set Breakpoints specification to Explicit values, enter the
breakpoint set that corresponds to each dimension of table data in each
Breakpoints row. For each dimension, specify breakpoints as a 1-by-n or n-by-1
vector whose values are strictly monotonically increasing.

Edit table and breakpoints
Click this button to open the Lookup Table Editor. For more information, see “Edit
Lookup Tables” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Algorithm tab

Interpolation method
Select Flat, Nearest, Linear, or Cubic spline. See “Interpolation Methods” in
the Simulink documentation for more information.

If you select Cubic spline, the block supports only scalar signals. The other
interpolation methods support nonscalar signals.

Extrapolation method
Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” in the
Simulink documentation for more information.

To select Cubic spline for Extrapolation method, you must also select Cubic
spline for Interpolation method.

Use last table value for inputs at or above last breakpoint
Using this check box, specify the indexing convention that the block uses to address
the last element of a breakpoint set and its corresponding table value. This check box
is relevant if the input is larger than the last element of the breakpoint data. This
parameter is visible only when:

• Interpolation method is Linear.

 n-D Lookup Table

1-1015

• Extrapolation method is Clip.

Check Box Block Uses Index Of The... Interval Fraction

Selected Last element of breakpoint data
on the Table and Breakpoints
tab

0

Cleared Next-to-last element of
breakpoint data on the Table
and Breakpoints tab

1

Given an input u within range of a breakpoint set bp, the interval fraction f, in the
range 0 ≤ f ≤ 1, is computed as shown below.

Suppose the breakpoint set is [1 4 5] and input u is 5.5. If you select this check
box, the index is that of the last element (5) and the interval fraction is 0. If you
clear this checkbox, the index is that of the next-to-last element (4) and the interval
fraction is 1.

Diagnostic for out-of-range input
Specify whether to produce a warning or error when the input is out of range.
Options include:

• None — no warning or error

1 Blocks — Alphabetical List

1-1016

• Warning — display a warning in the MATLAB Command Window and continue
the simulation

• Error — halt the simulation and display an error in the Diagnostic Viewer

Remove protection against out-of-range input in generated code
Specify whether or not to include code that checks for out-of-range breakpoint input
values.

Check Box Result When to Use

Selected Generated code does
not include conditional
statements to check for
out-of-range breakpoint
inputs.

For code efficiency

Cleared Generated code includes
conditional statements
to check for out-of-range
breakpoint inputs.

For safety-critical
applications

Depending on your application, you can run the following Model Advisor checks to
verify the usage of this check box:

• By Product > Embedded Coder > Identify lookup table blocks that
generate expensive out-of-range checking code

• By Product > Simulink Verification and Validation > Modeling Standards
> DO-178C/DO-331 Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Index search method
Select Evenly spaced points, Linear search, or Binary search. Each search
method has speed advantages in different circumstances:

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve
optimal speed by selecting Evenly spaced points to calculate table indices.

This algorithm uses only the first two breakpoints of a set to determine the offset
and spacing of the remaining points.

 n-D Lookup Table

1-1017

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear
search with Begin index search using previous index result produces
the best performance.

• If input signals jump more than one or two table intervals per time step,
selecting Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models
that rely heavily on lookup tables.

Note: The generated code stores only the first breakpoint, the spacing, and the
number of breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Begin index search using previous index result
Select this check box when you want the block to start its search using the index
found at the previous time step. For inputs that change slowly with respect to the
interval size, enabling this option can improve performance. Otherwise, the linear
search and binary search methods can take longer, especially for large breakpoint
sets.

Use one input port for all input data
Select this check box to use only one input port that expects a signal that is N
elements wide for an N-dimensional table. This option is useful for removing line
clutter on a block diagram with many lookup tables.

Note: When you select this check box, one input port with the label u appears on the
block.

Support tunable table size in code generation
Select this check box to enable tunable table size in the generated code. This option
enables you to change the size and values of the lookup table and breakpoint data in
the generated code without regenerating or recompiling the code.

1 Blocks — Alphabetical List

1-1018

If you set Interpolation method to Cubic spline, this check box is not available.
Maximum indices for each dimension

Specify the maximum index values for each table dimension using zero-based
indexing. You can specify a scalar or vector of positive integer values using the
following data types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Here are some examples of valid specifications:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the

dimensions of the table data. For more information, see “Tunable Table Size in
the Generated Code” on page 1-1023.

This parameter is available when you select Support tunable table size in code
generation. On tuning this parameter in the generated code, provide the new table
data and breakpoints along with the tuned parameter value.

Data Types tab

Note: The dialog box can expand to show additional data type options. Up to 30
breakpoint data type specifications can appear.

Table data > Data Type
Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the table data type.

 n-D Lookup Table

1-1019

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than
the output signal

• Sharing of prescaled table data between two n-D Lookup Table blocks with
different output data types

• Sharing of custom storage table data in the generated code for blocks with
different output data types

Table data > Minimum
Specify the minimum value for table data. The default value is [] (unspecified).

Table data > Maximum
Specify the maximum value for table data. The default value is [] (unspecified).

Breakpoints > Data Type
Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as
corresponding input

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the breakpoint data type.

See “Specify Data Types Using Data Type Assistant” in the Simulink documentation
for more information.

Tip Specify a breakpoint data type different from the corresponding input data type
for these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type
than the input signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with
different input data types

1 Blocks — Alphabetical List

1-1020

• Sharing of custom storage breakpoint data in the generated code for blocks with
different input data types

Breakpoints > Minimum
Specify the minimum value that a set of breakpoint data can have. The default value
is [] (unspecified).

Breakpoints > Maximum
Specify the maximum value that a set of breakpoint data can have. The default value
is [] (unspecified).

Fraction > Data Type
Specify the fraction data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the fraction data type.

See “Specify Data Types Using Data Type Assistant” in the Simulink documentation
for more information.

Intermediate results > Data Type
Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the intermediate results data type.

 n-D Lookup Table

1-1021

Tip Use this parameter to specify higher (or lower) precision for internal
computations than for table data or output data.

Output > Data Type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the output data type.

See “Control Signal Data Types” for more information.
Output > Minimum

Specify the minimum value that the block outputs. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output > Maximum
Specify the maximum value that the block outputs. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Internal rule priority
Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Require all inputs to have the same data type

1 Blocks — Alphabetical List

1-1022

Select to require all inputs to have the same data type.
Lock data type settings against changes by the fixed-point tools

Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Fixed-Point Tool” and
“Preparation for Fixed-Point Conversion” in the Fixed-Point Designer documentation.

Integer rounding mode
Specify the rounding mode for fixed-point lookup table calculations that occur during
simulation or execution of code generated from the model. For more information, see
“Rounding” in the Fixed-Point Designer documentation.

This option does not affect rounding of values of block parameters. Simulink rounds
such values to the nearest representable integer value. To control the rounding of a
block parameter, enter an expression using a MATLAB rounding function into the
edit field on the block dialog box.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit integer
can saturate to -128 or
127.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting
has no effect and no saturation code appears. This behavior preserves backward
compatibility.

 n-D Lookup Table

1-1023

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Examples

Interpolation and Extrapolation Behavior

For an example that illustrates linear interpolation and extrapolation methods of this
block, see “Create a Logarithm Lookup Table” in the Simulink documentation.

For an example of entering breakpoint and table data, see “Entering Data in a Block
Parameter Dialog Box” in the Simulink documentation.

Tunable Table Size in the Generated Code

Suppose that you have a lookup table and want to make the size tunable in the generated
code. Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;

p.Value.MaxIdx = [2 2];

p.Value.BP1 = [1 2 3];

p.Value.BP2 = [1 4 16];

p.Value.Table = [4 5 6; 16 19 20; 10 18 23];

p.DataType = 'Bus: slLookupTable';

p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure

Simulink.Bus.createObject(p.Value);

slLookupTable = slBus1;

slLookupTable.Elements(1).DataType = 'uint32';

• The following block parameters apply in the n-D Lookup Table block dialog box:

Parameter Value

Number of table dimensions 2

Table data p.Table

1 Blocks — Alphabetical List

1-1024

Parameter Value

Breakpoints 1 p.BP1

Breakpoints 2 p.BP2

Support tunable table size in code
generation

on

Maximum indices for each dimension p.MaxIdx

The generated model_types.h header file contains a type definition that looks
something like this:

typedef struct {

 uint32_T MaxIdx[2];

 real_T BP1[3];

 real_T BP2[3];

 real_T Table[9];

} slLookupTable;

The generated model.c file contains code that looks something like this:

/* Exported block parameters */

slLookupTable p = {

 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }

} ;

/* More code */

/* Model output function */

static void ex_lut_nd_tunable_table_output(int_T tid)

{

 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 */

 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...

p.MaxIdx, p.MaxIdx[0] + 1U);

 n-D Lookup Table

1-1025

 /* Outport: '<Root>/Out1' */

 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.

 * Argument tid is not used in the function. */

 UNUSED_PARAMETER(tid);

}

The highlighted line of code specifies a tunable table size for the lookup table. You can
change the size and values of the lookup table and breakpoint data without regenerating
or recompiling the code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Prelookup, Interpolation Using Prelookup

Introduced in R2011a

1 Blocks — Alphabetical List

1-1026

Lookup Table Dynamic
Approximate one-dimensional function using dynamic table

Library

Lookup Tables

Description

How This Block Differs from Other Lookup Table Blocks

The Lookup Table Dynamic block computes an approximation of a function y = f(x)
using xdat and ydat vectors. The lookup method can use interpolation, extrapolation, or
the original values of the input.

Using the Lookup Table Dynamic block, you can change the table data without stopping
the simulation. For example, you can incorporate new table data if the physical system
you are simulating changes.

Inputs for Breakpoint and Table Data

The xdat vector is the breakpoint data, which must be strictly monotonically increasing.
The value of the next element in the vector must be greater than the value of the
preceding element after conversion to a fixed-point data type. Due to quantization, xdat
can be strictly monotonic for a floating-point data type, but not after conversion to a
fixed-point data type.

The ydat vector is the table data, which is an evaluation of the function at the
breakpoint values.

 Lookup Table Dynamic

1-1027

Note: The inputs to xdat and ydat cannot be scalar (one-element array) values. If you
provide a scalar value to either of these inputs, you see an error upon simulation. Provide
a 1-by-n vector to both the xdat and ydat inputs.

Lookup Table Definition

You define the lookup table by feeding xdat and ydat as 1-by-n vectors to the block. To
reduce ROM usage in the generated code for this block, you can use different data types
for xdat and ydat. However, these restrictions apply:

• The xdat breakpoint data and the x input vector must have the same sign, bias, and
fractional slope. Also, the precision and range for x must be greater than or equal to
the precision and range for xdat.

• The ydat table data and the y output vector must have the same sign, bias, and
fractional slope.

Tip Breakpoints with even spacing can make Simulink Coder generated code division-
free. For more information, see fixpt_evenspace_cleanup in the Simulink
documentation and “Identify questionable fixed-point operations” in the Simulink Coder
documentation.

How the Block Generates Output

The block uses the input values to generate output using the method you select for
Lookup Method:

Lookup Method Block Action

Interpolation-Extrapolation Performs linear interpolation and extrapolation of the
inputs.

• If the input matches a breakpoint, the output is the
corresponding element in the table data.

• If the input does not match a breakpoint, the block
performs linear interpolation between two elements
of the table to determine the output. If the input falls
outside the range of breakpoint values, the block
extrapolates using the first two or last two points.

1 Blocks — Alphabetical List

1-1028

Lookup Method Block Action

Note: If you select this lookup method, Simulink Coder
software cannot generate code for this block.

Interpolation-Use End Values

(default)
Performs linear interpolation but does not extrapolate
outside the end points of the breakpoint data. Instead,
the block uses the end values.

Use Input Nearest Finds the element in xdat nearest the current input.
The corresponding element in ydat is the output.

Use Input Below Finds the element in xdat nearest and below the
current input. The corresponding element in ydat is the
output. If there is no element in xdat below the current
input, the block finds the nearest element.

Use Input Above Finds the element in xdat nearest and above the
current input. The corresponding element in ydat is the
output. If there is no element in xdat above the current
input, the block finds the nearest element.

Note The Use Input Nearest, Use Input Below, and Use Input Above methods
perform the same action when the input x matches a breakpoint value.

Some continuous solvers subdivide the simulation time span into major and minor time
steps. A minor time step is a subdivision of the major time step. The solver produces
a result at each major time step and uses results at minor time steps to improve the
accuracy of the result at the major time step. For continuous solvers, the output of the
Lookup Table Dynamic block can appear like a stair step because the signal is fixed
in minor time step to avoid incorrect results. For more information about the effect of
solvers on block output, see “Solvers” in the Simulink documentation.

Data Type Support
The Lookup Table Dynamic block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

 Lookup Table Dynamic

1-1029

• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

• “Main tab” on page 1-1029
• “Signal Attributes tab” on page 1-1030

Main tab

Lookup Method
Specify the lookup method. For details, see “How the Block Generates Output” on
page 1-1027.

1 Blocks — Alphabetical List

1-1030

Signal Attributes tab

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt('double')

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Examples

For an example of... See...

Breakpoint and table data entry “Entering Data Using Inports of the
Lookup Table Dynamic Block”

 Lookup Table Dynamic

1-1031

For an example of... See...

Block output for different lookup methods “Example Output for Lookup Methods”

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

n-D Lookup Table

Introduced before R2006a

1 Blocks — Alphabetical List

1-1032

Magnitude-Angle to Complex
Convert magnitude and/or a phase angle signal to complex signal

Library
Math Operations

Description

Supported Operations

The Magnitude-Angle to Complex block converts magnitude and phase angle inputs to a
complex output. The angle input must be in radians.

The block supports the following combinations of input dimensions when there are two
block inputs:

• Two inputs of equal dimensions
• One scalar input and the other an n-dimensional array

If the block input is an array, the output is an array of complex signals. The elements
of a magnitude input vector map to the magnitudes of the corresponding complex
output elements. Similarly, the elements of an angle input vector map to the angles
of the corresponding complex output elements. If one input is a scalar, it maps to the
corresponding component (magnitude or angle) of all the complex output signals.

Effect of Out-of-Range Input on CORDIC Approximations

If you use the CORDIC approximation method (see “Definitions” on page 1-1033), the
block input for phase angle has the following restrictions:

• For signed fixed-point types, the input angle must fall within the range [–2π, 2π)
radians.

 Magnitude-Angle to Complex

1-1033

• For unsigned fixed-point types, the input angle must fall within the range [0, 2π)
radians.

The following table summarizes what happens for an out-of-range input:

Block Usage Effect of Out-of-Range Input

Simulation An error appears.
Generated code
Accelerator modes

Undefined behavior occurs.

Ensure that you use an in-range input for the Magnitude-Angle to Complex block when
you use the CORDIC approximation. Avoid relying on undefined behavior for generated
code or Accelerator modes.

Definitions

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Data Type Support

The block accepts real input signals of the following data types:

• Floating point
• Fixed point (only when Approximation method is CORDIC)

The following restrictions also apply:

1 Blocks — Alphabetical List

1-1034

• If one input uses a floating-point type, the other input must use the same data type.
For example, both signals must be double or single.

• If one input uses a fixed-point type, the other input must also use a fixed-point type.

Parameters and Dialog Box

The dialog box for this block appears as follows:

Input
Specify the kind of input: a magnitude input, an angle input, or both.

Angle (Magnitude)

Input What to Specify

Magnitude The constant phase angle of the output
signal in radians

 Magnitude-Angle to Complex

1-1035

Input What to Specify

Angle The constant magnitude of the output
signal

This parameter is not available when Input is Magnitude and angle.
Approximation method

Specify the type of approximation for computing output.

Approximation Method Data Types Supported When to Use This Method

None (default) Floating point You want to use the default
Taylor series algorithm.

CORDIC Floating point and fixed
point

You want a fast,
approximate calculation.

When you use the CORDIC approximation, follow these guidelines:

• For signed fixed-point types, the input angle must fall within the range [–2π, 2π)
radians.

• For unsigned fixed-point types, the input angle must fall within the range [0, 2π)
radians.

The block uses the following data type propagation rules:

Data Type of
Magnitude Input

Approximation Method Data Type of Complex Output

Floating point None or CORDIC Same as input
Signed, fixed point CORDIC fixdt(1, WL + 2, FL)

where WL and FL are the word
length and fraction length of the
magnitude

Unsigned, fixed
point

CORDIC fixdt(1, WL + 3, FL)

where WL and FL are the word
length and fraction length of the
magnitude

Number of iterations

1 Blocks — Alphabetical List

1-1036

Specify the number of iterations to perform the CORDIC algorithm. The default
value is 11.

Data Type of Block Inputs Value You Can Specify

Floating point A positive integer
Fixed point A positive integer that does not exceed

the word length of the magnitude input
or the word length of the phase angle
input, whichever value is smaller

Entering a value that is not a positive integer causes an error.

This parameter is available when you set Approximation method to CORDIC.
Scale output by reciprocal of gain factor

Select this check box to scale the real and imaginary parts of the complex output by
a factor of (1/CORDIC gain). This value depends on the number of iterations you
specify. As the number of iterations goes up, the value approaches 1.647.

This check box is selected by default, which leads to a more numerically accurate
result for the complex output, X + iY. However, scaling the output adds two extra
multiplication operations, one for X and one for Y.

This parameter is available when you set Approximation method to CORDIC.
Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double | Single | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes

 Magnitude-Angle to Complex

1-1037

Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also

Complex to Magnitude-Angle

Introduced before R2006a

1 Blocks — Alphabetical List

1-1038

Manual Switch

Switch between two inputs

Library

Signal Routing

Description

The Manual Switch block is a toggle switch that selects one of its two inputs to pass
through to the output. To toggle between inputs, double-click the block. The block
propagates the selected input to the output, while the block discards the unselected
input. You can interactively control the signal flow by setting the switch before you start
the simulation or by changing the switch while the simulation is executing. The Manual
Switch block retains its current state when you save the model.

Data Type Support

The Manual Switch block accepts real or complex signals of any data type that Simulink
supports, including fixed-point and enumerated data types. For more information, see “
Data Types Supported by Simulink” in the Simulink documentation.

Parameters and Dialog Box

Double-clicking the Manual Switch block toggles the input. To open the block dialog box,
right-click the block and select Block Parameters.

 Manual Switch

1-1039

• “Allow the two inputs to differ in size” on page 1-1040
• “Sample time” on page 1-297

1 Blocks — Alphabetical List

1-1040

Allow the two inputs to differ in size

Select this check box to allow input signals with different sizes.

Settings

Default: Off

 On
Block allows input signals with different sizes, and propagates the input signal size
to the output signal.

 Off
Block expands scalar inputs to have the same dimensions as nonscalar inputs. For
more information, see “Scalar Expansion of Inputs and Parameters”.

Command-Line Information
Parameter: varsize
Type: string
Value: 'on' | 'off'
Default: 'off'

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following models show how to use the Manual Switch block:

• sldemo_auto_climatecontrol

• sldemo_fuelsys

• sldemo_doublebounce

 Manual Switch

1-1041

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1042

Math Function

Perform mathematical function

Library

Math Operations

Description

The Math Function block performs numerous common mathematical functions.

Tip To perform square root calculations, use the Sqrt block.

You can select one of the following functions from the Function parameter list.

Function Description Mathematical Expression MATLAB Equivalent

exp Exponential e
u exp

log Natural logarithm ln u log

10^u Power of base 10 10
u 10.^u

(see power)
log10 Common (base 10)

logarithm
log u log10

magnitude^2 Complex modulus |u|
2 (abs(u)).^2

(see abs and power)
square Power 2 u

2 u.^2

(see power)

 Math Function

1-1043

Function Description Mathematical Expression MATLAB Equivalent

pow Power u
v power

conj Complex conjugate ū conj

reciprocal Reciprocal 1/u 1./u

(see rdivide)
hypot Square root of sum

squares
(u

2
+v

2
)
0.5 hypot

rem Remainder after
division

— rem

mod Modulus after division — mod

transpose Transpose u
T u.'

(see “Array vs. Matrix
Operations”)

hermitian Complex conjugate
transpose

u
H u'

(see “Array vs. Matrix
Operations”)

The block output is the result of the operation of the function on the input or inputs. The
functions support the following types of operations.

Function Scalar Operations Element-Wise Vector and
Matrix Operations

Vector and Matrix
Operations

exp yes yes —
log yes yes —
10^u yes yes —
log10 yes yes —
magnitude^2 yes yes —
square yes yes —
pow yes yes —
conj yes yes —
reciprocal yes yes —
hypot yes, on two inputs yes, on two inputs (two

vectors or two matrices
—

1 Blocks — Alphabetical List

1-1044

Function Scalar Operations Element-Wise Vector and
Matrix Operations

Vector and Matrix
Operations

of the same size, a
scalar and a vector, or a
scalar and a matrix)

rem yes, on two inputs yes, on two inputs (two
vectors or two matrices
of the same size, a
scalar and a vector, or a
scalar and a matrix)

—

mod yes, on two inputs yes, on two inputs (two
vectors or two matrices
of the same size, a
scalar and a vector, or a
scalar and a matrix)

—

transpose yes — yes
hermitian yes — yes

The name of the function appears on the block. The appropriate number of input ports
appears automatically.

Tip Use the Math Function block instead of the Fcn block when you want vector or
matrix output, because the Fcn block produces only scalar output.

Data Type Support

The following table shows the input data types that each function of the block can
support.

Function single double boolean built-in integer fixed point

exp yes yes — — —
log yes yes — — —
10^u yes yes — — —
log10 yes yes — — —

 Math Function

1-1045

Function single double boolean built-in integer fixed point

magnitude^2 yes yes — yes yes
square yes yes — yes yes
pow yes yes — — —
conj yes yes — yes yes
reciprocal yes yes — yes yes
hypot yes yes — — —
rem yes yes — yes —
mod yes yes — yes —
transpose yes yes yes yes yes
hermitian yes yes — yes yes

All supported modes accept both real and complex inputs, except for reciprocal, which
does not accept complex fixed-point inputs.

The block output is real or complex, depending on what you select for Output signal
type.

Parameters and Dialog Box

The Main pane of the Math Function block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1046

Function
Specify the mathematical function. See Description for more information about the
options for this parameter.

Output signal type
Specify the output signal type of the Math Function block as auto, real, or
complex.

Output Signal TypeFunction Input Signal Type

Auto Real Complex

exp, log, 10u,
log10, square,
pow, reciprocal,
conjugate,
transpose,
hermitian

real

complex

real

complex

real

error

complex

complex

 Math Function

1-1047

Output Signal TypeFunction Input Signal Type

Auto Real Complex

magnitude

squared

real

complex

real

real

real

real

complex

complex

hypot, rem, mod real

complex

real

error

real

error

complex

error

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

The Signal Attributes pane of the Math Function block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1048

Note Some parameters on this pane are available only when the function you select in
the Function parameter supports fixed-point data types.

Output minimum
Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

 Math Function

1-1049

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.

1 Blocks — Alphabetical List

1-1050

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Direct Feedthrough Yes

 Math Function

1-1051

Sample Time Inherited from driving block
Scalar Expansion Yes, of the input when the function requires

two inputs
Dimensionalized Yes
Multidimensionalized Yes, for all functions except hermitian and

transpose

Zero-Crossing Detection No

See Also

Sqrt, Trigonometric Function

Introduced before R2006a

1 Blocks — Alphabetical List

1-1052

MATLAB Function

Include MATLAB code in models that generate embeddable C code

Library

User-Defined Functions

Description

With a MATLAB Function block, you can write a MATLAB function for use in a Simulink
model. The MATLAB function you create executes for simulation and generates code
for a Simulink Coder target. If you are new to the Simulink and MATLAB products, see
“What Is a MATLAB Function Block?” and “Create Model That Uses MATLAB Function
Block” for an overview.

Double-clicking the MATLAB Function block opens its editor, where you write the
MATLAB function, as in this example:

 MATLAB Function

1-1053

To learn more about this editor, see “MATLAB Function Block Editor”.

You specify input and output data to the MATLAB Function block in the function header
as arguments and return values. The argument and return values of the preceding
example function correspond to the inputs and outputs of the block in the model:

1 Blocks — Alphabetical List

1-1054

You can also define data, input triggers, and function call outputs using the Ports and
Data Manager, which you access from the MATLAB Function Block Editor by selecting
Edit Data. See “Ports and Data Manager”.

The MATLAB Function block generates efficient embeddable code based on an analysis
that determines the size, class, and complexity of each variable. This analysis imposes
the following restrictions:

• The first assignment to a variable defines its, size, class, and complexity.

See “Best Practices for Defining Variables for C/C++ Code Generation”.
• You cannot reassign variable properties after the initial assignment except when

using variable-size data or reusing variables in the code for different purposes.

See “Reassignment of Variable Properties”.

In addition to language restrictions, the MATLAB Function block supports a subset of
the functions available in MATLAB. A list of supported functions is given in “Functions
and Objects Supported for C and C++ Code Generation — Alphabetical List”. These
functions include functions in common categories, such as:

• Arithmetic operators like plus, minus, and power. For more information, see “Array
vs. Matrix Operations”.

• Matrix operations like size, and length
• Advanced matrix operations like lu, inv, svd, and chol
• Trigonometric functions like sin, cos, sinh, and cosh

See “Functions and Objects Supported for C and C++ Code Generation — Category List”
for a complete list of function categories.

Note Although the code for this block attempts to produce exactly the same results as
MATLAB, differences might occur due to rounding errors. These numerical differences,
which might be a few eps initially, can magnify after repeated operations. Reliance on
the behavior of nan is not recommended. Different C compilers can yield different results
for the same computation.

Note: In the MATLAB Function block, the %#codegen directive is included to emphasize
that the block’s MATLAB algorithm is always intended for code generation. The

 MATLAB Function

1-1055

%#codegen directive, or the absence of it, does not change the error checking behavior
in the context of the MATLAB Function block. For more information see “Compilation
Directive %#codegen”.

To support visualization of data, the MATLAB Function block supports calls to MATLAB
functions for simulation only. See “Call MATLAB Functions” to understand some of the
limitations of this capability, and how it integrates with code analysis for this block. If
these function calls do not directly affect any of the Simulink inputs or outputs, the calls
do not appear in Simulink Coder generated code.

From MATLAB Function blocks, you can also call functions defined in a Simulink
Function block. You can call Stateflow functions with Export Chart Level Functions
(Make Global) and Allow exported functions to be called by Simulink checked in
the chart Properties dialog box.

In the Ports and Data Manager, you can declare a block input to be a Simulink
parameter instead of a port. The MATLAB Function block also supports inheritance of
types and size for inputs, outputs, and parameters. You can also specify these properties
explicitly. See “Type Function Arguments”, “Size Function Arguments”, and “Add
Parameter Arguments” for descriptions of variables that you use in MATLAB Function
blocks.

Recursive calls are not allowed in MATLAB Function blocks.

By default, MATLAB Function blocks have direct feedthrough enabled. To disable it, in
the Ports and Data Manager, clear the Allow direct feedthrough check box. Nondirect
feedthough enables semantics to ensure that outputs rely only on current state. Using
nondirect feedthrough enables you to use MATLAB Function blocks in a feedback loop
and prevent algebraic loops.

Data Type Support

The MATLAB Function block accepts inputs of any type that Simulink supports,
including fixed-point and enumerated types. For more information, see “ Data Types
Supported by Simulink”.

Data types supported by MATLAB but not supported by Simulink may not be passed
between the Simulink model and the function within the MATLAB Function block. These
types may be used within the MATLAB Function block.

1 Blocks — Alphabetical List

1-1056

For more information on fixed-point support for this block, refer to “Fixed-Point Data
Types with MATLAB Function Block” and “MATLAB Function Block with Data Type
Override”.

Parameters and Dialog Box

The block dialog box for a MATLAB Function block is identical to the dialog box for a
Subsystem block. See the reference page for the Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse Subsystem blocks for information about each
block parameter.

Examples

The following models shows how to use the MATLAB Function block:

• sldemo_radar_eml

• sldemo_eml_galaxy

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes (default). To disable, in the Ports and Data

Manager, clear the Allow direct feedthrough
check box.

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced in R2011a

 MATLAB System

1-1057

MATLAB System

Include System object in model

Library

User-Defined Functions

Description

The MATLAB System block brings existing System objects (based on matlab.System) into
Simulink. It also enables you to use System object authoring APIs to develop new blocks
for Simulink.

For interpreted execution, the model simulates the block using the MATLAB execution
engine.

For code generation, the model simulates the block using code generation (using the
subset of MATLAB® code supported for code generation). The MATLAB System block
supports only a subset of the functions available in MATLAB. See “Functions and Objects
Supported for C and C++ Code Generation — Alphabetical List” for a complete list of
functions. These functions include those in common categories, such as:

• “Array vs. Matrix Operations”, like plus, minus, and power
• Matrix operations, like size and length
• Advanced matrix operations, like lu, inv, svd, and chol
• Trigonometric functions, like sin, cos, sinh, and cosh

System Objects

To use the MATLAB System block, you must first have a new System object™ or use an
existing one. For more information, see “System Object Integration”.

1 Blocks — Alphabetical List

1-1058

Data Type Support

The MATLAB System block accepts inputs of most types that Simulink supports. It does
not support enumerated data types or buses. For more information, see “ Data Types
Supported by Simulink”.

For information on fixed-point support for this block, see “Code Acceleration and Code
Generation from MATLAB”.

The MATLAB System block supports Simulink frames. For more information, see
“Sample- and Frame-Based Concepts”.

Parameters and Dialog Box

System object name

Specify the full name of the user-defined System object class without the file extension.
This entry is case sensitive. The class name must exist on the MATLAB path.

You can specify a System object name in one of these ways:

• Enter the name in the text box.
• Click the list arrow attached to the text box. If valid System objects exist in the

current folder, the names appear in the list. Select a System object from this list.
• Browse to a folder that contains a valid System object. If the folder is not on your

MATLAB path, the software prompts you to add it.

If you need to create a System object, you can create one from a template by clicking
New.

 MATLAB System

1-1059

After you save the System object, you can enter the name in the System object name
text box.

Settings

Default: None

Tips

Use the full name of the user-defined System object class name. The block does not
accept a MATLAB variable that you have assigned to a System object class name.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

New

Click this button to create a System object from a template.

Select one of these options.

• Basic

Starts MATLAB Editor and displays a template for a simple System object using the
fewest System object methods.

• Advanced

Starts MATLAB Editor and displays a template for a more advanced System object
using most of the System object methods.

• Simulink Extension

Starts MATLAB Editor and displays a file that contains utilities for customizing the
block for Simulink. This is the same file available in MATLAB when you select New >
System Object > Simulink Extension.

After you save the System object, you can enter the name in the System object name
text box.

Settings

Default: Basic

1 Blocks — Alphabetical List

1-1060

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Simulate using

Select the simulation mode.

Settings

Default: Code generation

Code generation

On the first model run, simulate and generate code for MATLAB System block using
only MATLAB functions supported for code generation. If the structure of the block
does not change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, system objects accept a maximum of 32
inputs.

Interpreted execution

Simulate model using all supported MATLAB functions. Choosing this option can
slow simulation performance.

Dependency

After you assign a valid System object class name to the block, the next time you open
the block dialog box, the parameter is visible. This parameter appears for every MATLAB
System block. You cannot remove it.

• If the block has no tabs, this parameter appears at the bottom of the dialog box.
• If the block has multiple tabs, this parameter appears at the bottom of the first tab of

the dialog box.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited

 MATLAB System

1-1061

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
MATLAB Function

More About
• “What Is the MATLAB System Block?”
• “What Are System Objects?”

Introduced in R2013b

1 Blocks — Alphabetical List

1-1062

Memory

Output input from previous time step

Library

Discrete

Description

The Memory block holds and delays its input by one major integration time step. When
placed in an iterator subsystem, it holds and delays its input by one iteration. This block
accepts continuous and discrete signals. The block accepts one input and generates one
output. Each signal can be scalar or vector. If the input is a vector, the block holds and
delays all elements of the vector by the same time step.

You specify the block output for the first time step using the Initial condition
parameter. Careful selection of this parameter can minimize unwanted output behavior.
However, you cannot specify the sample time. This block’s sample time depends on the
type of solver used, or you can specify to inherit it. The Inherit sample time parameter
determines whether sample time is inherited or based on the solver.

Tip Avoid using the Memory block when both these conditions are true:

• Your model uses the variable-step solver ode15s or ode113.
• The input to the block changes during simulation.

When the Memory block inherits a discrete sample time, the block is analogous to the
Unit Delay block. However, the Memory block does not support state logging. If logging
the final state is necessary, use a Unit Delay block instead.

 Memory

1-1063

Comparison with Similar Blocks

Blocks with Similar Functionality

The Unit Delay, Memory, and Zero-Order Hold blocks provide similar functionality but
have different capabilities. Also, the purpose of each block is different. The sections that
follow highlight some of these differences.

Recommended Usage for Each Block

Block Purpose of the Block Reference Examples

Unit Delay Implement a delay using a
discrete sample time that you
specify. The block accepts and
outputs signals with a discrete
sample time.

• sldemo_enginewc

(Compression subsystem)

Memory Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed
in minor time step) signals and
outputs a signal that is fixed in
minor time step.

• sldemo_bounce

• sldemo_clutch (Friction
Mode Logic/Lockup FSM
subsystem)

Zero-Order

Hold

Convert an input signal with a
continuous sample time to an
output signal with a discrete
sample time.

• sldemo_radar_eml

• aero_dap3dof

Overview of Block Capabilities

BlockCapability

Unit Delay Memory Zero-Order Hold

Specification of
initial condition

Yes Yes No, because the block
output at time t = 0
must match the input
value.

1 Blocks — Alphabetical List

1-1064

BlockCapability

Unit Delay Memory Zero-Order Hold

Specification of
sample time

Yes No, because the block
can only inherit
sample time (from the
driving block or the
solver used for the
entire model).

Yes

Support for
frame-based
signals

Yes No Yes

Support for state
logging

Yes No No

Data Type Support

The Memory block accepts real or complex signals of any data type that Simulink
supports, including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Memory block dialog box appears as follows:

 Memory

1-1065

Initial condition
Specify the output at the initial integration step. This value must be 0 when you do
not use a built-in input data type. Simulink does not allow the initial output of this
block to be inf or NaN.

Inherit sample time
Select to inherit the sample time from the driving block:

• If the driving block has a discrete sample time, the block inherits the sample time.
• If the driving block has a continuous sample time, selecting this checkbox has

no effect. The sample time depends on the type of solver used for simulating the
model.

When this check box is cleared, the block sample time depends on the type of solver
used for simulating the model:

• If the solver is a variable-step solver, the block sample time is continuous but
fixed in minor time step: [0, 1].

1 Blocks — Alphabetical List

1-1066

• If the solver is a fixed-step solver, the [0, 1] sample time converts to the solver
step size after sample-time propagation.

Direct feedthrough of input during linearization
Select to output the input during linearization and trim. This selection sets the block
mode to direct feedthrough.

Selecting this check box can cause a change in the ordering of states in the model
when using the functions linmod, dlinmod, or trim. To extract this new state
ordering, use the following commands.

First compile the model using the following command, where model is the name of
the Simulink model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with the following command.

 model([],[],[],'term');

The output argument, x_str, which is a cell array of the states in the Simulink
model, contains the new state ordering. When passing a vector of states as input to
the linmod, dlinmod, or trim functions, the state vector must use this new state
ordering.

Treat as a unit delay when linearizing with discrete sample time
Select to linearize the Memory block to a unit delay when the Memory block is driven
by a signal with a discrete sample time.

The State Attributes pane of the Memory block dialog box appears as follows:

 Memory

1-1067

State name
Use this parameter to assign a unique name to the block state. The default is ' '.
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object
Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

1 Blocks — Alphabetical List

1-1068

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class
Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

 Memory

1-1069

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is ' '. When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

See “Discrete Block State Naming in Generated Code” in the Simulink Coder
documentation for more information.

1 Blocks — Alphabetical List

1-1070

Examples of Memory Block Usage

Usage with the Clock Block

The following model shows how to display the step size in a simulation. The Sum block
subtracts the time at the previous step, which the Memory block generates, from the
current time, which the Clock block generates.

Because Inherit sample time is not selected for the Memory block, the block sample
time depends on the type of solver for simulating the model. In this case, the model uses
a fixed-step solver. Therefore, the sample time of the Memory block is the solver step
size, or 1.

If you replace the Memory block with a Unit Delay block, you get the same results. The
Unit Delay block inherits a discrete sample time of 1.

Usage with the Second-Order Integrator Block

The sldemo_bounce model shows how a bouncing ball reacts after being tossed into
the air. The dx port of the Second-Order Integrator block and the Memory block
capture the velocity of the ball just before it hits the ground.

 Memory

1-1071

Because Inherit sample time is not selected for the Memory block, the block sample
time depends on the type of solver for simulating the model. In this case, the model
uses a variable-step (ode23) solver. Therefore, the sample time of the Memory block is
continuous but fixed in minor time step: [0, 1]. When you run the model, you get the
following results:

1 Blocks — Alphabetical List

1-1072

If you replace the Memory block with a Unit Delay block, you get the same results.
However, a warning also appears due to the discrete Unit Delay block inheriting a
continuous sample time.

Usage with the Combinatorial Logic Block

The sldemo_clutch model shows how you can use the Memory block with the
Combinatorial Logic block to implement a finite-state machine. This construct
appears in the Friction Mode Logic/Lockup FSM subsystem.

 Memory

1-1073

Because Inherit sample time is not selected for the Memory block, the block sample
time depends on the type of solver for simulating the model. In this case, the model
uses a variable-step (ode23) solver. Therefore, the sample time of the Memory block is
continuous but fixed in minor time step: [0, 1].

Bus Support

The Memory block is a bus-capable block. The input can be a virtual or nonvirtual bus
signal subject to the following restrictions:

• Initial condition must be zero, a nonzero scalar, or a finite numeric structure.
• If Initial condition is zero or a structure, and you specify a State name, the input

cannot be a virtual bus.
• If Initial condition is a nonzero scalar, you cannot specify a State name.

For information about specifying an initial condition structure, see “Specify Initial
Conditions for Bus Signals”.

All signals in a nonvirtual bus input to a Memory block must have the same sample time,
even if the elements of the associated bus object specify inherited sample times. You can
use a Rate Transition block to change the sample time of an individual signal, or of
all signals in a bus. See “Nonvirtual Bus Sample Times” and Bus-Capable Blocks for
more information.

You can use an array of buses as an input signal to a Memory block. You can specify the
Initial condition parameter with:

• The value 0. In this case, all of the individual signals in the array of buses use the
initial value 0.

1 Blocks — Alphabetical List

1-1074

• An array of structures that specifies an initial condition for each of the individual
signals in the array of buses.

• A single scalar structure that specifies an initial condition for each of the elements
that the bus type defines. Use this technique to specify the same initial conditions for
each of the buses in the array.

For details about defining and using an array of buses, see “Combine Buses into an Array
of Buses”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Depends on the type of solver used. If you select the
Inherit sample time check box, the block inherits
sample time from the driving block.

Direct Feedthrough No, except when you select Direct feedthrough of
input during linearization

Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Zero-Order Hold

Introduced before R2006a

 Merge

1-1075

Merge
Combine multiple signals into single signal

Library

Signal Routing

Description

The Merge block combines its inputs into a single output line whose value at any time
is equal to the most recently computed output of its driving blocks. You can specify any
number of inputs by setting the block's Number of inputs parameter.

Use Merge blocks only to interleave input signals that update at different times into
a combined signal in which the interleaved values retain their separate identities and
times. To combine signals that update at the same time into an array or matrix signal,
use a Concatenate block.

Merge blocks assume that all driving signals share the same signal memory. The shared
signal memory should be accessed only in mutually exclusive fashion. Therefore, always
use alternately executing subsystems to drive Merge blocks. See “Creating Alternately
Executing Subsystems” for an example.

All signals that connect to a Merge block, or exist anywhere in a network of Merge blocks,
are functionally the same signal, and are therefore subject to the restriction that a given
signal can have at most one associated signal object. See Simulink.Signal for more
information.

Guidelines for Using the Merge Block

When you use the Merge block, follow these guidelines:

1 Blocks — Alphabetical List

1-1076

• Always use conditionally-executed subsystems to drive Merge blocks.
• Write your control logic to ensure that at most one of the driving conditionally-

executed subsystems executes at any time step.
• Do not connect more than one input of a Merge block to the same conditionally-

executed subsystem.
• Always connect a Merge block to at least two input signals.
• Ensure that all input signals have the same sample time.
• Always set the Initial output parameter of the Merge block, unless the output port

of the Merge block connects to another Merge block.
• Do not branch a signal that inputs to a Merge block, if you use the default setting

of Classic for the Model Configuration Parameters > Diagnostics >
Underspecified initialization detection parameter. See the last example in
“Merge Block Usage” on page 1-1076 for additional usage guidelines relating to
branched signals.

• For all conditionally-executed subsystem Outport blocks that drive Merge blocks, set
the Output when disabled parameter to held.

• In the code generation workflow, when the Merge block receives a constant value and
non-constant sample times, one of these conditions must hold. Otherwise Simulink
displays an error.

• The source of the constant value is a grounded signal.
• The source of the constant value is a constant block with a non-tunable parameter.

• There is only one constant block that feeds the Merge block.
• All other input signals to the Merge block are from conditionally executed

subsystems.
• The Merge block and outport blocks of all conditionally executed subsystems

should not specify any initial outputs.

Merge Block Usage

For each input of a Merge block, the topmost non-atomic and nonvirtual source must be a
conditionally-executed subsystem that is not an Iterator Subsystem.

You can use the Model Advisor to check Merge block usage in your model. For more
information, see “Check usage of Merge blocks” on page 9-41.

 Merge

1-1077

The following schematic shows valid Merge block usage, merging signals from two
conditionally-executed subsystems.

The following example is also a valid Merge block usage, where the topmost nonatomic,
nonvirtual source is a conditionally executed subsystem.

Each Atomic Subsystem block contains an enabled subsystem.

1 Blocks — Alphabetical List

1-1078

You can also use multiple Merge blocks at different levels of the model hierarchy. The
following example contains a Merge block at the model root.

 Merge

1-1079

A Merge block is also located inside the Enabled Subsystem block, one level down.

1 Blocks — Alphabetical List

1-1080

A Merge block cannot connect to a Sine Wave block because a Sine Wave block is not a
conditionally-executed subsystem.

A Merge block cannot connect to a For Iterator Subsystem.

 Merge

1-1081

A Merge block cannot connect to a branched signal.

X

In the following model, the referenced model has a signal that branches. The subsystem
Subsys1 includes a Model block that references referenced_model. It includes a block
that inputs to a block in the referenced model and also inputs to the Merge block that is
outside of the referenced model.

1 Blocks — Alphabetical List

1-1082

 Merge

1-1083

The referenced model includes a signal that incorrectly branches to a Gain block and
to the Out1 Outport block, which connects to the Merge block that is outside of the
referenced model.

The following example also shows a branched signal in a subsystem that connects to
a Merge block, which is not allowed if you use the default setting of Classic for the
Model Configuration Parameters > Diagnostics > Underspecified initialization
detection parameter.

If you set the Underspecified initialization detection parameter to Simplified,
then the following example does not generate an error. For more information on
simplified initialization mode, see “Underspecified initialization detection”.

1 Blocks — Alphabetical List

1-1084

 Merge

1-1085

Initial Output Value

You can specify an initial output value for the Merge block by setting the Initial output
parameter.

If you do not specify an initial output value, the block’s initial output depends on the
initialization mode and the driving blocks. In Simplified initialization mode, for an
unspecified (empty matrix []) value of Initial output, the block uses the default
initial value of the output data type. For information on the default initial value, see
“Initializing Signal Values”. In Classic initialization mode, for an unspecified (empty
matrix []) value of Initial output, the initial output of the block equals the most
recently evaluated initial output of the driving blocks. Since the initialization ordering
for these sources may vary, initialization may be inconsistent for the simulation and the
code generation of a model. For example, the following model can produce inconsistent
initialization:

• The model contains a Merge block with two inputs: one driven by a Stateflow chart
and the other driven by a conditionally executed subsystem (such as an Enabled
Subsystem).

• The Merge block Initial output parameter is unspecified (that is, specified as empty
matrix ([])) and the model uses Classic initialization mode.

• The Stateflow chart initializes the output being merged to val1.
• The conditionally executed subsystem initializes the output being merged to different

value val2.
• Both the Stateflow chart and the conditionally executed subsystem do not execute at

the first time step.

Because the initialization ordering may vary, the output of the Merge block at the first
time step is val1 if the Stateflow chart initializes last and val2 if the conditionally
executed subsystem initializes last. The initialization ordering is different for simulation
and code generation.

To address this issue, use one of the following approaches:

• Set the Initial output parameter of the Merge block, unless the output port of the
Merge block connects to another Merge block.

• Turn on simplified initialization mode: set the Model Configuration Parameters
> Diagnostics > Data Validity > Underspecified initialization detection
parameter to Simplified.

1 Blocks — Alphabetical List

1-1086

To use the Simplified initialization setting, specify the Initial output value for
all root Merge blocks. A root Merge block is any Merge block with an output port that
does not connect to another Merge block.

To upgrade your model to simplified initialization mode, use the Model Advisor check
“Check usage of Merge blocks” on page 9-41.

For more information on simplified initialization mode, see “Underspecified
initialization detection”.

Single-Input Merge

Single-input merge is not supported. Each Merge block must have at least two inputs.

Use Merge blocks only for signals that require merging. If you were previously
connecting a Merge block input to a Mux block, use a multi-input Merge block instead.

Input Dimensions and Merge Offsets

The Merge block accepts only inputs of equal dimensions and outputs a signal of the
same dimensions as the inputs, unless you select the Allow unequal port widths
parameter.

If you select Allow unequal port widths, the block accepts scalars and vectors (but not
matrices) having differing numbers of elements. Further, the block allows you to specify
an offset for each input signal relative to the beginning of the output signal. The width of
the output signal is

max(w1+o1, w2+o2, ... wn+on)

where w1, ... wn are the widths of the input signals and o1, ... on are the offsets for the
input signals.

Suppose that you have the following block diagram:

 Merge

1-1087

The Merge block has the following output width:

max(2+0,2+1)=3

In this example, the offset of v1 is 0 and the offset of v2 is 1. The Merge block maps
the elements of v1 to the first two elements of v3 and the elements of v2 to the last two
elements of v3. Only the second element of v3 is effectively merged, as shown in the
scope output:

1 Blocks — Alphabetical List

1-1088

If you use Simplified Initialization Mode, you must clear the Allow unequal port
widths check box. The input port offsets for all input signals must be zero.

Consider using Merge blocks only for signal elements that require true merging. Other
elements can be combined with merged elements using the Concatenate block, as
shown in the following example.

 Merge

1-1089

For more information on simplified initialization mode, see “Underspecified initialization
detection”.

Combining or Reordering of Input Signals

A Merge block does not accept input signals whose elements have been reordered or
partially selected. In addition, you should not connect input signals to the Merge block
that have been combined outside of a conditionally-executed subsystem.

1 Blocks — Alphabetical List

1-1090

For example, in the following block diagram, the Merge block does not accept the output
of the first Selector block because the Selector block interchanges the first and last
elements of the vector signal. Similarly, the Merge block does not accept the output of the
second Selector block because the Selector block selects only the first three elements.

If you use simplified initialization mode, the following arrangement is not allowed
because two signals are being combined outside of a conditionally-executed subsystem.

 Merge

1-1091

You can, however, combine or reorder Merge block input signals within a conditionally-
executed subsystem. For example, the following model is valid.

Each Enabled Subsystem contains the following blocks.

1 Blocks — Alphabetical List

1-1092

For more information on simplified initialization mode, see “Underspecified initialization
detection”.

Conditionally-Executed Subsystem Outport Reset

The Outports of conditionally-executed subsystems being merged should not reset when
disabled. This action can cause multiple subsystems to update the Merge block at the
same time. Specifically, the disabled subsystem updates the Merge block by resetting its
output, while the enabled subsystem updates the Merge block by computing its output.

 Merge

1-1093

To prevent this behavior, set the Outport block parameter Output when disabled to
held for each conditionally-executed subsystem being merged.

Note: If you are using Simplified Initialization Mode, you must set the Outport block
parameter Output when disabled to held.

Instead of resetting the subsystem output when it is disabled, add an additional
subsystem for the default case, and use control logic to run this subsystem if nothing else
runs. For example, see the following block layout:

For more information on simplified initialization mode, see “Underspecified initialization
detection”.

1 Blocks — Alphabetical List

1-1094

Merging S-Function Outputs

The Merge block can merge a signal from an S-Function block only if the memory used
to store the S-Function block's output is reusable. Simulink software displays an error
message if you attempt to update or simulate a model that connects a nonreusable port
of an S-Function block to a Merge block. See ssSetOutputPortOptimOpts for more
information.

Data Type Support

The Merge block accepts real or complex signals of any data type that Simulink supports,
including fixed-point and enumerated data types. All inputs must be of the same data
type and numeric type.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Merge

1-1095

Parameters and Dialog Box

Number of inputs
Specify the number of input ports to merge.

Initial output
Specify the initial value of output For more information, see .

Allow unequal port widths
Select this check box to allow the block to accept inputs having different numbers of
elements.

1 Blocks — Alphabetical List

1-1096

Input port offsets
Enter a vector to specify the offset of each input signal relative to the beginning of
the output signal.

Bus Support

The Merge block is a bus-capable block. The inputs can be virtual or nonvirtual bus
signals subject to the following restrictions:

• The number of inputs must be greater than one.
• Initial output must be zero, a nonzero scalar, or a finite numeric structure.
• Allow unequal port widths must be disabled.
• All inputs to the merge must be buses and must be equivalent (same hierarchy with

identical names and attributes for all elements).

For information about specifying an initial condition structure, see “Specify Initial
Conditions for Bus Signals”.

All signals in a nonvirtual bus input to a Merge block must have the same sample time,
even if the elements of the associated bus object specify inherited sample times. You
can use a Rate Transition block to change the sample time of an individual signal,
or of all signals in a bus. See “Composite Signals” and Bus-Capable Blocks for more
information.

You can use an array of buses as an input signal to a Merge block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”. Using
an array of buses with a Merge block involves these limitations:

• Allow unequal port widths — Clear this parameter.
• Number of inputs — Set to a value of 2 or greater.
• Initial condition — You can specify this parameter with:

• The value 0. In this case, all of the individual signals in the array of buses use the
initial value 0.

• An array of structures that specifies an initial condition for each of the individual
signals in the array of buses.

 Merge

1-1097

• A single scalar structure that specifies an initial condition for each of the elements
that the bus type defines. Use this technique to specify the same initial conditions
for each of the buses in the array.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1098

MinMax
Output minimum or maximum input value

Library

Math Operations

Description

The MinMax block outputs either the minimum or the maximum element or elements of
the inputs. You can choose the function to apply by selecting one of the choices from the
Function parameter list.

If the block has one input port, the input must be a scalar or a vector. The block outputs
a scalar equal to the minimum or maximum element of the input vector.

If the block has multiple input ports, all nonscalar inputs must have the same
dimensions. The block expands any scalar inputs to have the same dimensions as the
nonscalar inputs. The block outputs a signal having the same dimensions as the input.
Each output element equals the minimum or maximum of the corresponding input
elements.

The MinMax block ignores any input value that is NaN, except when every input value is
NaN. When all input values are NaN, the output is NaN, either as a scalar or the value of
each output vector element.

Data Type Support

The MinMax block accepts and outputs real signals of the following data types:

• Floating point
• Built-in integer

 MinMax

1-1099

• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the MinMax block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1100

Function
Specify whether to apply the function min or max to the input.

Number of input ports
Specify the number of inputs to the block.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

The Signal Attributes pane of the MinMax block dialog box appears as follows:

 MinMax

1-1101

Require all inputs to have the same data type
Select this check box to require that all inputs have the same data type.

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

1 Blocks — Alphabetical List

1-1102

Output maximum
Specify the maximum value that the block should output. The default value is[]
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.

 MinMax

1-1103

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Examples

The sldemo_fuelsys model shows how to use the MinMax block.

1 Blocks — Alphabetical List

1-1104

In the Engine Gas Dynamics/Throttle & Manifold/Throttle subsystem, the
MinMax block uses the min operator:

In the Engine Gas Dynamics/Mixing & Combustion subsystem, the MinMax block
uses the max operator:

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point

 MinMax

1-1105

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

See Also

MinMax Running Resettable

Introduced before R2006a

1 Blocks — Alphabetical List

1-1106

MinMax Running Resettable
Determine minimum or maximum of signal over time

Library

Math Operations

Description

The MinMax Running Resettable block outputs the minimum or maximum of all past
inputs u. You specify whether the block outputs the minimum or the maximum with the
Function parameter.

The block can reset its state based on an external reset signal R. When the reset signal R
is TRUE, the block resets the output to the value of the Initial condition parameter.

The input can be a scalar, vector, or matrix signal. If you specify a scalar Initial
condition parameter, the block expands the parameter to have the same dimensions as
a nonscalar input. The block outputs a signal having the same dimensions as the input.
Each output element equals the running minimum or maximum of the corresponding
input elements.

Data Type Support

The MinMax Running Resettable block accepts and outputs real signals of any numeric
data type that Simulink supports, except Boolean. The MinMax Running Resettable
block supports fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 MinMax Running Resettable

1-1107

Parameters and Dialog Box

Function
Specify whether the block outputs the minimum or the maximum.

Initial condition
Specify initial condition.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

1 Blocks — Alphabetical List

1-1108

See Also

MinMax

Introduced before R2006a

 Model, Model Variants

1-1109

Model, Model Variants

Include model as block in another model

Library

Ports & Subsystems

Description

The Model block allows you to include a model as a block in another model. The included
model is called a referenced model, and the model containing it (via the Model block) is
called the parent model.

The Model block displays input ports and output ports corresponding to the top-level
input and output ports of the referenced model. Using these ports allow you to connect
the referenced model to other blocks in the parent model. See “Model Reference” for more
information.

A Model block can specify the referenced model:

• Statically, as a Model block parameter value, which must name the model literally
• Dynamically, depending on base workspace values

A Model Variants block is a Model block with variants enabled. The Model block
parameter dialog box contains the Enable Variants button by default. If you click
the Enable Variants button, the Model Variants block parameter dialog opens. The
Model Variants block parameter dialog contains the Disable Variants button by
default. Therefore, you can use either the Model block or the Model Variants block for
implementing model variants. For more information about how to specify a referenced
model for multiple specifications, see “Set Up Model Variants”.

1 Blocks — Alphabetical List

1-1110

By default, the contents of a referenced model are user-visible, but you can hide the
contents as described in “Protected Model”.

A signal that connects to a Model block is functionally the same signal outside and inside
the block. A given signal can have at most one associated signal object, so the signal
connected to the Model block cannot have a signal object in both the parent and the
referenced models. For more information, see Simulink.Signal.

The Model block supports signal label propagation. For details specific to model
referencing and model variants, see:

• “Processing for Referenced Models”
• “Processing for Variants and Configurable Subsystems”

Data Type Support

Determined by the root-level inputs and outputs of the model referenced by the Model
block.

 Model, Model Variants

1-1111

Parameters and Dialog Box

• “Model name” on page 1-1113
• “Model arguments” on page 1-1114

1 Blocks — Alphabetical List

1-1112

• “Model argument values (for this instance)” on page 1-1115
• “Simulation mode” on page 1-1116
• “Code interface” on page 1-1118
• “Enable variants” on page 1-1119
• “Variant choices” on page 1-1120
• “Variant control” on page 1-1122
• “Condition (read only)” on page 1-1123
• “Model name” on page 1-1124
• “Model arguments” on page 1-1125
• “Model argument values (for this instance)” on page 1-1126
• “Simulation mode” on page 1-1127
• “Override variant conditions and use following variant” on page 1-1129
• “Variant” on page 1-1130
• “Variant control” on page 1-1131
• “Generate preprocessor conditionals” on page 1-1132
• “Disable variants” on page 1-1132

 Model, Model Variants

1-1113

Model name

Name of the model this block references.

Settings

Default: <Enter Model Name>

The value must be a valid MATLAB identifier.

The extension, for example, .slx, is optional.

Tips

• To navigate to the model that you want to reference from this block, use the Browse
button to the right of the Model name parameter.

• To confirm that the model you specify is the one you intended, you can use the Open
Model button to the right of the Model name parameter.

Command-Line Information
Parameter: ModelNameDialog
Type: string
Value: Any valid value
Default: The name of the referenced model exactly as you typed it in, with any
surrounding white space removed. When you set ModelNameDialog programmatically
or from the dialog, Simulink automatically sets the values of ModelName and ModelFile
based on the value of ModelNameDialog.

1 Blocks — Alphabetical List

1-1114

Model arguments

Display model arguments accepted by the model referenced by this block.

Declaring a variable to be a model argument allows each instance of the model to use a
different value for that variable.

Settings

Default: ''

This is a read-only parameter that displays model arguments for the model referenced by
this block. To create model arguments, refer to “Model Arguments”.

 Model, Model Variants

1-1115

Model argument values (for this instance)

Specify values to be passed as model arguments to the model referenced by this block
each time the simulation invokes the model.

You can enter the values as literal values, variable names, MATLAB expressions, and
Simulink parameter objects. Any symbols used resolve to values as described in “Symbol
Resolution Process”. All values must be numeric (including objects with numeric values).

Settings

Enter the values in this parameter as a comma-separated list in the same order as the
corresponding argument names in the Model arguments field.

Command-Line Information
Parameter: ParameterArgumentValues
Type: string
Value: Any valid value
Default: ''

1 Blocks — Alphabetical List

1-1116

Simulation mode

Set the simulation mode for the model referenced by this block. This setting specifies
whether to simulate the model by generating and executing code or by interpreting the
model in Simulink.

Settings

Default: Accelerator

Accelerator

Creates a MEX-file for the sub model, then executes the sub model by running the S-
function.

Normal

Executes the sub model interpretively, as if the sub model were an atomic subsystem
implemented directly within the parent model.

Software-in-the-loop (SIL)

This option requires the Embedded Coder software. Generates production code using
model reference target for the sub model. This code is compiled for, and executed on,
the host platform.

Processor-in-the-loop (PIL)

This option requires the Embedded Coder software. Generates production code using
model reference target for the sub model. This code is compiled for, and executed on,
the target platform. A documented target connectivity API supports exchange of data
between the host and target at each time step during the PIL simulation.

Command-Line Information
Parameter: SimulationMode
Type: string
Value: 'Accelerator' | 'Normal' | 'Software-in-the-loop (SIL)' |
'Processor-in-the-loop (PIL)'

Default: 'Accelerator'

See Also

• “Model Arguments”
• “Choosing a Simulation Mode”
• “PIL Customization for Target Environment”

 Model, Model Variants

1-1117

• “Numerical Equivalence Testing”

1 Blocks — Alphabetical List

1-1118

Code interface

Specify whether the generated code is from top model or referenced model.

Settings

Default: Model reference

Model reference

Code generated from referenced model as part of a model reference hierarchy.
Code generation uses the slbuild('model', 'ModelReferenceRTWTarget')
command.

Top model

Code generated from top model with the standalone code interface. Code generation
uses the slbuild('model') command.

Dependency

Setting the Simulation mode parameter to Software-in-the-loop (SIL) or
Processor-in-the-loop (PIL) enables this parameter.

Command-Line Information
Parameter: CodeInterface
Type: string
Value: 'Model reference' | 'Top model'
Default: 'Model reference'

See Also

• “Software-in-the-Loop (SIL) Simulation”
• “Processor-in-the-Loop (PIL) Simulation”
• slbuild

 Model, Model Variants

1-1119

Enable variants

Enables variants and opens the Model Variants block parameter dialog box, which
is hidden by default. The Model Variants block parameter dialog is the default block
parameter dialog for the Model Variants block.

Settings

Default: Disabled

Dependencies

This button enables the Model Variants Sections, which include: Variant choices table,
Model parameters for the chosen variant in table section, parameters to override
variants, and a Code generation section.

The following example shows the Model variants options from the example model
sldemo_mdlref_variants.

See Also

“Set Up Model Variants”

1 Blocks — Alphabetical List

1-1120

Variant choices

Displays a table of variant choices, associated model names, variant controls,
and conditions. The variant control can be a boolean condition expression, or a
Simulink.Variant object representing a boolean condition expression. If you
want to generate code for your model, you must define the control variables as
Simulink.Parameter objects.

Settings

Default: The table has a row for each variant object in the base workspace. The
Variant choices table includes the Model name, its associated Variant control, and
Condition (read-only) columns.

Use the Add a new variant button to add a new row to the table. See the description
of the Model name, Variant control, and Condition (read-only) table columns for
information about how to set values for table rows.

Tips

You can use buttons to the left of the Variant choices table to modify the table.

Function Button

Add a new variant: Add a new, empty row below the currently
selected row

Delete selected variant: Delete the currently selected row.
(Models and objects are not affected.)

Create/Edit selected variant object: Creates a
Simulink.Variant object in the base workspace and opens the
Simulink.Variant object parameter dialog in order to specify
the variant Condition . This button will only be enabled for valid
Simulink.Variant objects.
Move variant up: Move the currently selected row up one slot in
the table

Move variant down: Move the currently selected row down one
slot in the table

Dependency

Enable variants enables this parameter.

 Model, Model Variants

1-1121

Command-Line Information
Parameter: Variants
Type: array
Value: array of variant structures where each element specifies one variant. The
structure fields are:

• variant.Name (string) — The variant control can be a boolean condition expression,
or a Simulink.Variant object representing a boolean condition expression. If
you want to generate code for your model, you must define the control variables as
Simulink.Parameter objects.

• variant.ModelName (string) — The name of the referenced model associated with
the specified variant control in the Model block.

• variant.ParameterArgumentNames (string) — Read-only string containing the
names of the model arguments for which the Model block must supply values.

• variant.ParameterArgumentValues (string) — The values to supply for the model
arguments when this variant is the active variant.

• variant.SimulationMode (string) — The execution mode to use when this variant
is the active variant.

• Possible values are 'Accelerator' | 'Normal' | 'Software-in-the-loop
(SIL)' | 'Processor-in-the-loop (PIL)'

See Also

“Configure the Model Variants Block”

1 Blocks — Alphabetical List

1-1122

Variant control

Displays the variant controls in the base workspace. The variant control can be a boolean
condition expression, or a Simulink.Variant object representing a boolean condition
expression. If you want to generate code for your model, you must define the control
variables as Simulink.Parameter objects.

Settings

Default: Variant1

To enter a variant control name, double-click Variant control column in a new row and
enter the variant control expression.

Dependency

Enable variants enables this parameter.

Command-Line Information
Structure field: Represented by the variant.Name field in the Variants parameter
structure
Type: string
Value: Variant control associated with the variant.
Default: ''

See Also

• Simulink.Variant

 Model, Model Variants

1-1123

Condition (read only)

Display the condition for the Simulink.Variant object.

Settings

This read-only field displays the condition for the associated model variant in the base
workspace. Click the Edit selected variant object button to specify the condition for
the selected variant object.

Tips

The variant condition must be a Boolean expression that references at least one base
workspace variable or parameter. For example, FUEL== 2 && EMIS == 1. Do not
surround the condition with parentheses or single quotes. The expression can include:

• MATLAB variables defined in the base workspace
• Simulink parameter objects defined in the base workspace
• Scalar variables
• Enumerated values
• Operators ==, ~=, &&, ||, ~
• Parentheses for grouping

Dependency

Enable variants enables this parameter.

See Also

“Configure the Model Variants Block”

1 Blocks — Alphabetical List

1-1124

Model name

Display or enter the name of the model associated with the variant control in the
Variant choices table.

Settings

Default: ''

The name must be a valid MATLAB identifier.

The extension, for example, .slx, is optional.

Tips

You can type the model name into the table, or you can use the Model parameters for
chosen variant in table controls to find and open models.

• To navigate to the model that you want to reference for the selected variant in the
table, click Browse.

• To confirm your selection, click Open Model.

Dependency

Enable variants enables this parameter.

Command-Line Information
Structure field: represented by the variant.ModelName field in the Variants
parameter structure
Type: string
Value: any valid value
Default: name of the referenced model exactly as you typed it, with any surrounding
white space removed. When you set the model name programmatically or using the
dialog box, Simulink automatically sets the values of ModelName and ModelFile based
on the value of ModelNameDialog.

See Also

“Set Up Model Variants”

 Model, Model Variants

1-1125

Model arguments

Display model arguments for the variant control highlighted in the Variant choices
table.

Declaring a variable to be a model argument allows each instance of the model to use a
different value for that variable.

Settings

Default: ''

This is a read-only parameter that displays model arguments for the variant control
highlighted in the Variant choices table. To create model arguments, refer to “Model
Arguments”.

Dependency

Enable variants enables this parameter.

Command-Line Information
Structure field: Represented by the variant.ParameterArgumentNames field in the
Variants parameter structureOneArgName
Type: string
Value: Enter model arguments as a comma separated list
Default: ''

See Also

• “Model Arguments”
• “Set Up Model Variants”

1 Blocks — Alphabetical List

1-1126

Model argument values (for this instance)

Specify values to be passed as model arguments for the model variant control highlighted
in the Variant choices table, each time the simulation invokes the model.

Settings

Enter the values in this parameter as a comma-separated list in the same order as the
corresponding argument names in the Model arguments field.

Dependency

Enable variants enables this parameter.

Command-Line Information
Structure field: Represented by the variant.ParameterArgumentValues field in the
Variants parameter structureOneArgName
Type: string
Value: Any valid value
Default: ''

See Also

• “Model Arguments”
• “Set Up Model Variants”

 Model, Model Variants

1-1127

Simulation mode

Set the simulation mode for the model variant control highlighted in the Variant
choices table. This setting specifies whether to simulate the model by generating and
executing code or by interpreting the model in Simulink.

Settings

Default: Accelerator

Accelerator

Creates a MEX-file for the sub model and then executes the sub model by running
the S-function.

Normal

Executes the sub model interpretively, as if the sub model were an atomic subsystem
implemented directly within the parent model.

Software-in-the-loop (SIL)

This option requires the Embedded Coder software. Generates production code using
model reference target for the sub model. This code is compiled for, and executed on,
the host platform.

Processor-in-the-loop (PIL)

This option requires the Embedded Coder software. Generate production code using
model reference target for the sub model. This code is compiled for, and executed on,
the target platform. A documented target connectivity API supports exchange of data
between the host and target at each time step during the PIL simulation.

Dependency

Enable variants enables this parameter.

Command-Line Information
Structure field: Represented by the variant.SimulationMode field in the Variants
parameter structure
Type: string
Value: 'Accelerator' | 'Normal'| 'Software-in-the-loop (SIL)' |
'Processor-in-the-loop (PIL)'

Default: 'Accelerator'

See Also

• “Model Arguments”

1 Blocks — Alphabetical List

1-1128

• “Choosing a Simulation Mode”
• “Numerical Equivalence Testing”
• “Set Up Model Variants”

 Model, Model Variants

1-1129

Override variant conditions and use following variant

Specify whether to override the variant conditions and make the specified Variant
parameter the active variant.

Settings

Default: Off

 On
Override the variant conditions and set the active variant to the value of the Variant
.

 Off
Determine the active variant by the value of the variant conditions.

Tip

Both this GUI parameter and the Variant GUI parameter (following) use the same API
parameter, OverrideUsingVariant.

Dependencies

Enable variants enables this parameter.

This parameter enables variants.

Command-Line Information
Parameter: OverrideUsingVariant
Type: string
Value: '' if no overriding variant control is specified.
Default: ''

See Also

“Create, Export, and Reuse Variant Controls”

1 Blocks — Alphabetical List

1-1130

Variant

Specify the variant control associated with the model to use if you select Override
variant conditions and use the following variant.

Settings

Default: ''

Must be a valid non empty or non commented name.

Tips

• You can use the Variant drop down to view a list of all variant controls currently
available and their associated models.

• Both this GUI parameter and the Override variant conditions and use
following variant GUI parameter (above) use the same API parameter,
OverrideUsingVariant.

Dependencies

Enable variants and Override variant conditions and use the following variant
enable this parameter.

Command-Line Information
Parameter: OverrideUsingVariant
Type: string (read-only)
Value: Variant control

See Also

• “Create, Export, and Reuse Variant Controls”
• Simulink.Variant

 Model, Model Variants

1-1131

Variant control

Enter the variant activation condition or the variant control that contains the expression
for variant activation.

The variant control can be a boolean condition expression or a Simulink.Variant
object representing a boolean condition expression. If you want to generate code for your
model, define control variables as Simulink.Parameter objects.

Settings

Default: Variant

Dependency

Adding a Model block inside a Variant Subsystem block enables this parameter

Command-Line Information
Structure field: Represented by the variant.Name field in the Variants parameter
structure
Type: string
Value: Variant control associated with the variant
Default: ''

See Also

• Simulink.Variant

1 Blocks — Alphabetical List

1-1132

Generate preprocessor conditionals

When generating code for an ERT target, this parameter determines whether variant
choices are enclosed within C preprocessor conditional statements (#if).

When you select this option, Simulink analyzes all variant choices during an update
diagram or simulation. This analysis provides early validation of the code generation
readiness of all variant choices.

Settings

Default: Disabled

Dependencies

• The check box is available for generating only ERT targets.
• Override variant conditions and use following variant is cleared ('off')

Command-Line Information
Parameter: GeneratePreprocessorConditionals
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

“Variant Systems”

Disable variants

Disable model reference variants and hide the Model Variants Section. The block retains
any information you have entered and approved by clicking Apply or OK.

Command-Line Information
Parameter: Variant
Type: string
Value: 'off' | 'on'
Default: 'off'

 Model, Model Variants

1-1133

Navigating a Model Block
• Double-clicking the prototype Model block in the Ports & Subsystems library opens

its Block Parameters dialog box for inspection, but does not allow you to specify
parameter values.

• Double-clicking an unresolved Model block opens its Block Parameters dialog box.
You can resolve the block by specifying a Model name.

• Double-clicking a resolved Model block opens the model that the block references. You
can also open the model by choosing Open Model from the Context or Edit menu.

To display the Block Parameters dialog box for a resolved Model block, choose Model
Reference Parameters from the Context or Edit menu.

Model Blocks and Direct Feed through
When a Model block is part of a cycle, and the block is a direct feed through block, an
algebraic loop can result. An algebraic loop in a model is not necessarily an error, but it
may not give the expected results. See:

• “Algebraic Loops” for information about direct feed through and algebraic loops.
• “Highlight Algebraic Loops in the Model” for information about seeing algebraic loops

graphically.
• “Display Algebraic Loop Information” for information about tracing algebraic loops in

the debugger.
• The “Diagnostics Pane: Solver” pane “Algebraic loop” option for information on

detecting algebraic loops automatically.

Direct Model Block Feed through Caused by Sub model Structure

A Model block may be a direct feed through block due to the structure of the referenced
model. Where direct feed through results from sub model structure, and causes an
unwanted algebraic loop, you can:

• Automatically eliminate the algebraic loop using techniques described in:

• “Minimize algebraic loop”
• “Minimize algebraic loop occurrences”
• “Remove Algebraic Loops”

1 Blocks — Alphabetical List

1-1134

• Manually insert one or more Unit Delay blocks as needed to break the algebraic loop.

Direct Model Block Feed through Caused by Model Configuration

Generic Real Time (grt) and Embedded Real Time (ert) based targets provide the
option Model Configuration Parameters > Code Generation > Interface > Single
output/update function. This option controls whether generated code has separate
output and update functions, or a combined output/update function. See:

• “Entry-Point Functions and Scheduling” for information about separate and combined
output and update functions.

• “Single output/update function” for information about specifying whether code has
separate or combined functions.

When Single output/update function is enabled (default), a Model block has a
combined output/update function. The function makes the block a direct feed through
block for all inports, regardless of the structure of the referenced model. Where an
unwanted algebraic loop results, you can:

• Disable Single output/update function. The code for the Model block then has
separate output and update functions, eliminating the direct feed through and hence
the algebraic loop.

• Automatically eliminate the algebraic loop using techniques described in:

• “Minimize algebraic loop”
• “Minimize algebraic loop occurrences”
• “Remove Algebraic Loops”

• Manually insert one or more Unit Delay blocks as needed to break the algebraic loop.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Direct Feedthrough If “Single output/update function” is enabled
(default), a Model block is a direct feed through
block regardless of the structure of the referenced
model.

 Model, Model Variants

1-1135

If “Single output/update function” is disabled,
a Model block may or may not be a direct feed
through block, depending on the structure of the
referenced model.

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Requirements, Limitations, and Tips for Model Variants

A Model Variants block and its referenced models must satisfy the requirements in
“Simulink Model Referencing Requirements” and “Model Referencing Limitations”. You
can nest Model Variants blocks to any level.

Note: For information on requirements and limitations that apply to code generation see
“Limitations on Generating Code for Variants”.

Tips

• A Model Variants block can log only those signals that the referenced model specifies
as logged. If a model is a variant model, or contains a variant model, then you can
either log all logged signals or log no logged signals. The Signal Logging Selector
configuration for the model must be in one of these states:

• The Logging Mode is set to Log all signals as specified in model.
• The Logging Mode is set to Override signals and the check box for the model

block is either checked () or empty (). The check box cannot be filled ().

For more information about logging referenced models, see “Models with Model
Referencing: Overriding Signal Logging Settings”.

To enable logging programmatically, use the DefaultDataLogging parameter.

• You can enable or suppress warning messages about mismatches between a Model
Variants block and its referenced model by setting diagnostics on the Diagnostics
Pane: Model Referencing.

1 Blocks — Alphabetical List

1-1136

• During model compilation, Simulink evaluates variant objects before calling the
InitFcn callback. Therefore, do not modify the condition of the variant object in
the InitFcn callback.

• Each variant must have an associated variant control specified in the Variant
control column. The variant control can be a boolean condition expression, or
a Simulink.Variant object representing a boolean condition expression. If
you want to generate code for your model, you must define the variant controls
asSimulink.Parameter objects.

See Also

• “Model Reference”
• “Set Up Model Variants”

Introduced before R2006a

 Model Info

1-1137

Model Info

Display model properties and text in model

Library

Model-Wide Utilities

Description

The Model Info block displays model properties and text about a model on the mask of
the block. Use the Model Info block dialog box to specify the content and format of the
text that the block displays. You can select model properties to display on the block. In
the text displayed on the block mask, Simulink replaces the property name with the
current value of the property in the model.

Data Type Support

Not applicable.

1 Blocks — Alphabetical List

1-1138

Parameters and Dialog Box

Specify Text and Properties to Display

Use the Enter text and tokens to display on Model Info block edit box to specify the
text and properties to display.

• In the edit box, enter any text you want to display on the block mask. Edit the default
text Model Info.

• To display a model property on the block mask, select a property in the Model
properties list and click the right arrow button.

 Model Info

1-1139

The block adds a token of the form %<modelpropertyname> to the edit box. In the
text the block mask displays, Simulink will replace the token with the value of the
property.

1 For example, if you select Model Version in the Model properties list and
click the right arrow button, then the token

%<ModelVersion>

appears in the right edit box.
2 You could add some explanatory text before the model property, e.g. “Model

version is:”.
3 When you click Apply or OK, Simulink displays your new text and the current

value of the model property on the block mask in the Model Editor like this
example:

Model version is:

1.6

See “Version Information Properties” for descriptions of the model properties.

Caution Using third-party source control tool keyword expansion within model properties
tokens might corrupt your model files when you submit them. See “Register Model Files
with Source Control Tools”.

If you save your model in SLX format, third-party tools cannot perform keyword
substitution. Any information in the model file from such third-party tool keyword
substitution is cached when you first save the MDL file as SLX, and is never updated
again. The Model Info block shows stale information from then on, so remove third-party
tool keyword substitution from Model Info blocks to ensure up-to-date displays.

Configuration Manager Properties

The Configuration manager properties field is enabled only if you previously
specified an external configuration manager for this model on the MATLAB
Preferences dialog box for the model. The field lists version control information
maintained by the external system that you can include in the Model Info block. To
include an item from the list, select it and then click the adjacent arrow button.

1 Blocks — Alphabetical List

1-1140

Note: The selected item does not appear in the Model Info block until you check the
model in or out of the repository maintained by the configuration manager and you have
closed and reopened the model.

If you save your model in SLX format, keyword substitution of version information is
not available and you cannot add new configuration manager properties in the Model
Info block. For existing Configuration manager properties, the block detects the problem,
removes stale version information and instead displays: “Not available in SLX model file
format”.

For a more flexible interface to source control tools, use Simulink Project instead of the
Model Info block. See “Source Control in Simulink Project”.

Characteristics

Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 Multiply-Add

1-1141

Multiply-Add
Multiply-add combined operation

Library

HDL Coder / HDL Operations

Description

The Multiply-Add block computes the product of the first two inputs, a and b, and adds
the result to the third input, c. The inputs can be vectors or scalars.

Operation Precision

The multiplication operation is full precision, regardless of the output type.

HDL Code Generation

Use the Multiply-Add block when you want to map the combined multiply-add operation
to a DSP unit in your target hardware.

Different synthesis tools map operations differently to hardware. When you generate
HDL code for your model, HDL Coder™ chooses an implementation for the multiply-add
operation so that it maps to a DSP unit.

1 Blocks — Alphabetical List

1-1142

Data Type Support

The Multiply-Add block accepts and outputs signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink”.

Dialog Box and Parameters

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Specify the output data type. You can set it to:

 Multiply-Add

1-1143

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant dialog box, which helps you to set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero

1 Blocks — Alphabetical List

1-1144

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Rounding”.

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

 Multiply-Add

1-1145

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

Introduced in R2015b

1 Blocks — Alphabetical List

1-1146

Multiport Switch

Choose between multiple block inputs

Library

Signal Routing

Description

Note: A variant of the Multiport Switch block is the Index Vector block. For information
on the Index Vector block, see “Multiport Switch Configured as an Index Vector Block” on
page 1-1147.

The Multiport Switch block determines which of several inputs to the block passes to
the output. The block bases this decision on the value of the first input. The first input is
the control input and the remaining inputs are the data inputs. The value of the control
input determines which data input passes to the output.

The table summarizes how the block interprets the control input and determines the
data input that is passed to the output.

Block Behavior During SimulationControl
Input

Truncation Setting for Data
Port Order Indexing to select data input Out-of-range condition

Integer
value

None Zero-based

contiguous

Zero-based indexing The control input is less
than 0 or greater than
the number of data inputs
minus one.

 Multiport Switch

1-1147

Block Behavior During SimulationControl
Input

Truncation Setting for Data
Port Order Indexing to select data input Out-of-range condition

One-based

contiguous

One-based indexing The control input is less
than 1 or greater than the
number of data inputs.

Specify

indices

Indices you specify The control input does not
correspond to any specified
data port index.

Zero-based

contiguous

Zero-based indexing The truncated control input
is less than 0 or greater
than the number of data
inputs minus one.

One-based

contiguous

One-based indexing The truncated control input
is less than 1 or greater
than the number of data
inputs.

Not an
integer
value

The block
truncates the
value to an
integer by
rounding to
zero.

Specify

indices

Indices you specify The truncated control input
does not correspond to any
specified data port index.

For information on how the block handles the out-of-range condition, see “How the Block
Handles an Out-of-Range Control Input” on page 1-1148.

Multiport Switch Configured as an Index Vector Block

An Index Vector is a special configuration of a Multiport Switch block in which
you specify one data input and the control input is zero-based. The block output is the
element of the input vector whose index matches the control input. For example, if the
input vector is [18 15 17 10] and the control input is 3, the element that matches the
index of 3 (zero-based) is 10, and that becomes the output value.

This model shows how the Index Vector works with zero-based and one-based indexing.

1 Blocks — Alphabetical List

1-1148

Index Vector is a block in the Simulink Signal Routing library. Alternatively, configure
a Multiport Switch block to work as an Index Vector block by setting Number of data
ports to 1 and Data port order to Zero-based contiguous.

How the Block Handles an Out-of-Range Control Input

For an input with an integer value less than intmax(‘int32’), the input is out of
range when the value does not match any data port indices. For a control input that is
not an integer value, the input is out of range when the truncated value does not match
any data port indices. In both cases, the block behavior depends on your settings for
Data port for default case and Diagnostic for default case.

Note: If the control input is larger than intmax('int32'), the block wraps the input
value to an integer.

Behavior for Simulation

The following behavior applies only to simulation for your model.

 Multiport Switch

1-1149

Diagnostic for default caseData port for default
case None Warning Error

Last data port Use the last data port
and do not report any
warning or error.

Use the last data
port and report a
warning.

Report an error and
stop simulation.

Additional data

port

Use the additional
data port with a
* label and do not
report any warning or
error.

Use the additional
data port with a *
label and report a
warning.

Report an error and
stop simulation.

Behavior for Code Generation

The following behavior applies to code generation for your model.

Diagnostic for default caseData port for default
case None Warning Error

Last data port Use the last data
port.

Use the last data
port.

Use the last data
port.

1 Blocks — Alphabetical List

1-1150

Diagnostic for default caseData port for default
case None Warning Error

Additional data

port

Use the additional
data port with a *
label.

Use the additional
data port with a *
label.

Use the additional
data port with a *
label.

Rules That Determine the Block Behavior

You specify the number of data inputs with Number of data ports.

• If you set Number of data ports to 1, the block behaves as an index selector or
index vector and not as a multiport switch. For more details, see “Multiport Switch
Configured as an Index Vector Block” on page 1-1147.

• If you set Number of data ports to an integer greater than 1, the block behaves as
a multiport switch. The block output is the data input that corresponds to the value
of the control input. If at least one of the data inputs is a vector, the block output is a
vector. In this case, the block expands any scalar inputs to vectors.

• If all the data inputs are scalar, the output is a scalar.

 Multiport Switch

1-1151

Guidelines on Setting Parameters for Enumerated Control Port

When the control port on the Multiport Switch block is of enumerated type, follow these
guidelines:

Scenario What to Do Rationale

The enumerated
type contains
a value that
represents invalid,
out-of-range,
or uninitialized
values.

• Set Data port order to
Specify indices.

• Set Data port indices to
use this value for the last
data port.

• Set Data port for default
case to Last data port.

This block configuration
handles invalid values that
the enumerated type explicitly
represents.

The enumerated
type contains only
valid enumerated
values. However, a
data input port can
get invalid values
of enumerated
type.

• Set Data port for default
case to Additional data
port.

This block configuration
handles invalid values that
the enumerated type does not
explicitly represent.

The enumerated
type contains only
valid enumerated
values. Data input
ports can never get
invalid values of
enumerated type.

• Set Data port for default
case to Last data port.

• Set Diagnostic for default
case to None.

This block configuration avoids
unnecessary diagnostic action.

The block does not
have a data input
port for every value
of the enumerated
type.

• Set Data port for default
case to Additional data
port.

This block configuration handles
enumerated values that do not
have a data input port, along
with invalid values.

1 Blocks — Alphabetical List

1-1152

Data Type Support

The control signal can be of any data type that Simulink supports, including fixed-point
and enumerated types. If the control signal is numeric, it cannot be complex. If the
control signal is an enumerated signal, the block uses the value of the underlying integer
to select a data port. If the underlying integer does not correspond to a data port, an error
occurs.

The data signals can be of any data type that Simulink supports. If any data signal is of
an enumerated type, all others must be of the same enumerated type.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Multiport Switch block dialog box appears as follows:

 Multiport Switch

1-1153

The Signal Attributes pane of the Multiport Switch block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1154

• “Data port order” on page 1-1156
• “Number of data ports” on page 1-1158
• “Data port indices” on page 1-1159
• “Data port for default case” on page 1-1161
• “Diagnostic for default case” on page 1-1162
• “Sample time” on page 1-297
• “Require all data port inputs to have the same data type” on page 1-1164
• “Lock output data type setting against changes by the fixed-point tools” on page 1-235
• “Integer rounding mode” on page 1-294

 Multiport Switch

1-1155

• “Saturate on integer overflow” on page 1-296
• “Allow different data input sizes” on page 1-1169
• “Output minimum” on page 1-1170
• “Output maximum” on page 1-1171
• “Output data type” on page 1-1172
• “Mode” on page 1-1174
• “Data type override” on page 1-230
• “Signedness” on page 1-1177
• “Word length” on page 1-1178
• “Scaling” on page 1-225
• “Fraction length” on page 1-1180
• “Slope” on page 1-1181
• “Bias” on page 1-1182

1 Blocks — Alphabetical List

1-1156

Data port order

Specify the type of ordering for your data input ports.

Settings

Default: One-based contiguous (for Multiport Switch block), Zero-based
contiguous (for Index Vector block)

Zero-based contiguous

Block uses zero-based indexing for ordering contiguous data ports.
One-based contiguous

Block uses one-based indexing for ordering contiguous data ports.
Specify indices

Block uses noncontiguous indexing for ordering data ports.

Tips

• When the control port is of enumerated type, select Specify indices.
• If you select Zero-based contiguous or One-based contiguous, verify that the

control port is not of enumerated type. This configuration is deprecated and produces
an error. You can run the Upgrade Advisor on your model to replace each Multiport
Switch block of this configuration with a block that explicitly specifies data port
indices. See “Model Upgrades”.

• Avoid situations where the block contains unused data ports for simulation or code
generation. When the control port is of fixed-point or built-in data type, verify that
all data port indices are representable with that type. Otherwise, the following block
behavior occurs:

If the block has unused data ports and data
port order is...

You get...

Zero-based contiguous or One-
based contiguous

A warning

Specify indices An error

Dependencies

Selecting Zero-based contiguous or One-based contiguous enables the Number
of data ports parameter.

 Multiport Switch

1-1157

Selecting Specify indices enables the Data port indices parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1158

Number of data ports

Specify the number of data input ports to the block.

Settings

Default: 3 (for Multiport Switch block), 1 (for Index Vector block)

The block icon changes to match the number of data input ports you specify.

Dependency

Selecting Zero-based contiguous or One-based contiguous for Data port order
enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Multiport Switch

1-1159

Data port indices

Specify an array of indices for your data ports.

Settings

Default: {1,2,3}

The block icon changes to match the data port indices you specify.

Tips

• To specify an array of indices that correspond to all values of an enumerated type,
enter enumeration('type_name') for this parameter. Do not include braces.

For example, enumeration('MyColors') is a valid entry.
• To enter specific values of an enumerated type, use the

type_name.enumerated_name format. Do not enter the underlying integer value.

For example, {MyColors.Red, MyColors.Green, MyColors.Blue} is a valid
entry.

• To indicate that more than one value maps to a data port, use brackets.

For example, the following entries are both valid:

• {MyColors.Red, MyColors.Green, [MyColors.Blue,

MyColors.Yellow]}

• {[3,5],0,18}

• If the control port is of fixed-point or built-in data type, the values for Data port
indices must be representable with that type. Otherwise, an error appears at compile
time to alert you to unused data ports.

• If the control port is of enumerated data type, the values for Data port indices must
be enumerated values of that type.

• If Data port indices contains values of enumerated type, the control port must be of
that data type.

Dependency

Selecting Specify indices for Data port order enables this parameter.

1 Blocks — Alphabetical List

1-1160

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Multiport Switch

1-1161

Data port for default case

Specify whether to use the last data port for out-of-range inputs, or to use an additional
port.

Settings

Default: Last data port

Last data port

Block uses the last data port for output when the control port value does not match
any data port indices.

Additional data port

Block uses an additional data port for output when the control port value does not
match any data port indices.

Tip

If you set this parameter to Additional data port and Number of data ports is 3,
the number of input ports on the block is 5. The first input is the control port, the next
three inputs are data ports, and the fifth input is the default port for out-of-range inputs.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1162

Diagnostic for default case

Specify the diagnostic action to take when the control port value does not match any data
port indices.

Settings

Default: Error

None

Do not show any warning or error message.
Warning

Show a warning message in the MATLAB Command Window and continue the
simulation.

Error

Stop simulation and display an error in the Diagnostic Viewer. In this case, the Data
port for default case is used only for code generation and not simulation.

For more information, see “How the Block Handles an Out-of-Range Control Input”
on page 1-1148.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Multiport Switch

1-1163

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-1164

Require all data port inputs to have the same data type

Specify allowed data types.

Settings

Default: Off

 On
Requires all data port inputs to have the same data type.

 Off
Allows data port inputs to have different data types.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Multiport Switch

1-1165

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

1 Blocks — Alphabetical List

1-1166

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

 Multiport Switch

1-1167

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1 Blocks — Alphabetical List

1-1168

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

 Multiport Switch

1-1169

Allow different data input sizes

Select this check box to allow input signals with different sizes.

Settings

Default: Off

 On
Allows input signals with different sizes, and propagate the input signal size to the
output signal.

 Off
Requires that input signals be the same size.

Command-Line Information
Parameter: AllowDiffInputSize
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-1170

Output minimum

Specify the minimum value that the block outputs.

Settings

Default: []

The default value is [] (unspecified).

Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Tip

This number must be a finite real double scalar value.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Multiport Switch

1-1171

Output maximum

Specify the maximum value the block outputs.

Settings

Default: []

The default value is [] (unspecified).

Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Tip

This number must be a finite real double scalar value.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1172

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Uses the data type of the driving block.
double

Specifies output data type double.
single

Specifies output data type single.
int8

Specifies output data type int8.
uint8

Specifies output data type uint8.
int16

 Multiport Switch

1-1173

Specifies output data type int16.
uint16

Specifies output data type uint16.
int32

Specifies output data type int32.
uint32

Specifies output data type uint32.
fixdt(1,16,0)

Specifies output data type fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Specifies output data type fixed point fixdt(1,16,2^0,0).
<data type expression>

Uses a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1174

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables a list of possible
values:

• Inherit via internal rule (default)
• Inherit via back propagation

Built in

Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Specifies fixed-point data types.
Expression

Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

 Multiport Switch

1-1175

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1176

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Multiport Switch

1-1177

Signedness

Specify fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specifies the fixed-point data as signed.
Unsigned

Specifies the fixed-point data as unsigned.

Dependency

Selecting Mode > Fixed point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1178

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependency

Selecting Mode > Fixed point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

 Multiport Switch

1-1179

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1180

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependency

Selecting Scaling > Binary point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

 Multiport Switch

1-1181

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependency

Selecting Scaling > Slope and bias enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1182

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependency

Selecting Scaling > Slope and bias enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

Bus Support

The Multiport Switch block is a bus-capable block. The data inputs can be virtual or
nonvirtual bus signals subject to the following restrictions:

• All the buses must be equivalent (same hierarchy with identical names and attributes
for all elements).

• All signals in a nonvirtual bus input to a Multiport Switch block must have the same
sample time. This requirement holds even when the elements of the associated bus
object specify inherited sample times.

You can use a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus. See “Composite Signals” and “Bus-Capable Blocks” for
more information.

You can use an array of buses as an input signal to a Multiport Switch block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.
When you use an array of buses with a Multiport Switch block, set Number of data
ports to a value of 2 or greater.

 Multiport Switch

1-1183

Examples

Zero-Based Indexing for Data Ports

The sf_aircontrol model uses a Multiport Switch block in the Physical Plant
subsystem. This block uses zero-based indexing for contiguous ordering of three data
ports.

The indices are visible on the data port labels. You do not have to open the block dialog
box to determine whether the data ports use zero-based or one-based indexing.

When you set Data port for default case to Last data port, the last data port
includes a * on the label. The comma after the * indicates that the data port index has
a value. This port corresponds to the default case, which applies when the control input
does not match the data port indices 0, 1, or 2. In this case, the Multiport Switch block
outputs a value of –0.1.

One-Based Indexing for Data Ports

The sf_semantics_hotel_checkin model uses a Multiport Switch block. This block uses
one-based indexing for contiguous ordering of three data ports.

1 Blocks — Alphabetical List

1-1184

If you increase the size of the block icon, the indices are visible on the data port labels.
You do not have to open the block dialog box to determine whether the data ports use
zero-based or one-based indexing.

Enumerated Names for Data Port Indices

The sldemo_fuelsys model uses a Multiport Switch block in the fuel_rate_control/
fuel_calc/feedforward_fuel_rate subsystem. This block uses the enumerated type
sld_FuelModes to specify three data port indices: LOW, RICH, and DISABLED.

 Multiport Switch

1-1185

When you set Data port for default case to Last data port, the last data port
includes a * on the label. The comma and ellipsis after the * indicate that the data port
index has a value. This port corresponds to the default case, which applies when the
control input does not match the data port indices LOW, RICH, or DISABLED. In this
case, the Multiport Switch block outputs a value of 0.

Noncontiguous Values for Data Port Indices

The following model uses a Multiport Switch block that specifies noncontiguous integer
values for data ports.

1 Blocks — Alphabetical List

1-1186

The values of the indices are visible on the data port labels. You do not have to open the
block dialog box to determine which value maps to each data port.

When you set Data port for default case to Additional data port, an extra port
with a * label appears. This port corresponds to the default case, which applies when
the control input does not match the data port indices 3, 5, 0, or 18. In this case, the
Multiport Switch block outputs a value of 1.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

 Multiport Switch

1-1187

See Also

Switch

Introduced before R2006a

1 Blocks — Alphabetical List

1-1188

Mux
Combine several input signals into vector

Library

Signal Routing

Description

The Mux block combines its inputs into a single vector output. An input can be a
scalar or vector signal. All inputs must be of the same data type and numeric type. The
elements of the vector output signal take their order from the top to bottom, or left to
right, input port signals. See “How to Rotate a Block” for a description of the port order
for various block orientations. To avoid adding clutter to a model, Simulink hides the
name of a Mux block when you copy it from the Simulink library to a model. See “Mux
Signals” for information about creating and decomposing vectors.

Note: The Mux block allows you to connect signals of differing data and numeric types
and matrix signals to its inputs. In this case, the Mux block acts like a Bus Creator block
and outputs a bus signal rather than a vector. MathWorks discourages using Mux blocks
to create bus signals, and might not support this practice in future releases. See “Prevent
Bus and Mux Mixtures” for more information.

Use the Number of inputs parameter to specify input signal names and sizes as well as
the number of inputs. You can use one of the following formats:

Format Block Behavior

Scalar Specifies the number of inputs to the Mux
block.

 Mux

1-1189

Format Block Behavior

When you use this format, the block
accepts scalar or vector signals of any
size. Simulink assigns each input the
name signalN, where N is the input port
number.

Vector The length of the vector specifies the
number of inputs. Each element specifies
the size of the corresponding input.

A positive value specifies that the
corresponding port can accept only
vectors of that size. For example, [2 3]
specifies two input ports of sizes 2 and 3,
respectively. If an input signal width does
not match the expected width, an error
message appears. A value of -1 specifies
that the corresponding port can accept
scalars or vectors of any size.

Cell array The length of the cell array specifies the
number of inputs. The value of each cell
specifies the size of the corresponding
input.

A scalar value N specifies a vector of size N.
A value of -1 means that the corresponding
port can accept scalar or vector signals of
any size.

Signal name list You can enter a list of signal names
separated by commas. Simulink assigns
each name to the corresponding port
and signal. For example, if you enter
position,velocity, the Mux block will
have two inputs, named position and
velocity.

Simulink provides several techniques for combining signals into a composite signal.
For a comparison of techniques, see “Techniques for Combining Signals”. MathWorks
encourages using Vector Concatenate blocks rather than Mux blocks to combine

1 Blocks — Alphabetical List

1-1190

vectors. The primary exception is the creation of a vector of function calls, which requires
a Mux block. In future releases, Mux blocks might have no unique capabilities and might
be deprecated.

Tip

To create a composite signal, in which the constituent signals retain their identities
and can have different data types, use a Bus Creator block rather than a Mux block.
Although you can use a Mux block to create a composite signal, MathWorks discourages
this practice. See “Prevent Bus and Mux Mixtures” for more information.

Data Type Support

The Mux block accepts real or complex signals of any data type that Simulink supports,
including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Mux

1-1191

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-1192

Number of inputs

Specify number and size of inputs.

Settings

Default: 2

You can enter a comma-separated list of signal names for this parameter field.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Mux

1-1193

Display option

Specify the appearance of the block in the model.

Settings

Default: bar

bar

Displays the block in a solid foreground color
none

Mux appears inside the block
signals

Displays signal names next to each port

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Examples
The sf_car model uses a Mux block to combine two signals for input to a Scope block:

1 Blocks — Alphabetical List

1-1194

The sf_aircontrol model uses a Mux block to combine two signals for input to a Stateflow
chart:

The following models also show how to use the Mux block:

• sldemo_auto_climatecontrol

• sldemo_suspn

• sldemo_zeroxing

• penddemo

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Demux

Introduced before R2006a

 Outport

1-1195

Outport
Create output port for subsystem or external output

Library

Ports & Subsystems, Sinks

Description

Outport blocks are the links from a system to a destination outside the system.

Simulink software assigns Outport block port numbers according to these rules:

• It automatically numbers the Outport blocks within a top-level system or subsystem
sequentially, starting with 1.

• If you add an Outport block, it is assigned the next available number.
• If you delete an Outport block, other port numbers are automatically renumbered to

ensure that the Outport blocks are in sequence and that no numbers are omitted.

Outport Blocks in a Subsystem

Outport blocks in a subsystem represent outputs from the subsystem. A signal arriving
at an Outport block in a subsystem flows out of the associated output port on that
Subsystem block. The Outport block associated with an output port on a Subsystem block
is the block whose Port number parameter matches the relative position of the output
port on the Subsystem block. For example, the Outport block whose Port number
parameter is 1 sends its signal to the block connected to the topmost output port on the
Subsystem block.

If you renumber the Port number of an Outport block, the block becomes connected to
a different output port, although the block continues to send the signal to the same block
outside the subsystem.

1 Blocks — Alphabetical List

1-1196

When you create a subsystem by selecting existing blocks, if more than one Outport block
is included in the grouped blocks, Simulink software automatically renumbers the ports
on the blocks.

The Outport block name appears in the Subsystem icon as a port label. To suppress
display of the label, click the Outport block and select Format > Hide Name.

Initializing Outport Blocks in Conditionally Executed Contexts

To set initial conditions for an Outport block in a conditionally executed subsystem, use
one of these approaches.

• Inherit initial values from input signals for the subsystem.
• Explicitly specify initial values

For details, see “Specify or Inherit Conditional Subsystem Initial Values”.

Note: If the conditional subsystem is driving a Merge block in the same model, you do
not need to specify an Initial Condition (IC) for the subsystem’s Outport block. For more
information, see “Underspecified initialization detection” .

Root-level Outport Block in a Model Hierarchy

Outport blocks at the root-level of a model hierarchy have two uses: to supply external
outputs to the base MATLAB workspace, which you can do by using either the Model
Configuration Parameters dialog box or the sim command, and to provide a means for
analysis functions to obtain output from the system.

• To supply external outputs to the workspace, use the Configuration Parameters dialog
box (see Exporting Output Data to the MATLAB Workspace) or the sim command
(see sim). For example, if a system has more than one Outport block and the save
format is array, the following command

[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different Outport block.
The column order matches the order of the port numbers for the Outport blocks.

If you specify more than one variable name after the second (state) argument, data
from each Outport block is written to a different variable. For example, if the system

 Outport

1-1197

has two Outport blocks, to save data from Outport block 1 to speed and the data from
Outport block 2 to dist, you could specify this command:

[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to obtain output from
the system (see “Linearizing Models”)

Connecting Buses to Root-level Outports

A root-level Outport of a model can accept a virtual bus only if all elements of the bus
have the same data type. The Outport block automatically unifies the bus to a vector
having the same number of elements as the bus, and outputs that vector.

If you want a root-level Outport of a model to accept a bus signal that contains mixed
types, you must set the Outport block Data type parameter to use a bus object name
for the Bus: <object name> or <data type expression> option, to define the
type of bus that the Outport produces. If the bus signal is virtual, it will be converted
to nonvirtual, as described in “Automatic Bus Conversion”. See “Bus Objects” more
information.

Data Type Support

The Outport block accepts real or complex signals of any data type that Simulink
supports. An Outport block can also accept fixed-point and enumerated data types when
the block is not a root-level output port. The complexity and data type of the block output
are the same as those of its input. The Outport block also accepts a bus object as a data
type.

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “ Data Types Supported by Simulink”.

1 Blocks — Alphabetical List

1-1198

The elements of a signal array connected to an Outport block can be of differing
complexity and data types except in the following circumstance: If the output port is in
a conditionally executed subsystem and the initial output is specified, all elements of an
input array must be of the same complexity and data types.

Typical Simulink data type conversion rules apply to an output port's Initial output
parameter. If the initial output value is in the range of the block's output data type,
Simulink software converts the initial output to the output data type. If the specified
initial output is out of the range of the output data type, Simulink software halts the
simulation and signals an error.

Parameters and Dialog Box

The Main pane of the Outport block dialog, when present in a conditionally executed
subsystem, box appears as follows:

 Outport

1-1199

1 Blocks — Alphabetical List

1-1200

• “Port number” on page 1-538
• “Icon display” on page 1-890
• “Source of initial output value” on page 1-1203
• “Output when disabled” on page 1-1204
• “Initial output” on page 1-1205
• “Minimum” on page 1-896
• “Maximum” on page 1-897
• “Data type” on page 1-1208
• “Show data type assistant” on page 1-128
• “Mode” on page 1-1211
• “Data type override” on page 1-230
• “Signedness” on page 1-231
• “Word length” on page 1-232
• “Scaling” on page 1-225
• “Fraction length” on page 1-233
• “Slope” on page 1-234
• “Bias” on page 1-234
• “Lock output data type setting against changes by the fixed-point tools” on page 1-235
• “Output as nonvirtual bus in parent model” on page 1-1219
• “Port dimensions (-1 for inherited)” on page 1-1221
• “Variable-size signal” on page 1-1222
• “Sample time (-1 for inherited)” on page 1-913
• “Signal type” on page 1-1225
• “Sampling mode” on page 1-1226

 Outport

1-1201

Port number

Specify the port number of the block.

Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1202

Icon display

Specify the information to be displayed on the icon of this input port.

Settings

Default: Port number

Signal name

Display the name of the signal connected to this port (or signals if the input is a bus).
Port number

Display port number of this port.
Port number and signal name

Display both the port number and the names of the signals connected to this port.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Outport

1-1203

Source of initial output value

Select the source of the initial output value of the block.

Settings

Default: Dialog

Dialog

The initial output value is specified by the Initial output parameter on the dialog.
Input signal

The initial output value is inherited from the input signal. See “Specify or Inherit
Conditional Subsystem Initial Values”.

Tips

• If you are using classic initialization mode, selecting Input signal will cause an
error. To inherit the initial output value from the input signal, set this parameter
to Dialog and specify [] (empty matrix) for the Initial output value. For more
information, see “Specify or Inherit Conditional Subsystem Initial Values”.

Dependencies

This parameter is enabled when the Outport resides in an Conditional Subsystem.

Selecting Dialog enables the following parameters:

• Output when disabled
• Initial output

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1204

Output when disabled

Specify what happens to the block output when the subsystem is disabled.

Settings

Default: held

held

Output is held when the subsystem is disabled.
reset

Output is reset to the value given by Initial output when the subsystem is disabled.

Tips

• When connecting the output of a conditional subsystem to a Merge block, set this
parameter to held. Setting it to reset will return an error.

Dependencies

• Selecting Dialog in Source of initial output value enables this parameter.
• This parameter is enabled when the Outport resides in a conditional subsystem with

valid enabling and disabling semantics. For example, this parameter is disabled when
the Outport is placed inside a Triggered Subsystem but is enabled when the Outport
is placed inside an Enabled Subsystem.

• If an Outport is placed inside a function-call subsystem, this parameter is meaningful
only if the function-call subsystem is bound to a state in a Stateflow chart. For more
information, see “Bind a Function-Call Subsystem to a State”.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Outport

1-1205

Initial output

For conditionally executed subsystems, specify the block output before the subsystem
executes and while it is disabled.

Settings

Default: []

Simulink software does not allow the initial output of this block to be inf or NaN.

Tips

• Specify [] (empty matrix) to inherit the initial output value from the input signal.
For more information, see “Specify or Inherit Conditional Subsystem Initial Values”.

• For information about specifying an initial condition structure, see “Specify Initial
Conditions for Bus Signals”

Dependencies

• Selecting Dialog in Source of initial output value enables this parameter.
• This parameter is enabled when the Outport resides in an Conditional Subsystem.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1206

Minimum

Specify the minimum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Outport

1-1207

Maximum

Specify the maximum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1208

Data type

Specify the output data type of the external input.

Settings

Default: Inherit: auto

Inherit: auto

A rule that inherits a data type
double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.
boolean

Data type is boolean.
fixdt(1,16,0)

Data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

 Outport

1-1209

Data type is enumerated, for example, Enum: BasicColors.
Bus: <object name>

Data type is a bus object.
<data type expression>

The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1210

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Outport

1-1211

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

1 Blocks — Alphabetical List

1-1212

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 Outport

1-1213

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

1 Blocks — Alphabetical List

1-1214

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Outport

1-1215

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1216

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Outport

1-1217

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1218

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Outport

1-1219

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

Output as nonvirtual bus in parent model

Select this parameter if you want the bus emerging in the parent model to be nonvirtual.
The bus that is input to the port can be virtual or nonvirtual, regardless of the setting of
Output as nonvirtual bus in parent model.

Settings

Default: Off

 On
Select this parameter if you want the bus emerging in the parent model to be
nonvirtual.

1 Blocks — Alphabetical List

1-1220

 Off
Clear this parameter if you want the bus emerging in the parent model to be virtual.

Tips

All signals in a nonvirtual bus must have the same sample time, even if the elements of
the associated bus object specify inherited sample times. Any bus operation that would
result in a nonvirtual bus that violates this requirement generates an error. Therefore,
if you select this option all signals in the bus must have the same sample time. You can
use a Rate Transition block to change the sample time of an individual signal, or of
all signals in a bus, to allow the signal or bus to be included in a nonvirtual bus.

Dependency

via bus object enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Outport

1-1221

Port dimensions (-1 for inherited)

Specify the dimensions that a signal must have in order to be connected to this Outport
block.

Settings

Default: -1

Valid values are:

-1 A signal of any dimensions can be connected to this port.
N The signal connected to this port must be a vector of size N.
[R C] The signal connected to this port must be a matrix having R rows

and C columns.

Dependency

Clearing via bus object enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1222

Variable-size signal

Specify the type of signals allowed out of this port.

Settings

Default: Inherit

Inherit

Allow variable-size and fixed-size signals.
No

Do not allow variable-size signals.
Yes

Allow only variable-size signals.

Dependencies

When the signal at this port is a variable-size signal, the Port dimensions parameter
specifies the maximum dimensions of the signal.

Command-Line Information
Parameter: VarSizeSig
Type: string
Value: 'Inherit'| 'No' | 'Yes'
Default: 'Inherit'

 Outport

1-1223

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate
sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within
the model. To set a different sample time, enter a valid sample time based upon the table
in “Types of Sample Time”.

See also “ Specify Sample Time” in the online documentation for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1224

 Outport

1-1225

Signal type

Specify the numeric type of the signal output by this block.

Settings

Default: auto

auto

Output the numeric type of the signal that is connected to its input.
real

Output a real-valued signal. The signal connected to this block must be real. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

complex

Output a complex signal. The signal connected to this block must be complex. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1226

Sampling mode

Specify the sampling mode (Sample based or Frame based) that the input signal must
match.

Settings

Default: auto

auto

Accept any sampling mode.
Sample based

The output signal is sample-based.
Frame based

The output signal is frame-based.

Dependency

Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP System
Toolbox documentation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Outport

1-1227

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from the driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Inport

Introduced before R2006a

1 Blocks — Alphabetical List

1-1228

Permute Dimensions

Rearrange dimensions of multidimensional array dimensions

Library

Math Operations

Description

The block reorders the elements of the input signal so that they are in the order you
specify in the Order parameter.

Data Type Support

This block accepts signals of any data type that Simulink supports, including fixed-point,
enumerated, and nonvirtual bus data types. Output must be the same data type as the
input.

You can use an array of buses as an input signal to a Permute Dimensions block. For
details about defining and using an array of buses, see “Combine Buses into an Array of
Buses”.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Permute Dimensions

1-1229

Parameters and Dialog Box

Order
Specify the permutation order to apply to the dimensions of the input signal. This
parameter is a vector of elements, where the number of elements in the vector is the
number of dimensions of the input signal.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block

1 Blocks — Alphabetical List

1-1230

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Math Function (transpose), permute (in the MATLAB reference documentation)

Introduced in R2007a

 PID ControllerDiscrete PID Controller

1-1231

PID ControllerDiscrete PID Controller

Simulate continuous- or discrete-time PID controllers

Library

Continuous, Discrete

Description

Implement a continuous- or discrete-time controller (PID, PI, PD, P, or I) in your
Simulink model. PID controller gains are tunable either manually or automatically.
Automatic tuning requires Simulink Control Design™ software (PID Tuner or SISO
Design Tool).

The PID Controller block output is a weighted sum of the input signal, the integral of
the input signal, and the derivative of the input signal. The weights are the proportional,
integral, and derivative gain parameters. A first-order pole filters the derivative action.

Configurable options in the PID Controller block include:

• Controller type (PID, PI, PD, P, or I)
• Controller form (Parallel or Ideal)
• Time domain (continuous or discrete)
• Initial conditions and reset trigger
• Output saturation limits and built-in anti-windup mechanism
• Signal tracking for bumpless control transfer and multiloop control

In one common implementation, the PID Controller block operates in the feedforward
path of the feedback loop:

1 Blocks — Alphabetical List

1-1232

The input of the block is typically an error signal, which is the difference between a
reference signal and the system output. For a two-input block that permits setpoint
weighting, see the PID Controller (2 DOF) block reference page.

You can generate code to implement your controller using any Simulink data type,
including fixed-point data types. (Code generation requires Simulink Coder software;
fixed-point implementation requires the Fixed-Point Designer product.)

For examples illustrating some applications of the PID Controller block, see the following
Simulink examples:

• Anti-Windup Control Using a PID Controller
• Bumpless Control Transfer Between Manual and PID Control

Data Type Support
The PID Controller block accepts real signals of any numeric data type that Simulink
software supports, including fixed-point data types. See “ Data Types Supported by
Simulink” in the Simulink documentation for more information.

Parameters
The following table summarizes the PID Controller block parameters, accessible on the
block parameter dialog box.

Task Parameters

Choose controller form and type. • Controller Form in Main tab
• Controller

 PID ControllerDiscrete PID Controller

1-1233

Task Parameters

Choose discrete or continuous time. • Time-domain
• Sample time

Choose an integration method (discrete time). • Integrator method
• Filter method

Set and tune controller gains. • Controller Parameters Source in Main
tab

• Proportional (P) in Main tab
• Integral (I) in Main tab
• Derivative (D) in Main tab
• Filter coefficient (N) in Main tab
• Use filtered derivative in Main tab

Set integrator and filter initial conditions. • Initial conditions Source in Main tab
• Integrator Initial condition in Main tab
• Filter Initial condition in Main tab
• External reset in Main tab
• Ignore reset when linearizing in Main tab

Limit block output. • Limit output in PID Advanced tab
• Lower saturation limit in PID Advanced

tab
• Upper saturation limit in PID Advanced

tab
• Ignore saturation when linearizing in

PID Advanced tab
Configure anti-windup mechanism (when you
limit block output).

• Anti-windup method in PID Advanced tab
• Back-calculation gain (Kb) in PID

Advanced tab
Enable signal tracking. • Enable tracking mode in PID Advanced

tab
• Tracking gain (Kt) in PID Advanced tab

1 Blocks — Alphabetical List

1-1234

Task Parameters

Configure data types. • Parameter data type in Data Type
Attributes tab

• Product output data type in Data Type
Attributes tab

• Summation output data type in Data
Type Attributes tab

• Accumulator data type in Data Type
Attributes tab

• Integrator output data type in Data Type
Attributes tab

• Filter output data type in Data Type
Attributes tab

• Saturation output data type in Data Type
Attributes tab

• Lock output data type setting against
changes by the fixed-point tools in Data
Type Attributes tab

• Saturate on integer overflow in Data
Type Attributes tab

• Integer rounding mode in Data Type
Attributes tab

Configure block for code generation. • State name in State Attributes tab
• State name must resolve to Simulink

signal object in State Attributes tab
• Code generation storage class in State

Attributes tab
• Code generation storage type qualifier

in State Attributes tab

 PID ControllerDiscrete PID Controller

1-1235

Controller form

Select the controller form.

Settings

Parallel (Default)
Selects a controller form in which the output is the sum of the proportional, integral,
and derivative actions, weighted according to the independent gain parameters P, I,
and D. The filter coefficient N sets the location of the pole in the derivative filter. For
a continuous-time parallel PID controller, the transfer function is:

C s P I
s

D
Ns

s N
par () = + Ê

Ë
Á

ˆ
¯
˜ +

+
Ê
Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

1

For a discrete-time parallel PID controller, the transfer function takes the form:

C z P Ia z D
N

Nb z
par() ()

()
= + +

+

È

Î
Í

˘

˚
˙

1

where the Integrator method determines a(z) and the Filter method determines
b(z) (for sampling time Ts):

 Forward Euler
method

Backward Euler
method

Trapezoidal method

a z()

(determined by
Integrator method)

T

z

s

-1

T z

z

s

-1

T z

z

s

2

1

1

+

-

b z()

(determined by
Filter method)

T

z

s

-1

T z

z

s

-1

T z

z

s

2

1

1

+

-

The controller transfer function for the current settings is displayed in the block
dialog box.

1 Blocks — Alphabetical List

1-1236

Parallel PID Controller

Ideal

Selects a controller form in which the proportional gain P acts on the sum of all
actions. The transfer functions are the same as for the parallel form, except that P
multiplies all terms. For a continuous-time ideal PID controller, the transfer function
is:

C s P I
s

D
Ns

s N
id

() = + Ê
Ë
Á

ˆ
¯
˜ +

+
Ê
Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙1

1

For a discrete-time ideal PID controller the transfer function is:

C z P Ia z D
N

Nb z
id () ()

()
= + +

+

È

Î
Í

˘

˚
˙1

1

where the Integrator method determines a(z) and the Filter method determines
b(z) as described previously for the parallel controller form.

 PID ControllerDiscrete PID Controller

1-1237

Ideal PID Controller

1 Blocks — Alphabetical List

1-1238

Controller

Specify the controller type.

Settings

PID (Default)
Implements a controller with proportional, integral, and derivative action.

PI

Implements a controller with proportional and integral action.
PD

Implements a controller with proportional and derivative action.
P

Implements a controller with proportional action.
I

Implements a controller with integral action.

The controller transfer function for the current settings is displayed in the block dialog
box.

 PID ControllerDiscrete PID Controller

1-1239

Time-domain

Select continuous or discrete time domain. The appearance of the block changes to reflect
your selection.

Settings

Continuous-time (Default)
Selects the continuous-time representation.

Discrete-time

Selects the discrete-time representation. Selecting Discrete-time also allows you
to specify the:

• Sample time, which is the discrete interval between samples.
• Discrete integration methods for the integrator and the derivative filter using the

Integrator method and Filter method menus.

1 Blocks — Alphabetical List

1-1240

Integrator method

(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the integrator output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Settings

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is
stable in continuous time.

Backward Euler

Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.

If you activate the Back-calculation Anti-windup method, this integration
method can cause algebraic loops in your controller. Algebraic loops can slow down
simulation of the model. In addition, if you want to generate code using Simulink
Coder software or the Fixed-Point Designer product, you cannot generate code for a
model that contains an algebraic loop. For more information about algebraic loops in
Simulink models, see “Algebraic Loops” in the Simulink documentation.

Trapezoidal

Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Of
all available integration methods, the Trapezoidal method yields the closest
match between frequency-domain properties of the discretized system and the
corresponding continuous-time system.

If you activate the Back-calculation Anti-windup method, this integration
method can cause algebraic loops in your controller. Algebraic loops can slow down
simulation of the model. In addition, if you want to generate code using Simulink
Coder software or the Fixed-Point Designer product, you cannot generate code for a

 PID ControllerDiscrete PID Controller

1-1241

model that contains an algebraic loop. For more information about algebraic loops in
Simulink models, see “Algebraic Loops” in the Simulink documentation.

1 Blocks — Alphabetical List

1-1242

Filter method

(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the derivative filter output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Settings

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is
stable in continuous time.

Backward Euler

Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.
Any filter parameter value N > 0 yields a stable result with this method.

This filter method can cause algebraic loops in your controller. Algebraic loops
can slow down simulation of the model. In addition, if you want to generate code
using Simulink Coder software or the Fixed-Point Designer product, you cannot
generate code for a model that contains an algebraic loop. For more information
about algebraic loops in Simulink models, see “Algebraic Loops” in the Simulink
documentation.

Trapezoidal

Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Any filter
parameter value N > 0 yields a stable result with this method. Of all available filter
methods, the Trapezoidal method yields the closest match between frequency-
domain properties of the discretized system and the corresponding continuous-time
system.

This filter method can cause algebraic loops in your controller. Algebraic loops
can slow down simulation of the model. In addition, if you want to generate code

 PID ControllerDiscrete PID Controller

1-1243

using Simulink Coder software or the Fixed-Point Designer product, you cannot
generate code for a model that contains an algebraic loop. For more information
about algebraic loops in Simulink models, see “Algebraic Loops” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1244

Sample time (-1 for inherited)

(Available only when you set Time-domain to Discrete-time.) Specify the discrete
interval between samples.

Settings

Default: 1

By default, the block uses a discrete sample time of 1. To specify a different sample time,
enter another discrete value, such as 0.1.

If you specify a value of -1, the PID Controller block inherits the sample time from the
upstream block. Do not enter a value of 0; to implement a continuous-time controller,
select the Time-domain Continuous-time.

See “ Specify Sample Time” in the online documentation for more information.

 PID ControllerDiscrete PID Controller

1-1245

Controller Parameters Source

Select the source of the controller gains and filter coefficient. You can provide these
parameters explicitly in the block dialog box, or enable external inputs for them on the
block. Enabling external inputs for the parameters allows you to compute PID gains and
filter coefficients externally to the block and provide them to the block as signal inputs.

External gain input is useful, for example, when you want to map a different PID
parameterization to the PID gains of the block. You can also use external gain input to
implement gain-scheduled PID control, in which controller gains are determined by logic
or other calculation in the Simulink model and passed to the block.

Settings

internal (Default)
Specify the PID gains and filter coefficient explicitly using the P, I, D, and N
parameters.

external

Specify the PID gains and filter coefficient externally. An additional input port
appears under the block input for each parameter that is required for the current
controller type:

When you supply gains externally, time variations in the integral and derivative gain
values are integrated and differentiated, respectively. This result occurs because of the
way the PID gains are implemented within the block. For example, for a continuous-time
PID controller with external inputs, the integrator term is implemented as shown in the
following illustration.

1 Blocks — Alphabetical List

1-1246

Within the block, the block’s input signal is multiplied by the externally-supplied
integrator gain, I, before integration. This implementation yields:

y uI dti = Ú .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of
the block, multiplication by the derivative gain precedes the differentiation, which causes
the derivative gain D to be differentiated.

 PID ControllerDiscrete PID Controller

1-1247

Proportional (P)

(Available for PID, PD, PI, and P controllers.) Specify the proportional gain P.

Default: 1

Enter a finite, real gain value into the Proportional (P) field. Use either scalar or
vector gain values. For a Parallel PID Controller form, the proportional action is
independent of the integral and derivative actions. For an Ideal PID Controller
form, the proportional action acts on the integral and derivative actions. See “Controller
form” on page 1-1235 for more information about the role of P in the controller transfer
function.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”.

1 Blocks — Alphabetical List

1-1248

Integral (I)

(Available for PID, PI, and I controllers.) Specify the integral gain I.

Default: 1

Enter a finite, real gain value into the Integral (I) field. Use either scalar or vector gain
values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”.

 PID ControllerDiscrete PID Controller

1-1249

Derivative (D)

(Available for PID and PD controllers.) Specify the derivative gain D.

Default: 0

Enter a finite, real gain value into the Derivative (D) field. Use either scalar or vector
gain values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”.

1 Blocks — Alphabetical List

1-1250

Filter coefficient (N)

(Available for PID and PD controllers, when Use filtered derivative is checked.)
Specify the filter coefficient N, which determines the pole location of the filter in the
derivative action:

The filter pole falls at s = -N in the Continuous-time Time-domain. For
Discrete-time, the location of the pole depends on which Filter method you select
(for sampling time Ts):

• Forward Euler:

z NTpole s= -1

• Backward Euler:

z
NT

pole
s

=

+

1

1

• Trapezoidal:

z
NT

NT
pole

s

s

=

-

+

1 2

1 2

/

/

 PID ControllerDiscrete PID Controller

1-1251

Default: 100.

Enter a finite, real gain value into the Filter Coefficient (N) field. Use either scalar or
vector gain values. Note that the PID controller block does not support N = inf (ideal
unfiltered derivative).

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”. Automatic tuning requires N > 0.

1 Blocks — Alphabetical List

1-1252

Use Filtered Derivative

Specify whether derivative term is filtered (finite N) or unfiltered. Unfiltered derivative is
available only for discrete-time controllers.

Unchecking this option replaces the filtered derivative with a discrete differentiator.
For example, if Filter Method is Forward Euler, then the filtered derivative term is
represented by:

When you uncheck Use filtered derivative, the derivative term becomes:

Settings

 On (Default)

 PID ControllerDiscrete PID Controller

1-1253

Use derivative filter (finite N).

 Off
Derivative is unfiltered.

1 Blocks — Alphabetical List

1-1254

Initial conditions Source

(Only available for controllers with integral or derivative action.) Select the source of
the integrator and filter initial conditions. Simulink uses initial conditions to initialize
the integrator and filter output at the start of a simulation or at a specified trigger event
(See “External reset” on page 1-1257). The integrator and filter initial conditions in turn
determine the initial block output.

Settings

internal (Default)
Specifies the integrator and filter initial conditions explicitly using the Integrator
Initial condition and Filter Initial condition parameters.

external

Specifies the integrator and filter initial conditions externally. An additional input
port appears under the block input for each initial condition: I0 for the integrator and
D0 for the filter:

 PID ControllerDiscrete PID Controller

1-1255

Integrator Initial condition

(Available only when Initial conditions Source is internal and the controller
includes integral action.) Specify the integrator initial value. Simulink uses the initial
condition to initialize the integrator output at the start of a simulation or at a specified
trigger event (see “External reset” on page 1-1257). The integrator initial condition,
together with the filter initial condition, determines the initial output of the PID
controller block.

Default: 0

Simulink does not permit the integrator initial condition to be inf or NaN.

1 Blocks — Alphabetical List

1-1256

Filter Initial condition

(Available only when Initial conditions Source is internal, the controller includes
derivative action, and Use filtered derivative is checked.) Specify the filter initial
value. Simulink uses the initial condition to initialize the filter output at the start of a
simulation or at a specified trigger event (see “External reset” on page 1-1257). The
filter initial condition, together with the integrator initial condition, determines the
initial output of the PID controller block.

Default: 0

Simulink does not permit the filter initial condition to be inf or NaN.

 PID ControllerDiscrete PID Controller

1-1257

External reset

Select the trigger event that resets the integrator and filter outputs to the initial
conditions you specify in the Integrator Initial condition and Filter Initial
condition fields. Selecting any option other than none enables a reset input on the block
for the external reset signal, as shown:

Or, if the Initial conditions Source is External,

The reset signal must be a scalar of type single, double, boolean, or integer. Fixed
point data types, except for ufix1, are not supported.

Note: To be compliant with the Motor Industry Software Reliability Association (MISRA)
software standard, your model must use Boolean signals to drive the external reset ports
of the PID controller block.

Settings

none (Default)
Does not reset the integrator and filter outputs to initial conditions.

rising

Resets the outputs when the reset signal has a rising edge.

1 Blocks — Alphabetical List

1-1258

falling

Resets the outputs when the reset signal has a falling edge.
either

Resets the outputs when the reset signal either rises or falls.
level

Resets and holds the outputs to the initial conditions while the reset signal is
nonzero.

 PID ControllerDiscrete PID Controller

1-1259

Ignore reset when linearizing

Force Simulink linearization commands to ignore any reset mechanism that you have
chosen with the External reset menu. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the PID Controller
block to reset.

Settings

 Off (Default)
Simulink linearization commands do not ignore states corresponding to the reset
mechanism.

 On
Simulink linearization commands ignore states corresponding to the reset
mechanism.

1 Blocks — Alphabetical List

1-1260

Enable zero-crossing detection

Enable zero-crossing detection in continuous-time models upon reset and upon entering
or leaving a saturation state.

Zero-crossing detection can accurately locate signal discontinuities without resorting
to excessively small time steps that can lead to lengthy simulation times. If you select
Limit output or activate an External reset in your PID Controller block, activating
zero-crossing detection can reduce computation time in your simulation. For more
information, see “Zero-Crossing Detection” in the Simulink documentation.

Settings

 On (Default)
Uses zero-crossing detection at any of the following events: reset; entering or leaving
an upper saturation state; and entering or leaving a lower saturation state.

 Off
Does not use zero-crossing detection.

Enabling zero-crossing detection for the PID Controller block also enables zero-crossing
detection for all under-mask blocks that include the zero-crossing detection feature.

 PID ControllerDiscrete PID Controller

1-1261

Limit output

Limit the block output to values you specify as the Lower saturation limit and Upper
saturation limit parameters.

Activating this option limits the block output internally to the block, obviating the need
for a separate Saturation block after the controller in your Simulink model. It also allows
you to activate the block's built-in anti-windup mechanism (see “Anti-windup method” on
page 1-1264).

Settings

 Off (Default)
Does not limit the block output, which equals the weighted sum of the proportional,
integral, and derivative actions.

 On
Limits the block output to the Lower saturation limit or the Upper saturation
limit whenever the weighted sum exceeds those limits. Allows you to select an Anti-
windup method.

1 Blocks — Alphabetical List

1-1262

Lower saturation limit

(Available only when you select the Limit output check box.) Specify the lower limit for
the block output. The block output is held at the Lower saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions goes below that value.

Default: -inf

 PID ControllerDiscrete PID Controller

1-1263

Upper saturation limit

(Available only when you select the Limit output check box.) Specify the upper limit for
the block output. The block output is held at the Upper saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions exceeds that value.

Default: inf

1 Blocks — Alphabetical List

1-1264

Anti-windup method

(Available only when you select the Limit output option and the controller includes
integral action.) Select an anti-windup mechanism to discharge the integrator when
the block is saturated, which occurs when the sum of the block components exceeds the
output limits.

When you select the Limit output check box and the weighted sum of the controller
components exceeds the specified output limits, the block output holds at the specified
limit. However, the integrator output can continue to grow (integrator wind-up),
increasing the difference between the block output and the sum of the block components.
Without a mechanism to prevent integrator wind-up, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate
until it overflows. The overflow value is the maximum or minimum value for the data
type of the integrator output.

• If the sign of the input signal changes once the weighted sum has grown beyond
the output limits, it can take a long time to discharge the integrator and return the
weighted sum within the block saturation limit.

In both cases, controller performance can suffer. To combat the effects of wind-up without
an anti-windup mechanism, it may be necessary to detune the controller (for example,
by reducing the controller gains), resulting in a sluggish controller. Activating an anti-
windup mechanism can improve controller performance.

Settings

none (Default)
Does not use an anti-windup mechanism. This setting may cause the block's internal
signals to be unbounded even if the output appears to be bounded by the saturation
limits. This can result in slow recovery from saturation or unexpected overflows.

back-calculation

Discharges the integrator when the block output saturates using the integral-gain
feedback loop:

 PID ControllerDiscrete PID Controller

1-1265

You can also specify a value for the Back-calculation coefficient (Kb).
clamping

Stops integration when the sum of the block components exceeds the output limits
and the integrator output and block input have the same sign. Resumes integration
when the sum of the block components exceeds the output limits and the integrator
output and block input have opposite sign. The integrator portion of the block is:

The clamping circuit implements the logic necessary to determine whether
integration continues.

1 Blocks — Alphabetical List

1-1266

Back-calculation gain (Kb)

(Available only when the back-calculation Anti-windup method is active.) Specify
the gain coefficient of the anti-windup feedback loop.

The back-calculation anti-windup method discharges the integrator on block
saturation using a feedback loop having gain coefficient Kb.

Default: 1

 PID ControllerDiscrete PID Controller

1-1267

Ignore saturation when linearizing

Force Simulink linearization commands ignore PID Controller block output limits.
Ignoring output limits allows you to linearize a model around an operating point even if
that operating point causes the PID Controller block to exceed the output limits.

Settings

 On (Default)
Simulink linearization commands ignore states corresponding to saturation.

 Off
Simulink linearization commands do not ignore states corresponding to saturation.

1 Blocks — Alphabetical List

1-1268

Enable tracking mode

(Available for any controller with integral action.) Activate signal tracking, which lets the
output of the PID Controller block follow a tracking signal. Provide the tracking signal to
the block at the TR port, which becomes active when you select Enable tracking mode.

When signal tracking is active, the difference between the tracked signal and the block
output is fed back to the integrator input with a gain Kt. The structure is illustrated for a
PI controller:

 PID ControllerDiscrete PID Controller

1-1269

You can also specify the Tracking coefficient (Kt).

Bumpless control transfer

Use signal tracking, for example, to achieve bumpless control transfer in systems that
switch between two controllers. You can make one controller track the output of the other
controller by connecting the TR port to the signal you want to track. For example:

1 Blocks — Alphabetical List

1-1270

In this example, the outputs Out1 and Out2 can drive a controlled system (not shown)
through a switch that transfers control between the “Active controller” block and the PID
Controller block. The signal tracking feature of the PID Controller block provides smooth
operation upon transfer of control from one controller to another, ensuring that the two
controllers have the same output at the time of transfer.

Multiloop control

Use signal tracking to prevent block wind-up in multiloop control approaches, as this
example illustrates:

The inner-loop subsystem contains the following blocks:

 PID ControllerDiscrete PID Controller

1-1271

In this example, the inner loop has an effective gain of 1 when it does not saturate.
Without signal tracking, the inner loop winds up in saturation. Signal tracking ensures
that the PID Controller output does not exceed the saturated output of the inner loop.

Settings

 Off (Default)
Disables signal tracking and removes TR block input.

 On
Enables signal tracking and activates TR input.

1 Blocks — Alphabetical List

1-1272

Tracking gain (Kt)

(Available only when you select Enable tracking mode.) Specify Kt, which is the gain
of the signal tracking feedback loop.

Default: 1

 PID ControllerDiscrete PID Controller

1-1273

Parameter data type

Select the data type of the gain parameters P, I, D, N, Kb, and Kt.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as input

Use data type of input signal.
double

single

int8

uint8

1 Blocks — Alphabetical List

1-1274

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID ControllerDiscrete PID Controller

1-1275

Product output data type

Select the product output data type of the gain parameters P, I, D, N, Kb, and Kt .

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as input

Use data type of input signal.
double

single

int8

uint8

1 Blocks — Alphabetical List

1-1276

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID ControllerDiscrete PID Controller

1-1277

Summation output data type

Select the summation output data type of the sums Sum, Sum D, Sum I1 , SumI2 ,and
SumI3, which are sums computed internally within the block. To see where Simulink
computes each of these sums , right-click the PID Controller block in your model and
select Look Under Mask:

• Sum is the weighted sum of the proportional, derivative, and integral signals.
• SumD is the sum in the derivative filter feedback loop.
• SumI1 is the sum of the block input signal (weighted by the integral gain I) and

SumI2. SumI1 is computed only when Limit output and Anti-windup method
back-calculation are active.

• SumI2 is the difference between the weighted sum Sum and the limited block output.
SumI2 is computed only when Limit output and Anti-windup method back-
calculation are active.

• SumI3 is the difference between the block output and the signal at the block's
tracking input. SumI3 is computed only when you select the Enable tracking mode
box.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

1 Blocks — Alphabetical List

1-1278

Note: The accumulator internal rule favors greater numerical accuracy, possibly at
the cost of less efficient generated code. To get the same accuracy for the output, set
the output data type to Inherit: Same as accumulator.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as first input

Use data type of first input signal.
Inherit: Same as accumulator

Use the same data type as the corresponding accumulator.
double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID ControllerDiscrete PID Controller

1-1279

Accumulator data type

Specify the accumulator data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Use internal rule to determine accumulator data type.
Inherit: Same as first input

Use data type of first input signal.
double

Accumulator data type is double.
single

Accumulator data type is single.
int8

Accumulator data type is int8.
uint8

Accumulator data type is uint8.
int16

Accumulator data type is int16.
uint16

Accumulator data type is uint16.
int32

Accumulator data type is int32.
uint32

Accumulator data type is uint32.
fixdt(1,16,0)

Accumulator data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Accumulator data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

1 Blocks — Alphabetical List

1-1280

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Specify Data Types Using Data Type Assistant”.

 PID ControllerDiscrete PID Controller

1-1281

Integrator output data type

Select the data type of the integrator output.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

single

int8

uint8

int16

uint16

int32

uint32

1 Blocks — Alphabetical List

1-1282

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID ControllerDiscrete PID Controller

1-1283

Filter output data type

Select the data type of the filter output.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

single

int8

uint8

int16

uint16

int32

uint32

1 Blocks — Alphabetical List

1-1284

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID ControllerDiscrete PID Controller

1-1285

Saturation output data type

Select the saturation output data type.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Same as input (Default)
Use data type of input signal.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

1 Blocks — Alphabetical List

1-1286

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

• Same as first input

• Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

 PID ControllerDiscrete PID Controller

1-1287

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1288

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via back propagation

• Same as input (default)

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

 PID ControllerDiscrete PID Controller

1-1289

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1290

Mode

Select the category of accumulator data to specify

Settings

Default: Inherit

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables a list of possible
values:

• Inherit via internal rule (default)
• Same as first input

Built in

Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Specifies fixed-point data types.
Expression

Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

Dependency

Clicking the Show data type assistant button for the accumulator data type enables
this parameter.

 PID ControllerDiscrete PID Controller

1-1291

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1292

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 PID ControllerDiscrete PID Controller

1-1293

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1294

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.
Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 PID ControllerDiscrete PID Controller

1-1295

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision, Binary point, Integer

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values. This option appears for some blocks.
Integer

Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0. This option appears for some blocks.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1296

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 PID ControllerDiscrete PID Controller

1-1297

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Binary point

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Selecting Binary point enables:

• Fraction length

Selecting Slope and bias enables:

• Slope
• Bias

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1298

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 PID ControllerDiscrete PID Controller

1-1299

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1300

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 PID ControllerDiscrete PID Controller

1-1301

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1302

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 PID ControllerDiscrete PID Controller

1-1303

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1304

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 PID ControllerDiscrete PID Controller

1-1305

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1306

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

 PID ControllerDiscrete PID Controller

1-1307

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1308

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

 PID ControllerDiscrete PID Controller

1-1309

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1 Blocks — Alphabetical List

1-1310

State name

Assign unique name to each state. The state names apply only to the selected block.

To assign a name to a single state, enter the name between quotes; for example,
'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces;
for example, {'a', 'b', 'c'}. Each name must be unique. To assign state names with
a variable that has been defined in the MATLAB workspace, enter the variable without
quotes. The variable can be a string, cell, or structure.

Settings

Default: ' ' (no name)

 PID ControllerDiscrete PID Controller

1-1311

State name must resolve to Simulink signal object

Require that state name resolve to Simulink signal object.

Settings

Default: Off

 On
Require that state name resolve to Simulink signal object.

 Off
Do not require that state name resolve to Simulink signal object.

Dependencies

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Command-Line Information
Parameter: StateMustResolveToSignalObject
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1312

Code generation storage class

Select state storage class.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.

Dependencies

State name enables this parameter.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Command-Line Information

Command-Line Information
Parameter: StateStorageClass
Type: string
Value: 'Auto' | 'ExportedGlobal' | 'ImportedExtern' |
'ImportedExternPointer'

Default: 'Auto'

 PID ControllerDiscrete PID Controller

1-1313

Code generation storage type qualifier

Specify the Simulink Coder storage type qualifier.

Settings

Default: ' '

If left blank, no qualifier is assigned.

Dependency

Setting Package to ---None--- and Code generation storage class to
ExportedGlobal, ImportedExtern, or ImportedExternPointer enables this
parameter.

Command-Line Information
Parameter: RTWStateStorageTypeQualifier
Type: string
Value: ' '
Default: ' '

Characteristics

Direct Feedthrough The following ports support direct feedthrough:

• Reset port
• Integrator and filter initial condition port
• Input port, for every integration method except

Forward Euler
Sample Time Specified in the Sample time parameter
Scalar Expansion Supported for gain parameters P, I, and D and for

filter coefficient N
States Inherited from driving block and parameters
Dimensionalized Yes
Zero-Crossing Detection Yes (in continuous-time domain)

1 Blocks — Alphabetical List

1-1314

See Also

PID Controller (2 DOF), Gain, Integrator, Discrete-Time Integrator,
Derivative, Discrete Derivative.

Introduced in R2009b

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1315

PID Controller (2 DOF)Discrete PID Controller (2 DOF)
Simulate continuous- or discrete-time two-degree-of-freedom PID controllers

Library
Continuous, Discrete

Description
Implement a continuous- or discrete-time two-degree-of-freedom controller (PID, PI, or
PD) in your Simulink model. The PID Controller (2DOF) block allows you to implement
setpoint weighting in your controller to achieve both smooth setpoint tracking and good
disturbance rejection.

The PID Controller (2DOF) block generates an output signal based on the difference
between a reference signal and a measured system output. The block computes a
weighted difference signal for each of the proportional, integral, and derivative actions
according to the setpoint weights you specify. The block output is the sum of the
proportional, integral, and derivative actions on the respective difference signals, where
each action is weighted according to the gain parameters. A first-order pole filters
the derivative action. Controller gains are tunable either manually or automatically.
Automatic tuning requires Simulink Control Design software (PID Tuner or SISO Design
Tool).

Configurable options in the PID Controller (2DOF) block include:

• Controller type (PID, PI, or PD)
• Controller form (Parallel or Ideal)
• Time domain (continuous or discrete)
• Initial conditions and reset trigger
• Output saturation limits and built-in anti-windup mechanism
• Signal tracking for bumpless control transfer and multiloop control

1 Blocks — Alphabetical List

1-1316

In one common implementation, the PID Controller (2DOF) block operates in the
feedforward path of the feedback loop. The block receives a reference signal at the Ref
input and a measured system output at the other input. For example:

For a single-input block that accepts an error signal (a difference between a setpoint and
a system output), see the PID Controller block reference page.

You can generate code to implement your controller using any Simulink data type,
including fixed-point data types. (Code generation requires Simulink Coder software;
fixed-point implementation requires the Fixed-Point Designer product.)

For an example illustrating an application of the PID Controller (2 DOF) block, see the
Simulink example Two Degree-of-Freedom PID Control for Setpoint Tracking.

Data Type Support

The PID Controller (2DOF) block accepts real signals of any numeric data type that
Simulink software supports, including fixed-point data types. See “ Data Types
Supported by Simulink” in the Simulink documentation for more information.

Parameters

The following table summarizes the PID Controller (2DOF)block parameters, accessible
via the block parameter dialog box.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1317

Task Parameters

Choose controller form and type. • Controller Form in Main tab
• Controller

Choose discrete or continuous time. • Time-domain
• Sample time

Choose an integration method (discrete time). • Integrator method
• Filter method

Set and tune controller gains. • Controller Parameters Source in Main
tab

• Proportional (P) in Main tab
• Integral (I) in Main tab
• Derivative (D) in Main tab
• Filter coefficient (N) in Main tab
• Use filtered derivative in Main tab
• Setpoint weight (b) in Main tab
• Setpoint weight (c) in Main tab

Set integrator and filter initial conditions. • Initial conditions Source in Main tab
• Integrator Initial condition in Main tab
• Filter Initial condition in Main tab
• External reset in Main tab
• Ignore reset when linearizing in Main tab

Limit block output. • Limit output in PID Advanced tab
• Lower saturation limit in PID Advanced

tab
• Upper saturation limit in PID Advanced

tab
• Ignore saturation when linearizing in

PID Advanced tab
Configure anti-windup mechanism (when you
limit block output).

• Anti-windup method in PID Advanced tab
• Back-calculation gain (Kb) in PID

Advanced tab

1 Blocks — Alphabetical List

1-1318

Task Parameters

Enable signal tracking. • Enable tracking mode in PID Advanced
tab

• Tracking gain (Kt) in PID Advanced tab
Configure data types. • Parameter data type in Data Type

Attributes tab
• Product output data type in Data Type

Attributes tab
• Summation output data type in Data

Type Attributes tab
• Accumulator data type in Data Type

Attributes tab
• Integrator output data type in Data Type

Attributes tab
• Filter output data type in Data Type

Attributes tab
• Saturation output data type in Data Type

Attributes tab
• Lock output data type setting against

changes by the fixed-point tools in Data
Type Attributes tab

• Saturate on integer overflow in Data
Type Attributes tab

• Integer rounding mode in Data Type
Attributes tab

Configure block for code generation. • State name in State Attributes tab
• State name must resolve to Simulink

signal object in State Attributes tab
• Code generation storage class in State

Attributes tab
• Code generation storage type qualifier

in State Attributes tab

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1319

Controller form

Select the controller form.

Settings

Parallel (Default)
Selects a controller form in which the proportional, integral, and derivative gains P,
I, and D operate independently. The filter coefficient N sets the location of the pole in
the derivative filter.

Parallel two-degree-of-freedom PID controller, where input 1 receives a reference
signal and input 2 receives feedback from the measured system output:

The parallel two-degree-of-freedom PID controller can be equivalently modeled by the
following block diagram:

1 Blocks — Alphabetical List

1-1320

R(s) represents the reference signal and Y(s) represents the feedback from
measured system output. In this model, C(s) is a single degree-of-freedom controller,
and F(s) acts as a prefilter on the reference signal. For a parallel two-degree-of-
freedom PID controller in the Continuous-time Time-domain, the transfer
functions F(s) and C(s) are:

F s
bP cDN s bPN I s IN

P DN s PN I s IN

C s

par

par

()
() ()

() ()

()
(

=
+ + + +

+ + + +

=

2

2

PP DN s PN I s IN

s s N

+ + + +

+

) ()

()

2

where b and c are the Setpoint weight parameters.

Alternatively, the parallel two-degree-of-freedom PID controller can be modeled by
the following block diagram:

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1321

R(s), Y(s), and C(s) are as discussed previously. In this realization, Q(s) acts as
feed-forward conditioning on the reference signal R(s). For a parallel PID controller
in the Continuous-time Time-domain, the transfer function Q(s) is:

Q s
b P c DN s b PN

s N
par

()
() () ()

=
- + -() + -

+

1 1 1

Ideal

Selects a controller form in which the proportional gain P acts on the sum of all
actions.

Ideal two-degree-of-freedom PID controller, where input 1 receives a reference signal
and input 2 receives feedback from the measured system output:

1 Blocks — Alphabetical List

1-1322

Similarly to the parallel controller form discussed previously, the ideal two-degree-
of-freedom PID controller can be modeled as a single degree-of-freedom controller
C(s) with a prefilter F(s). For an ideal two-degree-of-freedom PID controller in the
Continuous-time Time-domain, the transfer functions F(s) and C(s) are:

F s
b cDN s bN I s IN

DN s N I s IN

C s P
DN

id

id

()
() ()

() ()

()
(

=
+ + + +

+ + + +

=
+

2

2
1

1)) ()

()

s N I s IN

s s N

2
+ + +

+

where b and c are the Setpoint weight parameters.

Alternatively, modeling the ideal two-degree-of-freedom PID controller as a one-
degree-of-freedom controller C(s) with feed-forward conditioning Q(s) on the
reference signal gives, in continuous-time:

Q s P
b c DN s b N

s N
id

()
() () ()

=
- + -() + -

+

1 1 1

The controller transfer function for the current settings is displayed in the block dialog
box.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1323

Controller

Specify the controller type.

Settings

PID (Default)
Implements a controller with proportional, integral, and derivative action.

PI

Implements a controller with proportional and integral action.
PD

Implements a controller with proportional and derivative action.

The controller transfer function for the current settings is displayed in the block dialog
box.

1 Blocks — Alphabetical List

1-1324

Time-domain

Select continuous or discrete time domain. The appearance of the block changes to reflect
your selection.

Settings

Continuous-time (Default)
Selects the continuous-time representation.

Discrete-time

Selects the discrete-time representation. Selecting Discrete-time also allows you
to specify the:

• Sample time, which is the discrete interval between samples.
• Discrete integration methods for the integrator and the derivative filter using the

Integrator method and Filter method menus.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1325

Integrator method

(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the integrator output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Settings

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is
stable in continuous time.

Backward Euler

Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.

If you activate the Back-calculation Anti-windup method, this integration
method can cause algebraic loops in your controller. Algebraic loops can slow down
simulation of the model. In addition, if you want to generate code using Simulink
Coder software or the Fixed-Point Designer product, you cannot generate code for a
model that contains an algebraic loop. For more information about algebraic loops in
Simulink models, see “Algebraic Loops” in the Simulink documentation.

Trapezoidal

Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Of
all available integration methods, the Trapezoidal method yields the closest
match between frequency-domain properties of the discretized system and the
corresponding continuous-time system.

If you activate the Back-calculation Anti-windup method, this integration
method can cause algebraic loops in your controller. Algebraic loops can slow down
simulation of the model. In addition, if you want to generate code using Simulink
Coder software or the Fixed-Point Designer product, you cannot generate code for a

1 Blocks — Alphabetical List

1-1326

model that contains an algebraic loop. For more information about algebraic loops in
Simulink models, see “Algebraic Loops” in the Simulink documentation.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1327

Filter method

(Available only when you set Time-domain to Discrete-time.) Specify the method
used to compute the derivative filter output. For more information about discrete-time
integration methods, see the Discrete-Time Integrator block reference page.

Settings

Forward Euler (Default)
Selects the Forward Rectangular (left-hand) approximation.

This method is best for small sampling times, where the Nyquist limit is large
compared to the bandwidth of the controller. For larger sampling times, the Forward
Euler method can result in instability, even when discretizing a system that is
stable in continuous time.

Backward Euler

Selects the Backward Rectangular (right-hand) approximation.

An advantage of the Backward Euler method is that discretizing a stable
continuous-time system using this method always yields a stable discrete-time result.
Any filter parameter value N > 0 yields a stable result with this method.

This filter method can cause algebraic loops in your controller. Algebraic loops
can slow down simulation of the model. In addition, if you want to generate code
using Simulink Coder software or the Fixed-Point Designer product, you cannot
generate code for a model that contains an algebraic loop. For more information
about algebraic loops in Simulink models, see “Algebraic Loops” in the Simulink
documentation.

Trapezoidal

Selects the Bilinear approximation.

An advantage of the Trapezoidal method is that discretizing a stable continuous-
time system using this method always yields a stable discrete-time result. Any filter
parameter value N > 0 yields a stable result with this method. Of all available filter
methods, the Trapezoidal method yields the closest match between frequency-
domain properties of the discretized system and the corresponding continuous-time
system.

This filter method can cause algebraic loops in your controller. Algebraic loops
can slow down simulation of the model. In addition, if you want to generate code

1 Blocks — Alphabetical List

1-1328

using Simulink Coder software or the Fixed-Point Designer product, you cannot
generate code for a model that contains an algebraic loop. For more information
about algebraic loops in Simulink models, see “Algebraic Loops” in the Simulink
documentation.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1329

Sample time (-1 for inherited)

(Available only when you set Time-domain to Discrete-time.) Specify the discrete
interval between samples.

Settings

Default: 1

By default, the block uses a discrete sample time of 1. To specify a different sample time,
enter another discrete value, such as 0.1.

If you specify a value of –1, the PID Controller (2DOF) block inherits the sample time
from upstream blocks. Do not enter a value of 0; to implement a continuous-time
controller, select the Time-domain Continuous-time.

See “ Specify Sample Time” in the online documentation for more information.

1 Blocks — Alphabetical List

1-1330

Controller Parameters Source

Select the source of the controller gains, filter coefficient, and setpoint weights. You can
provide these parameters explicitly in the block dialog box, or enable external inputs for
them on the block. Enabling external inputs for the parameters allows you to compute
PID gains and filter coefficients externally to the block and provide them to the block as
signal inputs.

External gain input is useful, for example, when you want to map a different PID
parameterization to the PID gains of the block. You can also use external gain input to
implement gain-scheduled PID control, in which controller gains are determined by logic
or other calculation in the Simulink model and passed to the block.

Settings

internal (Default)
Specify the PID gains and filter coefficient explicitly using the P, I, D, N, b, and c
parameters.

external

Specify the PID gains and filter coefficient externally. An additional input port
appears under the block input for each parameter that is required for the current
controller type:

When you supply gains externally, time variations in the integral and derivative gain
values are integrated and differentiated, respectively. This result occurs because of the
way the PID gains are implemented within the block. For example, for a continuous-time
PID controller with external inputs, the integrator term is implemented as shown in the
following illustration.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1331

Within the block, the signal to be integrated is multiplied by the externally-supplied
integrator gain, I, before integration. This implementation yields:

y uI dti = Ú .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of
the block, multiplication by the derivative gain precedes the differentiation, which causes
the derivative gain D to be differentiated.

1 Blocks — Alphabetical List

1-1332

Proportional (P)

Specify the proportional gain P.

Default: 1

Enter a finite, real gain value into the Proportional (P) field. Use either scalar or
vector gain values. For a parallel PID Controller form, the proportional action is
independent of the integral and derivative actions. For an ideal PID Controller
form, the proportional action acts on the integral and derivative actions. See “Controller
form” on page 1-1319 for more information about the role of P in the controller transfer
function.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1333

Integral (I)

(Available for PID and PI controllers.) Specify the integral gain I.

Default: 1

Enter a finite, real gain value into the Integral (I) field. Use either scalar or vector gain
values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”.

1 Blocks — Alphabetical List

1-1334

Derivative (D)

(Available for PID and PD controllers.) Specify the derivative gain D.

Default: 0

Enter a finite, real gain value into the Derivative (D) field. Use either scalar or vector
gain values.

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1335

Filter coefficient (N)

Specifies the filter coefficient of the controller.

(Available for PID and PD controllers, when Use filtered derivative is checked.)
Specify the filter coefficient N, which determines the pole location of the filter in the
derivative action:

The filter pole falls at s = -N in the Continuous-time Time-domain. For Discrete-
time, the location of the pole depends on which Filter method you select (for sampling
time Ts):

• Forward Euler:

z NTpole s= -1

• Backward Euler:

z
NT

pole
s

=

+

1

1

• Trapezoidal:

z
NT

NT
pole

s

s

=

-

+

1 2

1 2

/

/

1 Blocks — Alphabetical List

1-1336

Default: 100.

Enter a finite, real gain value into the Filter Coefficient (N) field. Use either scalar or
vector gain values. Note that the PID controller (2DOF) block does not support N = inf
(ideal unfiltered derivative).

When you have Simulink Control Design software installed, you can automatically tune
the controller gains using the PID Tuner or the SISO Design Tool. See “Choosing a
Control Design Approach”. Automatic tuning requires N > 0.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1337

Use Filtered Derivative

Specify whether derivative term is filtered (finite N) or unfiltered. Unfiltered derivative is
available only for discrete-time controllers.

Unchecking this option replaces the filtered derivative with a discrete differentiator.
For example, if Filter Method is Forward Euler, then the filtered derivative term is
represented by:

When you uncheck Use filtered derivative, the derivative term becomes:

Settings

 On (Default)

1 Blocks — Alphabetical List

1-1338

Use derivative filter (finite N).

 Off
Derivative is unfiltered.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1339

Setpoint weight (b)

Specify the proportional setpoint weight b.

Default: 1

Enter the proportional setpoint weight value into the Setpoint weight (b) field. Setting
b = 0 eliminates the proportional action on the reference signal, which can reduce
overshoot in the system response to step changes in the setpoint.

The following diagrams show the role of Setpoint weight (b) in PID controllers of
Parallel and Ideal form. See “Controller form” on page 1-1319 for a discussion of the
corresponding transfer functions.

Parallel Two-Degree-of-Freedom PID Controller

1 Blocks — Alphabetical List

1-1340

Ideal Two-Degree-of-Freedom PID Controller

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1341

Setpoint weight (c)

(Available for PID and PD controllers.) Specify the derivative setpoint weight c.

Enter the derivative setpoint weight value into the Setpoint weight (c) field. To
implement a controller that achieves both effective disturbance rejection and smooth
setpoint tracking without excessive transient response, set c = 0. Setting c = 0 yields
a controller with derivative action on the measured system response but not on the
reference input.

The following diagrams show the role of Setpoint weight (c) in Parallel and
Ideal PID controllers. See “Controller form” on page 1-1319 for a discussion of the
corresponding transfer functions.

Parallel Two-Degree-of-Freedom PID Controller

1 Blocks — Alphabetical List

1-1342

Ideal Two-Degree-of-Freedom PID Controller

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1343

Initial conditions Source

Select the source of the integrator and filter initial conditions. Simulink uses initial
conditions to initialize the integrator and filter output at the start of a simulation or at a
specified trigger event (see “External reset” on page 1-1346). The integrator and filter
initial conditions in turn determine the initial block output.

Settings

internal (Default)
Specifies the integrator and filter initial conditions explicitly using the Integrator
Initial condition and Filter Initial condition parameters.

external

Specifies the integrator and filter initial conditions externally. An additional input
port appears under the block inputs for each initial condition: I0 for the integrator
and D0 for the filter:

1 Blocks — Alphabetical List

1-1344

Integrator Initial condition

(Available only when Initial conditions Source is internal and the controller
includes integral action.) Specify the integrator initial value. Simulink uses the initial
condition to initialize the integrator output at the start of a simulation or at a specified
trigger event (see “External reset” on page 1-1346). The integrator initial condition,
together with the filter initial condition, determines the initial output of the PID
Controller (2DOF) block.

Default: 0

Simulink does not permit the integrator initial condition to be inf or NaN.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1345

Filter Initial condition

(Available only when Initial conditions Source is internal, the controller includes
derivative action, and Use filtered derivative is checked.) Specify the filter initial
value. Simulink uses the initial condition to initialize the filter output at the start of a
simulation or at a specified trigger event (see “External reset” on page 1-1346). The
filter initial condition, together with the integrator initial condition, determines the
initial output of the PID Controller (2DOF) block.

Default: 0

Simulink does not permit the filter initial condition to be inf or NaN.

1 Blocks — Alphabetical List

1-1346

External reset

Select the trigger event that resets the integrator and filter outputs to the initial
conditions you specify in the Integrator Initial condition and Filter Initial
condition fields. Selecting any option other than none enables a reset input on the block
for the external reset signal, as shown:

Or, if the Initial conditions Source is External:

The reset signal must be a scalar of type single, double, boolean, or integer. Fixed
point data types, except for ufix1, are not supported.

Note: To be compliant with the Motor Industry Software Reliability Association (MISRA)
software standard, your model must use Boolean signals to drive the external reset ports
of the PID controller (2DOF) block.

Settings

none (Default)
Does not reset the integrator and filter outputs to initial conditions.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1347

rising

Resets the outputs when the reset signal has a rising edge.
falling

Resets the outputs when the reset signal has a falling edge.
either

Resets the outputs when the reset signal either rises or falls.
level

Resets and holds the outputs to the initial conditions while the reset signal is
nonzero.

1 Blocks — Alphabetical List

1-1348

Ignore reset when linearizing

Force Simulink linearization commands to ignore any reset mechanism that you have
chosen with the External reset menu. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the PID Controller
(2DOF) block to reset.

Settings

 Off (Default)
Simulink linearization commands do not ignore states corresponding to the reset
mechanism.

 On
Simulink linearization commands ignore states corresponding to the reset
mechanism.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1349

Enable zero-crossing detection

Enable zero-crossing detection in continuous-time models upon reset and upon entering
or leaving a saturation state.

Zero-crossing detection can accurately locate signal discontinuities without resorting
to excessively small time steps that can lead to lengthy simulation times. If you select
Limit output or activate an External reset in your PID Controller (2DOF) block,
activating zero-crossing detection can reduce computation time in your simulation. For
more information, see “Zero-Crossing Detection” in the Simulink documentation.

Settings

 On (Default)
Uses zero-crossing detection at any of the following events: reset; entering or leaving
an upper saturation state; and entering or leaving a lower saturation state.

 Off
Does not use zero-crossing detection.

Enabling zero-crossing detection for the PID Controller (2DOF) block also enables zero-
crossing detection for all under-mask blocks that include the zero-crossing detection
feature.

1 Blocks — Alphabetical List

1-1350

Limit output

Limit the block output to values you specify as the Lower saturation limit and Upper
saturation limit parameters.

Activating this option limits the block output internally to the block, obviating the need
for a separate Saturation block after the controller in your Simulink model. It also allows
you to activate the built-in anti-windup mechanism (see “Anti-windup method” on page
1-1353).

Settings

 Off (Default)
Does not limit the block output, which is the weighted sum of the proportional,
integral, and derivative actions.

 On
Limits the block output to the Lower saturation limit or the Upper saturation
limit whenever the weighted sum exceeds those limits. Allows you to select an Anti-
windup method.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1351

Lower saturation limit

(Available only when you select the Limit Output box.) Specify the lower limit for the
block output. The block output is held at the Lower saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions goes below that value.

Default: -inf

1 Blocks — Alphabetical List

1-1352

Upper saturation limit

(Available only when you select the Limit Output box.) Specify the upper limit for the
block output. The block output is held at the Upper saturation limit whenever the
weighted sum of the proportional, integral, and derivative actions exceeds that value.

Default: inf

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1353

Anti-windup method

(Available only when you select the Limit Output option and the controller includes
integral action.) Select an anti-windup mechanism to discharge the integrator when
the block is saturated, which occurs when the sum of the block components exceeds the
output limits.

When you select the Limit output check box and the weighted sum of the controller
components exceeds the specified output limits, the block output holds at the specified
limit. However, the integrator output can continue to grow (integrator wind-up),
increasing the difference between the block output and the sum of the block components.
Without a mechanism to prevent integrator wind-up, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate
until it overflows. The overflow value is the maximum or minimum value for the data
type of the integrator output.

• If the sign of the input signal changes once the weighted sum has grown beyond
the output limits, it can take a long time to discharge the integrator and return the
weighted sum within the block saturation limit.

In both cases, controller performance can suffer. To combat the effects of wind-up without
an anti-windup mechanism, it may be necessary to detune the controller (for example,
by reducing the controller gains), resulting in a sluggish controller. Activating an anti-
windup mechanism can improve controller performance.

Settings

none (Default)
Does not use an anti-windup mechanism. This setting can cause the block's internal
signals to be unbounded even if the output appears to be bounded by the saturation
limits. This can result in slow recovery from saturation or unexpected overflows.

back-calculation

Discharges the integrator when the block output saturates using the integral-gain
feedback loop:

1 Blocks — Alphabetical List

1-1354

You can also specify a value for the Back-calculation coefficient (Kb).
clamping

Stops integration when the sum of the block components exceeds the output limits
and the integrator output and block input have the same sign. Resumes integration
when the sum of the block components exceeds the output limits and the integrator
output and block input have opposite sign. The integrator portion of the block is:

The clamping circuit implements the logic necessary to determine whether
integration continues.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1355

Back-calculation gain (Kb)

(Available only when the back-calculation Anti-windup method is active.) Specify
the gain coefficient of the anti-windup feedback loop.

The back-calculation anti-windup method discharges the integrator on block
saturation using a feedback loop having gain coefficient Kb.

Default: 1

1 Blocks — Alphabetical List

1-1356

Ignore saturation when linearizing

Force Simulink linearization commands ignore PID Controller (2DOF) block output
limits. Ignoring output limits allows you to linearize a model around an operating point
even if that operating point causes the PID Controller (2DOF) block to exceed the output
limits.

Settings

 On (Default)
Simulink linearization commands ignore states corresponding to saturation.

 Off
Simulink linearization commands do not ignore states corresponding to saturation.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1357

Enable tracking mode

(Available for any controller with integral action.) Activate signal tracking, which lets
the output of the PID Controller (2DOF) block follow a tracking signal. Provide the
tracking signal to the block at the TR port, which becomes active when you select Enable
tracking mode.

When signal tracking is active, the difference between the tracked signal and the block
output is fed back to the integrator input with a gain Kt. You can also specify the value of
the Tracking coefficient (Kt).

For information about using tracking mode to implement bumpless control transfer
scenarios and multiloop controllers, see “Enable tracking mode” on page 1-1268 in the
PID Controller reference page.

Settings

 Off (Default)
Disables signal tracking and removes TR block input.

 On
Enables signal tracking and activates TR input.

1 Blocks — Alphabetical List

1-1358

Tracking gain (Kt)

(Available only when you select Enable tracking mode.) Specify Kt, which is the gain
of the signal tracking feedback loop.

Default: 1

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1359

Parameter data type

Select the data type of the gain parameters P, I, D, N, Kb, and Kt and the setpoint
weighting parameters b and c.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as input

Use data type of input signal.
double

single

int8

uint8

1 Blocks — Alphabetical List

1-1360

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1361

Product output data type

Select the product output data type of the gain parameters P, I, D, N, Kb, and Kt and
the setpoint weighting parameters b and c .

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as input

Use data type of input signal.
double

single

int8

uint8

1 Blocks — Alphabetical List

1-1362

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1363

Summation output data type

Select the summation output data type of the sums Sum, Sum1, Sum2, Sum3, Sum D,
Sum I1 , SumI2 ,and SumI3, which are sums computed internally within the block. To
see where Simulink computes each of these sums , right-click the PID Controller (2DOF)
block in your model and select Look Under Mask:

• Sum is the weighted sum of the proportional, derivative, and integral signals.
• Sum1 is the difference between the reference input weighted by b and the measured

system response.
• Sum2 is the difference between the reference input weighted by c and the measured

system response.
• Sum3 is the difference between the unweighted reference input and the measured

system response.
• SumD is the sum in the derivative filter feedback loop.
• SumI1 is the sum of the block input signal (weighted by the integral gain I) and

SumI2. SumI1 is computed only when Limit output and Anti-windup method
back-calculation are active.

• SumI2 is the difference between the weighted sum Sum and the limited block output.
SumI2 is computed only when Limit output and Anti-windup method back-
calculation are active.

• SumI3 is the difference between the block output and the signal at the block's
tracking input. SumI3 is computed only when you select the Enable tracking mode
box.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

1 Blocks — Alphabetical List

1-1364

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Note: The accumulator internal rule favors greater numerical accuracy, possibly at
the cost of less efficient generated code. To get the same accuracy for the output, set
the output data type to Inherit: Same as accumulator.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as first input

Use data type of first input signal.
Inherit: Same as accumulator

Use the same data type as the corresponding accumulator.
double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1365

Name of a data type object. For example, Simulink.NumericType.

1 Blocks — Alphabetical List

1-1366

Accumulator data type

Specify the accumulator data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Use internal rule to determine accumulator data type.
Inherit: Same as first input

Use data type of first input signal.
double

Accumulator data type is double.
single

Accumulator data type is single.
int8

Accumulator data type is int8.
uint8

Accumulator data type is uint8.
int16

Accumulator data type is int16.
uint16

Accumulator data type is uint16.
int32

Accumulator data type is int32.
uint32

Accumulator data type is uint32.
fixdt(1,16,0)

Accumulator data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Accumulator data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1367

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1368

Integrator output data type

Select the data type of the integrator output.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

single

int8

uint8

int16

uint16

int32

uint32

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1369

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

1 Blocks — Alphabetical List

1-1370

Filter output data type

Select the data type of the filter output.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Inherit via internal rule (Default)
Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use Inherit: Inherit via back propagation.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

single

int8

uint8

int16

uint16

int32

uint32

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1371

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

1 Blocks — Alphabetical List

1-1372

Saturation output data type

Select the saturation output data type.

See “ Data Types Supported by Simulink” in the Simulink documentation for more
information.

Settings

Inherit: Same as input (Default)
Use data type of input signal.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

single

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16)

fixdt(1,16,0)

fixdt(1,16,2^0,0)

<data type expression>

Name of a data type object. For example, Simulink.NumericType.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1373

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

• Same as first input

• Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

1 Blocks — Alphabetical List

1-1374

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1375

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via back propagation

• Same as input (default)

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

1 Blocks — Alphabetical List

1-1376

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1377

Mode

Select the category of accumulator data to specify

Settings

Default: Inherit

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables a list of possible
values:

• Inherit via internal rule (default)
• Same as first input

Built in

Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Specifies fixed-point data types.
Expression

Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

Dependency

Clicking the Show data type assistant button for the accumulator data type enables
this parameter.

1 Blocks — Alphabetical List

1-1378

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1379

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

1 Blocks — Alphabetical List

1-1380

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1381

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.
Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1382

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision, Binary point, Integer

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values. This option appears for some blocks.
Integer

Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0. This option appears for some blocks.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1383

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1384

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Binary point

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Selecting Binary point enables:

• Fraction length

Selecting Slope and bias enables:

• Slope
• Bias

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1385

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1386

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1387

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1388

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1389

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1390

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1391

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1392

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1393

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

1 Blocks — Alphabetical List

1-1394

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1395

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

1 Blocks — Alphabetical List

1-1396

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1397

State name

Assign unique name to each state. The state names apply only to the selected block.

To assign a name to a single state, enter the name between quotes; for example,
'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces;
for example, {'a', 'b', 'c'}. Each name must be unique. To assign state names with
a variable that has been defined in the MATLAB workspace, enter the variable without
quotes. The variable can be a string, cell, or structure.

Settings

Default: ' ' (no name)

State name must resolve to Simulink signal object

Require that state name resolve to Simulink signal object.

Settings

Default: Off

 On
Require that state name resolve to Simulink signal object.

 Off
Do not require that state name resolve to Simulink signal object.

Dependencies

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Command-Line Information
Parameter: StateMustResolveToSignalObject
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1398

Code generation storage class

Select state storage class.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.

Dependencies

State name enables this parameter.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Command-Line Information

Command-Line Information
Parameter: StateStorageClass
Type: string
Value: 'Auto' | 'ExportedGlobal' | 'ImportedExtern' |
'ImportedExternPointer'

Default: 'Auto'

 PID Controller (2 DOF)Discrete PID Controller (2 DOF)

1-1399

Code generation storage type qualifier

Specify the Simulink Coder storage type qualifier.

Settings

Default: ' '

If left blank, no qualifier is assigned.

Dependency

Setting Package to ---None--- and Code generation storage class to
ExportedGlobal, ImportedExtern, or ImportedExternPointer enables this
parameter.

Command-Line Information
Parameter: RTWStateStorageTypeQualifier
Type: string
Value: ' '
Default: ' '

Characteristics

Direct Feedthrough The following ports support direct feedthrough:

• Reset port
• Integrator and filter initial condition port
• Input port, for every integration method except

Forward Euler
Sample Time Specified in the Sample time parameter
Scalar Expansion Supported for gain parameters P, I, and D and for

filter coefficient N, and for setpoint weights b and c
States Inherited from driving block and parameters
Dimensionalized Yes
Zero-Crossing Detection Yes (in continuous-time domain)

1 Blocks — Alphabetical List

1-1400

See Also

PID Controller, Gain, Integrator, Discrete-Time Integrator, Derivative,
Discrete Derivative.

Introduced in R2009b

 Polynomial

1-1401

Polynomial

Perform evaluation of polynomial coefficients on input values

Library

Math Operations

Description

You define a set of polynomial coefficients in the form that the MATLAB polyval
command accepts. The block evaluates P(u) at each time step for the input u. The inputs
and coefficients must be real.

Data Type Support

The Polynomial block accepts real signals of type double or single. The Polynomial
coefficients parameter must be of the same type as the inputs. The output data type is
the same as the input data type.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1402

Parameters and Dialog Box

Polynomial coefficients
Specify polynomial coefficients in MATLAB polyval form. The first coefficient
corresponds to xN and the remaining coefficients correspond to decreasing orders of
x. The last coefficient represents the constant for the polynomial. See polyval in the
MATLAB documentation for more information.

Examples

The sldemo_boiler model shows how to use the Polynomial block.

In the Boiler Plant model/digital thermometer subsystem, the Polynomial block
models a first-order polynomial using the coefficients [0.05 0.75]:

 Polynomial

1-1403

Characteristics

Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1404

Prelookup
Compute index and fraction for Interpolation Using Prelookup block

Library

Lookup Tables

Description

How This Block Works with an Interpolation Using Prelookup Block

The Prelookup block works best with the Interpolation Using Prelookup block.
The Prelookup block calculates the index and interval fraction that specify how its input
value u relates to the breakpoint data set. You feed the resulting index and fraction
values into an Interpolation Using Prelookup block to interpolate an n-dimensional table.
These two blocks have distributed algorithms. When combined together, they perform
the same operation as the integrated algorithm in the n-D Lookup Table block. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater flexibility that
can provide more efficient simulation and code generation. For more information, see
“Efficiency of Performance” in the Simulink User’s Guide.

Supported Block Operations

To use the Prelookup block, you specify a set of breakpoint values directly on the dialog
box or feed values into the bp input port. Typically, this breakpoint data set corresponds
to one dimension of the table data in an Interpolation Using Prelookup block. The
Prelookup block generates a pair of outputs for each input value u by calculating:

• The index of the breakpoint set element that is less than or equal to u and forms an
interval containing u

 Prelookup

1-1405

• The interval fraction in the range 0 ≤ f < 1, which represents the normalized position
of u on the breakpoint interval between the index and the next index value for in-
range input

For example, if the breakpoint data set is [0 5 10 20 50 100] and the input value
u is 55, the index is 4 and the fractional value is 0.1. Labels for the index and interval
fraction appear as k and f on the Prelookup block icon. The index value is zero-based.

The interval fraction can be negative or greater than 1 for out-of-range input. See the
documentation for the Extrapolation method block parameter for more information.

Data Type Support

The Prelookup block accepts real signals of any numeric data type that Simulink
supports, except Boolean. The Prelookup block supports fixed-point data types for
signals and breakpoint data.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1406

Parameters and Dialog Box

• “Main Tab” on page 1-1406
• “Data Types tab” on page 1-1411

Main Tab

Specification
Specify whether to enter data as explicit breakpoints or as parameters that generate
evenly spaced breakpoints.

• If you set this parameter to Explicit values, the Source and Value
parameters are visible on the dialog box.

 Prelookup

1-1407

• If you set this parameter to Even spacing, the First point, Spacing, and
Number of points parameters are visible on the dialog box.

Source
Specify whether to enter breakpoint data in the dialog box or to inherit the data from
an input port. This parameter is available when Specification is set to Explicit
values.

• If you set Source to Dialog, enter breakpoint data in the text box under Value.
• If you set Source to Input port, verify that an upstream signal supplies

breakpoint data to the bp input port. Each breakpoint data set must be a strictly
monotonically increasing vector that contains two or more elements. For this
option, your block inherits breakpoint attributes from the bp input port.

Click Edit to open the Lookup Table Editor (see “Edit Lookup Tables” in the
Simulink documentation).

Value
Explicitly specify the breakpoint data. Each breakpoint data set must be a strictly
monotonically increasing vector that contains two or more elements. For this option,
you specify breakpoint attributes on the Data Types pane. This parameter is
available when Source is set to Dialog.

First point
Specify the first point in your evenly spaced breakpoint data. This parameter is
available when Specification is set to Even spacing.

Spacing
Specify the spacing between points in your evenly spaced breakpoint data. This
parameter is available when Specification is set to Even spacing.

Number of points
Specify the number of evenly spaced points in your breakpoint data. This parameter
is available when Specification is set to Even spacing.

Index search method
Select Evenly spaced points, Linear search, or Binary search. Each search
method has speed advantages in different situations:

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve
optimal speed by selecting Evenly spaced points to calculate table indices.

1 Blocks — Alphabetical List

1-1408

This algorithm uses only the first two breakpoints of a set to determine the offset
and spacing of the remaining points.

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input values for u do not vary much between time steps, selecting Linear
search with Begin index search using previous index result produces
the best performance.

• If input values for u jump more than one or two table intervals per time step,
selecting Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models
that rely heavily on lookup tables.

Tip The generated code stores only the first breakpoint, the spacing, and the number
of breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Begin index search using previous index result
Select this check box when you want the block to start its search using the index
found at the previous time step. For input values of u that change slowly with respect
to the interval size, enabling this option can improve performance. Otherwise,
the linear search and binary search methods can take longer, especially for large
breakpoint sets.

Output only the index
Select this check box when you want the block to output only the resulting index
value, without the interval fraction.

Typical applications include:

• Feeding a Direct Lookup Table (n-D) block, with no interpolation on the
interval

• Feeding selection ports of a subtable selection for an Interpolation Using
Prelookup block

• Performing nonlinear quantizations

 Prelookup

1-1409

Extrapolation method
Specify how to handle out-of-range values for the block input u. Options include:

• Clip

Block Input Block Outputs

Less than the first breakpoint • Index of the first breakpoint (for
example, 0)

• Interval fraction of 0
Greater than the last breakpoint • Index of the next-to-last breakpoint

• Interval fraction of 1

Suppose the range is [1 2 3] and you select this option. If u is 0.5, the index is
0 and the interval fraction is 0. If u is 3.5, the index is 1 and the interval fraction
is 1.

• Linear

Block Input Block Outputs

Less than the first breakpoint • Index of the first breakpoint (for
example, 0)

• Interval fraction that represents the
linear distance from u to the first
breakpoint

Greater than the last breakpoint • Index of the next-to-last breakpoint
• Interval fraction that represents the

linear distance from the next-to-last
breakpoint to u

Suppose the range is [1 2 3] and you select this option. If u is 0.5, the index
is 0 and the interval fraction is -0.5. If u is 3.5, the index is 1 and the interval
fraction is 1.5.

Tip The Prelookup block supports linear extrapolation only when all of these
conditions apply:

• The input u, breakpoint data, and fraction output use floating-point data types.

1 Blocks — Alphabetical List

1-1410

• The index uses a built-in integer data type.

Use last breakpoint for input at or above upper limit
Specify how to index input values of u that are greater than or equal to the last
breakpoint. The index value is zero-based. When input equals the last breakpoint,
block outputs differ as follows:

Check Box Block Outputs

Selected • Index of the last element in the breakpoint data set
• Interval fraction of 0

Cleared • Index of the next-to-last breakpoint
• Interval fraction of 1

This check box is visible only when:

• Output only the index is cleared.
• Extrapolation method is Clip.

However, when Output only the index is selected and Extrapolation method is
Clip, the block behaves as if this check box is selected even though it is invisible.

Tip When you select Use last breakpoint for input at or above upper limit
for a Prelookup block, you must also select Valid index input may reach last
index for the Interpolation Using Prelookup block to which it connects. This
action allows the blocks to use the same indexing convention when accessing the last
elements of their breakpoint and table data sets.

Diagnostic for out-of-range input
Specify whether to produce a warning or error when the input u is out of range.
Options include:

• None — no warning or error
• Warning — display a warning in the MATLAB Command Window and continue

the simulation

 Prelookup

1-1411

• Error — halt the simulation and display an error in the Diagnostic Viewer

Remove protection against out-of-range input in generated code
Specify whether or not to include code that checks for out-of-range breakpoint inputs.

Check Box Result When to Use

Selected Generated code does
not include conditional
statements to check for
out-of-range breakpoint
inputs.

For code efficiency

Cleared Generated code includes
conditional statements
to check for out-of-range
breakpoint inputs.

For safety-critical
applications

Depending on your application, you can run the following Model Advisor checks to
verify the usage of this check box:

• By Product > Embedded Coder > Identify lookup table blocks that
generate expensive out-of-range checking code

• By Product > Simulink Verification and Validation > Modeling Standards
> DO-178C/DO-331 Checks > Check usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Data Types tab

Note: The parameters for breakpoint attributes (data type, minimum, and maximum) are
not available when you set Source to Input port. In this case, the block inherits all
breakpoint attributes from the bp input port.

1 Blocks — Alphabetical List

1-1412

Breakpoint > Data Type
Specify the breakpoint data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the breakpoint data type.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Tip Specify a breakpoint data type different from the data type of input u for these
cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type
than the input signal u

• Sharing of prescaled breakpoint data between two Prelookup blocks with different
data types for input u

• Sharing of custom storage breakpoint data in the generated code for blocks with
different data types for input u

Breakpoint > Minimum
Specify the minimum value that the breakpoint data can have. The default value is
[] (unspecified).

Breakpoint > Maximum
Specify the maximum value that the breakpoint data can have. The default value is
[] (unspecified).

Index > Data Type
Specify a data type that can index all elements in the breakpoint data set. You can:

• Select a built-in integer data type from the list.

 Prelookup

1-1413

• Specify an integer data type using a fixed-point representation.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the index data type.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Fraction > Data Type
Specify the data type of the interval fraction. You can:

• Select a built-in data type from the list.
• Specify data type inheritance through an internal rule.
• Specify a fixed-point data type using the [Slope Bias] or binary-point-only scaling

representation.

• If you use the [Slope Bias] representation, the scaling must be trivial — that
is, the slope is 1 and the bias is 0.

• If you use the binary-point-only representation, the fixed power-of-two
exponent must be less than or equal to zero.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the fraction data type.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Lock output data type setting against changes by the fixed-point tools
Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding” in the Simulink Fixed Point documentation.

Block parameters always round to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a MATLAB rounding
function into the mask field.

1 Blocks — Alphabetical List

1-1414

Examples

Prelookup with External Breakpoint Specification

In the following model, a Constant block feeds the breakpoint data set to the bp input
port of the Prelookup block.

The Prelookup block inherits the following breakpoint attributes from the bp input port:

Breakpoint Attribute Value

Minimum –Inf
Maximum Inf

Data type single

Similarly, a Constant block feeds the table data values to the T input port of the
Interpolation Using Prelookup block, which inherits the following table attributes:

Table Attribute Value

Minimum –Inf
Maximum Inf

Data type single

Simulink uses double-precision, floating-point data to perform the computations in this
model. However, the model stores the breakpoint and table data as single-precision,
floating-point data. Using a lower-precision data type to store breakpoint and table data
reduces the memory requirement.

 Prelookup

1-1415

Prelookup with Even Spaced Breakpoint Specification

In this model, you specify evenly spaced breakpoint data to the Prelookup block.

The Breakpoint Specification parameter is set to Even Spacing. The parameters
First point, Spacing, and Number of points are set to 25, 12, and 4 respectively.
Specifying these parameters creates four evenly spaced breakpoints: [25, 37, 49,
61].

Specifying even spacing is an alternative way to specify breakpoints that are evenly
spaced. You can also set Breakpoint Specification to Explicit values and set
Value to [25:12:61].

Simulink uses double-precision, floating-point data to perform the computations in this
model. However, the model stores the breakpoints and table data as double.

For other examples, see “Prelookup and Interpolation Blocks” in the Simulink
documentation.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block

1 Blocks — Alphabetical List

1-1416

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Interpolation Using Prelookup

Introduced in R2006b

 Probe

1-1417

Probe

Output signal attributes, including width, dimensionality, sample time, and complex
signal flag

Library

Signal Attributes

Description

The Probe block outputs selected information about the signal on its input. The block
can output the input signal's width, dimensionality, sample time, and a flag indicating
whether the input is a complex-valued signal. The block has one input port. The number
of output ports depends on the information that you select for probing, that is, signal
dimensionality, sample time, and/or complex signal flag. Each probed value is output as
a separate signal on a separate output port. The block accepts real or complex-valued
signals of any built-in data type. It outputs signals of type double. During simulation,
the block icon displays the probed data.

Data Type Support

The Probe block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

1 Blocks — Alphabetical List

1-1418

• Enumerated (input only)
• Bus object

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

You can use an array of buses as an input signal to a Probe block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Main pane of the Probe block dialog box appears as follows:

Probe width

 Probe

1-1419

Select to output the width, or number of elements, of the probed signal.
Probe sample time

Select to output the sample time of the probed signal. The output is a two-element
vector that specifies the period and offset of the sample time, respectively. See “
Specify Sample Time” for more information.

Detect complex signal
Select to output 1 if the probed signal is complex; otherwise, 0.

Probe signal dimensions
Select to output the dimensions of the probed signal.

Detect framed signal
Select to output 1 if the probed signal is framed; otherwise, 0.

The Signal Attributes pane of the Probe block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1420

Note: The Probe block ignores the Data type override setting of the Fixed-Point Tool.

Data type for width
Select the output data type for the width information.

Data type for sample time
Select the output data type for the sample time information.

Data type for signal complexity
Select the output data type for the complexity information.

Data type for signal dimensions
Select the output data type for the dimensions information.

Data type for signal frames
Select the output data type for the frames information.

Note: For Data type for width, Data type for sample time, and Data type for
signal dimensions, the Boolean data type is not supported. Furthermore, if you select
Same as input in any of these drop-down lists, and the block’s input signal data type is
Boolean, when you simulate your model, you see an error.

Examples

The sldemo_fuelsys model shows how you can use the Probe block.

In the fuel_rate_control/validate_sample_time subsystem, the Probe block
determines the sample time of the input signal to verify that it matches the assumed
value of the design:

 Probe

1-1421

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1422

Product
Multiply and divide scalars and nonscalars or multiply and invert matrices

Library

Math Operations

Description

The Divide and Product of Elements blocks are variants of the Product block.

• For information on the Divide block, see Divide.
• For information on the Product of Elements block, see Product of Elements.

The Product block outputs the result of multiplying two inputs: two scalars, a scalar and
a nonscalar, or two nonscalars that have the same dimensions. The default parameter
values that specify this behavior are:

• Multiplication: Element-wise(.*)
• Number of inputs: 2

The following table shows the output of the Product block for example inputs using
default block parameter values.

Inputs and Behavior Example

Scalar X Scalar

Output the product of the two
inputs.

 Product

1-1423

Inputs and Behavior Example

Scalar X Nonscalar

Output a nonscalar having
the same dimensions as
the input nonscalar. Each
element of the output
nonscalar is the product
of the input scalar and the
corresponding element of the
input nonscalar.
Nonscalar X Nonscalar

Output a nonscalar having
the same dimensions as
the inputs. Each element of
the output is the product of
corresponding elements of the
inputs.

The Product block (or the Divide block or Product of Elements block, if appropriately
configured) can:

• Numerically multiply and divide any number of scalar, vector, or matrix inputs
• Perform matrix multiplication and division on any number of matrix inputs

The Product block performs scalar or matrix multiplication, depending on the value of
the Multiplication parameter. The block accepts one or more inputs, depending on the
Number of inputs parameter. The Number of inputs parameter also specifies the
operation to perform on each input.

The Product block can input any combination of scalars, vectors, and matrices for which
the operation to perform has a mathematically defined result. The block performs the
specified operations on the inputs, then outputs the result.

The Product block has two modes: Element-wise mode, which processes nonscalar inputs
element by element, and Matrix mode, which processes nonscalar inputs as matrices. The
next two sections describe these two modes.

1 Blocks — Alphabetical List

1-1424

Element-wise Mode

When the value of the Multiplication parameter is Element-wise(.*), the Product
block is in Element-wise mode, in which it operates on the individual numeric elements
of any nonscalar inputs. The MATLAB equivalent is the .* operator. In element-wise
mode, the Product block can perform a variety of multiplication, division, and arithmetic
inversion operations.

The value of the Number of inputs parameter controls both how many inputs exist
and whether each is multiplied or divided to form the output. When the Product block
in Element-wise mode has only one input, it is functionally equivalent to a Product
of Elements block. When the block has multiple inputs, any nonscalar inputs must
have identical dimensions, and the block outputs a nonscalar with those dimensions. To
calculate the output, the block first expands any scalar input to a nonscalar that has the
same dimensions as the nonscalar inputs.

This table shows the output of the Product block for example inputs, using the indicated
values for the Number of inputs parameter.

Parameter Values Examples

Number of inputs: 2

Number of inputs: */

Number of inputs: /**/

 Product

1-1425

Parameter Values Examples

Number of inputs: **

Number of inputs: */*

Matrix Mode

When the value of the Multiplication parameter is Matrix(*), the Product block
is in Matrix mode, in which it processes nonscalar inputs as matrices. The MATLAB
equivalent is the * operator. In Matrix mode, the Product block can invert a single square
matrix, or multiply and divide any number of matrices that have dimensions for which
the result is mathematically defined.

The value of the Number of inputs parameter controls both how many inputs exist
and whether each input matrix is multiplied or divided to form the output. The syntax
of Number of inputs is the same as in Element-wise mode. The difference between the
modes is in the type of multiplication and division that occur.

Expected Differences Between Simulation and Code Generation

For element-wise operations on complex floating-point inputs, simulation and code
generation results might differ in near-overflow cases. Although complex numbers is
selected and non-finite numbers is not selected on the Code Generation > Interface
pane of the Configuration Parameters dialog box, the code generator does not emit
special case code for intermediate overflows. This method improves the efficiency of
embedded operations for the general case that does not include extreme values. If the
inputs might include extreme values, please manage these cases explicitly.

The generated code might not produce the exact same pattern of NaN and inf values
as simulation when these values are mathematically meaningless. For example, if the

1 Blocks — Alphabetical List

1-1426

simulation output contains a NaN, output from the generated code also contains a NaN,
but not necessarily in the same place.

Data Type Support

The Product block accepts real or complex signals of any numeric data type that
Simulink supports, including fixed-point data types. For more information, see “ Data
Types Supported by Simulink” in the Simulink documentation.

The Product block does not support numeric division for complex signals with boolean
or fixed-point data types. For other types, the block accepts complex signals as divisors
only when the input and output signals all specify the same built-in data type. In this
case, however, the block ignores its specified rounding mode.

The Product block accepts multidimensional signals when operating in Element-wise
mode, but not when operating in Matrix mode. See “Signal Dimensions”, “Element-wise
Mode” on page 1-1424, and “Matrix Mode” on page 1-1425 for more information.

 Product

1-1427

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-1428

Number of inputs

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

Settings

Default: 2 for Product block, */ for Divide block, and * for Product of Elements
block

• 1 or * or /

Has one input. In element-wise mode, processes the input as described for the
Product of Elements block. In matrix mode, if the parameter value is 1 or *, the
block outputs the input value. If the value is /, the input must be a square matrix
(including a scalar as a degenerate case) and the block outputs the matrix inverse.
See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page 1-1425 for
more information.

• Integer value > 1

Has the number of inputs given by the integer value. The inputs are multiplied
together in element-wise mode or matrix mode, as specified by the Multiplication
parameter. See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page
1-1425 for more information.

• Unquoted string of two or more * and / characters

Has the number of inputs given by the length of the string. Each input that
corresponds to a * character is multiplied into the output. Each input that
corresponds to a / character is divided into the output. The operations occur in
element-wise mode or matrix mode, as specified by the Multiplication parameter.
See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page 1-1425 for
more information.

Dependency

Setting Number of inputs to * and selecting Element-wise(.*) for Multiplication
enables the Multiply over parameter.

 Product

1-1429

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiplication

Specify whether the Product block operates in Element-wise mode or Matrix mode.

Settings

Default: Element-wise(.*)

Element-wise(.*)

Operate in Element-wise mode.
Matrix(*)

Operate in Matrix mode.

Dependency

Selecting Element-wise(.*) and setting Number of inputs to * enable the following
parameter:

• Multiply over

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiply over

Affect multiplication on matrix input.

Settings

Default: All dimensions

All dimensions

Output a scalar that is product of all elements of the matrix, or the product of their
inverses, depending on the value of Number of inputs.

Specified dimension

1 Blocks — Alphabetical List

1-1430

Output a vector, the composition of which depends on the value of the Dimension
parameter.

Dependencies

• Enable this parameter by selecting Element-wise(.*) for Multiplication and
setting Number of inputs to * or 1 or /.

• Setting this parameter to Specified dimension enables the Dimension
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Dimension

Affect multiplication on matrix input.

Settings

Default: 1

Minimum: 1

Maximum: 2

1

Output a vector that contains an element for each column of the input matrix.
2

Output a vector that contains an element for each row of the input matrix.

Tips

Each element of the output vector contains the product of all elements in the
corresponding column or row of the input matrix, or the product of the inverses of those
elements, depending on the value of Number of inputs:

• 1 or *

Multiply the values of the column or row elements
• /

 Product

1-1431

Multiply the inverses of the column or row elements

Dependency

Enable this parameter by selecting Specified dimension for Multiply over.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

 On
Require that all inputs have the same data type.

 Off
Do not require that all inputs have the same data type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Output minimum

Lower value of the output range that Simulink checks.

1 Blocks — Alphabetical List

1-1432

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Product

1-1433

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code

1 Blocks — Alphabetical List

1-1434

efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as first input

Use data type of the first input signal.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.

 Product

1-1435

fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

• Same as first input

1 Blocks — Alphabetical List

1-1436

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

 Product

1-1437

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1438

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

 Product

1-1439

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

1 Blocks — Alphabetical List

1-1440

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

 Product

1-1441

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

1 Blocks — Alphabetical List

1-1442

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Rounding”.

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

 Product

1-1443

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

• Divide

• Dot Product

• Product of Elements

Introduced before R2006a

1 Blocks — Alphabetical List

1-1444

Product of Elements
Copy or invert one scalar input, or collapse one nonscalar input

Library
Math Operations

Description
The Divide and Product blocks are variants of the Product of Elements block.

• For information on the Divide block, see Divide.
• For information on the Product block, see Product.

The Product of Elements block inputs one scalar, vector, or matrix. You can use the block
to:

• Copy a scalar input unchanged
• Invert a scalar input (divide 1 by it)
• Collapse a vector or matrix to a scalar by multiplying together all elements or taking

successive inverses of the elements
• Collapse a matrix to a vector by multiplying together the elements of each row or

column or taking successive inverses of the elements of each row or column

The Product of Elements block is functionally a Product block that has two preset
parameter values:

• Multiplication: Element-wise(.*)
• Number of inputs: *

Setting non-default values for either of those parameters can change a Product of
Elements block to be functionally equivalent to a Product block or a Divide block. See
the documentation of those two blocks for more information.

 Product of Elements

1-1445

Algorithm

The Product of Elements block uses the following algorithms to perform element-wise
operations on inputs of floating-point, built-in integer, and fixed-point types:

Input Element-Wise Operation Algorithm

Multiplication y = uReal scalar, u
Division y = 1/u

Multiplication y = u1*u2*u3*...*uNReal vector or matrix,
with elements u1, u2,
u3, ..., uN

Division y = ((((1/u1)/u2)/u3).../uN)

Multiplication y = uComplex scalar, u
Division y = 1/u

Multiplication y = u1*u2*u3*...*uNComplex vector or
matrix, with elements
u1, u2, u3, ...,

uN

Division y = ((((1/u1)/u2)/u3).../uN)

If the specified dimension for element-wise multiplication or division is a row or column
of a matrix, the algorithm applies to that row or column. For example, consider the
following model:

The top Product of Elements block collapses the matrix input to a scalar by taking
successive inverses of the four elements:

• y = ((((1/2+i)/3)/4-i)/5)

1 Blocks — Alphabetical List

1-1446

The bottom Product of Elements block collapses the matrix input to a vector by taking
successive inverses along the second dimension:

• y(1) = ((1/2+i)/3)

• y(2) = ((1/4-i)/5)

 Product of Elements

1-1447

Parameters and Dialog Box

Number of inputs

Control two properties of the block:

1 Blocks — Alphabetical List

1-1448

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

Settings

Default: *

• 1 or *

• Copies a scalar input unchanged
• Collapses a vector input to a scalar by multiplying all elements together
• Collapses a matrix input to a scalar or vector by multiplying elements together

based on the Multiply over parameter

For more information, see “Algorithm” on page 1-1445.
• /

• Outputs the arithmetic inverse of a scalar input
• Collapses a vector input to a scalar by taking successive inverses of the elements
• Collapses a matrix input to a scalar or vector by taking successive inverses of

elements based on the Multiply over parameter

For more information, see “Algorithm” on page 1-1445.
• Integer value > 1

Has the number of inputs given by the integer value. The block becomes a product
block and the input are multiplied together in element-wise mode or matrix mode,
as specified by the Multiplication parameter. See “Element-wise Mode” on page
1-1424 and “Matrix Mode” on page 1-1425 in the Product documentation for more
information.

• Unquoted string of two or more * and / characters

Has the number of inputs given by the length of the string. The block becomes a
product or divide block and multiplies each input that corresponds to a * character
into the output. Each input that corresponds to a / character is divided into the
output. The operations occur in Element-wise mode or Matrix mode, as specified by
the Multiplication parameter. See “Element-wise Mode” on page 1-1424 and “Matrix
Mode” on page 1-1425 in the Product block reference page for more information.

 Product of Elements

1-1449

Dependency

Setting Number of inputs to * and selecting Element-wise(.*) for Multiplication
enables the following Multiply over parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiplication

Specify whether the Product block operates in Element-wise mode or Matrix mode.

Settings

Default: Element-wise(.*)

Element-wise(.*)

Operate in Element-wise mode.
Matrix(*)

Operate in Matrix mode.

Dependency

Selecting Element-wise(.*) and setting Number of inputs to * enable the following
parameter:

• Multiply over

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiply over

Affect multiplication on matrix input.

Settings

Default: All dimensions

1 Blocks — Alphabetical List

1-1450

All dimensions

Output a scalar that is product of all elements of the matrix, or the product of their
inverses, depending on the value of Number of inputs.

Specified dimension

Output a vector, the composition of which depends on the value of the Dimension
parameter.

Dependencies

• Enable this parameter by selecting Element-wise(.*) for Multiplication and
setting Number of inputs to * or 1 or /.

• Setting this parameter to Specified dimension enables the Dimension
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Dimension

Affect multiplication on matrix input.

Settings

Default: 1

Minimum: 1

Maximum: 2

1

Output a vector that contains an element for each column of the input matrix.
2

Output a vector that contains an element for each row of the input matrix.

Tips

Each element of the output vector contains the product of all elements in the
corresponding column or row of the input matrix, or the product of the inverses of those
elements, depending on the value of Number of inputs:

 Product of Elements

1-1451

• 1 or *

Multiply the values of the column or row elements
• /

Multiply the inverses of the column or row elements

Dependency

Enable this parameter by selecting Specified dimension for Multiply over.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

 On
Require that all inputs have the same data type.

 Off
Do not require that all inputs have the same data type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1452

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Product of Elements

1-1453

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code

1 Blocks — Alphabetical List

1-1454

efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as first input

Use data type of the first input signal.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

 Product of Elements

1-1455

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)

1 Blocks — Alphabetical List

1-1456

• Inherit via back propagation

• Same as first input

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

Data type override

Specify data type override mode for this signal.

 Product of Elements

1-1457

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

1 Blocks — Alphabetical List

1-1458

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

 Product of Elements

1-1459

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Slope

Specify slope for the fixed-point data type.

1 Blocks — Alphabetical List

1-1460

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 Product of Elements

1-1461

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

1 Blocks — Alphabetical List

1-1462

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Rounding”.

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

 Product of Elements

1-1463

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

Examples

This table shows the output of the Product of Elements block for example inputs using
default block parameter values, except as shown in the table.

Parameter Values Examples

Multiplication:
Element-wise(.*)

Number of inputs: *
Multiplication:
Element-wise(.*)

Number of inputs: /
Multiplication:
Element-wise(.*)

Number of inputs: *

1 Blocks — Alphabetical List

1-1464

Parameter Values Examples

Multiplication:
Element-wise(.*)

Number of inputs: *

Multiply over: All
dimensions

Multiplication:
Element-wise(.*)

Number of inputs: *

Multiply over:
Specified dimension

Dimension: 1
Multiplication:
Element-wise(.*)

Number of inputs: /

Multiply over:
Specified dimension

Dimension: 2

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

 Pulse Generator

1-1465

Pulse Generator

Generate square wave pulses at regular intervals

Library

Sources

Description

The Pulse Generator block generates square wave pulses at regular intervals. The block
waveform parameters, Amplitude, Pulse Width, Period, and Phase delay, determine
the shape of the output waveform. The following diagram shows how each parameter
affects the waveform.

Width

Phase

A
m
p
li
tu
d
e

Period

The Pulse Generator can emit scalar, vector, or matrix signals of any real data type. To
cause the block to emit a scalar signal, use scalars to specify the waveform parameters.

1 Blocks — Alphabetical List

1-1466

To cause the block to emit a vector or matrix signal, use vectors or matrices, respectively,
to specify the waveform parameters. Each element of the waveform parameters affects
the corresponding element of the output signal. For example, the first element of a
vector amplitude parameter determines the amplitude of the first element of a vector
output pulse. All the waveform parameters must have the same dimensions after scalar
expansion. The data type of the output is the same as the data type of the Amplitude
parameter.

This block output can be generated in time-based or sample-based modes, determined by
the Pulse type parameter.

Time-Based Mode

In time-based mode, Simulink computes the block output only at times when the output
actually changes. This approach results in fewer computations for the block output over
the simulation time period. Activate this mode by setting the Pulse type parameter to
Time based.

The block does not support atime-based configuration that results in a constant output
signal. Simulink returns an error if the parameters Pulse Width and Period satisfy
either of these conditions:

Period
PulseWidth

Period
PulseWidth

Period

*

*

100
0

100

=

=

Depending on the pulse waveform characteristics, the intervals between changes in the
block output can vary. For this reason, a time-based Pulse Generator block has a variable
sample time. The sample time color of such blocks is brown (see “View Sample Time
Information” for more information).

Simulink cannot use a fixed-step solver to compute the output of a time-based pulse
generator. If you specify a fixed-step solver for models that contain time-based pulse
generators, Simulink computes a fixed sample time for the time-based pulse generators.
Then the time-based pulse generators simulate as sample based.

If you use a fixed-step solver and the Pulse type is Time based, choose the step size
such that the period, phase delay, and pulse width (in seconds) are integer multiples of

 Pulse Generator

1-1467

the solver step size. For example, suppose that the period is 4 seconds, the pulse width is
75% (that is, 3 s), and the phase delay is 1 s. In this case, the computed sample time is 1
s. Therefore, choose a fixed-step size of 1 or a number that divides 1 exactly (e.g., 0.25).
You can guarantee this by setting the fixed-step solver step size to auto on the Solver
pane of the Configuration Parameters dialog box.

Sample-Based Mode

In sample-based mode, the block computes its outputs at fixed intervals that you specify.
Activate this mode by setting the Pulse type parameter to Sample based.

An important difference between the time-based and sample-based modes is that in time-
based mode, the block output is based on simulation time, and in sample-based mode, the
block output depends only on the simulation start, regardless of elapsed simulation time.
For more information, see the example “Difference Between Time-Based and Sample-
Based Pulse Generation Modes” on page 1-1470.

This block supports reset semantics in sample-based mode. For example, if a Pulse
Generator is in a resettable subsystem that hits a reset trigger, the block output resets to
its initial condition.

Data Type Support

The Pulse Generator block outputs real signals of any numeric data type that Simulink
supports, including fixed-point data types. The data type of the output signal is the same
as that of the Amplitude parameter.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1468

Parameters and Dialog Box

 Pulse Generator

1-1469

Pulse type
The pulse type for this block: Time based or Sample based. The default is Time
based.

Time (t)
Specifies whether to use simulation time or an external signal as the source of values
for the output pulse's time variable. If you specify an external source, the block
displays an input port for connecting the source. The output pulse differs as follows:

• Use simulation time: The block generates an output pulse where the time
variable equals the simulation time.

• Use external signal: The block generates an output pulse where the
time variable equals the value from the input port, which can differ from the
simulation time.

Amplitude
The pulse amplitude. The default is 1.

Period
The pulse period specified in seconds if the pulse type is time-based or as number of
sample times if the pulse type is sample-based. The default is 10 seconds.

Pulse Width
The duty cycle specified as the percentage of the pulse period that the signal is on if
time-based or as number of sample times if sample-based. The default is 5 percent.

Phase delay
The delay before the pulse is generated specified in seconds if the pulse type is time-
based or as number of sample times if the pulse type is sample-based. The default is
0 seconds.

Sample time
The length of the sample time for this block in seconds. This parameter appears only
if the block's pulse type is sample-based. See “ Specify Sample Time” in the Simulink
User's Guide for more information.

Interpret vector parameters as 1-D
If you select this check box and the other parameters are one-row or one-column
matrices, after scalar expansion, the block outputs a 1-D signal (vector). Otherwise
the output dimensionality is the same as that of the other parameters. See
“Determining the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Simulink User's Guide.

1 Blocks — Alphabetical List

1-1470

Examples

The following Simulink examples show how to use the Pulse Generator block:

• sldemo_auto_climatecontrol

• sldemo_boiler

Difference Between Time-Based and Sample-Based Pulse Generation
Modes

This example shows the difference in the behavior of the Pulse Generator block in time-
based and sample-based modes.

Consider a model with two Pulse Generator blocks. In one block, the Pulse type
parameter is set to Time based. In the other block, it is set to Sample based. Both
blocks are set up to output a Boolean pulse of 10 seconds: 5 seconds on followed by 5
seconds off. The simulation runs for 15 seconds from a start time of 3 seconds to a stop
time of 18 seconds, specified in the Model Configuration Parameters dialog box. The
figure shows the block diagram for this model and the simulation output in the Scope
block.

 Pulse Generator

1-1471

You can see that simulation output starts at 3 seconds, as expected. Notice that the time-
based Pulse Generator produces a logical on for only 2 seconds, after which its output
changes to off at t = 5 seconds. This is because this block starts computing its output
from t = 0 seconds, even though it doesn’t output it until the simulation starts at t = 3
seconds. The time-based block depends on simulation time for its output.

The sample-based block outputs a pulse of 5 seconds on followed by 5 seconds off. In
this case, the blocks output does not depend on simulation time, and starts only when the
simulation starts.

1 Blocks — Alphabetical List

1-1472

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Push Button

1-1473

Push Button
Set value of tunable parameter or variable by holding button

Library
Dashboard

Description
The Push Button block enables you to control tunable parameters and variables in your
model during simulation. The block sets a value of a tunable parameter or variable by
selecting and holding the button. When the push button is not selected, the value is set
back to the default value.

To control a tunable parameter or variable using the Push Button block, double-click
the Push Button block to open the dialog box. Select a block in the model canvas. The
tunable parameter or variable appears in the dialog box Connection table. Select the
option button next to the tunable parameter or variable you want to control. Click Apply
to connect the tunable parameter or variable to the block.

Limitations

The Push Button block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter
uses an index of the variable engine,
which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

1 Blocks — Alphabetical List

1-1474

Parameters and Dialog Box

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next

 Push Button

1-1475

to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

Button Text

The push button text label.

Settings

Default: Button

Specify this label as a string.

On Value

The value when the button is pushed and held.

Settings

Default: 1

Specify this number as a finite, real, double, scalar value.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom

1 Blocks — Alphabetical List

1-1476

Show the label at the bottom of the block.
Hide

Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Quantizer

1-1477

Quantizer

Discretize input at specified interval

Library

Discontinuities

Description

The Quantizer block passes its input signal through a stair-step function so that many
neighboring points on the input axis are mapped to one point on the output axis. The
effect is to quantize a smooth signal into a stair-step output. The output is computed
using the round-to-nearest method, which produces an output that is symmetric about
zero.

y = q * round(u/q)

where y is the output, u the input, and q the Quantization interval parameter.

Data Type Support

The Quantizer block accepts and outputs real or complex signals of type single or
double. For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1478

Parameters and Dialog Box

Quantization interval
The interval around which the output is quantized. Permissible output values for the
Quantizer block are n*q, where n is an integer and q the Quantization interval.
The default is 0.5.

Treat as gain when linearizing
Simulink software by default treats the Quantizer block as unity gain when
linearizing. This setting corresponds to the large-signal linearization case. If you
clear this check box, the linearization routines assume the small-signal case and set
the gain to zero.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The sldemo_boiler model shows how you can use the Quantizer block.

 Quantizer

1-1479

The Quantizer block appears in the Boiler Plant model/digital thermometer/
ADC subsystem.

The ADC subsystem digitizes the input analog voltage by:

• Multiplying the analog voltage by 256/5 with the Gain block
• Rounding the value to integer floor with the Quantizer block
• Limiting the output to a maximum of 255 (the largest unsigned 8-bit integer value)

with the Saturation block

For more information, see “Explore the Fixed-Point "Bang-Bang Control" Model” in the
Stateflow documentation.

Characteristics

Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1480

Quarter Gauge

Display input value on ninety degree scale

Library

Dashboard

Description

The Quarter Gauge block displays connected signals during simulation on a circular
ninety degree gauge.

To view data from a signal on the Quarter Gauge block, double-click the Quarter Gauge
block to open the dialog box. Select a signal in the model canvas. The signal appears in
the dialog box Connection table. Select the option button next to the signal you want to
display. Click Apply to connect the signal to the block.

You can modify the tick range by modifying the Minimum, Maximum, and Tick
Interval values.

You can also add scale colors that appear on the outside of the Quarter Gauge block scale
using the Scale Colors table.

Limitations

The Quarter Gauge block has these limitations, which you can work around.

 Quarter Gauge

1-1481

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

If you turn off streaming for a signal connected to any dashboard gauge, then the
connection shows as broken. Signal data does not stream to the block. To view signal
data again, double-click the gauge and reconnect the signal.

The External simulation mode is not supported for the Quarter Gauge block.

1 Blocks — Alphabetical List

1-1482

Parameters and Dialog Box

 Quarter Gauge

1-1483

Connection

Select a signal to connect and display.

To view the data from a signal, select a signal in the model. The signal appears in the
Connection table. Select the option button next to the signal you want to display. Click
Apply to connect the signal.

Settings

The table has a row for the signal connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

Minimum

Minimum tick mark value.

Settings

Default: 0

Specify this number as a finite, real, double, scalar value.

Dependencies

The Minimum tick value must be less than the Maximum tick value.

Maximum

Maximum tick mark value.

Settings

Default: 100

Specify this number as a finite, real, double, scalar value.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

1 Blocks — Alphabetical List

1-1484

Tick Interval

Interval between major tick marks.

Settings

Default: auto

Specify this number as a finite, real, positive, integer, scalar value. Specify as auto for
the block to adjust the tick interval automatically.

Scale Colors

Specify ranges of color bands on the outside of the scale. Specify the minimum and
maximum color range to display on the gauge.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Ramp

1-1485

Ramp

Generate constantly increasing or decreasing signal

Library

Sources

Description

The Ramp block generates a signal that starts at a specified time and value and changes
by a specified rate. The block's Slope, Start time, and Initial output parameters
determine the characteristics of the output signal. All must have the same dimensions
after scalar expansion.

Data Type Support

The Ramp block outputs signals of type double. For more information, see “ Data Types
Supported by Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-1486

Parameters and Dialog Box

Slope
Specify the rate of change of the generated signal. The default is 1.

Start time
Specify the time at which the block begins generating the signal. The default is 0.

Initial output
Specify the initial value of the output signal. The default is 0.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or one-column
matrices, after scalar expansion, the block outputs a 1-D signal (vector).
Otherwise, the output dimensionality is the same as that of the other parameters.

 Ramp

1-1487

See “Determining the Output Dimensions of Source Blocks” in the Simulink
documentation.

Examples

The following Simulink examples show how to use the Ramp block:

• sldemo_VariableTransportDelay_pipe

Characteristics

Data Types Double
Sample Time Inherited from driven block
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1488

Random Number
Generate normally distributed random numbers

Library

Sources

Description

The Random Number block generates normally distributed random numbers. To
generate uniformly distributed random numbers, use the Uniform Random Number
block.

You can generate a repeatable sequence using any Random Number block with the same
nonnegative seed and parameters. The seed resets to the specified value each time a
simulation starts. By default, the block produces a sequence that has a mean of 0 and a
variance of 1. To generate a vector of random numbers with the same mean and variance,
specify the Seed parameter as a vector.

Avoid integrating a random signal, because solvers must integrate relatively smooth
signals. Instead, use the Band-Limited White Noise block.

The numeric parameters of this block must have the same dimensions after scalar
expansion. If you select the Interpret vector parameters as 1-D check box and the
numeric parameters are row or column vectors after scalar expansion, the block outputs
a 1-D signal. If you clear the Interpret vector parameters as 1-D check box, the block
outputs a signal of the same dimensionality as the parameters.

Data Type Support

The Random Number block outputs a real signal of type double. For more information,
see “ Data Types Supported by Simulink” in the Simulink documentation.

 Random Number

1-1489

Parameters and Dialog Box

Mean
Specify the mean of the random numbers. The default is 0.

Variance
Specify the variance of the random numbers. The default is 1.

Seed
Specify the starting seed for the random number generator. The default is 0.

1 Blocks — Alphabetical List

1-1490

The seed must be 0 or a positive integer. Output is repeatable for a given seed.
Sample time

Specify the time interval between samples. The default is 0.1, which matches
the default sample time of the Band-Limited White Noise block. See “ Specify
Sample Time” in the Simulink documentation for more information.

Interpret vector parameters as 1-D
If you select this check box and the other parameters are row or column vectors after
scalar expansion, the block outputs a 1-D signal. Otherwise, the block outputs a
signal of the same dimensionality as the other parameters. For more information,
see “Determining the Output Dimensions of Source Blocks” in the Simulink
documentation.

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

The generator algorithm is identical to the one used in MATLAB Version 4.0 by the rand
and randn functions. For details on the mcg16807 algorithm, see “ Choosing a Random
Number Generator” in the MATLAB documentation.

To use other algorithms supported by MATLAB in a Simulink model, generate a stream
of random numbers in MATLAB, and store the output as a .mat file. Use this .mat file as
the random number input for your simulation. For more information, see “Creating and
Controlling a Random Number Stream”. To create multiple independent streams using
MATLAB, see “Multiple streams”.

Note: Using multiple seeds to generate multiple parallel independent streams for a
generator algorithm is not recommended for the mcg16807 algorithm. Instead, use the
method described above.

 Random Number

1-1491

See Also

Uniform Random Number

Introduced before R2006a

1 Blocks — Alphabetical List

1-1492

Rate Limiter
Limit rate of change of signal

Library

Discontinuities

Description

The Rate Limiter block limits the first derivative of the signal passing through it. The
output changes no faster than the specified limit. The derivative is calculated using this
equation:`

rate
u i y i

t i t i
=

- -

- -

() ()

() ()

1

1

u(i) and t(i) are the current block input and time, and y(i–1) and t(i–1) are the output
and time at the previous step. The output is determined by comparing rate to the Rising
slew rate and Falling slew rate parameters:

• If rate is greater than the Rising slew rate parameter (R), the output is calculated
as

y i t R y i() ().= D ◊ + -1

• If rate is less than the Falling slew rate parameter (F), the output is calculated as

y i t F y i() ().= D ◊ + - 1

• If rate is between the bounds of R and F, the change in output is equal to the change
in input:

 Rate Limiter

1-1493

y i u i() ()=

When the block is running in continuous mode (for example, Sample time mode is
inherited and Sample time of the driving block is zero), the Initial condition is
ignored. The block output at t = 0 is equal to the initial input:

y u() ()0 0=

When the block is running in discrete mode (for example, Sample time mode is
inherited and Sample time of the driving block is nonzero), the Initial condition is
preserved:

y Ic()- =1

where Ic is the initial condition. The block output at t = 0 is calculated as if rate is
outside the bounds of R and F. For t = 0, rate is calculated as follows:

rate
u y

sampletime
=

- -() ()0 1

Note: You cannot use a Rate Limiter block inside a Triggered Subsystem. Use the Rate
Limiter Dynamic block instead.

Data Type Support

The Rate Limiter block accepts and outputs signals of any numeric data type that
Simulink supports, except Boolean. The Rate Limiter block supports fixed-point data
types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1494

Parameters and Dialog Box

Rising slew rate
Specify the limit of the derivative of an increasing input signal. This parameter is
tunable for fixed-point inputs.

Falling slew rate
Specify the limit of the derivative of a decreasing input signal. This parameter is
tunable for fixed-point inputs.

Sample time mode
Specify the sample time mode, continuous or inherited from the driving block.

Initial condition

 Rate Limiter

1-1495

Set the initial output of the simulation. Simulink software does not allow you to set
the initial condition of this block to inf or NaN.

Treat as gain when linearizing
Linearization commands in Simulink software treat this block as a gain in state
space. Select this check box to cause the linearization commands to treat the gain as
1; otherwise, the commands treat the gain as 0.

Characteristics

Data Types Double | Single| Base Integer | Fixed-Point
Sample Time Continuous or inherited (specified in the Sample

time mode parameter)
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Rate Limiter Dynamic

Introduced before R2006a

1 Blocks — Alphabetical List

1-1496

Rate Limiter Dynamic
Limit rising and falling rates of signal

Library

Discontinuities

Description

The Rate Limiter Dynamic block limits the rising and falling rates of the signal.

• The external signal up sets the upper limit on the rising rate of the signal.
• The external signal lo sets the lower limit on the falling rate of the signal.

Follow these guidelines when using the Rate Limiter Dynamic block:

• Ensure that the data types of up and lo are the same as the data type of the input
signal u.

When the lower limit uses a signed type and the input signal uses an unsigned type,
the output signal keeps increasing regardless of the input and the limits.

• Use a fixed-step solver to simulate models that contain this block.

Because the Rate Limiter Dynamic block does not support continuous sample time,
simulation with a variable-step solver causes an error.

Data Type Support

The Rate Limiter Dynamic block accepts input signals of the following data types:

• Floating point

 Rate Limiter Dynamic

1-1497

• Built-in integer
• Fixed point

The data type of the output signal Y matches the data type of the input signal u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Rate Limiter

1 Blocks — Alphabetical List

1-1498

Introduced before R2006a

 Rate Transition

1-1499

Rate Transition
Handle transfer of data between blocks operating at different rates

Library

Signal Attributes

Description

Transition Handling Options

The Rate Transition block transfers data from the output of a block operating at one
rate to the input of a block operating at a different rate. Use the block parameters to
trade data integrity and deterministic transfer for faster response or lower memory
requirements. To learn about data integrity and deterministic data transfer, see “Data
Transfer Problems” in the Simulink Coder documentation.

Transition Handling Options Block Parameter Settings

• Data integrity
• Deterministic data transfer
• Maximum latency

Select:

• Ensure data integrity during
data transfer

• Ensure deterministic data
transfer

• Data integrity
• Nondeterministic data transfer
• Minimum latency
• Higher memory requirements

Select:

• Ensure data integrity during
data transfer

1 Blocks — Alphabetical List

1-1500

Transition Handling Options Block Parameter Settings

Clear:

• Ensure deterministic data
transfer

• Potential loss of data integrity
• Nondeterministic data transfer
• Minimum latency
• Lower memory requirements

Clear:

• Ensure data integrity during
data transfer

• Ensure deterministic data
transfer

Dependencies

The behavior of the Rate Transition block depends on:

• Sample times of the ports to which the block connects (see “Effects of Synchronous
Sample Times” on page 1-1501 and “Effects of Asynchronous Sample Times” on page
1-1503)

• Priorities of the tasks for the source and destination sample times (see “Sample time
properties” in the Simulink documentation)

• Whether the model specifies a fixed- or variable-step solver (see “Solvers” in the
Simulink documentation)

Block Labels

When you update your diagram, a label appears on the Rate Transition block to indicate
simulation behavior.

Label Block Behavior

ZOH Acts as a zero-order hold
1/z Acts as a unit delay
Buf Copies input to output under semaphore control
Db_buf Copies input to output using double buffers
Copy Unprotected copy of input to output

 Rate Transition

1-1501

Label Block Behavior

NoOp Does nothing
Mixed Expands to multiple blocks with different behaviors

The block behavior label shows the method that ensures safe transfer of data between
tasks operating at different rates. You can use the sample-time colors feature (see “View
Sample Time Information” in the Simulink documentation) to display the relative rates
that the block bridges. Consider, for example, the following model:

Sample-time colors and the block behavior label show that the Rate Transition block
at the top of the diagram acts as a zero-order hold in a fast-to-slow transition and the
bottom Rate Transition block acts as a unit delay in a slow-to-fast transition.

For more information, see “Handle Rate Transitions” in the Simulink Coder
documentation.

Effects of Synchronous Sample Times

The following table summarizes how each label appears if the sample times of the input
and output ports (inTs and outTs) are periodic, or synchronous.

1 Blocks — Alphabetical List

1-1502

Block Settings Block Label

Rate
Transition

Conditions for Rate Transition Block With Data Integrity
and Determinism

With Only
Data Integrity

Without Data
Integrity or
Determinism

inTsOffset < outTsOffset None (error) Buf

inTsOffset = outTsOffset Copy or NoOp
(see note that
follows the table)

Copy or
NoOp (see
note that
follows the
table)

inTs =
outTs

(Equal)

inTsOffset > outTsOffset None (error) Db_buf

inTs = outTs / N

inTsOffset, outTsOffset = 0

ZOH

inTs = outTs / N

inTsOffset ≤ outTsOffset

None (error)

Buf

inTs = outTs / N

inTsOffset > outTsOffset

None (error)

inTs <
outTs

(Fast to
slow)

inTs ≠ outTs / N None (error)

Db_buf

inTs = outTs * N

inTsOffset, outTsOffset = 0

1/z

inTs = outTs * N

inTsOffset ≤ outTsOffset

None (error)

inTs = outTs * N

inTsOffset > outTsOffset

None (error)

inTs >
outTs

(Slow to
fast)

inTs ≠ outTs * N None (error)

Db_buf

Copy or NoOp
(see note that
follows the
table)

 Rate Transition

1-1503

Block Settings Block Label

Rate
Transition

Conditions for Rate Transition Block With Data Integrity
and Determinism

With Only
Data Integrity

Without Data
Integrity or
Determinism

KEY

• inTs, outTs: Sample times of input and output ports, respectively
• inTsOffset, outTsOffset: Sample time offsets of input and output ports, respectively
• N: Integer value > 1

When you select Block reduction in the Optimization pane of the Configuration
Parameters dialog box, Copy reduces to NoOp. No code generation occurs for a Rate
Transition block with a NoOp label. To prevent a block from being reduced when block
reduction is on, add a test point to the block output (see “Test Points” in the Simulink
documentation).

Effects of Asynchronous Sample Times

The following table summarizes how each label appears if the sample time of the input or
output port (inTs or outTs) is not periodic, or asynchronous.

Block LabelBlock Settings

With Data Integrity
and Determinism

With Only Data
Integrity

Without Data Integrity
or Determinism

inTs = outTs Copy Copy

inTs ≠ outTs None (error) Db_buf

Copy

KEY

• inTs, outTs: Sample times of input and output ports, respectively

Data Type Support

The Rate Transition block accepts most signals that Simulink supports, including fixed-
point and enumerated data types. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-1504

However, do not use the Rate Transition block with frame-based signals. For rate
transitions with such signals, use one of these blocks from the DSP System Toolbox
instead:

• Buffer
• Unbuffer
• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample

 Rate Transition

1-1505

Parameters and Dialog Box

Ensure data integrity during data transfer

1 Blocks — Alphabetical List

1-1506

Selecting this check box results in generated code that ensures data integrity
when the block transfers data. If you select this check box and the transfer is
nondeterministic (see Ensure deterministic data transfer below), depending on
the priority of input rate and output rate, the generated code uses a proper algorithm
using single or multiple buffers to protect data integrity during data transfer.

Otherwise, the Rate Transition block is either reduced or generates code using a
copy operation to effect the data transfer. This unprotected mode consumes less
memory. But the copy operation is also interruptible, which can lead to loss of data
integrity during data transfers. Select this check box if you want the generated
code to operate with maximum responsiveness (i.e., nondeterministically) and data
integrity. For more information, see “ Rate Transition Block Options” in the Simulink
Coder documentation.

Ensure deterministic data transfer (maximum delay)
Selecting this check box results in generated code that transfers data at the sample
rate of the slower block, that is, deterministically. If you do not select this check
box, data transfers occur as soon as new data is available from the source block
and the receiving block is ready to receive the data. You avoid transfer delays,
thus ensuring that the system operates with maximum responsiveness. However,
transfers can occur unpredictably, which is undesirable in some applications. For
more information, see “ Rate Transition Block Options” in the Simulink Coder
documentation.

Initial conditions
This parameter applies only to slow-to-fast transitions. It specifies the initial output
of the Rate Transition block at the beginning of a transition when there is no output
from the slow block connected to the input of the Rate Transition block. Simulink
does not allow the initial output of this block to be Inf or NaN.

Output port sample time options
Specifies a mode for setting the output port sample time. The options are:

• Specify — Allows you to use the Output port sample time parameter to
specify the output rate to which the Rate Transition block converts its input rate.

• Inherit — Specifies that the Rate Transition block inherits an output rate from
the block to which the output port is connected.

• Multiple of input port sample time — Allows you to use the Sample
time multiple (>0) parameter to specify the Rate Transition block output rate as
a multiple of its input rate.

 Rate Transition

1-1507

If you specify Inherit and all blocks connected to the output port also inherit
sample time, the fastest sample time in the model applies.

Output port sample time
This parameter is visible when you set Output port sample time options to
Specify. Enter a value that specifies the output rate to which the block converts its
input rate. The default value (-1) specifies that the Rate Transition block inherits
the output rate from the block to which the output port is connected. See “ Specify
Sample Time” in the Simulink documentation for information on how to specify the
output rate.

Sample time multiple (>0)
This parameter is visible when you set Output port sample time options to
Multiple of input port sample time. Enter a positive value that specifies
the output rate as a multiple of the input port sample time. The default value (1)
specifies that the output rate is the same as the input rate. A value of 0.5 specifies
that the output rate is half of the input rate, while a value of 2 specifies that the
output rate is twice the input rate.

Bus Support

The Rate Transition block is a bus-capable block. The input can be a virtual or nonvirtual
bus signal, with the restriction that Initial conditions must be zero, a nonzero scalar,
or a finite numeric structure. For information about specifying an initial condition
structure, see “Specify Initial Conditions for Bus Signals”.

All signals in a nonvirtual bus input to a Rate Transition block must have the same
sample time, even if the elements of the associated bus object specify inherited sample
times. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus. See “Composite Signals” and “Bus-Capable
Blocks” in the Simulink documentation for more information.

You can use an array of buses as an input signal to a Rate Transition block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

1 Blocks — Alphabetical List

1-1508

Sample Time This block supports discrete-to-discrete transitions
Direct Feedthrough No, for slow-to-fast transitions for which you select

the Ensure data integrity during data transfer
check box. Yes, otherwise.

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Real-Imag to Complex

1-1509

Real-Imag to Complex
Convert real and/or imaginary inputs to complex signal

Library

Math Operations

Description

The Real-Imag to Complex block converts real and/or imaginary inputs to a complex-
valued output signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions, or one input
can be an array and the other a scalar. If the block has an array input, the output is a
complex array of the same dimensions. The elements of the real input map to the real
parts of the corresponding complex output elements. The imaginary input similarly maps
to the imaginary parts of the complex output signals. If one input is a scalar, it maps to
the corresponding component (real or imaginary) of all the complex output signals.

Data Type Support

The block accepts input signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

Complex fixed-point signals must have trivial slope and zero bias. For more information
about support for fixed-point data types, see “Scaling” in the Fixed-Point Designer
documentation.

1 Blocks — Alphabetical List

1-1510

Parameters and Dialog Box

Input
Specify the kind of input: a real input, an imaginary input, or both.

Real (Imag) part
This parameter appears only when you set Input to Real or Imag. If the input is a
real-part signal, this parameter specifies the constant imaginary part of the output
signal. If the input is the imaginary part, this parameter specifies the constant real
part of the output signal. The title of this parameter changes to reflect its usage.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

 Real-Imag to Complex

1-1511

Characteristics

Data Types Double | Single| Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Complex to Real-Imag

Introduced before R2006a

1 Blocks — Alphabetical List

1-1512

Relational Operator
Perform specified relational operation on inputs

Library

Logic and Bit Operations

Description

Two-Input Mode

By default, the Relational Operator block compares two inputs using the Relational
operator parameter that you specify. The first input corresponds to the top input
port and the second input to the bottom input port. (See “How to Rotate a Block”
in the Simulink documentation for a description of the port order for various block
orientations.)

You can specify one of the following operations in two-input mode:

Operation Description

== TRUE if the first input is equal to the second input
~= TRUE if the first input is not equal to the second input
< TRUE if the first input is less than the second input
<= TRUE if the first input is less than or equal to the second input
>= TRUE if the first input is greater than or equal to the second input
> TRUE if the first input is greater than the second input

You can specify inputs as scalars, arrays, or a combination of a scalar and an array.

 Relational Operator

1-1513

For... The output is...

Scalar inputs A scalar
Array inputs An array of the same dimensions, where each element is

the result of an element-by-element comparison of the input
arrays

Mixed scalar and array
inputs

An array, where each element is the result of a comparison
between the scalar and the corresponding array element

The input with the smaller positive range is converted to the data type of the other
input offline using round-to-nearest and saturation. This conversion occurs before the
comparison.

You can specify the output data type using the Output data type parameter. The
output equals 1 for TRUE and 0 for FALSE.

Tip Select an output data type that represents zero exactly. Data types that satisfy this
condition include signed and unsigned integers and any floating-point data type.

One-Input Mode

When you select one of the following operations for Relational operator, the block
switches to one-input mode.

Operation Description

isInf TRUE if the input is Inf
isNaN TRUE if the input is NaN
isFinite TRUE if the input is finite

For an input that is not floating point, the block produces the following output.

Data Type Operation Block Output

isInf FALSE
isNaN FALSE

• Fixed point
• Boolean

isFinite TRUE

1 Blocks — Alphabetical List

1-1514

Data Type Operation Block Output

• Built-in
integer

Rules for Data Type Propagation

The following rules apply for data type propagation when your block has one or more
input ports with unspecified data types.

When the block is in... And... The block uses...

Both input ports have
unspecified data types

double as the default data
type for both inputs

Two-input mode

One input port has an
unspecified data type

The data type from the
specified input port as the
default data type of the other
port

One-input mode The input port has an
unspecified data type

double as the default data
type for the input

Data Type Support

The Relational Operator block accepts real or complex signals of any data type that
Simulink supports, including fixed-point and enumerated data types. For two-input
mode, one input can be real and the other complex when the operator is == or ~=.
Complex inputs work only for ==, ~=, isInf, isNaN, and isFinite.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Relational Operator block dialog box appears as follows:

 Relational Operator

1-1515

The Data Type pane of the Relational Operator block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1516

 Relational Operator

1-1517

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-1518

Relational operator

Specify the operation for comparing two inputs or determining the signal type of one
input.

Settings

Default: <=

==

TRUE if the first input is equal to the second input
~=

TRUE if the first input is not equal to the second input
<

TRUE if the first input is less than the second input
<=

TRUE if the first input is less than or equal to the second input
>=

TRUE if the first input is greater than or equal to the second input
>

TRUE if the first input is greater than the second input
isInf

TRUE if the input is Inf
isNaN

TRUE if the input is NaN
isFinite

TRUE if the input is finite

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Relational Operator

1-1519

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Settings

Default: On

 On
Enable zero-crossing detection.

 Off
Do not enable zero-crossing detection.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-1520

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

 Relational Operator

1-1521

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

 On
Require that all inputs have the same data type.

 Off
Do not require that all inputs have the same data type.

Dependency

This check box is not available when you select isInf, isNaN, or isFinite for
Relational operator, because the block is in one-input mode.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1522

Output data type

Specify the output data type.

Settings

Default: boolean

Inherit: Logical (see Configuration Parameters: Optimization)

Uses the Implement logic signals as Boolean data configuration parameter (see
“Implement logic signals as Boolean data (vs. double) ”) to specify the output data
type.

Note: This option supports models created before the boolean option was available.
Use one of the other options, preferably boolean, for new models.

boolean

Specifies output data type is boolean.
fixdt(1,16)

Specifies output data type is fixdt(1,16).
<data type expression>

Uses the name of a data type object, for example, Simulink.NumericType.

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16,
int32, or uint32), enclose the expression in single quotes. For example, enter
'double' instead of double.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Relational Operator

1-1523

Mode

Select the category of data to specify.

Settings

Default: Built in

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables Logical (see
Configuration Parameters: Optimization).

Built in

Specifies built-in data types. Selecting Built in enables boolean.
Fixed point

Specifies fixed-point data types.
Expression

Specifies expressions that evaluate to data types.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1524

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Relational Operator

1-1525

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1526

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Relational Operator

1-1527

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Integer

Integer

Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

Examples

In the sldemo_fuelsys model, the fuel_rate_control/airflow_calc subsystem uses
two Relational Operator blocks:

1 Blocks — Alphabetical List

1-1528

Both Relational Operator blocks operate in two-input mode.

The block that uses this operator... Compares...

<= The value of the oxygen sensor to the
threshold value, 0.5

== The value of the fuel mode to the ideal
value, sld_FuelModes.LOW

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes

 Relational Operator

1-1529

Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1530

Relay
Switch output between two constants

Library

Discontinuities

Description

The Relay block allows its output to switch between two specified values. When the
relay is on, it remains on until the input drops below the value of the Switch off point
parameter. When the relay is off, it remains off until the input exceeds the value of the
Switch on point parameter. The block accepts one input and generates one output.

The Switch on point value must be greater than or equal to the Switch off point.
Specifying a Switch on point value greater than the Switch off point models
hysteresis, whereas specifying equal values models a switch with a threshold at that
value.

Note: When the initial input falls between the Switch off point and Switch on point
values, the initial output is the value when the relay is off.

Data Type Support

The Relay block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

 Relay

1-1531

• Enumerated (output only)

If Output when on or Output when off is an enumerated value, both must be of the
same enumerated type as the output.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Relay block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1532

Switch on point
The “on” threshold for the relay. The Switch on point parameter is converted to the
input data type offline using round-to-nearest and saturation.

Switch off point
The “off” threshold for the relay. The Switch off point parameter is converted to the
input data type offline using round-to-nearest and saturation.

Output when on

 Relay

1-1533

The output when the relay is on.
Output when off

The output when the relay is off.
Input processing

Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

1 Blocks — Alphabetical List

1-1534

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

The Signal Attributes pane of the Relay block dialog box appears as follows:

 Relay

1-1535

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

1 Blocks — Alphabetical List

1-1536

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)
• An enumerated data type, for example, Enum:BasicColors

In this case, Output when on and Output when off must be of the same
enumerated type.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Examples

The sldemo_househeat model shows how you can use the Relay block.

The Relay block appears in the Thermostat subsystem.

 Relay

1-1537

The thermostat allows fluctuations of 5 degrees Fahrenheit above or below the desired
room temperature. If air temperature drops below 65 degrees Fahrenheit, the thermostat
turns on the heater. The Relay block outputs a value of 1 to turn on the heater and a
value of 0 to turn off the heater.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1538

Repeating Sequence

Generate arbitrarily shaped periodic signal

Library

Sources

Description

The Repeating Sequence block outputs a periodic scalar signal having a waveform that
you specify using the Time values and Output values parameters. The Time values
parameter specifies a vector of output times. The Output values parameter specifies
a vector of signal amplitudes at the corresponding output times. Together, the two
parameters specify a sampling of the output waveform at points measured from the
beginning of the interval over which the waveform repeats (the period of the signal).

By default, both parameters are [0 2]. These default settings specify a sawtooth
waveform that repeats every 2 seconds from the start of the simulation and has a
maximum amplitude of 2.

Algorithm

The block sets the input period as the difference between the first and last value of
the Time values parameter. The output at any time t is the output at time t = t-
n*period, where n is an integer. The sequence repeats at t = n*period. The block
uses linear interpolation to compute the value of the waveform between the output times
that you specify.

In the following model, the Repeating Sequence block defines Time values as [0:0.1:0.5]
and Output values as [0 15 25 09 13 17]. The stop time of the simulation is 0.7 second.

 Repeating Sequence

1-1539

For the Repeating Sequence block:

• The input period is 0.5.
• The output at any time t is the output at time t = t-0.5n, where n = 0, 1, 2, and so

on.
• The sequence repeats at t = 0.5n, where n = 0, 1, 2, and so on.

When you run the model, you get the following results:

1 Blocks — Alphabetical List

1-1540

At t = 0.5, the expected output is equal to the output at t = 0, which is 0. Therefore, the
last value in the Output values vector [0 15 25 09 13 17] does not appear.

Data Type Support

The Repeating Sequence block outputs real signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Time values

 Repeating Sequence

1-1541

Specify a vector of strictly monotonically increasing time values. The default is [0
2].

Output values
Specify a vector of output values. Each element corresponds to the time value in the
same column. The default is [0 2].

Examples

The following Simulink examples show how to use the Repeating Sequence block:

• sldemo_fuelsys

• sldemo_hydrod

• sldemo_VariableTransportDelay

Characteristics

Data Types Double
Sample Time Continuous
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Repeating Sequence Interpolated, Repeating Sequence Stair

Introduced before R2006a

1 Blocks — Alphabetical List

1-1542

Repeating Sequence Interpolated
Output discrete-time sequence and repeat, interpolating between data points

Library

Sources

Description

The Repeating Sequence Interpolated block outputs a discrete-time sequence and then
repeats it. Between data points, the block uses the method you specify for the Lookup
Method parameter to determine the output.

Data Type Support

The Repeating Sequence Interpolated block outputs signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Repeating Sequence Interpolated block dialog box appears as
follows:

 Repeating Sequence Interpolated

1-1543

Vector of output values
Specify the column vector containing output values of the discrete time sequence.

Vector of time values
Specify the column vector containing time values. The time values must be strictly
increasing, and the vector must have the same size as the vector of output values.

Lookup Method
Specify the lookup method to determine the output between data points.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” for more information.

The Signal Attributes pane of the Repeating Sequence Interpolated block dialog box
appears as follows:

1 Blocks — Alphabetical List

1-1544

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)

 Repeating Sequence Interpolated

1-1545

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Repeating Sequence, Repeating Sequence Stair

1 Blocks — Alphabetical List

1-1546

Introduced before R2006a

 Repeating Sequence Stair

1-1547

Repeating Sequence Stair
Output and repeat discrete time sequence

Library
Sources

Description
The Repeating Sequence Stair block outputs and repeats a stair sequence that you
specify with the Vector of output values parameter. For example, you can specify the
vector as [3 1 2 4 1]', which produces the following stair sequence:

1 Blocks — Alphabetical List

1-1548

Data Type Support

The Repeating Sequence Stair block outputs signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Repeating Sequence Stair block dialog box appears as follows:

 Repeating Sequence Stair

1-1549

Vector of output values
Specify the vector containing values of the repeating stair sequence.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” for more information.

The Signal Attributes pane of the Repeating Sequence Stair block dialog box appears
as follows:

1 Blocks — Alphabetical List

1-1550

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Check Parameter Values”)
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

 Repeating Sequence Stair

1-1551

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Repeating Sequence, Repeating Sequence Interpolated

Introduced before R2006a

1 Blocks — Alphabetical List

1-1552

Reset

Add reset port to subsystem

Library

Ports & Subsystems

Description

A Reset block is the control port for a resettable subsystem, and it determines when the
subsystem states reset to their initial condition. Resettable subsystems contain a Reset
block at their root level.

A resettable subsystem resets the blocks inside it when a trigger occurs at the reset port,
similar to the reset port of a block. The reset event initializes the states of blocks inside a
resettable subsystem to their initial conditions. For more information, see “Conditionally
Reset Block States in a Subsystem”.

Data Type Support

The Reset block accepts signals of Simulink numeric and Boolean data types. It also
accepts fixed-point signals of type ufix1. For more information, see “ Data Types
Supported by Simulink”.

 Reset

1-1553

Parameters and Dialog Box

Reset trigger type

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Settings

Default: rising

rising

Reset the state when the reset signal rises from a zero to a positive value or from a
negative to a positive value.

falling

Reset the state when the reset signal falls from a positive value to zero or from a
positive to a negative value.

either

Reset the state when the reset signal changes from a zero to a nonzero value or
changes sign.

level

1 Blocks — Alphabetical List

1-1554

Reset the state when the reset signal is nonzero at the current time step or changes
from nonzero at the previous time step to zero at the current time step.

Propagate sizes of variable-size signals

Specify when to propagate a variable-size signal.

Settings

Default: Only when resetting

Only when resetting

Propagates variable-size signals only when resetting the resettable subsystem. When
you select this option, sample time must be periodic.

During execution

Propagates variable-size signals at each time step.

Enable zero-crossing detection

Select this check box to enable zero-crossing detection.

Settings

Default: On

 On
Detect zero crossings.

 Off
Do not detect zero crossings.

Characteristics

Sample Time Determined by the signal at the reset port
Dimensionalized Yes
Virtual No

 Reset

1-1555

Zero-Crossing Detection Yes, if enabled

See Also
“Conditionally Reset Block States in a Subsystem”

Introduced in R2015a

1 Blocks — Alphabetical List

1-1556

Resettable Delay
Delay input signal by variable sample period and reset with external signal

Library

Discrete

Description

The Resettable Delay block is a variant of the Delay block that has the source of the
initial condition set to Input port and the external reset algorithm set to Rising, by
default.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

 Resettable Delay

1-1557

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also
Delay | Tapped Delay | Unit Delay | Variable Integer Delay

Introduced in R2012b

1 Blocks — Alphabetical List

1-1558

Resettable Subsystem
Represent subsystem whose states reset with external trigger

Library

Ports & Subsystems

Description

This block is preconfigured as a starting point for a resettable subsystem. For more
information, see “Conditionally Reset Block States in a Subsystem”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced in R2015a

 Reshape

1-1559

Reshape

Change dimensionality of signal

Library

Math Operations

Description

The Reshape block changes the dimensionality of the input signal to a dimensionality
that you specify, using the block's Output dimensionality parameter. For example, you
can use the block to change an N-element vector to a 1-by-N or N-by-1 matrix signal, and
vice versa.

The Output dimensionality parameter lets you select any of the following output
options.

Output Dimensionality Description

1-D array Converts a multidimensional array to a vector (1-D array)
array signal. The output vector consists of the first column
of the input matrix followed by the second column, etc.
(This option leaves a vector input unchanged.)

Column vector Converts a vector, matrix, or multidimensional input
signal to a column matrix, i.e., an M-by-1 matrix, where
M is the number of elements in the input signal. For
matrices, the conversion is done in column-major order.
For multidimensional arrays, the conversion is done along
the first dimension.

Row vector Converts a vector, matrix, or multidimensional input
signal to a row matrix, i.e., a 1-by-N matrix where

1 Blocks — Alphabetical List

1-1560

Output Dimensionality Description

N is the number of elements in the input signal. For
matrices, the conversion is done in column-major order.
For multidimensional arrays, the conversion is done along
the first dimension.

Customize Converts the input signal to an output signal whose
dimensions you specify, using the Output dimensions
parameter. The value of the Output dimensions
parameter can be a one- or multi-element vector. A value
of [N] outputs a vector of size N. A value of [M N] outputs
an M-by-N matrix. The number of elements of the input
signal must match the number of elements specified by the
Output dimensions parameter. For multidimensional
arrays, the conversion is done along the first dimension.

Derive from reference input
port

Creates a second input port, Ref, on the block. Derives the
dimensions of the output signal from the dimensions of
the signal input to the Ref input port. Selecting this option
disables the Output dimensions parameter. When you
select this parameter, the input signals for both inport
ports, U and Ref, must have the same sampling mode
(sample-based or frame-based).

Data Type Support

The Reshape block accepts and outputs signals of any data type that Simulink supports,
including fixed-point, enumerated, and nonvirtual bus data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

You can use an array of buses as an input signal to a Reshape block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

 Reshape

1-1561

Parameters and Dialog Box

Output dimensionality
Specify the dimensionality of the output signal.

Output dimensions
Specify a custom output dimensionality. This parameter is available only when you
set Output dimensionality to Customize.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

1 Blocks — Alphabetical List

1-1562

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Rocker Switch

1-1563

Rocker Switch
Set on/off values to tune parameters or variables

Library

Dashboard

Description

The Rocker Switch block enables you to control tunable parameters and variables in your
model during simulation. The block has two states that can be set to two different values.

To control a tunable parameter or variable using the Rocker Switch block, double-click
the Rocker Switch block to open the dialog box. Select a block in the model canvas. The
tunable parameter or variable appears in the dialog box Connection table. Select the
option button next to the tunable parameter or variable you want to control. Click Apply
to connect the tunable parameter or variable to the block.

Limitations

The Rocker Switch block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter
uses an index of the variable engine,

1 Blocks — Alphabetical List

1-1564

Limitation Workaround

which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

Parameters and Dialog Box

 Rocker Switch

1-1565

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next
to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

States

Switch values and labels.

Settings

Default Labels: Off and On

Default Values: 0 and 1

By default, the Off state label corresponds to the set value of 0, and the On state label
corresponds to the set value of 1.

The state labels appear on the outside of the switch. You can change the state labels to
another text string. You can change the state values to any real value that is between
negative realmax and positive realmax.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top

1 Blocks — Alphabetical List

1-1566

Show the label at the top of the block.
Bottom

Show the label at the bottom of the block.
Hide

Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Rotary Switch

1-1567

Rotary Switch
Set value on dial switch to tune parameters or variables

Library

Dashboard

Description

The Rotary Switch block enables you to control tunable parameters and variables in your
model during simulation.

To control a tunable parameter or variable using the Rotary Switch block, double-click
the Rotary Switch block to open the dialog box. Select a block in the model canvas. The
tunable parameter or variable appears in the dialog box Connection table. Select the
option button next to the tunable parameter or variable you want to control. Click Apply
to connect the tunable parameter or variable to the block.

The state values determine the discrete values generated for the tunable parameter or
variable. You can modify the states by editing the State Value and State Label in the
States table.

Limitations

The Rotary Switch block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

1 Blocks — Alphabetical List

1-1568

Limitation Workaround

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter
uses an index of the variable engine,
which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

 Rotary Switch

1-1569

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-1570

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next
to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

States

The state values determine the discrete values generated for the tunable parameter or
variable. You can modify the states by editing the State Value and State Label in the
States table.

To add a state, click Add, and enter the State Value and State Label.

To remove a state, select the state in the table, and click Remove.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

 Rotary Switch

1-1571

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

1 Blocks — Alphabetical List

1-1572

Rounding Function
Apply rounding function to signal

Library

Math Operations

Description

The Rounding Function block applies a rounding function to the input signal to produce
the output signal.

You can select one of the following rounding functions from the Function list:

• floor

Rounds each element of the input signal to the nearest integer value towards minus
infinity.

• ceil

Rounds each element of the input signal to the nearest integer towards positive
infinity.

• round

Rounds each element of the input signal to the nearest integer.
• fix

Rounds each element of the input signal to the nearest integer towards zero.

The name of the selected function appears on the block.

The input signal can be a scalar, vector, or matrix signal having real- or complex-valued
elements of type double. The output signal has the same dimensions, data type, and

 Rounding Function

1-1573

numeric type as the input. Each element of the output signal is the result of applying the
selected rounding function to the corresponding element of the input signal.

Tip Use the Rounding Function block instead of the Fcn block when you want vector or
matrix output, because the Fcn block produces only scalar output.

Also, the Rounding Function block provides two more rounding modes. The Fcn block
supports floor and ceil, but does not support round and fix.

Data Type Support

The Rounding Function block accepts and outputs real signals of type double or single.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Function
Specify the rounding function.

Sample time

1 Blocks — Alphabetical List

1-1574

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Saturation

1-1575

Saturation
Limit range of signal

Library

Discontinuities

Description

The Saturation block imposes upper and lower limits on an input signal.

When the input is... Where... The block output is the...

Within the range
specified by the
Lower limit
and Upper limit
parameters

Lower limit ≤ Input value ≤ Upper
limit

Input value

Less than the Lower
limit parameter

Input value < Lower limit Lower limit

Greater than
the Upper limit
parameter

Input value > Upper limit Upper limit

When the Lower limit and Upper limit parameters have the same value, the block
output is that value.

Data Type Support

The Saturation block accepts real signals of the following data types:

1 Blocks — Alphabetical List

1-1576

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Saturation block dialog box appears as follows:

The Signal Attributes pane of the Saturation block dialog box appears as follows:

 Saturation

1-1577

1 Blocks — Alphabetical List

1-1578

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Saturation

1-1579

Upper limit

Specify the upper bound on the input signal.

Settings

Default: 0.5

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

Tip

• When the input signal to the Saturation block is above this value, the output of the
block is clipped to this value.

• The Upper limit parameter is converted to the output data type offline using round-
to-nearest and saturation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1580

Lower limit

Specify the lower bound on the input signal.

Settings

Default: -0.5

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

Tips

• When the input signal to the Saturation block is below this value, the output of the
block is clipped to this value.

• The Lower limit parameter is converted to the output data type offline using round-
to-nearest and saturation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Saturation

1-1581

Treat as gain when linearizing

Select this parameter to cause the linearization commands to treat the gain as 1

Settings

Default: On

 On
Select to cause the linearization commands to treat the gain as 1.

 Off
Clear to cause the linearization commands to treat the gain as 0.

Tips

Linearization commands in Simulink software treat this block as a gain in state space.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1582

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Settings

Default: On

 On
Enable zero-crossing detection.

 Off
Do not enable zero-crossing detection.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

 Saturation

1-1583

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-1584

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

 Saturation

1-1585

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

1 Blocks — Alphabetical List

1-1586

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

 Saturation

1-1587

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-1588

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

 Saturation

1-1589

Output data type

Specify the output data type.

Settings

Default: Inherit: Same as input

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as input

Use data type of input signal.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

1 Blocks — Alphabetical List

1-1590

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

 Saturation

1-1591

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via back propagation

• Same as input (default)

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

1 Blocks — Alphabetical List

1-1592

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 Saturation

1-1593

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1594

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Saturation

1-1595

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1596

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Saturation

1-1597

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

The sldemo_boiler model shows how you can use the Saturation block.

The Saturation block appears in the Boiler Plant model/digital thermometer/
ADC subsystem.

1 Blocks — Alphabetical List

1-1598

The ADC subsystem digitizes the input analog voltage by:

• Multiplying the analog voltage by 256/5 with the Gain block
• Rounding the value to integer floor with the Quantizer block
• Limiting the output to a maximum of 255 (the largest unsigned 8-bit integer value)

with the Saturation block

For more information, see “Explore the Fixed-Point "Bang-Bang Control" Model” in the
Stateflow documentation.

Characteristics

Data Types Double | Single| Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

See Also

Saturation Dynamic

Introduced before R2006a

 Saturation Dynamic

1-1599

Saturation Dynamic
Bound range of input

Library

Discontinuities

Description

The Saturation Dynamic block bounds the range of an input signal to upper and lower
saturation values. An input signal outside of these limits saturates to one of the bounds
where:

• The input below the lower limit is set to the lower limit.
• The input above the upper limit is set to the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is the lo
port.

Data Type Support

The Saturation Dynamic block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

Tip Although this block accepts Boolean signals, avoid this usage.

1 Blocks — Alphabetical List

1-1600

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

 Saturation Dynamic

1-1601

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as second
input

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation

1 Blocks — Alphabetical List

1-1602

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

 Saturation Dynamic

1-1603

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Saturation

Introduced before R2006a

1 Blocks — Alphabetical List

1-1604

Scope
Display signals generated during simulation

Description

The Simulink Scope block displays time domain signals with respect to simulation time.

Input signal characteristics:

• Signal — Continuous (sample-based) or discrete (sample-based and frame-based).
• Signal data type — Any data type that Simulink supports including real, complex,

fixed-point, and enumerated data types. See “ Data Types Supported by Simulink”.
• Signal dimension — Scalar, one-dimensional (vector), two dimensional (matrix),

or multidimensional. Display multiple channels within one signal depending on the
dimension. See “Signal Dimensions” and “Determine Output Signal Dimensions”.

Scope display features:

• Simulation control — Debug models from a Scope window using Run, Step
Forward, and Step Backward toolbar buttons.

• Multiple signals — Plot multiple signals on the same y-axis (display) using multiple
input ports.

• Multiple y-axes (displays) — Display multiple y-axes. All of the y-axes have a
common time range on the x-axis.

• Modify parameters — Modify scope parameter values before and during a
simulation.

• Axis autoscaling — During or at the end of a simulation. Margins are drawn at the
top and bottle of the axes.

• Display data after simulation — If a Scope is closed at the start of a simulation,
scope data is still written to the scope during a simulation. As a result, if you open
the Scope after a simulation, the Scope displays simulation results for attached input
signals.

Oscilloscope features:

 Scope

1-1605

• Triggers — Set triggers to sync repeating signals and pause the display when events
occur.

• Data analysis — Measure time and value differences between two signal data
points. If you have a DSP System Toolbox™ license, measure signal characteristics
including signal statistics, transitions, and peaks.

Note: If you want to display internal data from a library block that you create, do not use
a Scope block inside the library block. Instead, add output ports to your library block, and
then connect the ports to a Scope block external to the library block.

Note: For information on controlling a Scope programmatically, see “Control Scopes
Programmatically ” in the Simulink documentation.

1 Blocks — Alphabetical List

1-1606

Configuration Properties

Open at simulation start

Specify when a Scope window opens.

Settings

Default: Clear for Scope block. Select for Time Scope block.

 Scope

1-1607

 Select
Open Scope window when simulation starts.

 Clear
Do not open a closed Scope at the start of a simulation.

Scope Configuration property: OpenAtSimulationStart.

Display the full path

Display full block path on Scope title bar.

Settings

Default: Clear

 Select
Display block path and name.

 Clear
Display block name.

Scope Configuration property: No corresponding property.

Number of input ports

Specify number of input ports on a Scope block, specified by a positive integer string.
Maximum number of input ports is 96. This property does not apply to floating scopes
and scope viewers.

Default: 1

Scope Configuration property: NumInputPorts.

Layout button

Specify number of displays. The maximum layout dimension is four rows by four
columns.

1 Blocks — Alphabetical List

1-1608

• If the number of displays are equal to the number of ports, signals from each port
appear on separate displays.

• If the number of displays are less than the number of ports, signals from additional
ports appear on the last display.

Settings

Default: 1 display

Scope Configuration property: LayoutDimensions.

Sample time

Specify time interval between Scope block updates during a simulation, specified as a
positive real string. This property does not apply to floating scopes and scope viewers.

Settings

Default: -1 for inherited

Scope Configuration property: SampleTime.

Input processing

Specify sample-based or frame-based processing of signals.

Settings

Default: Elements as channels (sample based) for Scope block. Columns as
channels (frame based) for Time Scope block.

Elements as channels (sample based)

Process signal values in a channel at each time interval.
Columns as channels (frame based)

Process signal values in a channel as a group of values from multiple time intervals.
Frame-based processing is available only with discrete input signals.

Scope Configuration property: FrameBasedProcessing.

 Scope

1-1609

Maximize axes

Maximize size of signal plots. Each of the plots expands to fit the full display. Maximizing
the size of signal plots removes the background area around the plots.

Settings

Default: Off for Scope block. Auto for Time Scope block.

Auto

If Title and Y-label properties are not specified, maximize all plots.
On

Maximize all plots. Values in Title and Y-label are hidden.
Off

Do not maximize plots.

Scope Configuration property: MaximizeAxes.

Axes scaling

Specify when to scale y-axis to display all signal values.

Settings

Default: Manual

Manual

Manually scale y-axis range with Scale Y-axis Limits toolbar button.
Auto

Scale y-axis range during and after simulation. Selecting this option displays the Do
not allow Y-axis limits to shrink check box.

After N Updates

Scale y-axes after specified number of block updates (time intervals). Selecting this
option displays the Number of updates text box.

Dependency

If this property is set to After N Updates, also specify the property Number of
updates.

1 Blocks — Alphabetical List

1-1610

Scope Configuration property: AxesScaling.

Do not allow Y-axis limits to shrink

Specify when y-axis range limits can change.

Settings

Default: Select

 Select
Allow y-axis range limits to increase but not decrease during a simulation.

 Clear
Allow y-axis range limits to increase and decrease.

Dependency

Click the Configure link to the right of the Axes scaling property and set the Axes
scaling property to Auto to display this property.

Number of updates

Specify the number of updates that occur during a simulation before a Scope scales the y-
axes, specified as a positive integer string.

Settings

Default: 10

Dependency

Display and activate this property by clicking the Configure link to the right of the
Axes scaling property and set the Axes scaling property to After N Updates.

Scope Configuration property: AxesScalingNumUpdates.

Scale axes limits at stop

Specify when to scale axes.

 Scope

1-1611

Settings

Default: Select

 Select
Scale axes when simulation stops.

 Clear
Always scale axes.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

The y-axes limits are always scaled. The x-axis limits are scaled only if you also select the
Autoscale X-axis limits check box.

Y-axis Data range (%)

Specify percentage of y-axis range for plotting data. For example, if you set this property
to 100, plotted data uses the entire y-axis range.

Settings

Default: 80

Values are 1 through 100.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

Y-axis Align

Specify where to align plotted data along the y-axis data range when Y-axis Data range
is set to less than 100 percent.

Settings

Default: Center

1 Blocks — Alphabetical List

1-1612

Top

Align signals with maximum values at top of y-axis range.
Center

Align signals with maximum and minimum values centered.
Bottom

Align signals with minimum values at bottom of y-axis range.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

Autoscale X-axis limits

Scale x-axis range limits when scaling axes.

Settings

Default: Clear

 Select
Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, scales the
data currently within the axes, not the entire signal in the data buffer.

 Clear
Do not scale x-axis range.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

X-axis Data range (%)

Specify percentage of x-axis range for plotting data. For example, if you set this property
to 100, plotted data uses the entire x-axis range.

Settings

Default: 100

 Scope

1-1613

Values are 1 through 100.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

X-axis Align

Specify where to align plotted data along the x-axis when X-axis Data range is set to
less than 100 percent.

Settings

Default: Center

Top

Align signals with maximum values at top of x-axis range.
Center

Align signals with maximum and minimum values centered.
Bottom

Align signals with minimum values at bottom of x-axis range.

Dependency

Click the Configure link to the right of the Axes scaling property to display this
property.

Time span

Specify length of x-axis range to display.

The block calculates the beginning and end times of the time range using the Time
display offset and Time span properties. For example, if you set the Time display
offset to 10 and the Time span to 20, the scope sets the time range from 10 to 30.

Settings

Default: Auto

1 Blocks — Alphabetical List

1-1614

Auto

Difference between the simulation start and stop times.
User defined

Value less than the total simulation time.

Scope Configuration property: TimeSpan.

Time span overrun action

Specify how to display data beyond the visible x-axis range.

You can see the effects of this option only when plotting is slow with large models or
small step sizes.

Settings

Default: Wrap

Wrap

Draw a full screen of data from left to right, clear the screen, and then restart
drawing of data.

Scroll

Move data to the left as new data is drawn on the right. This mode is graphically
intensive and can affect run-time performance.

Scope Configuration property: TimeSpanOverrunAction.

Time units

Specify units to display on the x-axis.

Settings

Default: None for Scope block. Metric for Time Scope block.

Metric

Display time units based on the length of Time span.
Seconds

 Scope

1-1615

Display Time (seconds).
None

Do not display time units.

Scope Configuration property: TimeUnits.

Time display offset

Offset the x-axis by a specified time value, specified as a real number or vector of real
numbers.

For input signals with multiple channels, you can enter a scaler or vector.

• Scaler — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

Settings

Default: 0

Scope Configuration property: TimeDisplayOffset.

Time-axis labels

Specify how x-axis (time) labels display.

Settings

Default: Bottom Displays Only for Scope block. All for Time Scope block.

All

Display x-axis labels on all y-axes.
None

Do not display labels. Selecting None also clears the Show time-axis label check
box.

Bottom Displays Only

Display x-axis label on the bottom y-axis.

1 Blocks — Alphabetical List

1-1616

Dependency

Set Active display before setting this property. Activate this property by selecting
Show time-axis label and setting Maximize axes to off.

Scope Configuration property: TimeAxisLabels.

Show time-axis label

Display or hide x-axis (time) labels.

Settings

Default: Clear for Scope block. Select for Time Scope block.

Select
Display x-axis label for the active display

 Clear
Hide x-axis labels.

Dependency

Set Active display before setting this property. If you select this property and set the
Time-axis labels is set to None, this property is deactivated.

Scope Configuration property: ShowTimeAxisLabel.

Active display

Display for setting display-specific properties, specified as a positive integer. The number
of a display corresponds to its column-wise placement index.

Settings

Default: 1

Dependency

Setting this property selects the display for setting the properties Show Grid, Show
legend, Title, Plot signals as magnitude and phase, Y-label, and Y-Limits.

 Scope

1-1617

Scope Configuration property: ActiveDisplay.

Title

Specify a title for display, specified as a character string. The default value
%<SignalLabel> uses the input signal name for the title.

Settings

Default: %<SignalLabel>

Dependency

Set Active display before setting this property.

Scope Configuration property: Title.

Show legend

Show signal legend. The names listed in the legend are the signal names from the model.
For signals with multiple channels, a channel index is appended after the signal name.
See the Scope block reference for an example.

Settings

Default: Clear

 Select
Display signal legend. Continuous signals have straight lines before their names and
discrete signals have step-shaped lines.

 Clear
Hide signal legend.

Dependency

Set Active Display before setting this property.

Scope Configuration property: ShowLegend.

1 Blocks — Alphabetical List

1-1618

Example

Connect a Sine Wave block to a Scope. Set the Amplitude parameter for the Sine Wave
to [1 2]. Select the Legends check box for the Scope. Set the Signal name property for
the signal to MySignal.

After simulating this model, the Scope window displays a sine wave for the two signal
channels in MySignal, MySignal:1, and MySignal:2.

Edit the name of any channel in the legend by double-clicking the current name and
entering a new channel name.

See also “Signal Dimensions”and “Determine Output Signal Dimensions”.

Show grid

Show vertical and horizontal grid lines.

Settings

Default: Select

 Scope

1-1619

 Select
Display grid lines.

 Clear
Hide grid lines.

Dependency

Set Active Display before setting this property.

Scope Configuration property: ShowGrid.

Plot signals as magnitude and phase

Split display into magnitude and phase plots.

Settings

Default: Clear

 Select
Display magnitude and phase plots. If the signal is real, plots the absolute value
of the signal for the magnitude. The phase is 0 degrees for positive values and 180
degrees for negative values.

 Clear
Display signal plot. If the signal is complex, plots the real and imaginary parts on the
same y-axis.

Dependency

Set Active Display before setting this property.

Scope Configuration property: PlotAsMagnitudePhase.

Y-limits (Minimum)

Specify minimum value of y-axis, specified as real number.

1 Blocks — Alphabetical List

1-1620

Settings

Default: -10

Dependency

Set Active display before setting this property. Selecting Plot signals as magnitude
and phase applies this property value to the magnitude plot. The y-axis limits of the
phase plot are always [-180 180].

Scope Configuration property: YLimits.

Y-limits (Maximum)

Specify maximum value of y-axis, specified as real number.

Settings

Default: +10

Dependency

Set Active display before setting this property. Selecting Plot signals as magnitude
and phase applies this property value to the magnitude plot. The y-axis limits of the
phase plot are always [-180 180].

Scope Configuration property: YLimits.

Y-label

Specify y-axis label, specified as a character string.

Settings

Default: No label for Scope block. Amplitude for Time Scope block.

Dependency

Set Active display before setting this property. Selecting Plot signals as magnitude
and phase hides this property and plots are labeled Magnitude and Phase.

 Scope

1-1621

Scope Configuration property: YLabel.

Limit data points to last

Specify to limit buffered data values before plotting and saving signals.

Settings

Default: Clear, 5000

 Select
Save specified number of data values for each signal. If the signal is frame-based, the
number of buffered data values is the specified number of data values multiplied by
the frame size.

For simulations with Stop time set to inf, consider selecting Limit data points to
last.

In some cases, for example where the sample time is small, selecting this parameter
can have the effect of plotting signals for less than the entire time range of a
simulation. If a scope plots a portion of your signals, consider increasing the number
of data values to save.

 Clear
Save and plot all data values. Clearing Limit data points to last can cause an out-
of-memory error for simulations that generate a large amount of data or for systems
without enough available memory.

Dependency

If this property is selected, also specify the number of data values by entering a positive
integer in the text box. This property limits the data values a scope plots and the data
values saved in the MATLAB variable specified in Variable name. Data values are from
the end of a simulation.

Scope Configuration properties: DataLoggingLimitDataPoints and
DataLoggingMaxPoints.

Decimation

Reduce the amount of scope data to display and save.

1 Blocks — Alphabetical List

1-1622

Settings

Default: Clear, 2

 Select
Plot and Log (save) scope data every Nth data point, where N is the decimation factor
entered in the text box.

 Clear
Save all scope data values.

Dependency

If this property is selected, also specify the decimation factor by entering a positive
integer in the text box. The scope buffers every Nth data point, where N is the decimation
factor you specify. A value of 1 buffers all data values. This property limits the data
values a scope plots and the data values saved in the MATLAB variable specified in
Variable name.

Log data to workspace

Activate saving scope data to a variable in the MATLAB workspace.

Settings

Default: Clear

 Select
Activate logging and activate the Variable name, Save format, and Decimation
properties. This property does not apply to floating scopes and scope viewers.

 Clear
Inactivate logging and logging properties are unavailable.

Dependency

If this property is selected, also specify the properties Variable name and Save format.

Scope Configuration property: DataLogging.

 Scope

1-1623

Variable name

Specify a variable name for saving scope data in the MATLAB workspace, specified as a
character string. This property does not apply to floating scopes and scope viewers.

Settings

Default: ScopeData

Dependency

Activate this property by selecting Log data to workspace.

Scope Configuration property: DataLoggingVariableName.

Save format

Select variable format for saving data to the MATLAB workspace. This property does not
apply to floating scopes and scope viewers.

Settings

Default: Dataset

Dataset

Save data as a dataset object. This format does not support variable-size data, MAT-
file logging, or external mode archiving. See Simulink.SimulationData.Dataset.

Structure With Time

Save data as a structure with associated time information.
Structure

Save data as a structure.
Array

Save data as an array with associated time information. This format does not support
variable-size data.

Dependency

Activate this property by selecting Log data to workspace.

1 Blocks — Alphabetical List

1-1624

Scope Configuration property: DataLoggingSaveFormat.

Style Properties

Open the Style dialog box:

• From the menu, select View > Style.
• From the Configuration Properties button arrow. select the Style button .

Figure color

Select background color for display.

Plot type

Specify how to plot a signal.

Default: Auto for Scope block. Line for Time Scope block.

 Scope

1-1625

• Line — Line graph.
• Stairs — Stair-step graph.
• Auto — Line graph if it is a continuous signal or a stair-step graph if it is a discrete

signal.

Active display

Select active display for setting style properties.

Default: 1

Axes colors

Select the background color for axes (displays) with the first color pallet. Select the grid
and label color with the second color pallet.

Properties for line

Select active line for setting line style properties.

Visible

Plot signal on active display.

Default: Select

 Select
Plot signal.

 Clear
Hide signal.

Line

Select line style, width, and color.

Marker

Select marker style.

Default: None

1 Blocks — Alphabetical List

1-1626

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation No

See Also
Floating Scope | Scope Viewer

How To
• “Scope Blocks and Scope Viewer Overview”
• “Simulate a Model Interactively”
• “Step Through a Simulation”
• “Scope Tasks”
• “Floating Scope and Scope Viewer Tasks”
• “Scope Trigger Panel”
• “Scope Measurement Panels”
• “Control Scopes Programmatically ”

Introduced in R2015b

 Second-Order Integrator, Second-Order Integrator Limited

1-1627

Second-Order Integrator, Second-Order Integrator
Limited

Integrate input signal twice

Library

Continuous

Description

The Second-Order Integrator block and the Second-Order Integrator Limited block solve
the second-order initial value problem:

d x

dt

u

dx

dt
dx

x x

t

o

t o

2

2

0

0

=

=

=

=

=

,

,

,

where u is the input to the system. The block is therefore a dynamic system with two
continuous states: x and dx/dt.

Note: These two states have a mathematical relationship, namely, that dx/dt is the
derivative of x. In order to satisfy this relationship throughout the simulation, Simulink
places various constraints on the block parameters and behavior.

1 Blocks — Alphabetical List

1-1628

The Second-Order Integrator Limited block is identical to the Second-Order Integrator
block with the exception that it defaults to limiting the states based on the specified
upper and lower limits. For more information, see “Limiting the States” on page 1-1629.

Simulink software can use a number of different numerical integration methods to
compute the outputs of the block. Each has advantages for specific applications. Use the
Solver pane of the Configuration Parameters dialog box to select the technique best
suited to your application. (For more information, see “Solvers”.) The selected solver
computes the states of the Second-Order Integrator block at the current time step using
the current input value.

Use the block parameter dialog box to:

• Specify whether the source of each state initial condition is internal or external
• Specify a value for the state initial conditions
• Define upper and lower limits on either or both states
• Specify absolute tolerances for each state
• Specify names for both states
• Choose an external reset condition
• Enable zero-crossing detection
• Reinitialize dx/dt when x reaches saturation
• Specify that Simulink disregard the state limits and external reset for linearization

operations

Defining Initial Conditions

You can define the initial conditions of each state individually as a parameter on the
block dialog box or input one or both of them from an external signal.

• To define the initial conditions of state x as a block parameter, use the Initial
condition source x drop-down menu to select internal and enter the value in the
Initial condition x field.

• To provide the initial conditions from an external source for state x, specify the
Initial condition source x parameter as external. An additional input port
appears on the block.

• To define the initial conditions of state dx/dt as a block parameter, use the Initial
condition source dx/dt drop-down menu to select internal and enter the value in
the Initial condition dx/dt field.

 Second-Order Integrator, Second-Order Integrator Limited

1-1629

• To provide the initial conditions from an external source for state dx/dt, specify
Initial condition source dx/dt as external. An additional input port appears on
the block.

If you choose to use an external source for both state initial conditions, your block
appears as follows.

Note:

• Simulink does not allow initial condition values of inf or NaN.

• If you limit state x or state dx/dt by specifying saturation limits (see “Limiting
the States” on page 1-1629) and one or more initial conditions are outside the
corresponding limits, then the respective states are initialized to the closest valid
value and a set of consistent initial conditions is calculated.

Limiting the States

When modeling a second-order system, you may need to limit the block states. For
example, the motion of a piston within a cylinder is governed by Newton's Second Law
and has constraints on the piston position (x). With the Second-Order Integrator block,
you can limit the states x and dx/dt independent of each other. You can even change
the limits during simulation; however, you cannot change whether or not the states are
limited. An important rule to follow is that an upper limit must be strictly greater than
its corresponding lower limit.

1 Blocks — Alphabetical List

1-1630

The block appearance changes when you limit one or both states. Shown below is the
appearance of the block with both states limited.

For each state, you can use the block parameter dialog box to set appropriate saturation
limits.

Limiting x only

If you use the Second-Order Integrator Limited block, both states are limited by default.
But you can also manually limit state x on the Second-Order Integrator block by selecting
Limit x and entering the limits in the appropriate parameter fields.

 Second-Order Integrator, Second-Order Integrator Limited

1-1631

The block then determines the values of the states as follows:

1 Blocks — Alphabetical List

1-1632

• When x is less than or equal to its lower limit, the value of x is held at its lower limit
and dx/dt is set to zero.

• When x is in between its lower and upper limits, both states follow the trajectory
given by the second-order ODE.

• When x is greater than or equal to its upper limit, the value of x is held at its upper
limit and dx/dt is set to zero.

You can choose to reinitialize dx/dt to a new value at the time when x reaches
saturation. See “Reinitializing dx/dt when x reaches saturation” on page 1-1636

Limiting dx/dt only

As with state x, state dx/dt is set as limited by default on the dx/dt pane of the Second-
Order Integrator Limited parameter dialog box. You can manually set this parameter,
Limit dx/dt, on the Second-Order Integrator block. In either case, you must enter the
appropriate limits for dx/dt.

 Second-Order Integrator, Second-Order Integrator Limited

1-1633

1 Blocks — Alphabetical List

1-1634

If you limit only the state dx/dt, then the block determines the values of dx/dt as
follows:

• When dx/dt is less than or equal to its lower limit, the value of dx/dt is held at its
lower limit.

• When dx/dt is in between its lower and upper limits, both states follow the trajectory
given by the second-order ODE.

• When dx/dt is greater than or equal to its upper limit, the value of dx/dt is held at its
upper limit.

When state dx/dt is held at it upper or lower limit, the value of x is governed by the first-
order initial value problem:

dx

dt
L

x t xL L

=

=

,

() ,

where L is the dx/dt limit (upper or lower), tL is the time when dx/dt reaches this limit,
and xL is the value of state x at that time.

Limiting Both States

When you limit both states, Simulink maintains mathematical consistency of the states
by limiting the allowable values of the upper and lower limits for dx/dt. Such limitations
are necessary to satisfy the following constraints:

• When x is at its saturation limits, the value of dx/dt must be zero.
• In order for x to leave the upper limit, the value of dx/dt must be strictly negative.
• In order for x to leave its lower limit, the value of dx/dt must be strictly positive.

Consequently, for such cases, the upper limit of dx/dt must be strictly positive and the
lower limit of dx/dt must be strictly negative.

When both states are limited, the block determines the states as follows:

• Whenever x reaches its limits, the resulting behavior is the same as that described in
“Limiting x only”.

• Whenever dx/dt reaches one of its limits, the resulting behavior is the same as that
described in “Limiting dx/dt only” — including the computation of x using a first-order

 Second-Order Integrator, Second-Order Integrator Limited

1-1635

ODE when dx/dt is held at one of its limits. In such cases, when x reaches one of its
limits, it is held at that limit and dx/dt is set to zero.

• Whenever both reach their respective limits simultaneously, the state x behavior
overrides dx/dt behavior to maintain consistency of the states.

When you limit both states, you can choose to reinitialize dx/dt at the time when state
x reaches saturation. If the reinitialized value is outside specified limits on dx/dt, then
dx/dt is reinitialized to the closest valid value and a consistent set of initial conditions is
calculated. See “Reinitializing dx/dt when x reaches saturation” on page 1-1636

Resetting the State

The block can reset its states to the specified initial conditions based on an external
signal. To cause the block to reset its states, select one of the External reset choices
on the Attributes pane. A trigger port appears on the block below its input port and
indicates the trigger type.

• Select rising to reset the states when the reset signal rises from zero to a positive
value, from a negative to a positive value, or a negative value to zero.

• Select falling to reset the states when the reset signal falls from a positive value to
zero, from a positive to a negative value, or from zero to negative.

• Select either to reset the states when the reset signal changes from zero to a
nonzero value or changes sign.

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results
(see “Algebraic Loops”).

1 Blocks — Alphabetical List

1-1636

Enabling Zero-Crossing Detection

This parameter controls whether zero-crossing detection is enabled for this block. By
default, the Enable zero-crossing detection parameter is selected on the Attributes
pane. However, this parameter is only in affect if the Zero-crossing control, on the
Solver pane of the Configuration Parameters dialog, is set to Use local settings.
For more information, see “Zero-Crossing Detection”.

Reinitializing dx/dt when x reaches saturation

For certain modeling applications, dx/dt must be reinitialized when state x reaches its
limits in order to pull x out of saturation immediately. You can achieve this by selecting
Reinitialize dx/dt when x reaches saturation on the Attributes pane.

If this option is on, then at the instant when x reaches saturation, Simulink checks
whether the current value of the dx/dt initial condition (parameter or signal) allows the
state x to leave saturation immediately. If so, Simulink reinitializes state dx/dt with
the value of the initial condition (parameter or signal) at that instant. If not, Simulink
ignores this parameter at the current instant and sets dx/dt to zero to make the block
states consistent.

This parameter only applies at the time when x actually reaches saturation limit. It does
not apply at any future time when x is being held at saturation.

Refer to the sections on limiting the states for more information. For an example, see the
sldemo_bounce example.

Disregarding State Limits and External Reset for Linearization

For cases where you simplify your model by linearizing it, you can have Simulink
disregard the limits of the states and the external reset by selecting Ignore state limits
and the reset for linearization.

Specifying the Absolute Tolerance for the Block Outputs

By default Simulink software uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “ Error Tolerances for Variable-Step Solvers”)
to compute the output of the integrator blocks. If this value does not provide sufficient
error control, specify a more appropriate value for state x in the Absolute tolerance x
field and for state dx/dt in the Absolute tolerance dx/dt field of the parameter dialog
box. Simulink uses the values that you specify to compute the state values of the block.

 Second-Order Integrator, Second-Order Integrator Limited

1-1637

Specifying the Display of the Output Ports

You can control whether or not to display the x or the dx/dt output port using the
ShowOutput parameter. You can display one output port or both; however, you must
select at least one.

Specifying the State Names

You can specify the name of x states and dx/dt states using the StateNameX and
StateNameDXDT parameters. However, you must specify names for either both or
neither; you cannot specify names for just x or just dx/dt. Both state names must have
identical type and length. Furthermore, the number of names must evenly divide the
number of states.

Selecting All Options

When you select all options, the block icon looks like this.

Data Type Support

The Integrator block accepts and outputs signals of type double on its data ports. The
external reset port accepts signals of type double or Boolean.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1638

Parameters and Dialog Box

The x pane of the Second-Order Integrator block dialog box appears as follows:

The dx/dt pane of the Second-Order Integrator block dialog box appears as follows:

 Second-Order Integrator, Second-Order Integrator Limited

1-1639

The Attributes pane of the Second-Order Integrator block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1640

• “Initial condition source x” on page 1-1642
• “Initial condition x” on page 1-1643
• “Limit x” on page 1-1644
• “Upper limit x” on page 1-1645
• “Lower limit x” on page 1-1646
• “Absolute tolerance x” on page 1-1647
• “State name x” on page 1-1648

 Second-Order Integrator, Second-Order Integrator Limited

1-1641

• “Initial condition source dx/dt” on page 1-1649
• “Initial condition dx/dt” on page 1-1650
• “Limit dx/dt” on page 1-1651
• “Upper limit dx/dt” on page 1-1652
• “Lower limit dx/dt” on page 1-1653
• “Absolute tolerance dx/dt” on page 1-1654
• “State name dx/dt” on page 1-1655
• “External reset” on page 1-1656
• “Enable zero-crossing detection” on page 1-1519
• “Reinitialize dx/dt when x reaches saturation” on page 1-1658
• “Ignore state limits and the reset for linearization” on page 1-1659
• “Show output” on page 1-1660
• “Characteristics” on page 1-1660

1 Blocks — Alphabetical List

1-1642

Initial condition source x

Specify the initial condition source for state x.

Settings

Default: internal

internal

Get the initial conditions of state x from the Initial condition x parameter.
external

Get the initial conditions of state x from an external block.

Tip

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition x parameter.

Selecting external disables the Initial condition x parameter..

Command-Line Information
Parameter: ICSourceX
Type: string
Value: 'internal' | 'external'
Default: 'internal'

 Second-Order Integrator, Second-Order Integrator Limited

1-1643

Initial condition x

Specify the initial condition of state x.

Settings

Default: 0.0

Tip

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source x to internal enables this parameter.

Setting Initial condition source x to external disables this parameter.

Command-Line Information
Parameter: ICX
Type: scalar or vector
Value: '0'
Default: '0'

1 Blocks — Alphabetical List

1-1644

Limit x

Limit state x of the block to a value between the Lower limit x and Upper limit x
parameters.

Settings

Default: Off for Second-Order Integrator, On for Second-Order Integrator Limited

 On
Limit state x to a value between the Lower limit x and Upper limit x parameters.

 Off
Do not limit the state x output to a value between the Lower limit x and Upper
limit x parameters.

Dependencies

This parameter enables Upper limit x parameter.

This parameter enables Lower limit x parameter.

Command-Line Information
Parameter: LimitX
Type: string
Value: 'off' | 'on'
Default: 'off'

 Second-Order Integrator, Second-Order Integrator Limited

1-1645

Upper limit x

Specify the upper limit of state x.

Settings

Default: inf for Second-Order Integrator, 1 for Second-Order Integrator Limited

Tip

The upper saturation limit for state x must be strictly greater than the lower saturation
limit.

Dependency

Limit x enables this parameter.

Command-Line Information
Parameter: UpperLimitX
Type: scalar or vector
Value: 'inf'
Default: 'inf'

1 Blocks — Alphabetical List

1-1646

Lower limit x

Specify the lower limit of state x.

Settings

Default: –inf for Second-Order Integrator, 0 for Second-Order Integrator Limited

Tip

The lower saturation limit for state x must be strictly less than the upper saturation
limit.

Dependencies

Limit x enables this parameter.

Command-Line Information
Parameter: LowerLimitX
Type: scalar or vector
Value: '-inf'
Default: '-inf'

 Second-Order Integrator, Second-Order Integrator Limited

1-1647

Absolute tolerance x

Specify the absolute tolerance for computing state x.

Settings

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute state x.
• If you enter a real scalar value, that value overrides the absolute tolerance in the

Configuration Parameters dialog box and is used for computing all x states.
• If you enter a real vector, the dimension of that vector must match the dimension of

state x. These values override the absolute tolerance in the Configuration Parameters
dialog box.

Command-Line Information
Parameter: AbsoluteToleranceX
Type: string, scalar, or vector
Value: 'auto' | '-1'| any positive real scalar or vector
Default: 'auto'

1 Blocks — Alphabetical List

1-1648

State name x

Assign a unique name to state x.

Settings

Default: ''

Tips

• To assign a name to a single state, enter the name between quotes, for example,
position'.

• To assign names to multiple x states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• If you specify a state name for x, you must also specify a state name for dx/dt.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can

specify fewer names than x states, but you cannot specify more names than x states.
For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states. However,
you must be consistent and apply the same scheme to the state names for dx/dt.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string or a cell array.

Command-Line Information
Parameter: StateNameX
Type: string
Value: ' ' | user-defined
Default: ' '

 Second-Order Integrator, Second-Order Integrator Limited

1-1649

Initial condition source dx/dt

Specify the initial condition source for state dx/dt.

Settings

Default: internal

internal

Get the initial conditions of state dx/dt from the Initial condition dx/dt parameter.
external

Get the initial conditions of state dx/dt from an external block.

Tip

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition dx/dt parameter.

Selecting external disables the Initial condition dx/dt parameter.

Command-Line Information
Parameter: ICSourceDXDT
Type: string
Value: 'internal' | 'external'
Default: 'internal'

1 Blocks — Alphabetical List

1-1650

Initial condition dx/dt

Specify the initial condition of state dx/dt.

Settings

Default: 0.0

Tip

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source dx/dt to internal enables this parameter.

Setting Initial condition source dx/dt to external disables this parameter.

Command-Line Information
Parameter: ICDXDT
Type: scalar or vector
Value: '0'
Default: '0'

 Second-Order Integrator, Second-Order Integrator Limited

1-1651

Limit dx/dt

Limit the dx/dt state of the block to a value between the Lower limit dx/dt and Upper
limit dx/dt parameters.

Settings

Default: Off for Second-Order Integrator, On for Second-Order Integrator Limited

 On
Limit state dx/dt of the block to a value between the Lower limit dx/dt and Upper
limit dx/dt parameters.

 Off
Do not limit state dx/dt of the block to a value between the Lower limit dx/dt and
Upper limit dx/dt parameters.

Tip

If you set saturation limits for x, then the interval defined by the Upper limit dx/dt and
Lower limit dx/dt must contain zero.

Dependencies

This parameter enables Upper limit dx/dt.

This parameter enables Lower limit dx/dt.

Command-Line Information
Parameter: LimitDXDT
Type: string
Value: 'Off' | 'On'
Default: 'Off'

1 Blocks — Alphabetical List

1-1652

Upper limit dx/dt

Specify the upper limit for state dx/dt.

Settings

Default: 'inf'

Tip

If you limit x, then this parameter must have a strictly positive value.

Dependencies

Limit dx/dt enables this parameter.

Command-Line Information
Parameter: UpperLimitDXDT
Type: scalar or vector
Value: 'inf'
Default: 'inf'

 Second-Order Integrator, Second-Order Integrator Limited

1-1653

Lower limit dx/dt

Specify the lower limit for state dx/dt.

Settings

Default: '-inf'

Tip

If you limit x, then this parameter must have a strictly negative value.

Dependencies

Limit dx/dt enables this parameter.

Command-Line Information
Parameter: LowerLimitDXDT
Type: scalar or vector
Value: '-inf'
Default: '-inf'

1 Blocks — Alphabetical List

1-1654

Absolute tolerance dx/dt

Specify the absolute tolerance for computing state dx/dt.

Settings

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute the dx/dt output
of the block.

• If you enter a numeric value, that value overrides the absolute tolerance in the
Configuration Parameters dialog box.

Command-Line Information
Parameter: AbsoluteToleranceDXDT
Type: string, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

 Second-Order Integrator, Second-Order Integrator Limited

1-1655

State name dx/dt

Assign a unique name to state dx/dt.

Settings

Default: ''

Tips

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple dx/dt states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• If you specify a state name for dx/dt, you must also specify a state name for x.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can

specify fewer names than dx/dt states, but you cannot specify more names than dx/
dt states. For example, you can specify two names in a system with four states. The
first name applies to the first two states and the second name to the last two states.
However, you must be consistent and apply the same scheme to the state names for x.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string or a cell array.

Command-Line Information
Parameter: StateNameDXDT
Type: string
Value: ' ' | user-defined
Default: ' '

1 Blocks — Alphabetical List

1-1656

External reset

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Settings

Default: none

none

Do not reset the state to initial conditions.
rising

Reset the state when the reset signal rises from a zero to a positive value or from a
negative to a positive value.

falling

Reset the state when the reset signal falls from a positive value to zero or from a
positive to a negative value.

either

Reset the state when the reset signal changes from zero to a nonzero value or
changes sign.

Command-Line Information
Parameter: ExternalReset
Type: string
Value: 'none' | 'rising' | 'falling' | 'either'
Default: 'none'

 Second-Order Integrator, Second-Order Integrator Limited

1-1657

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Settings

Default: On

 On
Enable zero-crossing detection.

 Off
Do not enable zero-crossing detection.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-1658

Reinitialize dx/dt when x reaches saturation

At the instant when state x reaches saturation, reset dx/dt to its current initial
conditions.

Settings

Default: Off

 On
Reset dx/dt to its initial conditions when x becomes saturated.

 Off
Do not reset dx/dt to its initial conditions when x becomes saturated.

Tip

The dx/dt initial condition must have a value that enables x to leave saturation
immediately. Otherwise, Simulink ignores the initial conditions for dx/dt to preserve
mathematical consistency of block states.

Command-Line Information
Parameter: ReinitDXDTwhenXreachesSaturation
Type: string
Value: 'off' | 'on'
Default: 'off'

 Second-Order Integrator, Second-Order Integrator Limited

1-1659

Ignore state limits and the reset for linearization

For linearization purposes, have Simulink ignore the specified state limits and the
external reset.

Settings

Default: Off

 On
Ignore the specified state limits and the external reset.

 Off
Apply the specified state limits and the external reset setting.

Command-Line Information
Parameter: IgnoreStateLimitsAndResetForLinearization
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-1660

Show output

Specify the output ports on the block.

Settings

Default: both

both

Show both x and dx/dt output ports.
x

Show only the x output port.
dx/dt

Show only the dx/dt output port.

Command-Line Information
Parameter: ShowOutput
Type: string
Value: 'both' | 'x' | 'dxdt'
Default: 'both'

Characteristics

Data Types Double
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced in R2010a

 Selector

1-1661

Selector
Select input elements from vector, matrix, or multidimensional signal

Library

Signal Routing

Description

The Selector block generates as output selected or reordered elements of an input vector,
matrix, or multidimensional signal.

A Selector block accepts vector, matrix, or multidimensional signals as input. The
parameter dialog box and the block's appearance change to reflect the number of
dimensions of the input.

Based on the value you enter for the Number of input dimensions parameter, a table
of indexing settings is displayed. Each row of the table corresponds to one of the input
dimensions in Number of input dimensions. For each dimension, you define the
elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Selector block for multidimensional signal
operations, the block icon changes.

For example, assume a 6-D signal with a one-based index mode. The table of the Selector
block dialog changes to include one row for each dimension. Suppose that you define each
dimension with the following entries:

• Dimension 1

• Index Option, select Select all
• Dimension 2

• Index Option, select Starting index (dialog)

1 Blocks — Alphabetical List

1-1662

• Index, enter 2
• Output Size, enter 5

• Dimension 3

• Index Option, select Index vector (dialog)
• Index, enter [1 3 5]

• Dimension 4

• Index Option, select Starting index (port)
• Output Size, enter 8

• Dimension 5

• Index Option, select Index vector (port)
• Dimension 6

• Index Option, select Starting and ending indices (port)

The output will be Y=U(1:end,2:6,[1 3 5],Idx4:Idx4+7,Idx5,
Idx6(1):Idx6(2)), where Idx4, Idx5, and Idx6 are the index ports for dimensions 4,
5, and 6.

You can use an array of buses as an input signal to a Selector block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Data Type Support
The data port of the Selector block accepts signals of any signal type and any data
type that Simulink supports, including fixed-point, enumerated, and nonvirtual bus
data types. The data port accepts mixed-type signals. The index port accepts built-
in data types, but not Boolean. The elements of the output have the same type as the
corresponding selected input elements.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Note: The Selector block is not designed to accept virtual bus input signals. For virtual
bus inputs, use a Bus Selector block instead of a Selector block.

 Selector

1-1663

Parameters and Dialog Box

Number of input dimensions
Enter the number of dimensions of the input signal.

Index mode
Specifies the indexing mode: One-based or Zero-based. If One-based is selected,
an index of 1 specifies the first element of the input vector, 2, the second element,
and so on. If Zero-based is selected, an index of 0 specifies the first element of the
input vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be indexed. From the list,
select:

1 Blocks — Alphabetical List

1-1664

• Select all

No further configuration is required. All elements are selected.
• Index vector (dialog)

Enables the Index column. Enter the vector of indices of the elements.
• Index vector (port)

No further configuration is required.
• Starting index (dialog)

Enables the Index and Output Size columns. Enter the starting index of the
range of elements to select in the Index column and the number of elements to
select in the Output Size column.

• Starting index (port)

Enables the Output Size column. Enter the number of elements to be selected in
the Output Size column.

• Starting and ending indices (port)

No further configuration is required.

Note: Using this option results in a variable-size output signal. When you update
the output dimension is set to be the same as the input signal dimension. During
execution, the output dimension is updated based on the signal feeding the index.

The Index and Output Size columns appear as needed.
Index

If the Index Option is Index vector (dialog), enter the index of each element
in which you are interested.

If the Index Option is Starting index vector (dialog), enter the starting
index of the range of elements to be selected.

Output Size
Enter the width (number of elements from the starting point) of the block output
signal.

Input port size

 Selector

1-1665

Specify the width of the block input signal (-1 for inherited) — 1-D signals only.
Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The sldemo_dblcart1 model shows the use of three Selector blocks. The following
diagram shows what the model looks like after you enable Display > Signals & Ports >
Signal Dimensions and simulate the model.

All three Selector blocks set the Index Option to Index vector (dialog), which
allows you to specify the indices of the specific signals that you want to select, using the
Index parameter. The Input port size parameter is set to the dimension of the largest
input signal.

The following model shows the result of simulating two Selector blocks that have the
same kind of input signals, but which have two different Index Option settings.

1 Blocks — Alphabetical List

1-1666

Both Selector blocks select 7 values from the input signal that feeds the U port. However,
the Selector block outputs a fixed-size signal, whereas the Selector2 block outputs a
variable-size signal whose compiled signal dimension is 10 instead of 7.

 Selector

1-1667

The Selector block sets Index Option to Index vector (port), which uses the
input signal from Constant1 as the index vector. The dimension of the input signal is 7,
so the Display block shows the 7 values of the Constant1 block. The Selector2 block
sets the Input port size parameter to 10, which is the size of the largest input signal to
the Selector1 block.

The Selector2 block uses the same configuration as the Selector block, except that
the Index Option is set to Starting and ending indices (port). The output uses
the size of Input port size parameter (10), even though the size of the input signal is 7.
The Display2 block shows empty boxes for the three extra dimensions.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1668

Serializer1D

Convert vector signal to scalar or smaller vectors

Library

HDL Coder / HDL Operations

Description

The Serializer1D block converts a slower vector signal into a faster stream of scalar
signals or smaller size vector signals. The slower vector is converted to a faster signal
based on the Ratio and Idle Cycle values. Sample time also changes to match the
faster, serialized output.

You can configure the serialization to depend on a valid Boolean signal ValidIn. The
serialization can also output a Boolean signal to indicate when to start deserialization
StartOut and a signal to indicate when the output data is valid ValidOut. Consider this
example:

 Serializer1D

1-1669

• Ratio is 4 and Idle Cycles is 1, so for each slow cycle vector output is 5 fast signals
(4 serialized signals and one idle cycle).

• ValidIn, StartOut, and ValidOut are selected.

For the first input vector, ABCE, ValidIn is false. So the output is zero, StartOut is false,
and ValidOut is false. For the second input vector signal, ABCD, ValidIn is true, so A, B,
C, and D are serialized into four separate signals. StartOut is true at A to indicate where
to start deserialization, and ValidOut is true for all four signals. Serializer1D outputs an
additional signal, the idle cycle, after the four valid signals. This signal matches the last
serialized signal, D, but ValidOut is false.

HDL Code Generation

For simulation results that match the generated HDL code, in the Configuration
Parameters dialog box, in the Solver pane, Tasking mode for periodic sample times
must be SingleTasking.

If you simulate this block using MultiTasking mode, the output data can update in the
same cycle, but in the generated HDL code, the output data is updated one cycle later.

1 Blocks — Alphabetical List

1-1670

Dialog Box and Parameters

Ratio
Enter the serialization factor. Default is 1.

The ratio is equal to the size of the input vector divided by the size of the output
vector. Input vector size must be divisible by the ratio.

Idle Cycles
Enter the number of idle cycles to add at the end of each output. Default is 0.

ValidIn
Select to activate the ValidIn port. Default is off.

StartOut
Select to activate the StartOut port. Default is off.

ValidOut
Select to activate the ValidOut port. Default is off.

 Serializer1D

1-1671

Input data port dimensions (-1 for inherited)
Enter the size of the input data signal. Input vector size must be divisible by the
ratio. By default, the block inherits size based on context within the model.

Input sample time (-1 for inherited)
Enter the time interval between sample time hits, or specify another appropriate
sample time such as continuous. By default, the block inherits sample time based on
context within the model. For more information, see “Sample Time”.

Input signal type
Specify the input signal type of the block as auto, real, or complex.

Ports
P

Input signal to serialize. Bus data types are not supported.
ValidIn

1 Blocks — Alphabetical List

1-1672

Indicates valid input signal. This port is available when you select the ValidIn check
box.

Data type: Boolean
S

Serialized output signal. Bus data types are not supported.
StartOut

Indicates where to start deserialization. Use with the Deserializer1D block. This
port is available when you select the StartOut check box.

Data type: Boolean
ValidOut

Indicates valid output signal. Use with the Deserializer1D block. This port is
available when you select the ValidOut check box.

Data type: Boolean

See Also
Deserializer1D

Introduced in R2014b

 S-Function

1-1673

S-Function

Include S-function in model

Library

User-Defined Functions

Description

The S-Function block provides access to S-functions from a block diagram. The S-function
named as the S-function name parameter can be a Level-1 MATLAB or a Level-1 or
Level-2 C MEX S-function (see “S-Function Basics” for information on how to create S-
functions).

Note: Use the Level-2 MATLAB S-Function block to include a Level-2 MATLAB S-
function in a block diagram.

The S-Function block allows additional parameters to be passed directly to the named
S-function. The function parameters can be specified as MATLAB expressions or as
variables separated by commas. For example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets, the list of
parameters must not be enclosed in brackets.

The S-Function block displays the name of the specified S-function and the number of
input and output ports specified by the S-function. Signals connected to the inputs must
have the dimensions specified by the S-function for the inputs.

1 Blocks — Alphabetical List

1-1674

Data Type Support

Depends on the implementation of the S-Function block.

Parameters and Dialog Box

S-function name
The S-function name.

S-function parameters
Additional S-function parameters. See the preceding block description for
information on how to specify the parameters.

 S-Function

1-1675

S-function modules
This parameter applies only if this block represents a C MEX S-function and
you intend to use the Simulink Coder software to generate code from the model
containing the block. If you use it, when you are ready to generate code, you must
force the coder to rebuild the top model as explained in “Control Regeneration of Top
Model Code”.

For more information on using this parameter, see “Specify Additional Source Files
for an S-Function” in the Simulink Coder documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Depends on contents of S-function
Direct Feedthrough Depends on contents of S-function
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1676

S-Function Builder

Create S-function from C code that you provide

Library

User-Defined Functions

Description

The S-Function Builder block creates a C MEX S-function from specifications and
C source code that you provide. See “Build S-Functions Automatically” for detailed
instructions on using the S-Function Builder block to generate an S-function.

Instances of the S-Function Builder block also serve as wrappers for generated S-
functions in Simulink models. When simulating a model containing instances of an S-
Function Builder block, Simulink software invokes the generated S-function associated
with each instance to compute the instance's output at each time step.

Note: The S-Function Builder block does not support masking. However, you can mask a
Subsystem block that contains an S-Function Builder block. For more information, see
“Create Dynamic Masked Subsystems”.

Data Type Support

The S-Function Builder can accept and output complex, 1-D, or 2-D signals and
nonvirtual buses. For each of these cases, the signals must have a data type that
Simulink supports.

 S-Function Builder

1-1677

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

See “S-Function Builder Dialog Box” in the online documentation for information on
using the S-Function Builder block's parameter dialog box.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1678

Shift Arithmetic
Shift bits or binary point of signal

Library

Logic and Bit Operations

Description

Supported Shift Operations

The Shift Arithmetic block can shift the bits or the binary point of an input signal, or
both.

For example, shifting the binary point on an input of data type sfix(8), by two places to
the right and left, gives these decimal values.

Shift Operation Binary Value Decimal Value

No shift (original number) 11001.011 –6.625
Binary point shift right by two places 1100101.1 –26.5
Binary point shift left by two places 110.01011 –1.65625

This block performs arithmetic bit shifts on signed numbers. Therefore, the block recycles
the most significant bit for each bit shift. Shifting the bits on an input of data type
sfix(8), by two places to the right and left, gives these decimal values.

Shift Operation Binary Value Decimal Value

No shift (original number) 11001.011 –6.625
Bit shift right by two places 11110.010 –1.75
Bit shift left by two places 00101.100 5.5

 Shift Arithmetic

1-1679

Data Type Support

The block supports input signals of the following data types:

Input Signal Supported Data Types

u • Floating point
• Built-in integer
• Fixed point

s • Floating point
• Built-in integer
• Fixed-point integer

The following rules determine the output data type:

Data Type of Input u Output Data Type

Floating point Same as input u
Built-in integer or
fixed point

• Sign of u
• Word length of u
• Slope of u * 2^(max(binary points to shift))
• Bias of u * 2^(max(binary points to shift – bits to

shift)) , for bit shifts where the direction is bidirectional or
right

• Bias of u * 2^(max(binary points to shift + bits to
shift)), for bit shifts where the direction is left

The block parameters support the following data types:

Parameter Supported Data Types

Bits to shift: Number • Built-in integer
• Fixed-point integer

Binary points to shift • Built-in integer
• Fixed-point integer

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1680

Parameters and Dialog Box

The Shift Arithmetic block dialog box appears as follows:

Bits to shift: Source

 Shift Arithmetic

1-1681

Specify whether to enter the bits to shift on the dialog box or to inherit the values
from an input port.

Bits to shift: Direction
Specify the direction in which to shift bits: left, right, or bidirectional.

Bits to shift: Number
Specify a scalar, vector, or array of bit shift values. This parameter is available when
Bits to shift: Source is Dialog.

If the direction is... Then...

Left or Right Use positive integers to specify bit shifts.
Bidirectional Use positive integers for right shifts and

negative integers for left shifts.

Binary points to shift
Specify an integer number of places to shift the binary point of the input signal. A
positive value indicates a right shift, while a negative value indicates a left shift.

Diagnostic for out-of-range shift value
Specify whether to produce a warning or error during simulation when the block
contains an out-of-range shift value. Options include:

• None — No warning or error appears.
• Warning — Display a warning in the MATLAB Command Window and continue

the simulation.
• Error — Halt the simulation and display an error in the Diagnostic Viewer.

For more information, see “Simulation and Accelerator Mode Results for Out-of-
Range Bit Shift Values” on page 1-1683.

Check for out-of-range 'Bits to shift' in generated code
Select this check box to include conditional statements in the generated code that
protect against out-of-range bit shift values. This check box is available when Bits to
shift: Source is Input port.

For more information, see “Code Generation for Out-of-Range Bit Shift Values” on
page 1-1684.

1 Blocks — Alphabetical List

1-1682

Out-of-Range Bit Shifts

Definition of an Out-of-Range Bit Shift

Suppose that WL is the input word length. The shaded regions in the following diagram
show out-of-range bit shift values for left and right shifts.

Similarly, the shaded regions in the following diagram show out-of-range bit shift values
for bidirectional shifts.

The diagnostic for out-of-range bit shifts responds as follows, depending on the mode of
operation:

 Shift Arithmetic

1-1683

Diagnostic for out-of-range shift valueMode

None Warning Error

Simulation Do not report any
warning or error.

Report a warning but
continue simulation.

Report an error and
stop simulation.

Accelerator modes and
code generation

Has no effect.

Simulation and Accelerator Mode Results for Out-of-Range Bit Shift
Values

Suppose that U is the input, WL is the input word length, and Y is the output. The output
for an out-of-range bit shift value for left shifts is as follows:

Similarly, the output for an out-of-range bit shift value for right shifts is as follows:

1 Blocks — Alphabetical List

1-1684

For bidirectional shifts, the output for an out-of-range bit shift value is as follows:

Code Generation for Out-of-Range Bit Shift Values

For the generated code, the method for handling out-of-range bit shifts depends on the
setting of Check for out-of-range 'Bits to shift' in generated code.

 Shift Arithmetic

1-1685

Check Box Setting Generated Code Simulation Results Compared to
Generated Code

Selected Includes conditional statements
to protect against out-of-range bit
shift values.

Simulation and Accelerator
mode results match those of code
generation.

Cleared Does not protect against out-of-
range bit shift values.

• For in-range values, simulation
and Accelerator mode results
match those of code generation.

• For out-of-range values, the
code generation results are
compiler specific.

For right shifts on signed negative inputs, most C compilers use an arithmetic shift
instead of a logical shift. Generated code for the Shift Arithmetic block depends on this
compiler behavior.

1 Blocks — Alphabetical List

1-1686

Examples

Block Output for Right Bit Shifts

The following model compares the behavior of right bit shifts using the dialog box versus
the block input port.

The key block parameter settings of the Constant blocks are:

Block Parameter Setting

Constant value 124Constant and Constant1
Output data type int8

Constant value 2Dynamic bit shift

Output data type Inherit: Inherit from

'Constant value'

The key block parameter settings of the Shift Arithmetic blocks are:

Block Parameter Setting

Bit shift from dialog Bits to shift: Source Dialog

 Shift Arithmetic

1-1687

Block Parameter Setting

Bits to shift: Direction Right

Bits to shift: Number 2

Bits to shift: Source Input portBit shift from input

Bits to shift: Direction Right

The top Shift Arithmetic block takes an input of 124, which corresponds to 01111100 in
binary format. Shifting the number of bits two places to the right produces 00011111 in
binary format. Therefore, the block outputs 31.

The bottom Shift Arithmetic block performs the same operation as the top block.
However, the bottom block receives the bit shift value through an input port instead of
the dialog box. By supplying this value as an input signal, you can change the number of
bits to shift during simulation.

1 Blocks — Alphabetical List

1-1688

Block Output for Binary Point Shifts

The following model shows the effect of binary point shifts.

The key block parameter settings of the Constant blocks are:

Block Parameter Setting

Constant value 124Constant and Constant1
Output data type int8

The key block parameter settings of the Shift Arithmetic blocks are:

Block Parameter Setting

Bits to shift: Source Dialog

Bits to shift: Direction Bidirectional

Bits to shift: Number 0

Shift binary point 3

places to the right

Binary points to shift:
Number

3

Bits to shift: Source Dialog

Bits to shift: Direction Bidirectional

Shift binary point 3

places to the left

Bits to shift: Number 0

 Shift Arithmetic

1-1689

Block Parameter Setting

Binary points to shift:
Number

–3

The top Shift Arithmetic block takes an input of 124, which corresponds to 01111100 in
binary format. Shifting the binary point three places to the right produces 01111100000
in binary format. Therefore, the top block outputs 995.

The bottom Shift Arithmetic block also takes an input of 124. Shifting the binary point
three places to the left produces 01111.100 in binary format. Therefore, the bottom block
outputs 15.5.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1690

Sign
Indicate sign of input

Library

Math Operations

Description

Block Behavior for Real Inputs

For real inputs, the Sign block outputs the sign of the input:

Input Output

Greater than zero 1
Equal to zero 0
Less than zero –1

For vector and matrix inputs, the block outputs a vector or matrix where each element is
the sign of the corresponding input element, as shown in this example:

 Sign

1-1691

Block Behavior for Complex Inputs

When the input u is a complex scalar, the block output matches the MATLAB result for:
sign(u) = u./ abs(u)

When an element of a vector or matrix input is complex, the block uses the same formula
that applies to scalar input, as shown in this example:

Data Type Support

The Sign block supports real inputs of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The block supports complex inputs only for floating-point data types, double and
single. The output uses the same data type as the input.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1692

Parameters and Dialog Box

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following Simulink examples show how to use the Sign block:

• sldemo_fuelsys (in the Engine Gas Dynamics/Throttle & Manifold/Throttle
subsystem)

• sldemo_hardstop

 Sign

1-1693

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1694

Signal Builder
Create and generate interchangeable groups of signals whose waveforms are piecewise
linear

Library

Sources

Description

The Signal Builder block allows you to create interchangeable groups of piecewise linear
signal sources and use them in a model. See “Signal Groups”.

Note: Use the signalbuilder function to create and access Signal Builder blocks
programmatically.

Data Type Support

The Signal Builder block accepts signals only of type double and outputs a virtual
nonhierarchical bus, scalar, or array of real signals of type double. It does not support
data stores (see “Data Stores”).

For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box

The Signal Builder block has the same dialog box as that of a Subsystem block. To
display the dialog box, right-click the block and select Subsystem Parameters.

 Signal Builder

1-1695

Examples

The following examples show how to use the Signal Builder block:

• sldemo_pid2dof

• sf_test_vectors

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter,

accessible by selecting File > Simulation Options
in the Signal Builder block

• Zero represents a continuous sample time.
• A positive integer represents a discrete sample

time.
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1696

Signal Conversion
Convert signal to new type without altering signal values

Library

Signal Attributes

Description

The Signal Conversion block converts a signal from one type to another. Use the Output
parameter to select the type of conversion to perform.

Data Type Support

The Signal Conversion block accepts signals of the following data types:

• Scalar
• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated
• Virtual and nonvirtual bus signals

You can use an array of buses as an input signal to a Signal Conversion block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

For more information about data types, see “ Data Types Supported by Simulink” in the
Simulink documentation.

 Signal Conversion

1-1697

Parameters and Dialog Box

Output
Specify the type of conversion to perform. The type of conversion that you use
depends on your modeling goal.

1 Blocks — Alphabetical List

1-1698

Modeling Goal Output Option

Reduce generated code for a muxed signal.

For an example involving Simulink Coder software, see
“Reusable Code and Referenced Models”.

Signal copy

Connect a block with a constant sample time to an
output port of an enabled subsystem.

For more information, see “Use Blocks with Constant
Sample Times in Enabled Subsystems”.

Signal copy

Pass a bus signal, or array of buses signal, whose
components have different data types to a nonvirtual
Inport block in an atomic subsystem that has direct
feedthrough.

For more information, see “Composite Signals”.

Signal copy

Save memory by converting a nonvirtual bus to a
virtual bus.

Virtual bus

Pass a virtual bus signal to a modeling construct that
requires a nonvirtual bus, such as a Model block.

Nonvirtual bus

Pass a nonvirtual bus signal from a Bus Selector block. Nonvirtual bus

• The Signal copy option is the default. The type of conversion that the Signal
Conversion block performs using the Signal copy option depends on the type of
input signal.

Type of Input Signal Conversion that the Signal Copy Option
Performs

Muxed (nonbus) signal Converts the muxed signal, whose
elements occupy discontiguous areas
of memory, to a vector signal, whose
elements occupy contiguous areas of
memory. The conversion allocates a
contiguous area of memory for the
elements of the muxed signal and copies
the values from the discontiguous areas
(represented by the block's input) to the

 Signal Conversion

1-1699

Type of Input Signal Conversion that the Signal Copy Option
Performs

contiguous areas (represented by the
block's output) at each time step.

Bus signal Outputs a contiguous copy of the bus
signal that is the input to the Signal
Conversion block.

For an array of buses input signal, use the Signal copy option.

In the following example, a muxed signal inputs to a Signal Conversion block that
has the Output parameter set to Signal copy. The Signal Conversion block
converts the input signal to a vector.

In the following example, a nonvirtual bus signal from a Bus Creator block inputs
to a Signal Conversion block that has Output set to Signal copy. The Signal
Conversion block creates another contiguous copy of the input bus signal.

• The Virtual bus option converts a nonvirtual bus to a virtual bus.

1 Blocks — Alphabetical List

1-1700

In the following example, a Bus Creator block inputs to a Signal Conversion block
that has Output set to Virtual bus. The Signal Conversion block converts
the nonvirtual bus signal from the Bus Creator block to a virtual bus signal that
inputs to the Bus Selector block.

• The Nonvirtual bus option converts a virtual bus to a nonvirtual bus.

In the following example, the Signal Conversion block converts a virtual bus
signal from the first Bus Selector block to a nonvirtual bus signal that inputs
to the second Bus Selector block. The Signal Conversion block has its Output
parameter set to Nonvirtual bus, and specifies a bus object that matches the
bus signal hierarchy of the bus that the first Bus Creator block outputs.

Data type
Specify the output data type of the nonvirtual bus that the Signal Conversion block
produces.

This option is available only when you set the Output parameter to Nonvirtual
bus.

The default option is Inherit: auto, which uses a rule that inherits a data type.

 Signal Conversion

1-1701

You must specify a Simulink.Bus object in the Data type parameter for one or both
of the following blocks:

• Signal Conversion block
• An upstream Bus Creator block

If you specify a bus object for the Signal Conversion block, but not for its upstream
Bus Creator block, then use a bus object that matches the hierarchy of the bus that
upstream Bus Creator block outputs.

If you specify a bus object for both the Signal Conversion block and its upstream Bus
Creator block, use the same bus object for both blocks.

You can select the button to the right of the Data type parameter to open the Data
Type Assistant, which helps you to set the Data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Exclude this block from 'Block reduction' optimization

This option is available only when you set the Output parameter to Signal copy.
If the elements of the input signal occupy contiguous areas of memory, then as an
optimization, Simulink software eliminates the block from the compiled model .
If you select the Exclude this block from 'Block reduction' optimization
check box, the optimization occurs the next time you compile the model. For more
information, see “Block reduction”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
Bus Creator | Data Type Conversion

1 Blocks — Alphabetical List

1-1702

More About
• “Buses”

Introduced before R2006a

 Signal Generator

1-1703

Signal Generator

Generate various waveforms

Library

Sources

Description

Supported Operations

The Signal Generator block can produce one of four different waveforms: sine wave,
square wave, sawtooth wave, and random wave. You can express signal parameters in
Hertz (the default) or radians per second. Using default parameter values, you get one of
the following waveforms:

1 Blocks — Alphabetical List

1-1704

Waveform Scope Output

Sine wave

 Signal Generator

1-1705

Waveform Scope Output

Square wave

1 Blocks — Alphabetical List

1-1706

Waveform Scope Output

Sawtooth wave

 Signal Generator

1-1707

Waveform Scope Output

Random wave

1 Blocks — Alphabetical List

1-1708

A negative Amplitude parameter value causes a 180-degree phase shift. You can
generate a phase-shifted wave at other than 180 degrees in many ways. For example, you
can connect a Clock block signal to a MATLAB Function block and write the equation for
the specific wave.

You can vary the output settings of the Signal Generator block while a simulation is in
progress. This is useful to determine quickly the response of a system to different types of
inputs.

The Amplitude and Frequency parameters determine the amplitude and frequency
of the output signal. The parameters must be of the same dimensions after scalar
expansion. If you clear the Interpret vector parameters as 1-D check box, the
block outputs a signal of the same dimensions as the Amplitude and Frequency
parameters (after scalar expansion). If you select the Interpret vector parameters as
1-D check box, the block outputs a vector (1-D) signal if the Amplitude and Frequency
parameters are row or column vectors, that is, single row or column 2-D arrays.
Otherwise, the block outputs a signal of the same dimensions as the parameters.

 Signal Generator

1-1709

Solver Considerations

If your model uses a fixed-step solver, Simulink uses the same step size for the entire
simulation. In this case, the Signal Generator block output provides a uniformly sampled
representation of the ideal waveform.

If your model uses a variable-step solver, Simulink might use different step sizes during
the simulation. In this case, the Signal Generator block output does not always provide
a uniformly sampled representation of the ideal waveform. To ensure that the block
output is a uniformly sampled representation, add a Hit Crossing block directly
downstream of the Signal Generator block. The following models show the difference in
Signal Generator block output with and without the Hit Crossing block.

Model That Uses a Variable-Step Solver Signal Generator Block Output

1 Blocks — Alphabetical List

1-1710

Model That Uses a Variable-Step Solver Signal Generator Block Output

Data Type Support

The Signal Generator block outputs a scalar or array of real signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Signal Generator

1-1711

Parameters and Dialog Box

Wave form
Specify the wave form: a sine wave, square wave, sawtooth wave, or random wave.
The default is a sine wave. This parameter cannot change while a simulation is
running.

Time
Specify whether to use simulation time as the source of values for the waveform's
time variable or an external signal. If you specify an external time source, the block
displays an input port for the time source.

Amplitude

1 Blocks — Alphabetical List

1-1712

Specify the signal amplitude. The default is 1.
Frequency

Specify the signal frequency. The default is 1.
Units

Specify the signal units as Hertz or rad/sec. The default is rad/sec.
Interpret vector parameters as 1-D

If selected, column or row matrix values for the Amplitude and Frequency
parameters result in a vector output signal (see “Determining the Output Dimensions
of Source Blocks”). This option is not available when an external signal specifies time.
In this case, if the Amplitude and Frequency parameters are column or row matrix
values, the output is a 1-D vector.

Examples

The following Simulink examples show how to use the Signal Generator block:

• sldemo_dblcart1

• slexAircraftExample

• penddemo

Characteristics

Data Types Double
Sample Time Continuous
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Pulse Generator

 Signal Generator

1-1713

Introduced before R2006a

1 Blocks — Alphabetical List

1-1714

Signal Specification
Specify desired dimensions, sample time, data type, numeric type, and other attributes of
signal

Library

Signal Attributes

Description

The Signal Specification block allows you to specify the attributes of the signal connected
to its input and output ports. If the specified attributes conflict with the attributes
specified by the blocks connected to its ports, Simulink software displays an error when
it compiles the model. For example, at the beginning of a simulation, if no conflict exists,
Simulink eliminates the Signal Specification block from the compiled model. In other
words, the Signal Specification block is a virtual block. It exists only to specify the
attributes of a signal and plays no role in the simulation of the model.

You can use the Signal Specification block to ensure that the actual attributes of a signal
meet desired attributes. For example, suppose that you and a colleague are working
on different parts of the same model. You use Signal Specification blocks to connect
your part of the model with your colleague's. If your colleague changes the attributes
of a signal without informing you, the attributes entering the corresponding Signal
Specification block do not match. When you try to simulate the model, you get an error.

You can also use the Signal Specification block to ensure correct propagation of signal
attributes throughout a model. The capability of allowing the Simulink to propagate
attributes from block to block is powerful. However, if some blocks have unspecified
attributes for the signals they accept or output, the model does not have enough
information to propagate attributes correctly. For these cases, the Signal Specification
block is a good way of providing the information Simulink needs. Using the Signal
Specification block also helps speed up model compilation when blocks are missing signal
attributes.

 Signal Specification

1-1715

The Signal Specification block supports signal label propagation.

Data Type Support

The Signal Specification block accepts real or complex signals of any data type that
Simulink supports, including fixed-point and enumerated data types, as well as bus
objects. The input data type must match the data type specified by the Data type
parameter.

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “ Data Types Supported by Simulink”.

1 Blocks — Alphabetical List

1-1716

Parameters and Dialog Box

• “Minimum” on page 1-1718

 Signal Specification

1-1717

• “Maximum” on page 1-1719
• “Data type” on page 1-1720
• “Show data type assistant” on page 1-128
• “Mode” on page 1-1723
• “Data type override” on page 1-230
• “Signedness” on page 1-1726
• “Word length” on page 1-1727
• “Scaling” on page 1-225
• “Fraction length” on page 1-1729
• “Slope” on page 1-1730
• “Bias” on page 1-1731
• “Require nonvirtual bus” on page 1-1732
• “Lock output data type setting against changes by the fixed-point tools” on page 1-235
• “Dimensions (-1 for inherited)” on page 1-1734
• “Variable-size signal” on page 1-1735
• “Sample time (-1 for inherited)” on page 1-1736
• “Signal type” on page 1-1737
• “Sampling mode” on page 1-1738

1 Blocks — Alphabetical List

1-1718

Minimum

Specify the minimum value for the block output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simulink.BusElement.

Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information
Parameter: OutMin
Type: string
Value: Any valid finite real double scalar value
Default: '[]'

 Signal Specification

1-1719

Maximum

Specify the maximum value for the block output.

Settings

Default:[] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simulink.BusElement.

Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information
Parameter: OutMax
Type: string
Value: Any valid finite real double scalar value
Default: '[]'

1 Blocks — Alphabetical List

1-1720

Data type

Specify the output data type.

Settings

Default: auto

Inherit: auto

Inherits the data type.
double

Specifies the data type is double.
single

Specifies the data type is single.
int8

Specifies the data type is int8.
uint8

Specifies the data type is uint8.
int16

Specifies the data type is int16.
uint16

Specifies the data type is uint16.
int32

Specifies the data type is int32.
uint32

Specifies the data type is uint32.
boolean

Specifies the data type is boolean.
fixdt(1,16,0)

Specifies the data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Specifies the data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

 Signal Specification

1-1721

Specifies the data type as enumerated.
Bus: <object name>

Data type is a bus object.
<data type expression>

The name of a data type object, for example Simulink.NumericType

Do not specify a bus object as the expression.

Dependency

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Data type parameters.

Command-Line Information
Parameter: OutDataTypeStr
Type: string
Value: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' |

'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus:

<object name>' | <data type expression>

Default: 'Inherit: auto'

See Also

“Control Signal Data Types”.

1 Blocks — Alphabetical List

1-1722

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Signal Specification

1-1723

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables auto.
Built in

Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Specifies fixed-point data types.
Enumerated

Specifies enumerated data types. Selecting Enumerated enables you to enter a class
name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

1 Blocks — Alphabetical List

1-1724

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

“Specify Data Types Using Data Type Assistant”.

 Signal Specification

1-1725

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

1 Blocks — Alphabetical List

1-1726

Signedness

Specify whether you want the fixed-point data signed or unsigned.

Settings

Default: Signed

Signed

Specifies fixed-point data as signed.
Unsigned

Specifies the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

“Specifying a Fixed-Point Data Type”.

 Signal Specification

1-1727

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

“Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1728

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Signal Specification

1-1729

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

“Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1730

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

“Specifying a Fixed-Point Data Type”.

 Signal Specification

1-1731

Bias

Specify bias for the fixed-point data type.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

“Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1732

Require nonvirtual bus

If you specify a bus object as the data type, use this parameter to specify whether to
accept only nonvirtual bus signals.

Settings

Default: off

 Off
Specifies that a signal must come from a virtual bus.

 On
Specifies that a signal must come from a nonvirtual bus.

Dependencies

The following Data type values enable this parameter:

• Bus: <object name>

• <data type expression> that specifies a bus object

Command-Line Information
Parameter: BusOutputAsStruct
Type: string
Value: 'off' | 'on'
Default: '-1off'

 Signal Specification

1-1733

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

1 Blocks — Alphabetical List

1-1734

Dimensions (-1 for inherited)

Specify the dimensions of the input and output signals.

Settings

Default: -1

-1

Specifies that signals inherit dimensions.
n

Specifies vector signal of width n.
[m n]

Specifies matrix signal having m rows and n columns.

Command-Line Information
Parameter: Dimensions
Type: string
Value: '-1' | n | [m n]
Default: '-1'

 Signal Specification

1-1735

Variable-size signal

Specify a variable-size signal, fixed-size signal, or both.

Settings

Default: Inherit

Inherit

Allows variable-size and fixed-size signals.
No

Does not allow variable-size signals.
Yes

Allows only variable-size signals.

Dependencies

When the signal is a variable-size signal, the Dimensions parameter specifies the
maximum dimensions of the signal.

If you specify a bus object, the simulation allows variable-size signals only with a
disabled bus object.

Command-Line Information
Parameter: VarSizeSig
Type: string
Value: 'Inherit' | 'No' | 'Yes'
Default: 'Inherit'

See Also

“Variable-Size Signal Basics”

1 Blocks — Alphabetical List

1-1736

Sample time (-1 for inherited)

Specify the time interval when simulation updates the block.

Settings

Default: -1

Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” for more information.

Command-Line Information
Parameter: SampleTime
Type: string
Value: Any valid sample time
Default: '-1'

See Also

“ Specify Sample Time”

 Signal Specification

1-1737

Signal type

Specify the numeric type of the input and output signals.

Settings

Default: auto

auto

Accepts either real or complex as the numeric type.
real

Specifies the numeric type as a real number.
complex

Specifies the numeric type as a complex number.

Command-Line Information
Parameter: SignalType
Type: string
Value: 'auto' | 'real' | 'complex'
Default: 'auto'

1 Blocks — Alphabetical List

1-1738

Sampling mode

Select the sampling mode for this block.

Settings

Default: auto

auto

Accepts any sampling mode.
Sample based

Specifies the output signal to be sample-based.
Frame based

Specifies the output signal to be frame-based.

Tip

To generate frame-based signals, you must have the DSP System Toolbox product
installed.

Command-Line Information
Parameter: SamplingMode
Type: string
Value: 'auto' | 'Sample based' | 'Frame based'
Default: 'auto'

Bus Support

The Signal Specification block supports virtual and nonvirtual buses. If you specify a bus
object as the data type, then set these other block parameters as follows:

Block Parameter Required Value for a Bus Data Type

Variable-size signal No

Sampling mode Sample based

All elements of the bus input to a Signal Specification block must have the same names
as specified in the bus object.

 Signal Specification

1-1739

All signals in a nonvirtual bus input to a Signal Specification block must have the
same sample time, even if the elements of the associated bus object specify inherited
sample times. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus. See “Composite Signals” and Bus-Capable
Blocks for more information.

The Model Configuration Parameters > Diagnostics > Connectivity “Mux blocks
used to create bus signals” diagnostic must be set to Error.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified by the Sample time parameter
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1740

Simple Dual Port RAM

Dual port RAM with single output port

Library

HDL Coder / HDL Operations

Description

The Simple Dual Port RAM block models RAM that supports simultaneous read and
write operations, and has a single output port for read data. You can use this block to
generate HDL code that maps to RAM in most FPGAs.

The Simple Dual Port RAM is similar to the Dual Port RAM, but the Dual Port RAM has
both a write data output port and a read data output port.

Read-During-Write Behavior

During a write operation, if a read operation occurs at the same address, old data
appears at the output.

 Simple Dual Port RAM

1-1741

Dialog Box and Parameters

Address port width
Address bit width. Minimum bit width is 2, and maximum bit width is 29. The
default is 8.

Ports

The block has the following ports:

wr_din

Write data input. The data can have any width. It inherits the width and data type
from the input signal.

Data type: scalar fixed point, integer, or complex
wr_addr

Write address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

1 Blocks — Alphabetical List

1-1742

wr_en

Write enable.

Data type: Boolean
rd_addr

Read address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

rd_dout

Output data from read address, rd_addr.

See Also
Dual Port RAM | Dual Rate Dual Port RAM | Single Port RAM

Introduced in R2014a

 Simulink Function

1-1743

Simulink Function
Function definition used by Function Caller block or Stateflow chart

Library

User-Defined Functions

Description

The Simulink Function block defines a function using Simulink blocks within it. You can
call this function from a Function Caller block, MATLAB Function block, or a Stateflow
chart. Place a Simulink Function block in the root level of a model or in the root level of a
Model block (referenced model). Do not place a Simulink Function block in a Subsystem
block.

Function interface. The function interface appears on the face of a Simulink
Function block. The block also contains blocks that correspond to parts of the functions.
For example, editing the block text, adds and deletes Argument Inport and Argument
Outport blocks to match the function interface. Editing also sets the Function name
parameter in the Trigger Port block within the Simulink Function block.

For example, entering y = myfunction(u) on the face of the Simulink Function block
adds one Argument Inport block (u) and one Argument Outport block (y) inside the block.
It also sets the Function name parameter in the Trigger Port block to myfunction.

When calling a function using a Function Caller block, the parameter Function
prototype in the Function Caller block must match exactly the function interface you
specify on the Simulink Function block. This match includes the names of input and
output arguments. For example, the Simulink Function block and the Function Caller
block both use the u and y argument names.

1 Blocks — Alphabetical List

1-1744

When calling a function from a Stateflow transition or state label, you can use different
argument names. For example, the Simulink Function block uses x and y arguments, but
the Stateflow transition use x2 and y2 arguments to call the function.

Connection to local signals. In addition to Argument Inport and Argument Outport
blocks, a Simulink Function block can interface to signals in the local environment of the
block through Inport or Outport blocks. These signals are hidden from the caller. You can
use them to connect and communicate between two Simulink Function blocks or connect
to root Inport and Outport blocks to represent external I/O. Typically, you connect signal
outputs to Scope or To Workspace blocks.

You can connect the output from a Simulink Function block to sink blocks including
logging (To File, To Workspace) and viewing (Scope, Display) blocks. However, these
blocks execute last after all other blocks.

 Simulink Function

1-1745

Differences Between Function-Call Subsystem and Simulink Function
Blocks. In general, a Function-Call Subsystem block provides better signal
traceability because you use direct signal connections to represent the triggering
condition and the I/O. Simulink Function blocks provide better packaging and eliminate
the need for routing input and output signal lines through the model hierarchy.

Attribute Function-Call Subsystem
block

Simulink Function block

Method of executing/invoking
function

Triggered using a signal
line

Called by reference to
the function name

Formal input arguments
(Argument Inport blocks) and
output arguments (Argument
Outport blocks)

No Yes

Graphical (signal) inputs (Inport
block) and outputs (Outport block)

Yes Yes

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also
Argument Outport | Argument Inport | Function Caller | Function-Call
Subsystem | Subsystem

Related Examples
• “Simulink Functions and Function Callers”
• “Diagnostics Using a Client-Server Architecture”

Introduced in R2014b

1 Blocks — Alphabetical List

1-1746

Single Port RAM

Single port RAM

Library

HDL Coder / HDL Operations

Description

The Single Port RAM block models RAM that supports sequential read and write
operations.

If you want to model RAM that supports simultaneous read and write operations, use the
Dual Port RAM or Simple Dual Port RAM.

 Single Port RAM

1-1747

Dialog Box and Parameters

Address port width
Address bit width. Minimum bit width is 2, and maximum bit width is 29. The
default is 8.

Output data during write
Controls the output data, dout, during a write access.

• New data (default): During a write, new data appears at the output port, dout.
• Old data: During a write, old data appears at the output port, dout.

Ports

The block has the following ports:

din

Data input. The data can have any width. It inherits the width and data type from
the input signal.

1 Blocks — Alphabetical List

1-1748

Data type: scalar fixed point, integer, or complex
addr

Write address.

Data type: scalar unsigned integer (uintN) or unsigned fixed point (ufixN) with a
fraction length of 0

we

Write enable.

Data type: Boolean
dout

Output data from address, addr.

See Also
Dual Port RAM | Dual Rate Dual Port RAM | Simple Dual Port RAM

Introduced in R2014a

 Sine, Cosine

1-1749

Sine, Cosine
Implement fixed-point sine or cosine wave using lookup table approach that exploits
quarter wave symmetry

Library

Lookup Tables (Sine block or Cosine block)

Description

The Sine and Cosine block implements a sine and/or cosine wave in fixed point using a
lookup table method that exploits quarter wave symmetry.

The Sine and Cosine block can output the following functions of the input signal,
depending upon what you select for the Output formula parameter:

• sin(2πu)
• cos(2πu)
• exp(i2πu)
• sin(2πu) and cos(2πu)

You define the number of lookup table points in the Number of data points for lookup
table parameter. The block implementation is most efficient when you specify the lookup
table data points to be (2^n)+1, where n is an integer.

Tip To obtain meaningful block output, the block input values should fall within the
range [0, 1). For input values that fall outside this range, the values are cast to an
unsigned data type, where overflows wrap. For these out-of-range inputs, the block
output might not be meaningful.

1 Blocks — Alphabetical List

1-1750

Use the Output word length parameter to specify the word length of the fixed-point
output data type. The fraction length of the output is the output word length minus 2.

Data Type Support

The Sine and Cosine block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The output of the block is a fixed-point data type.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Sine, Cosine

1-1751

Parameters and Dialog Box

Output formula
Select the signal(s) to output.

Number of data points for lookup table
Specify the number of data points to retrieve from the lookup table. The
implementation is most efficient when you specify the lookup table data points to be
(2^n)+1, where n is an integer.

1 Blocks — Alphabetical List

1-1752

Output word length
Specify the word length for the fixed-point data type of the output signal. The
fraction length of the output is the output word length minus 2.

Note: The block uses double-precision floating-point values to construct lookup
tables. Therefore, the maximum amount of precision you can achieve in your output
is 53 bits. Setting the word length to values greater than 53 bits does not improve the
precision of your output.

Internal rule priority for lookup table
Specify the internal rule for intermediate calculations. Select Speed for faster
calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Examples

The sldemo_tonegen_fixpt model shows how you can use the Sine block to implement
a fixed-point sine wave.

 Sine, Cosine

1-1753

1 Blocks — Alphabetical List

1-1754

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Sine Wave, Trigonometric Function

Introduced before R2006a

 Sine Wave

1-1755

Sine Wave
Generate sine wave, using simulation time as time source

Library

Sources

Description

The Sine Wave block outputs a sinusoidal waveform. The block can operate in time-based
or sample-based mode.

Note: This block is the same as the Sine Wave Function block that appears in the
Math Operations library. If you select Use external signal for the Time parameter
in the block dialog box, you get the Sine Wave Function block.

Time-Based Mode

The output of the Sine Wave block is determined by:

y amplitude frequency time phase bias= ¥ ¥ + +sin() .

Time-based mode has two submodes: continuous mode or discrete mode. The value of the
Sample time parameter determines whether the block operates in continuous mode or
discrete mode:

• 0 (the default) causes the block to operate in continuous mode.

1 Blocks — Alphabetical List

1-1756

• >0 causes the block to operate in discrete mode.

See “ Specify Sample Time” in the online documentation for more information.

Block Behavior in Continuous Mode

A Sample time parameter value of 0 causes the block to operate in continuous mode.
When operating in continuous mode, the Sine Wave block can become inaccurate due to
loss of precision as time becomes very large.

Block Behavior in Discrete Mode

A Sample time parameter value greater than zero causes the block to behave as if it
were driving a Zero-Order Hold block whose sample time is set to that value.

Using the Sine Wave block in this way, you can build models with sine wave sources that
are purely discrete, rather than models that are hybrid continuous/discrete systems.
Hybrid systems are inherently more complex and as a result take more time to simulate.

In discrete mode, this block uses a differential incremental algorithm instead of one
based on absolute time. As a result, the block can be useful in models intended to run for
an indefinite length of time, such as in vibration or fatigue testing.

The differential incremental algorithm computes the sine based on the value computed at
the previous sample time. This method uses the following trigonometric identities:

sin() sin()cos() sin()cos()

cos() cos()cos(

t t t t t t

t t t

+ D = D + D

+ D = Dtt t t) sin()sin()- D

In matrix form, these identities are:

sin()

cos()

cos() sin()

sin() cos()

t t

t t

t t

t t

+ D

+ D

È

Î
Í

˘

˚
˙ =

D D

- D D

È

Î
Í

˘

˚̊
˙

È

Î
Í

˘

˚
˙

sin()

cos()

t

t

Because Δt is constant, the following expression is a constant:

cos() sin()

sin() cos()

D D

- D D

È

Î
Í

˘

˚
˙

t t

t t

 Sine Wave

1-1757

Therefore, the problem becomes one of a matrix multiplication of the value of sin()t by a
constant matrix to obtain sin()t t+ D .

Discrete mode reduces but does not eliminate the accumulation of round-off errors, for
example, (4*eps). This accumulation can happen because computation of the block
output at each time step depends on the value of the output at the previous time step.

Methods to Handle Round-Off Errors in Discrete Mode

To handle round-off errors when the Sine Wave block operates in time-based discrete
mode, use one of the following methods.

Method Rationale

Insert a Saturation block directly
downstream of the Sine Wave block.

By setting saturation limits on the Sine
Wave block output, you can remove
overshoot due to accumulation of round-off
errors.

Set up the Sine Wave block to use the
sin() math library function to calculate
block output.

1 On the Sine Wave block dialog box, set
Time to Use external signal so
that an input port appears on the block
icon.

2 Connect a clock signal to this input
port using a Digital Clock block.

3 Set the sample time of the clock signal
to the sample time of the Sine Wave
block.

Unlike the block algorithm, the sin()
math library function computes block
output at each time step independently
of output values from other time steps,
preventing the accumulation of round-off
errors.

Sample-Based Mode

Sample-based mode uses the following formula to compute the output of the Sine Wave
block.

y A k o p b= + +sin(() /)2p

1 Blocks — Alphabetical List

1-1758

where

• A is the amplitude of the sine wave.
• p is the number of time samples per sine wave period.
• k is a repeating integer value that ranges from 0 to p–1.
• o is the offset (phase shift) of the signal.
• b is the signal bias.

In this mode, Simulink sets k equal to 0 at the first time step and computes the block
output, using the preceding formula. At the next time step, Simulink increments k and
recomputes the output of the block. When k reaches p, Simulink resets k to 0 before
computing the block output. This process continues until the end of the simulation.

The sample-based method of computing block output at a given time step does not
depend on the output of the previous time steps. Therefore, this mode avoids the
accumulation of round-off errors. Additionally, sample-based mode supports reset
semantics in subsystems that offer it. For example, if a Sine Wave block is in a resettable
subsystem that receives a reset trigger, the repeating integer k resets and the block
output resets to its initial condition.

Parameter Dimensions

The numeric parameters of this block must have the same dimensions after scalar
expansion.

• If Interpret vector parameters as 1-D is not selected, the block outputs a signal of
the same dimensions and dimensionality as the parameters.

• If Interpret vector parameters as 1-D is selected and the numeric parameters are
row or column vectors, the block outputs a vector signal. Otherwise, the block outputs
a signal of the same dimensionality and dimensions as the parameters.

Data Type Support

The Sine Wave block accepts and outputs real signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Sine Wave

1-1759

Parameters and Dialog Box

Sine type

1 Blocks — Alphabetical List

1-1760

Specify the type of sine wave that this block generates, either time- or sample-based.
Some parameters in the dialog box appear depending on whether you select time-
based or sample-based.

Time
Specify whether to use simulation time as the source of values for the time variable
or an external source. If you specify an external time source, the block displays an
input port for the time source.

Amplitude
Specify the amplitude of the signal. The default is 1.

Bias
Specify the constant value added to the sine to produce the output of this block.

Frequency
Specify the frequency, in radians per second. The default is 1. This parameter
appears only when you set Sine type to time-based.

Samples per period
Specify the number of samples per period. This parameter appears only when you set
Sine type to sample-based.

Phase
Specify the phase shift, in radians. The default is 0. This parameter appears only
when you set Sine type to time-based.

Number of offset samples
Specify the offset (discrete phase shift) in number of sample times. This parameter
appears only when you set Sine type to sample-based.

Sample time
Specify the sample period. The default is 0. If the sine type is sample-based, the
sample time must be greater than 0. See “ Specify Sample Time” in the online
documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for numeric parameters result in a vector
output signal. Otherwise, the block outputs a signal of the same dimensionality as
the parameters. If you do not select this check box, the block always outputs a signal
of the same dimensionality as the numeric parameters. See “Determining the Output
Dimensions of Source Blocks” in the Simulink documentation. This parameter is not
available when an external signal specifies time. In this case, if numeric parameters
are column or row matrix values, the output is a 1-D vector.

 Sine Wave

1-1761

Examples

The following Simulink examples show how to use the Sine Wave block:

• sldemo_househeat

• sldemo_tonegen_fixpt

• sldemo_VariableTransportDelay

• sldemo_zeroxing

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-1762

Sine Wave Function
Generate sine wave, using external signal as time source

Library

Math Operations

Description

This block is the same as the Sine Wave block that appears in the Sources library. If
you select Use simulation time for the Time parameter in the block dialog box,
you get the Sine Wave block. See the documentation for the Sine Wave block for more
information.

Characteristics

Data Types Double
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

 Slider

1-1763

Slider
Set value on sliding scale to tune parameters or variables

Library

Dashboard

Description

The Slider block enables you to control the value of tunable parameters and variables in
your model during simulation.

To control a tunable parameter or variable using the Slider block, double-click the Slider
block to open the dialog box. Select a block in the model canvas. The tunable parameter
or variable appears in the dialog box Connection table. Select the option button next
to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable to the block.

The tick range determines the range of values available for the tunable parameter or
variable. You can modify the tick range by modifying the Minimum, Maximum, and
Tick Interval values.

Limitations

The Slider block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter

1 Blocks — Alphabetical List

1-1764

Limitation Workaround

uses an index of the variable engine,
which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

Parameters and Dialog Box

 Slider

1-1765

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next
to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

Minimum

Minimum tick mark value.

Settings

Default: 0

Specify this number as a finite, real, double, scalar value.

Dependencies

The Minimum tick value must be less than the Maximum tick value.

Maximum

Maximum tick mark value.

Settings

Default: 100

Specify this number as a finite, real, double, scalar value.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

1 Blocks — Alphabetical List

1-1766

Tick Interval

Interval between major tick marks.

Settings

Default: auto

Specify this number as a finite, real, positive, integer, scalar value. Specify as auto for
the block to adjust the tick interval automatically.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015b

 Slider Gain

1-1767

Slider Gain
Vary scalar gain using slider

Library

Math Operations

Description

Use the Slider Gain block to vary a scalar gain during a simulation using a slider. The
block accepts one input and generates one output.

Data Type Support

Data type support for the Slider Gain block is the same as that for the Gain block (see
Gain).

Parameters and Dialog Box

Low
Specify the lower limit of the slider range. The default is 0.

1 Blocks — Alphabetical List

1-1768

High
Specify the upper limit of the slider range. The default is 2.

The edit fields indicate (from left to right) the lower limit, the current value, and the
upper limit. You can change the gain in two ways: by manipulating the slider, or by
entering a new value in the current value field. You can change the range of gain values
by changing the lower and upper limits. Close the dialog box by clicking the Close
button.

If you click the left or right arrow of the slider, the current value changes by about 1% of
the slider range. If you click the rectangular area to either side of the slider's indicator,
the current value changes by about 10% of the slider range.

To apply a vector or matrix gain to the block input, consider using the Gain block.

Examples

The following example models show how to use the Slider Gain block:

• aero_six_dof

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Gain

 Slider Gain

1-1769

Introduced before R2006a

1 Blocks — Alphabetical List

1-1770

Spectrum Analyzer

Display frequency spectrum of time-domain signals

Description

The Spectrum Analyzer block, referred to here as the scope, displays frequency spectra
of signals. The Spectrum Analyzer block accepts input signals with the following
characteristics:

• Discrete sample time
• Real- or complex-valued
• Fixed number of channels of variable length
• Floating- or fixed-point data type

 Spectrum Analyzer

1-1771

You can use the Spectrum Analyzer block in models running in Normal or Accelerator
simulation modes. You can also use the Spectrum Analyzer block in models running
in Rapid Accelerator or External simulation modes, with some limitations. See the
“Supported Simulation Modes” on page 1-1819 section for more information.

You can use the Spectrum Analyzer block inside of all subsystems and conditional
subsystems. Conditional subsystems include enabled subsystems, triggered subsystems,
enabled and triggered subsystems, and function-call subsystems. See “Conditional
Subsystems” in the Simulink documentation for more information.

1 Blocks — Alphabetical List

1-1772

You can configure and display Spectrum Analyzer settings from the command line with .

See the following sections for more information on the Spectrum Analyzer:

• “Signal Display” on page 1-1772
• “Spectrum Settings” on page 1-1777
• “Measurements Panels” on page 1-1785
• “Visuals — Spectrum Properties” on page 1-1798
• “Style Dialog Box” on page 1-1800
• “Tools — Axes Scaling Properties” on page 1-1802
• “Algorithms” on page 1-1806
• “Differences from Spectrum Scope Block” on page 1-1814
• “Supported Data Types” on page 1-1819
• “Supported Simulation Modes” on page 1-1819

Signal Display

The Spectrum Analyzer indicates the spectrum computation settings that are
represented in the current display. Check the Resolution Bandwidth, Time
Resolution, and Offset indicators on the status bar in the scope window for this
information. These indicators relate to the Minimum Frequency-Axis limit and
Maximum Frequency-Axis limit values on the frequency-axis of the scope window. The
values specified by these indicators may be changed by modifying parameters in the
Spectrum Settings panel. You can also view the object state and the amount of time
data that correspond to the current display. Check the Simulation Status and Simulation
time indicators on the status bar in the scope window for this information. The following
figure highlights these aspects of the Spectrum Analyzer window.

 Spectrum Analyzer

1-1773

Simulation status Resolution Bandwidth Time Resolution

(only for spectrogram)
Display TimeOffset

Minimum Frequency-Axis Limit Maximum Frequency-Axis Limit

Note: To prevent the scope from opening when you run your model, right-click the scope
icon and select Comment Out. If the scope is already open, and you comment it out in the
model. the scope displays, “No data can be shown because this scope is commented out.”
Select Uncomment to turn the scope back on.

• Frequency Span — The range of values shown on the frequency-axis on the Spectrum
Analyzer window.

Details

Spectrum Analyzer sets the frequency span using the values of parameters on the
Main options pane of the Spectrum Settings panel.

• Span (Hz) and CF (Hz) visible — The Frequency Span value equals the Span
parameter in the Main options pane.

• FStart (Hz) and FStop (Hz) — The frequency span value equals the difference
of the FStop and FStart parameters in the Main options pane, as given by the
formula: f f fspan stop start= - .

By default, the Full Span check box in the Main options pane is enabled.
In this case, the Spectrum Analyzer computes and plots the spectrum over
the entire Nyquist frequency interval. When the Two-sided spectrum

1 Blocks — Alphabetical List

1-1774

check box in the Trace options pane is enabled, the Nyquist interval is

-
È

ÎÍ
˘

˚̇
+

SampleRate SampleRate
FrequencyOffset

2 2
, hertz.

• Resolution Bandwidth — The smallest positive frequency or frequency interval that
can be resolved.

Details

Spectrum Analyzer sets the resolution bandwidth using the value of the frequency
resolution parameter on the Main options pane of the Spectrum Settings panel.
By default, this parameter is set to RBW (Hz) and 'Auto'. In this case, the Spectrum
Analyzer determines the appropriate value to ensure that there are 1024 RBW
intervals over the specified Frequency Span.

You can set the resolution bandwidth to whatever value you choose. For
this reason, there is a minimum boundary on the number of input samples
required to compute a spectral update. This number of input samples required
to compute one spectral update is shown as Samples/update in the Main
options pane. This value is directly related to RBW by the following equation:

N

O
NENBW F

RBW
samples

p
s

=

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ¥ ¥1

100
. Overlap percentage, Op, is the value of the

Overlap % parameter in the Window Options pane of the Spectrum Settings
panel. NENBW is the normalized effective noise bandwidth, a factor of the windowing
method used, which is shown in the Window Options pane. Fs is the sample rate. In
some cases, the number of samples provided in the input are not sufficient to achieve
the resolution bandwidth that you specify. When this situation occurs, Spectrum
Analyzer produces a message on the display, as shown in the following figure.

 Spectrum Analyzer

1-1775

Spectrum Analyzer removes this message and displays a spectral estimate as soon as
enough data has been input.

If the frequency resolution setting on the Main options pane of the Spectrum
Settings is Window length, you specify the window length and the resulting RBW is
NENBW * Fs

Nwindow

. The Samples/update in this case is directly related to RBW by the

following equation: N
O

Nsamples
p

window= −








1

100

• Time Resolution — The time resolution for a spectrogram line.

Details

Time resolution is the amount of data, in seconds, used to compute a spectrogram line.
The minimum attainable resolution is the amount of data time it takes to compute a
single spectral estimate. Time Resolution is displayed only when the spectrum Type
is Spectrogram.

• Offset — The constant frequency offset to apply to the entire spectrum or a vector of
frequency offsets to apply to each spectrum for multiple inputs.

Details

Spectrum Analyzer adds this constant offset or the vector of offsets to the values
on the frequency-axis using the value of Offset on the Trace options pane of the
Spectrum Settings panel. The offset is the current time value at the middle of the
interval of the line displayed at 0 seconds. The actual time of a particular spectrogram
line is the offset minus the y-axis time listing. You must take this parameter into
consideration when you set the Span (Hz) and CF (Hz) parameters on the Main
options pane of the Spectrum Settings panel to ensure that the frequency span
is within Nyquist limits. The offset is displayed on the plot only when the spectrum
Type is Spectrogram.

• Simulation Status — Provides the current status of the model simulation.

Details

The status can be one of the following conditions:

• Processing — Occurs after you construct the SpectrumAnalyzer object.

1 Blocks — Alphabetical List

1-1776

• Stopped — Occurs after you run the release method.

The Simulation Status is part of the Status Bar in the Spectrum Analyzer window.
You can choose to hide or display the entire Status Bar. From the Spectrum Analyzer
menu, select View > Status Bar.

• Display time — The amount of time that has progressed since the last update to the
Spectrum Analyzer display.

Details

Every time data is processed by the block, the simulation time increases by the
number of rows in the input signal divided by the sample rate, as given by the

following formula:
SampleRate

length(0:length(xsine))-1
t
sim

t
sim = + . When Reduce Plot

Rate to Improve Performance is checked, the simulation time and display time
might differ. At the beginning of a simulation, you can modify the SampleRate
parameter on the Main options pane of the Spectrum Settings panel.

The Display time indicator is a component of the Status Bar in the Spectrum Analyzer
window. You can choose to hide or display the entire Status Bar. From the Spectrum
Analyzer menu, select View > Status Bar .

For more information, see “Spectrum Settings” on page 1-1777.

Reduce Plot Rate to Improve Performance

By default, Spectrum Analyzer updates the display at fixed intervals of time at a rate
not exceeding 20 hertz. If you want Spectrum Analyzer to plot a spectrum on every
simulation time step, you can disable the Reduce Plot Rate to Improve Performance
option. In the Spectrum Analyzer menu, select Simulation > Reduce Plot Rate to
Improve Performance to clear the check box. Tunable.

Note: When this check box is selected, Spectrum Analyzer may display a misleading
spectrum in some situations. For example, if the input signal is wide-band with
non-stationary behavior, such as a chirp signal, Spectrum Analyzer might display a
stationary spectrum. The reason for this behavior is that Spectrum Analyzer buffers the
input signal data and only updates the display periodically at approximately 20 times
per second. Therefore, Spectrum Analyzer does not render changes to the spectrum that

 Spectrum Analyzer

1-1777

occur and elapse between updates, which gives the impression of an incorrect spectrum.
To ensure that spectral estimates are as accurate as possible, clear the Reduce Plot
Rate to Improve Performance check box. When you clear this box, Spectrum Analyzer
calculates spectra whenever there is enough data, rendering results correctly.

Spectrum Settings

The Spectrum Settings panel appears at the right side of the Spectrum Analyzer
figure. This panel enables you to modify settings to control the manner in which the
spectrum is calculated. You can choose to hide or display the Spectrum Settings panel.
In the Spectrum Analyzer menu, select View > Spectrum Settings. Alternatively, in

the Spectrum Analyzer toolbar, select the Spectrum Settings button.

1 Blocks — Alphabetical List

1-1778

The Spectrum Settings panel is separated into three panes, labeled Main Options,
Window Options, and Trace Options. You can expand each pane to see the available
options.

Main Options Pane

The Main Options pane enables you to modify the main options.

• Type — The type of spectrum to display. Available options are Power, Power
density, and Spectrogram. When you set this parameter to Power, the Spectrum
Analyzer shows the power spectrum. When you set this parameter to Power
density, the Spectrum Analyzer shows the power spectral density. The power
spectral density is the magnitude of the spectrum normalized to a bandwidth of
1 hertz. When you set this parameter to Spectrogram, the Spectrum Analyzer
shows the spectrogram, which displays frequency content over time. The most recent
spectrogram update is at the bottom of the display and time scrolls from the bottom to
the top of the display.Tunable

• Channel — Select the signal channel for which the spectrogram settings apply. This
option displays only when the Type is Spectrogram and only if there is more than
one signal channel input.

• Sample rate (Hz) — The sample rate, in hertz, of the input signals. Select
Inherited to use the same sample rate as the input signal. To specify a sample rate,
enter its value.

 Spectrum Analyzer

1-1779

• Full frequency span — Enable this check box to have Spectrum Analyzer compute
and plot the spectrum over the entire Nyquist frequency interval. By default,
when the Two-sided spectrum check box is also enabled, the Nyquist interval is

-
È

ÎÍ
˘

˚̇
+

SampleRate SampleRate
FrequencyOffset

2 2
, hertz. If you clear the Two-sided

spectrum check box, the Nyquist interval is 0
2

,
SampleRate

FrequencyOffset
È

Î
Í

˘

˚
˙ +

hertz. Tunable.
• Span (Hz) and CF (Hz), or FStart (Hz) and FStop (Hz) — When Span (Hz)

is showing in the Main Options pane, you define the range of values shown on
the frequency-axis on the Spectrum Analyzer window using frequency span and
center frequency. From the drop-down list, select FStart (Hz) to define the range of
frequency-axis values using start frequency and stop frequency instead.

• Span (Hz) — The frequency span, in hertz. This parameter defines the range of
values shown on the frequency-axis on the Spectrum Analyzer window. Tunable.

• CF (Hz) — The center frequency, in hertz. This parameter defines the value
shown at the middle point of the frequency-axis on the Spectrum Analyzer window.
Tunable.

• FStart (Hz) — The start frequency, in hertz. This parameter defines the value
shown at the leftmost side of the frequency-axis on the Spectrum Analyzer window.
Tunable.

• FStop (Hz) — The stop frequency, in hertz. The parameter defines the value
shown at the rightmost side of the frequency-axis on the Spectrum Analyzer
window. Tunable.

• RBW (Hz) / Window length — The frequency resolution method.

If set to RBW (Hz), the resolution bandwidth, in hertz. This property defines the
smallest positive frequency that can be resolved. By default, this property is set to
Auto. In this case, the Spectrum Analyzer determines the appropriate value to ensure
that there are 1024 RBW intervals over the specified frequency span.

If you set this property to a numeric value, then you must specify a value that ensures
there are at least two RBW intervals over the specified frequency span. In other

words, the ratio of the overall frequency span to RBW must be at least two: span

RBW
> 2 .

Tunable.

1 Blocks — Alphabetical List

1-1780

If set to Window length, the length of the window, in samples, used to control the
frequency resolution and compute the spectral estimates. The window length must be
an integer scalar greater than 2.

. Tunable.

The time resolution value is determined based on frequency resolution method, the
RBW setting, and the time resolution setting.

Frequency Resolution RBW Setting Time Resolution
Setting

Time Resolution

RBW (Hz) Auto Auto 1/RBW s
RBW (Hz) Auto Manually

entered
Time Resolution s

RBW (Hz) Manually
entered

Auto 1/RBW s

RBW (Hz) Manually
entered

Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW s.
Several spectral estimates are
combined into one spectrogram
line to obtain the desired time
resolution. Interpolation is used
to obtain time resolution values
that are not integer multiples of
1/RBW s.

Window length — Auto 1/RBW s
RBW = (NENBW*Fs)/Window
Length, where NENBW is
the normalized effective noise
bandwidth of the specified
window.

 Spectrum Analyzer

1-1781

Frequency Resolution RBW Setting Time Resolution
Setting

Time Resolution

Window length — Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, (NENBW*Fs)/
Window Length. Several
spectral estimates are combined
into one spectrogram line
to obtain the desired time
resolution. Interpolation is used
to obtain time resolution values
that are not integer multiples of
1/RBW s.

• NFFT — The number of Fast Fourier Transform (FFT) points. You can set the NFFT
only when in Window length mode. This property defines the length of the FFT that
Spectrum Analyzer uses to compute spectral estimates. Acceptable options are Auto
or a positive, scalar integer. The NFFT value must be greater than or equal to the
Window length. By default, when NFFT is set to Auto, Spectrum Analyzer sets the
number of FFT points to the window length. When in RBW mode, an FFT length is
used that equals the window length required to achieve the specified RBW value.

When this property is set to a positive integer, this property is equivalent to the n
parameter that you can set when you run the MATLAB fft function. Tunable.

• Time res. (s) — The time resolution, in seconds. Time resolution is the amount
of data, in seconds, used to compute a spectrogram line. The minimum attainable
resolution is the amount of data time it takes to compute a single spectral estimate.
The tooltip displays the minimum attainable resolution given the current settings.
This property applies only to spectrograms. Tunable

• Time span (s) — The time span over which the Spectrum Analyzer displays the
spectrogram, in seconds. The time span is the product of the desired number of
spectral lines and the time resolution. The tooltip displays the minimum allowable
time span, given the current settings. If the time span is set to Auto, 100 spectral
lines are used. This property applies only to spectrograms.Tunable

• Samples/update — The number of input samples required to compute one
spectral update. You cannot modify this property; it is shown here for display
purposes only. This property is directly related to RBW by the following equation:

1 Blocks — Alphabetical List

1-1782

N

O
NENBW F

RBW
samples

p
s

=

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ¥ ¥1

100
 or to the window length by this equation:

N
O

samples
p

= −








1

100
x WindowLength. NENBW is the normalized effective noise

bandwidth, a factor of the windowing method used, which is shown in the Window
Options pane. Fs is the sample rate. If the number of samples provided in the input
are not sufficient to achieve the resolution bandwidth that you specify, Spectrum
Analyzer produces a message on the display as shown in the following figure.

Window Options Pane

The Window Options pane enables you to modify the window options.

• Overlap (%) — The segment overlap percentage. This parameter defines the amount
of overlap between the previous and current buffered data segments. The overlap
creates a window segment that is used to compute a spectral estimate. The value
must be greater than or equal to zero and less than 100. Tunable.

• Window — The windowing method to apply to the spectrum. Windowing is used to
control the effect of sidelobes in spectral estimation. The window you specify affects
the window length required to achieve a resolution bandwidth and the required
number of samples per update. For more information about windowing, see Windows
in the Spectral Analysis section of the Signal Processing Toolbox documentation.
Tunable.

 Spectrum Analyzer

1-1783

• Attenuation (dB) — The sidelobe attenuation, in decibels (dB). This property applies
only when you set the Window parameter to Chebyshev or Kaiser. You must
specify a value greater than or equal to 45. Tunable.

• NENBW — Normalized Effective Noise Bandwidth of the window. You cannot
modify this parameter; it is a readout shown here for display purposes only. This
parameter is a measure of the noise performance of the window. It is the width of a
rectangular filter that accumulates the same noise power with the same peak power
gain. NENBW can be calculated from the windowing function using the following

equation: NENBW N

w n

w n

window
n

N

n

N

window

window

=














=

=

∑

∑

2

1

1

2

()

()

. The rectangular window has the

smallest NENBW, with a value of 1. All other windows have a larger NENBW value.
For example, the Hann window has an NENBW value of approximately 1.5.

Trace Options Pane

The Trace Options pane enables you to modify the trace options.

• Units — The units of the spectrum. Available options are dBm, dBW, and Watts.
Tunable.

• Averages — Specify as a positive, scalar integer the number of spectral averages.
This property applies only when the Spectrum Type is Power or Power density.

1 Blocks — Alphabetical List

1-1784

Spectrum Analyzer computes the current power spectrum estimate by computing a
running average of the last N power spectrum estimates. This property defines the
number of spectral averages, N. Tunable.

• Reference load — The reference load, in ohms, used to scale the spectrum. Specify
as a real, positive scalar the load, in ohms, that the Spectrum Analyzer uses as a
reference to compute power values. Tunable.

• Scale — Linear or logarithmic scale. When the frequency span contains negative
frequency values, Spectrum Analyzer disables the logarithmic option. Tunable.

• Offset — The constant frequency offset to apply to the entire spectrum or a
vector of frequencies to apply to each spectrum for multiple inputs. The offset
parameter is added to the values on the frequency-axis in the Spectrum Analyzer
window. It is not used in any spectral computations. You must take the parameter
into consideration when you set the Span (Hz) and CF (Hz) parameters to
ensure that the frequency span is within Nyquist limits. The Nyquist interval is

-
È

ÎÍ
˘

˚̇
+

SampleRate SampleRate
FrequencyOffset

2 2
, hertz if Two-sided spectrum is

selected, and 0
2

,
SampleRate

FrequencyOffset
È

Î
Í

˘

˚
˙ + hertz otherwise. Tunable

• Normal trace — Normal trace view. This property applies only when the Spectrum
Type is Power or Power density. By default, when this check box is enabled,
Spectrum Analyzer calculates and plots the power spectrum or power spectrum
density. Spectrum Analyzer performs a smoothing operation by averaging a number
of spectral estimates. To clear this check box, you must first select either the Max
hold trace or the Min hold trace check box. Tunable.

• Max hold trace — Maximum hold trace view. This property applies only when
the Spectrum Type is Power or Power density. Select this check box to enable
Spectrum Analyzer to plot the maximum spectral values of all the estimates obtained.
Tunable.

• Min hold trace — Minimum hold trace view. This property applies only when
the Spectrum Type is Power or Power density. Select this check box to enable
Spectrum Analyzer to plot the minimum spectral values of all the estimates obtained.

of all the estimates obtained. Tunable.
• Two-sided spectrum — Select this check box to enable two-sided spectrum view. In

this view, both negative and positive frequencies are shown. If you clear this check

 Spectrum Analyzer

1-1785

box, Spectrum Analyzer shows a one-sided spectrum with only positive frequencies.
Spectrum Analyzer requires that this parameter is selected when the input signal is
complex-valued.

Measurements Panels

The Measurements panels are the other four panels that appear to the right side of the
Spectrum Analyzer figure.

Trace Selection Panel

When you use the scope to view multiple signals, the Trace Selection panel appears if
you have more than one signal displayed and you click any of the other Measurements
panels. The Measurements panels display information about only the signal chosen in
this panel. Choose the signal name for which you would like to display time domain
measurements. See the following figure.

You can choose to hide or display the Trace Selection panel. In the Scope menu, select
Tools > Measurements > Trace Selection.

Cursor Measurements Panel

The Cursor Measurements panel displays screen cursors. The panel provides two types
of cursors for measuring signals. Waveform cursors are vertical cursors that track along
the signal. Screen cursors are both horizontal and vertical cursors that you can place
anywhere in the display.

Note: If a data point in your signal has more than one value, the cursor measurement at
that point is undefined and no cursor value is displayed.

1 Blocks — Alphabetical List

1-1786

In the Scope menu, select Tools > Measurements > Cursor Measurements.

Alternatively, in the Scope toolbar, click the Cursor Measurements button.

The Cursor Measurements panel appears as follows for power and power density
spectra.

The Cursor Measurements panel appears as follows for spectrograms.

Note: You must pause the spectrogram display before you can use cursors.

The Cursor Measurements panel is separated into two panes, labeled Settings and
Measurements. You can expand each pane to see the available options.

You can use the mouse or the left and right arrow keys to move vertical or waveform
cursors and the up and down arrow keys for horizontal cursors.

 Spectrum Analyzer

1-1787

The Settings pane enables you to modify the type of screen cursors used for calculating
measurements. When more than one signal is displayed, you can assign cursors to each
trace individually.

• Screen Cursors — Shows screen cursors (for power and power density spectra only).
• Horizontal — Shows horizontal screen cursors (for power and power density spectra

only).
• Vertical — Shows vertical screen cursors (for power and power density spectra only).
• Waveform Cursors — Shows cursors that attach to the input signals (for power and

power density spectra only).
• Lock Cursor Spacing — Locks the frequency difference between the two cursors.
• Snap to Data — Positions the cursors on signal data points.

Measurements Pane

The Measurements pane displays the frequency (Hz), time (s), and power (dBm) value
measurements. Time is displayed only in spectrogram mode. Channel Power shows the
total power between the cursors.

• 1 | — Shows or enables you to modify the frequency or time (for spectrograms only),
or both, at cursor number one.

• 2 : — Shows or enables you to modify the frequency or time (for spectrograms only), or
both, at cursor number two.

• Δ — Shows the absolute value of the difference in the frequency, time (for
spectrograms only), and power between cursor number one and cursor number two.

• Channel Power — Shows the total power in the channel defined by the cursors.

1 Blocks — Alphabetical List

1-1788

The letter after the value associated with a measurement indicates the abbreviation for
the appropriate International System of Units (SI) prefix.

Peak Finder Panel

Note: The Peak Finder panel requires a DSP System Toolbox or Simscape™ license.

The Peak Finder panel displays the maxima, showing the x-axis values at which they
occur. Peaks are defined as a local maximum where lower values are present on both
sides of a peak. Endpoints are not considered to be peaks. This panel allows you to
modify the settings for peak threshold, maximum number of peaks, and peak excursion.
You can choose to hide or display the Peak Finder panel. In the scope menu, select
Tools > Measurements > Peak Finder. Alternatively, in the scope toolbar, select the

Peak Finder button.

The Peak finder panel is separated into two panes, labeled Settings and Peaks. You
can expand each pane to see the available options.

The Settings pane enables you to modify the parameters used to calculate the peak
values within the displayed portion of the input signal. For more information on the
algorithms this pane uses, see the Signal Processing Toolbox findpeaks function
reference.

• Peak Threshold — The level above which peaks are detected. This setting is
equivalent to the MINPEAKHEIGHT parameter, which you can set when you run the
findpeaks function.

 Spectrum Analyzer

1-1789

• Max Num of Peaks — The maximum number of peaks to show. The value you enter
must be a scalar integer from 1 through 99. This setting is equivalent to the NPEAKS
parameter, which you can set when you run the findpeaks function.

• Min Peaks Distance — The minimum number of samples between adjacent peaks.
This setting is equivalent to the MINPEAKDISTANCE parameter, which you can set
when you run the findpeaks function.

• Peak Excursion — The minimum height difference between a peak and its
neighboring samples The peak excursion setting is equivalent to the THRESHOLD
parameter, which you can set when you run the findpeaks function.

• Label Format — The coordinates to display next to the calculated peak values on
the plot. To see peak values, expand the Peaks pane and select the check boxes
associated with individual peaks of interest. By default, both x-axis and y-axis values
are displayed on the plot. Select which axes values you want to display next to each
peak symbol on the display.

• X+Y — Display both x-axis and y-axis values.
• X — Display only x-axis values.
• Y — Display only y-axis values.

The Peaks pane displays all of the largest calculated peak values. It also shows the
coordinates at which the peaks occur, using the parameters you define in the Settings
pane. You set the Max Num of Peaks parameter to specify the number of peaks shown
in the list.

The numerical values displayed in the Value column are equivalent to the pks output
argument returned when you run the findpeaks function. The numerical values
displayed in the second column are similar to the locs output argument returned when
you run the findpeaks function.

The Peak Finder displays the peak values in the Peaks pane. By default, the Peak
Finder panel displays the largest calculated peak values in the Peaks pane in

1 Blocks — Alphabetical List

1-1790

decreasing order of peak height. Use the sort descending button () to rearrange the
category and order by which Peak Finder displays peak values. Click this button again to
sort the peaks in ascending order instead. When you do so, the arrow changes direction to
become the sort ascending button (). A filled sort button indicates that the peak values
are currently sorted in the direction of the button arrow. If the sort button is not filled

(), then the peak values are sorted in the opposite direction of the button arrow. The
Max Num of Peaks parameter still controls the number of peaks listed.

Use the check boxes to control which peak values are shown on the display. By default,
all check boxes are cleared and the Peak Finder panel hides all the peak values. To
show all the peak values on the display, select the check box in the top-left corner of the
Peaks pane. To hide all the peak values on the display, clear this check box. To show an
individual peak, select the check box directly to the left of its Value listing. To hide an
individual peak, clear the check box directly to the left of its Value listing.

The Peaks are valid for any units of the input signal. The letter after the value associated
with each measurement indicates the abbreviation for the appropriate International
System of Units (SI) prefix, such as m for milli-. For example, if the input signal is
measured in volts, an m next to a measurement value indicates that this value is in units
of millivolts.

Channel Measurements Panel

The Channel Measurements panel displays occupied bandwidth or adjacent channel
power ratio (ACPR) measurements. You can choose to hide or display this pane in
the Scope menu by selecting Tools > Measurements > Channel Measurements.

Alternatively, in the Scope toolbar, click the Cursor Measurements button.

In addition to the measurements, the Channel Measurements panel has an
expandable Channel Settings pane.

• Measurement — The type of measurement data to display. Available options are
Occupied BW or ACPR. See “Algorithms” on page 1-1806 for information on how
Occupied BW is calculated. ACPR is the adjacent channel power ratio, which is the
ratio of the main channel power to the adjacent channel power.

When you select Occupied BW as the Measurement, the following fields appear.

 Spectrum Analyzer

1-1791

• Channel Settings — Enables you to modify the parameters for calculating the
channel measurements.

Channel Settings for Occupied BW

• Select the frequency span of the channel, Span(Hz), and specify the center
frequency CF (Hz) of the channel. Alternatively, select the starting frequency,
FStart(Hz), and specify the starting frequency and ending frequency (FStop
(Hz)) values of the channel.

• CF (Hz) — The center frequency of the channel.
• Occupied BW (%) — The percentage of the total integrated power of the

spectrum centered on the selected channel frequency over which to compute the
occupied bandwidth.

• Channel Power — The total power in the channel.
• Occupied BW — The bandwidth containing the specified Occupied BW (%) of the

total power of the spectrum. This setting is available only if you select Occupied BW
as the Measurement type.

• Frequency Error — The difference between the center of the occupied band and
the center frequency (CF) of the channel. This setting is available only if you select
Occupied BW as the Measurement type.

When you select ACPR as the Measurement, the following fields appear.

1 Blocks — Alphabetical List

1-1792

• Channel Settings — Enables you to modify the parameters for calculating the
channel measurements.

Channel Settings for ACPR

• Select the frequency span of the channel, Span (Hz), and specify the center
frequency CF (Hz) of the channel. Alternatively, select the starting frequency,
FStart(Hz), and specify the starting frequency and ending frequency (FStop
(Hz)) values of the channel.

• CF (Hz) — The center frequency of the channel.
• Number of Pairs — The number of pairs of adjacent channels.
• Bandwidth (Hz) — The bandwidth of the adjacent channels.
• Filter — The filter to use for both main and adjacent channels. Available filters

are None, Gaussian, and RRC (root-raised cosine).
• Channel Power — The total power in the channel.

 Spectrum Analyzer

1-1793

• Offset (Hz) — The center frequency of the adjacent channel with respect to the
center frequency of the main channel. This setting is available only if you select ACPR
as the Measurement type.

• Lower (dBc) — The power ratio of the lower sideband to the main channel. This
setting is available only if you select ACPR as the Measurement type.

• Upper (dBc) — The power ratio of the upper sideband to the main channel. This
setting is available only if you select ACPR as the Measurement type.

Distortion Measurements Panel

The Distortion Measurements panel displays harmonic distortion and intermodulation
distortion measurements. You can choose to hide or display this panel in the Scope menu
by selecting Tools > Measurements > Distortion Measurements. Alternatively, in

the Scope toolbar, click the Distortion Measurements button.

The Distortion Measurements panel has an expandable Harmonics pane, which
shows measurement results for the specified number of harmonics.

Note: For an accurate measurement, ensure that the fundamental signal (for harmonics)
or primary tones (for intermodulation) is larger than any spurious or harmonic content.
To do so, you may need to adjust the resolution bandwidth (RBW) of the spectrum
analyzer. Make sure that the bandwidth is low enough to isolate the signal and
harmonics from spurious and noise content. In general, you should set the RBW so that
there is at least a 10dB separation between the peaks of the sinusoids and the noise floor.
You may also need to select a different spectral window to obtain a valid measurement.

• Distortion — The type of distortion measurements to display. Available options are
Harmonic or Intermodulation. Select Harmonic if your system input is a single
sinusoid. Select Intermodulation if your system input is two equal amplitude
sinusoids. Intermodulation can help you determine distortion when only a small
portion of the available bandwidth will be used.

See “Algorithms” on page 1-1806 for information on how distortion measurements
are calculated.

When you select Harmonic as the Distortion, the following fields appear.

1 Blocks — Alphabetical List

1-1794

The harmonic distortion measurement automatically locates the largest sinusoidal
component (fundamental signal frequency). It then computes the harmonic frequencies
and power in each harmonic in your signal. Any DC component is ignored. Any
harmonics that are outside the spectrum analyzer’s frequency span are not included
in the measurements. Adjust your frequency span so that it includes all the desired
harmonics.

Note: To best view the harmonics, make sure that your fundamental frequency is set
high enough to resolve the harmonics. However, this frequency should not be so high that
aliasing occurs. For the best display of harmonic distortion, your plot should not show
skirts, which indicate frequency leakage. Additionally, the noise floor should be visible.
Using a Kaiser window with a large sidelobe attenuation may help to reduce the skirts.

 Spectrum Analyzer

1-1795

• Num. Harmonics — Number of harmonics to display, including the fundamental
frequency. Valid values of Num. Harmonics are from 2 to 10. The default value is 6.

• Label Harmonics — Select Label Harmonics to add numerical labels to each
harmonic in the spectrum display.

• 1 — The fundamental frequency, in hertz, and its power, in decibels of the measured
power referenced to one milliwatt (dBm).

• 2, 3, ... — The harmonics frequencies, in hertz, and their power in decibels relative to
the carrier (dBc). If the harmonics are at the same level or exceed the fundamental
frequency, reduce the input power.

• THD — The total harmonic distortion. This value represents the ratio of the power
in the harmonics, D, to the power in the fundamental frequency, S. If the noise
power is too high in relation to the harmonics, the THD value is not accurate. In
this case, lower the resolution bandwidth or select a different spectral window.
THD = 10log10(D/S).

• SNR — Signal-to-noise ratio (SNR). This value represents the ratio of power in the
fundamental frequency, S, to the power of all nonharmonic content, N, including
spurious signals, in decibels relative to the carrier (dBc). SNR = 10log10(S/N). If you
see – – as the reported SNR, your signal’s total non-harmonic content is less than 30%
of the total signal.

• SINAD — Signal-to-noise-and-distortion. This value represents the ratio of the
power in the fundamental frequency, S to all other content (including noise, N, and
harmonic distortion, D), in decibels relative to the carrier (dBc). SINAD = 10log10(S/(N
+D).

• SFDR — Spurious free dynamic range (SFDR). This value represents the ratio of the
power in the fundamental frequency, S, to power of the largest spurious signal, R,
regardless of where it falls in the frequency spectrum. The worst spurious signal may
or may not be a harmonic of the original signal. SFDR represents the smallest value
of a signal that can be distinguished from a large interfering signal. SFDR includes
harmonics. SFDR = 10log10(S/R).

When you select Intermodulation as the Distortion, the following fields appear.

1 Blocks — Alphabetical List

1-1796

The intermodulation distortion measurement automatically locates the fundamental,
first-order frequencies (F1 and F2). It then computes the frequencies of the third-order
intermodulation products (2*F1-F2 and 2*F2-F1).

• Label frequencies — Select Label frequencies to add numerical labels to the first-
order intermodulation product and third-order frequencies in the spectrum analyzer
display.

• F1 — Lower fundamental first-order frequency
• F2 — Upper fundamental first-order frequency
• 2F1 - F2 — Lower intermodulation product from third-order harmonics
• 2F2 - F1 — Upper intermodulation product from third-order harmonics
• TOI — Third-order intercept point. If the noise power is too high in relation to the

harmonics, the TOI value will not be accurate. In this case, you should lower the
resolution bandwidth or select a different spectral window. If the TOI has the same
amplitude as the input two-tone signal, reduce the power of that input signal.

CCDF Measurements Panel

The CCDF Measurements panel displays complimentary cumulative distribution
function measurements. CCDF measurements in this scope show the probability of a

 Spectrum Analyzer

1-1797

signal’s instantaneous power being a specified level above the signal’s average power.
These measurements are useful indicators of a signal’s dynamic range.

To compute the CCDF measurements, each input sample is quantized to 0.01 dB
increments. Using a histogram 100 dB wide (10,000 points at 0.01 dB increments), the
largest peak encountered is placed in the last bin of the histogram. If a new peak is
encountered, the histogram shifts to make room for that new peak.

You can choose to hide or display this panel in the Scope menu by selecting Tools >
Measurements > CCDF Measurements. Alternatively, in the Scope toolbar, click the
CCDF Measurements button.

• Plot Gaussian reference — Select Plot Gaussian reference to show the Gaussian
white noise reference signal on the plot.

• Probability (%) — The percentage of the signal that contains the power level above
the value listed in the dB above average column

• dB above average — The expected minimum power level at the associated
Probability (%).

1 Blocks — Alphabetical List

1-1798

• Average Power — The average power level of the signal since the start of simulation
or from the last reset.

Max Power — The maximum power level of the signal since the start of simulation
or from the last reset.

• PAPR — The ratio of the peak power to the average power of the signal. PAPR
should be less that 100 dB to obtain accurate CCDF measurements. If PAPR is above
100 dB, only the highest 100 dB power levels are plotted in the display and shown in
the distribution table.

• Sample Count — The total number of samples used to compute the CCDF.
• Reset — Clear all current CCDF measurements and restart.

Visuals — Spectrum Properties

The Visuals—Spectrum Properties dialog box controls the visual configuration settings
of the Spectrum Analyzer display. From the Spectrum Analyzer menu, select View >
Configuration Properties to open this dialog box. Alternatively, in the Spectrum
Analyzer toolbar, click the Configuration Properties button.

Display Pane

When the Spectrum Type is Power or Power density, the Display pane of the Visuals
—Spectrum Properties dialog box appears as follows:

 Spectrum Analyzer

1-1799

When the Spectrum Type is Spectrogram the Display pane of the Visuals—Spectrum
Properties dialog box appears as follows:

Title

Specify the display title as a string. Enter %<SignalLabel> to use the signal labels in
the Simulink Model as the axes titles. This property is Tunable.

By default, the display has no title.

Show legend

Select this check box to show the legend in the display. The channel legend displays a
name for each channel of each input signal. When the legend appears, you can place it
anywhere inside of the scope window. To turn off the legend, clear the Show legend
check box. This parameter applies only when the Spectrum Type is Power or Power
density. Tunable

You can edit the name of any channel in the legend. To do so, double-click the current
name, and enter a new channel name. By default, if the signal has multiple channels,
the scope uses an index number to identify each channel of that signal. To change the
appearance of any channel of any input signal in the scope window, from the scope menu,
select View > Style.

Show grid

When you select this check box, a grid appears in the display of the scope figure. To hide
the grid, clear this check box. Tunable

1 Blocks — Alphabetical List

1-1800

Y-limits (Minimum)

Specify the minimum value of the y-axis. Tunable

Y-limits (Maximum)

Specify the maximum value of the y-axis. Tunable

Y-axis label

Specify the text for the scope to display to the left of the y-axis. Regardless of this
property, Spectrum Analyzer always displays power units after this text as one of 'dBm',
'dBW', 'Watts', 'dBm/Hz', 'dBW/Hz', or 'Watts/Hz'. Tunable.

Color map

Select the color map for the spectrogram, or enter a 3-column matrix expression for the
color map. See colormap for information. Tunable.

Color-limits (Minimum)

Set the signal power for the minimum color value of the spectrogram. Tunable.

Color-limits (Maximum)

Set the signal power for the maximum color value of the spectrogram. Tunable.

Style Dialog Box

In the Style dialog box, you can customize the style of power and power density displays.
This dialog box is not available in spectrogram view. You are able to change the color of
the figure, the background and foreground colors of the axes, and properties of the lines.
From the Spectrum Analyzer menu, select View > Style to open this dialog box.

 Spectrum Analyzer

1-1801

Properties

The Style dialog box allows you to modify the following properties of the Spectrum
Analyzer figure:

Figure color

Specify the color that you want to apply to the background of the scope figure. By default,
the figure color is gray.

Plot type

Specify whether to display a Line or Stem plot.

Axes colors

Specify the color that you want to apply to the background of the axes.

Properties for line

Specify the channel for which you want to modify the visibility, line properties, and
marker properties.

1 Blocks — Alphabetical List

1-1802

Visible

Specify whether the selected channel should be visible. If you clear this check box, the
line disappears.

Line

Specify the line style, line width, and line color for the selected channel.

Marker

Specify marks for the selected channel to show at its data points. This parameter is
similar to the Marker property for the MATLAB Handle Graphics® plot objects. You can
choose any of the marker symbols from the dropdown.

Tools — Axes Scaling Properties

The Tools — Axes Scaling Properties dialog box allows you to automatically zoom in
on and zoom out of your data. You can also scale the axes and color of the Spectrum
Analyzer. In the Spectrum Analyzer menu, select Tools > Scaling Properties to open
this dialog box.

Properties

The Tools—Axes Scaling Properties dialog box appears as follows for power and power
density views.

 Spectrum Analyzer

1-1803

For spectrogram view, the Tools—Axes Scaling Properties dialog box appears as follows.

Axes scaling/Color scaling

Specify when the scope automatically scales the axes. If the spectrogram is displayed,
specify when the scope automatically scales the color. You can select one of the following
options:

1 Blocks — Alphabetical List

1-1804

• Manual — When you select this option, the scope does not automatically scale the
axes or color. You can manually scale the axes or color in any of the following ways:

• Select Tools > Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl and A simultaneously.

• Auto — When you select this option, the scope scales the axes or color as needed, both
during and after simulation. Selecting this option shows the Do not allow Y-axis
limits to shrink or Do not allow color limits to shrink .

• After N Updates — Selecting this option causes the scope to scale the axes or color
after a specified number of updates. This option is useful and more efficient when
your scope display starts with one axis scale, but quickly reaches a different steady
state axis scale. Selecting this option shows the Number of updates edit box.

By default, this parameter is set to Auto, and the scope does not shrink the y-axis limits
when scaling the axes or color. Tunable.

Do not allow Y-axis limits to shrink / Do not allow color limits to shrink

When you select this property, the y-axis are allowed to grow during axes scaling
operations. If the spectrogram is displayed, selecting this property allows the color limits
to grow during axis scaling. If you clear this check box, the y-axis or color limits can
shrink during axes scaling operations.

This property appears only when you select Auto for the Axis scaling or Color scaling
property. When you set the Axes scaling or Color scaling property to Manual or After
N Updates, the y-axis or color limits can shrink. Tunable.

Number of updates

Specify as a positive integer the number of updates after which to scale the axes. If the
spectrogram is displayed, this property specifies the number of updates after which to
scale the color. This property appears only when you select After N Updates for the
Axes scaling or Color scaling property. Tunable.

Scale axes limits at stop/Scale color limits at stop

Select this check box to scale the axes when the simulation stops. If the spectrogram is
displayed, select this check box to scale the color when the simulation stops. The y-axis is
always scaled. The x-axis limits are only scaled if you also select the Scale X-axis limits
check box.

 Spectrum Analyzer

1-1805

Y-axis Data range (%) / Color-limits Data range

Set the percentage of the y-axis that the scope uses to display the data when scaling the
axes. If the spectrogram is displayed, set the percentage of the power values range within
the colormap. Valid values are from 1 through 100. For example, if you set this property
to 100, the Scope scales the y-axis limits such that your data uses the entire y-axis range.
If you then set this property to 30, the scope increases the y-axis range or color such that
your data uses only 30% of the y-axis range or color. Tunable.

Y-axis Align / Color-limits Align

Specify where the scope aligns your data along the y-axis when it scales the axes. If the
spectrogram is displayed, specify where the scope aligns your data along the y-axis when
it scales the color. You can select Top, Center, or Bottom. Tunable.

Autoscale X-axis limits

Check this box to allow the scope to scale the x-axis limits when it scales the axes. If
Axes scaling is set to Auto, checking Autoscale X-axis limits only scales the data
currently within the axes, not the entire signal in the data buffer. If Autoscale X-axis
limits is on and the resulting axis is greater than the span of the scope, trigger position
markers will not be displayed. Triggers are controlled using the Trigger Measurements
panel. Tunable.

X-axis Data range (%)

Set the percentage of the x-axis that the scope uses to display the data when scaling the
axes. Valid values are from 1 through 100. For example, if you set this property to 100,
the scope scales the x-axis limits such that your data uses the entirex-axis range. If you
then set this property to 30, the scope increases the x-axis range such that your data uses
only 30% of the x-axis range. Use the x-axis Align property to specify data placement
along the x-axis.

This property appears only when you select the Scale X-axis limits check box. Tunable.

X-axis Align

Specify how the scope aligns your data along the x-axis: Left, Center, or Right. This
property appears only when you select the Scale X-axis limits check box. Tunable.

1 Blocks — Alphabetical List

1-1806

Algorithms

Spectrum Analyzer uses the RBW or the Window Length setting in the
Spectrum Settings panel to determine the data window length. The value of the
FrequencyResolutionMethod property determines whether RBW or window length
is used. Then, it partitions the input signal into a number of windowed data segments.
Finally, Spectrum Analyzer uses the modified periodogram method to compute spectral
updates, averaging the windowed periodograms for each segment.

Spectral content is estimated by finding peaks in the spectrum. When the algorithm
detects a peak, it ignores all adjacent content that decreases monotonically from the
peak. After recording the width of the peak, it subsequently clears its content.

1 Spectrum Analyzer requires that a minimum number of samples have been provided
before it computes a spectral estimate. This number of input samples required to
compute one spectral update is shown as Samples/update in the Main options
pane. This value is directly related to resolution bandwidth, RBW, by the following
equation or to the window length, by the equation shown in step 1b.

N

O
NENBW F

RBW
samples

p
s

=

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ¥ ¥1

100

The normalized effective noise bandwidth, NENBW, is a factor that depends on the
windowing method. Spectrum Analyzer shows NENBW in the Window Options
pane of the Spectrum Settings panel. Overlap percentage, Op, is the value of the
Overlap % parameter in the Window Options pane of the Spectrum Settings
panel. Fs is the sample rate of the input signal. Spectrum Analyzer shows sample
rate in the Main Options pane of the Spectrum Settings panel.

a When in RBW mode, the window length required to compute one spectral
update, Nwindow, is directly related to the resolution bandwidth and normalized
effective noise bandwidth by the following equation.

N
NENBW F

RBW
window

s
=

×

When in WindowLength mode, the window length is used as specified.

 Spectrum Analyzer

1-1807

b The number of input samples required to compute one spectral update, Nsamples,
is directly related to the window length and the amount of overlap by the
following equation.

N
O

Nsamples
p

window= −








1

100

When you increase the overlap percentage, fewer new input samples are needed
to compute a new spectral update. For example, if the window length is 100,
then the number of input samples required to compute one spectral update is
given as shown in the following table.

Op Nsamples

0% 100
50% 50
80% 20

c The normalized effective noise bandwidth, NENBW, is a window parameter
determined by the window length, Nwindow, and the type of window used. If w(n)
denotes the vector of Nwindow window coefficients, then NENBW is given by the
following equation.

NENBW N

w n

w n

window
n

N

n

N

window

window

=














=

=

∑

∑

2

1

1

2

()

()

d When in RBW mode, you can set the resolution bandwidth using the value of the
RBW parameter on the Main options pane of the Spectrum Settings panel.
You must specify a value to ensure that there are at least two RBW intervals
over the specified frequency span. The ratio of the overall span to RBW must be
greater than two, as given in the following equation.

span

RBW
> 2

1 Blocks — Alphabetical List

1-1808

By default, the RBW parameter on the Main options pane is set to Auto.
In this case, the Spectrum Analyzer determines the appropriate value to
ensure that there are 1024 RBW intervals over the specified frequency
span. Thus, when you set RBW to Auto, it is calculated by the following

equation. RBW
span

auto =

1024

e When in window length mode, you specify Nwindow and the resulting RBW is

NENBW * Fs

Nwindow

In some cases, the number of samples provided in the input are not sufficient to
achieve the resolution bandwidth that you specify. When this situation occurs,
Spectrum Analyzer produces a message on the display, as shown in the following
figure.

Spectrum Analyzer removes this message and displays a spectral estimate as soon
as enough data has been input. Notice that this behavior differs from the Spectrum
Scope block in versions R2012b and earlier. If the Buffer input check box was
selected, the Spectrum Scope block computed a spectral update using the number of
samples given by the Buffer size parameter. Otherwise, the Spectrum Scope block
computed a spectral update using the number of samples in each frame.

2 Spectrum Analyzer calculates and plots the power spectrum, power spectrum
density, or spectrogram computed by the modified Periodogram estimator. For
more information about the Periodogram method, see periodogram in the Signal
Processing Toolbox documentation.

 Spectrum Analyzer

1-1809

Power Spectral Density — The power spectral density (PSD) is given by the following
equation.

PSD f
P

F

x e

s
p

p

w n

n
j f n T

n

N
FFT

n

Nwindow

()

()

[]

[]
()

=

×

− −

=

∑

=

∑

1

2 1

1

2

2

1

π

==

∑
1

P

In this equation, x[n] is the discrete input signal. On every input signal frame,
Spectrum Analyzer generates as many overlapping windows as possible, each
window denoted as x(p)[n], and computes their periodograms. Spectrum Analyzer
displays a running average of the P most current periodograms.

Power Spectrum — The power spectrum is the product of the power spectral density
and the resolution bandwidth, as given by the following equation.

spectrumP f PSD f RBW PSD f
F NENBW

N P

s

window

x e
p

n

() () ()

()
[]

= × = ×
×

=
1

−− −

=

∑

=

∑














=
∑

j f n T

n

N
FFT

w n

n

Nwindowp

P

2 1

1

2

1

2
1

π ()

[]

Spectrogram — Each line of the spectrogram is one periodogram. The time resolution
of each line is 1/RBW, which is the minimum attainable resolution. Achieving
the resolution you want may require combining several periodograms may be
combined. You then useinterpolation to calculate noninteger values of 1/RBW. In
the spectrogram display, time scrolls from bottom to top, so the most recent data
is shown at the bottom of the display. The offset shows the time value at which the
center of the most current spectrogram line occurred.

Note: The number of FFT points (Nfft) is independent of the window length (Nwindow). You
can set them to different values provided that Nfft is greater than or equal to Nwindow.

The Occupied BW is calculated as follows.

1 Blocks — Alphabetical List

1-1810

• Calculate the total power in the measured frequency range.
• Determine the lower frequency value. Starting at the lowest frequency in the range

and moving upward, the power distributed in each frequency is summed until this

sum is
2

100 - Occupied BW %
 of the total power.

• Determine the upper frequency value. Starting at the highest frequency in the range
and moving downward, the power distributed in each frequency is summed until it

reaches
2

100 - Occupied BW %
 of the total power.

• The bandwidth between the lower and upper power frequency values is the occupied
bandwidth.

• The frequency halfway between the lower and upper frequency values is the center
frequency.

The Distortion Measurements are computed as follows.

1 Spectral content is estimated by finding peaks in the spectrum. When the algorithm
detects a peak, it ignores all adjacent content that decreases monotonically from the
peak. After recording the width of the peak, it subsequently clears its content. Using
this method, all spectral content centered at DC (0 Hz) is removed from the spectrum
and the amount of bandwidth cleared (W0) is recorded.

2 The fundamental power (P1) is determined from the remaining maximum value
of the displayed spectrum. A local estimate (Fe1) of the fundamental frequency is
made by computing the central moment of the power in the vicinity of the peak.
The bandwidth of the fundamental power content (W1) is recorded. Then, the power
associated from the fundamental is removed as in step 1.

3 The power and width of the second, and higher order harmonics (P2, W2, P3, W3,
etc.) are determined in succession by examining the frequencies closest to the
appropriate multiple of the local estimate (Fe1). Any spectral content that decreases
in a monotonically about the harmonic frequency is removed from the spectrum first
before proceeding to the next harmonic.

4 Once the DC, fundamental, and harmonic content is removed from the spectrum,
the power of the remaining spectrum is examined for its sum (Premaining) peak value
(Pmaxspur), and its median value (Pestnoise).

5 The sum of all the removed bandwidth is computed as Wsum = W0+W1+W2+...+Wn.

 Spectrum Analyzer

1-1811

The sum of powers of the second and higher order harmonics are computed as
Pharmonic = P2+P3+P4+...+Pn.

6 The sum of the noise power is then estimated as Pnoise = (Premaining*dF +
Pestnoise*Wsum)/RBW, where dF is the absolute difference between frequency bins, and
RBW is the resolution bandwidth of the window.

7 The metrics for SNR, THD, SINAD, and SFDR are then computed from the
estimates.

• THD = 10*log10(Pharmonic/P1)
• SINAD = 10*log10(P1/(Pharmonic + Pnoise)
• SNR = 10*log10(P1/Pnoise)
• SFDR = 10*log10(P1/max(Pmaxspur, max(P2,P3,...,Pn))

The following considerations apply to Distortion Measurements.

• The harmonic distortion measurements use the spectrum trace shown in the display
as the input to the measurements. The default Hann window setting of the Spectrum
Analyzer may exhibit leakage that can completely mask the noise floor of the
measured signal.

1 Blocks — Alphabetical List

1-1812

The harmonic measurements attempt to correct for leakage by ignoring all frequency
content that decreases monotonically away from the maximum of harmonic peaks.
If the window leakage covers more than 70% of the frequency bandwidth in your
spectrum, you may see a blank reading (–) reported for SNR and SINAD. Consider
using a Kaiser window with a high attenuation (up to 330dB) to minimize spectral
leakage if your application can tolerate the increased equivalent noise bandwidth
(ENBW) of the Kaiser window.

 Spectrum Analyzer

1-1813

• The DC component is ignored.
• After windowing, the width of each harmonic component masks the noise power in

the neighborhood of the fundamental frequency and harmonics. To estimate the noise
power in each region, Spectrum Analyzer computes the median noise level in the
nonharmonic areas of the spectrum. It then extrapolates that value into each region.

• Nth order intermodulation products occur at

A*F1 + B*F2

where F1 and F2 are the sinusoid input frequencies and |A| + |B| = N. A and B are
integer values.

1 Blocks — Alphabetical List

1-1814

• For intermodulation measurements, the third-order intercept (TOI) point is computed
as follows, where P is power in decibels of the measured power referenced to one
milliwatt (dBm).:

• TOIlower = PF1 + (PF2 - P(2F1-F2))/2
• TOIupper = PF2 + (PF1 - P(2F2-F1))/2
• TOI = + (TOIlower + TOIupper)/2

Differences from Spectrum Scope Block

All Simulink models containing Spectrum Scope blocks load with Spectrum Analyzer
blocks in R2013a or later. Several options that were available on the Parameters dialog
box of the Spectrum Scope block are no longer available or have changed. The parameters
of Spectrum Scope map to Spectrum Analyzer parameters in the following manner.

R2012b
Spectrum
Scope
Block
Parameters
dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Scope
Properties

Buffer
input check
box

R2013a Spectrum Analyzer
does not require that input
signals are buffered. Spectrum
Analyzer determines the
number of samples needed
using the value of the RBW
parameter. Regardless of
whether the input is a frame-
based or sample-based signal,
Spectrum Analyzer calculates
the spectrum once it has
acquired the requisite number
of samples.

For Spectrum Scope blocks in
R2012b or earlier models, the
equivalent R2013a Spectrum
Analyzer RBW value is given
by the equation:

RBW
NENBW F

N

s

window

=
×

In the preceding equation,
NENBW is the window
constant calculated for a
window length of 1000, Fs is
the sample rate of the block,

 Spectrum Analyzer

1-1815

R2012b
Spectrum
Scope
Block
Parameters
dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

and Nwindow is the buffer
length. If the input signal to
the R2012b Spectrum Scope
block was frame-based and
the Buffer input check box
was cleared, then the R2013a
Spectrum Analyzer computes
the RBW value with Nwindow
set to the frame size of the
input signal.

Scope
Properties

Buffer size
parameter

R2013a Spectrum Analyzer
uses the RBW parameter
to determine the requisite
number of samples to calculate
the spectrum, instead of using
the buffer size or frame length.

For Spectrum Scope blocks in
R2012b or earlier models, if
the input signal was frame-
based and the Buffer input
check box was selected,
then the R2013a Spectrum
Analyzer computes the RBW
value with Nwindow set to the
value of the Buffer size
parameter.

1 Blocks — Alphabetical List

1-1816

R2012b
Spectrum
Scope
Block
Parameters
dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Scope
Properties

Buffer
Overlap
parameter

R2013a Spectrum Analyzer
has an Overlap % parameter
that is directly related to
buffer overlap.

R2013a Spectrum Analyzer
will compute its Overlap %
using the equation:

O
O

Np
l

window
= ×100

In the preceding equation,
Op is Overlap % parameter
value, Ol is the R2012b
Spectrum Scope Buffer
overlap parameter value, and
Nwindow is the buffer length.

Scope
Properties

Treat
Mx1 and
unoriented
sample-
based
signals as

R2013a Spectrum Analyzer
defaults to treating Mx1 and
unoriented sample-based
signals as one channel.

Spectrum Scope blocks in
R2012b or earlier models with
Treat Mx1 and unoriented
sample-based signals as set
to M Channels will have the
Spectrum Analyzer property
TreatMby1SignalAsOneChannel

set to false. This property is
available only via the Scope
Configuration object.

Scope
Properties

Window
parameter

R2013a Spectrum Analyzer
does not have the Bartlett,
Blackman, Triang, or
Hanning settings.

Spectrum Scope blocks in
R2012b or earlier models with
a window parameter set to any
of these values will have their
Window parameter set to
Hann in the R2013a Spectrum
Analyzer.

 Spectrum Analyzer

1-1817

R2012b
Spectrum
Scope
Block
Parameters
dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Scope
Properties

Window
Sampling
parameter

R2013a Spectrum Analyzer
does not have a Periodic
option. All window sampling is
now symmetric in the R2013a
Spectrum Analyzer.

n/a

Display
Properties

Persistence
check box —
this setting
would
execute the
equivalent
of the
MATLAB
hold on

command,
adding
another line
for each
spectrum
computation
on the
display.

This option is not available
in the R2013a Spectrum
Analyzer, which has replaced
this feature with the trace
options, Normal Trace, Max
Hold Trace, and Min Hold
Trace.

Spectrum Scope blocks in
R2012b or earlier models with
persistence enabled will have
their Max Hold Trace check
box selected in the R2013a
Spectrum Analyzer.

Display
Properties

Compact
Display
check box

There is no equivalent
capability in the R2013a
Spectrum Analyzer.

n/a

Axis
Properties

Inherit
Sample
time from
input check
box

R2013a Spectrum Analyzer
always uses the sample time of
the input signal.

n/a

1 Blocks — Alphabetical List

1-1818

R2012b
Spectrum
Scope
Block
Parameters
dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Axis
Properties

Frequency
display
limits
parameter

R2013a Spectrum Analyzer
determines the range of
frequencies calculated based
on the Full Span, FStart
(Hz), and FStop (Hz)
parameters.

If this parameter was set to:

• Auto — R2013a Spectrum
Analyzer selects the Full
Span check box on the
Spectrum Settings panel,
Main options pane.

• User-defined — R2013a
Spectrum Analyzer clears
the Full Span check box
on the Spectrum Settings
panel Main options pane.

Axis
Properties

Minimum
frequency
(Hz)
parameter

R2013a Spectrum Analyzer
determines the range of
frequencies calculated based
on the Full Span, FStart
(Hz), and FStop (Hz)
parameters.

If the User-defined
parameter was chosen, then
this parameter maps to the
R2013a Spectrum Analyzer
FStart (Hz) parameter.

Axis
Properties

Maximum
frequency
(Hz)
parameter

R2013a Spectrum Analyzer
determines the range of
frequencies calculated based
on the Full Span, FStart
(Hz), and FStop (Hz)
parameters.

If the User-defined
parameter was chosen, then
this parameter maps to the
R2013a Spectrum Analyzer
FStop (Hz) parameter.

 Spectrum Analyzer

1-1819

R2012b
Spectrum
Scope
Block
Parameters
dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Line
Properties

Line
visibilities,
Line styles,
Line
markers,
and Line
colors
parameters

There are no equivalent
capabilities in the R2013a
Spectrum Analyzer.

Once the simulation has
started, you can modify the
line styles, markers, and colors
using the Style dialog box.

The R2012b Spectrum Scope allowed you to retain the axes limits over multiple
simulations by selecting Axes > Save Axes Settings. There is no equivalent capability
in the R2013a Spectrum Analyzer. However, you can automatically scale the axes to a
specified range using the Tools — Axes Scaling Properties dialog box.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)

Supported Simulation Modes

You can use the scope block in models running the following supported simulation modes.

Mode Supported Notes and Limitations

Normal Yes

1 Blocks — Alphabetical List

1-1820

Mode Supported Notes and Limitations

Accelerator Yes
Rapid
Accelerator

Yes You can use Rapid Accelerator mode as a method
to increase the execution speed of your Simulink
model. Rapid Accelerator mode creates an executable
that includes the solver and model methods. This
executable resides outside MATLAB and Simulink. Rapid
Accelerator mode uses External mode to communicate
with Simulink. For more information about Rapid
Accelerator mode, see “Acceleration” in the Simulink
documentation.

PIL No
SIL No
External Yes You can use External mode to tune block parameters

in real time and view block outputs in many types of
blocks and subsystems. External mode establishes
communication between a host system, where the
Simulink environment resides, and a target system,
where the executable runs after code generation and the
build process. For more information about External mode,
see “Host/Target Communication” in the Simulink Coder
documentation.

The scope does not support data archiving. See “Set
External Mode Data Archiving Parameters” in the
Simulink Desktop Real-Time™ documentation.

For more information about these modes, see “How Acceleration Modes Work” in the
Simulink documentation.

See Also
dsp.SpectrumAnalyzer | Array Plot | sptool | Time Scope

Related Examples
• “Display Frequency-Domain Data in Spectrum Analyzer”

Introduced in R2014b

 Slider Switch

1-1821

Slider Switch
Set on/off values to tune parameters or variables

Library

Dashboard

Description

The Slider Switch block enables you to control tunable parameters and variables in your
model during simulation. The block has two states that can be set to two different values.

To control a tunable parameter or variable using the Slider Switch block, double-click
the Slider Switch block to open the dialog box. Select a block in the model canvas. The
tunable parameter or variable appears in the dialog box Connection table. Select the
option button next to the tunable parameter or variable you want to control. Click Apply
to connect the tunable parameter or variable to the block.

Limitations

The Slider Switch block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter
uses an index of the variable engine,
which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

1 Blocks — Alphabetical List

1-1822

Parameters and Dialog Box

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next

 Slider Switch

1-1823

to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

States

Switch values and labels.

Settings

Default Labels: Off and On

Default Values: 0 and 1

By default, the Off state label corresponds to the set value of 0, and the On state label
corresponds to the set value of 1.

The state labels appear on the outside of the switch. You can change the state labels to
another text string. You can change the state values to any real value that is between
negative realmax and positive realmax.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top
Show the label at the top of the block.

Bottom
Show the label at the bottom of the block.

Hide
Do not show the label or instructional text when the block is not connected.

1 Blocks — Alphabetical List

1-1824

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1825

Sqrt, Signed Sqrt, Reciprocal Sqrt
Calculate square root, signed square root, or reciprocal of square root

Library

Math Operations

Description

You can select one of the following functions from the Function parameter list.

Function Description Mathematical
Expression

MATLAB Equivalent

sqrt Square root of the
input

u
0.5 sqrt

signedSqrt Square root of the
absolute value of the
input, multiplied by
the sign of the input

sign(u)*|u|
0.5 —

rSqrt Reciprocal of the
square root of the
input

u
-0.5 —

The block output is the result of applying the function to the input. Each function
supports:

• Scalar operations
• Element-wise vector and matrix operations

Data Type Support

The block accepts input signals of the following data types:

1 Blocks — Alphabetical List

1-1826

Function Input Data Types Restrictions

sqrt • Floating point
• Built-in integer
• Fixed point

None

signedSqrt • Floating point
• Built-in integer
• Fixed point

When the input is an integer
or fixed-point type, the
output must be floating
point.

rSqrt • Floating point
• Built-in integer
• Fixed point

None

The block accepts real and complex inputs of the following types:

Function Types of Real Inputs Types of Complex Inputs

sqrt Any, except for fixed-point
inputs

signedSqrt None
rSqrt

Any, except for fixed-point
inputs that are negative or
have nontrivial slope and
nonzero bias

None

The block output:

• Uses the data type that you specify for Output data type
• Is real or complex, depending on your selection for Output signal type

Parameters and Dialog Box

The Main pane of the block dialog box appears as follows:

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1827

Function
Specify the mathematical function. The block icon changes to match the function you
select.

Function Block Icon

sqrt

signedSqrt

rSqrt

Output signal type
Specify the output signal type of the block as auto, real, or complex.

1 Blocks — Alphabetical List

1-1828

Output Signal TypeFunction Input Signal Type

Auto Real Complex

real real for
nonnegative inputs

NaN for negative
inputs

real for
nonnegative
inputs

NaN for negative
inputs

complexsqrt

complex complex error complex

real real real complexsignedSqrt

complex error error error

real real real errorrSqrt

complex error error error

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

The Algorithm pane of the block dialog box appears as follows:

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1829

Note: The parameters in the Algorithm pane are available only when you set Function
to rSqrt on the Main pane.

Method
Specify the method for computing the reciprocal of a square root.

Method Data Types Supported When to Use This Method

Exact Floating point

If you use a fixed-point or
built-in integer type, an
upcast to a floating-point
type occurs.

You do not want an
approximation.

Note: The input or output
must be floating point.

Newton-Raphson Floating-point, fixed-point,
and built-in integer types

You want a fast,
approximate calculation.

The Exact method provides results that are consistent with MATLAB computations.

1 Blocks — Alphabetical List

1-1830

Note: The algorithms for sqrt and signedSqrt are always of Exact type, no matter
what selection appears on the block dialog box.

Number of iterations
Specify the number of iterations to perform the Newton-Raphson algorithm. The
default value is 3.

This parameter is not available when you select Exact for Method.

Note: If you enter 0, the block output is the initial guess of the Newton-Raphson
algorithm.

The Data Types pane of the block dialog box appears as follows:

Intermediate results data type
Specify the data type for intermediate results (available only when you set Function
to sqrt or rSqrt on the Main pane). You can set the data type to:

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1831

• A rule that inherits a data type, for example, Inherit:Inherit via internal
rule

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Follow these guidelines on setting an intermediate data type explicitly for the square
root function, sqrt:

Input and Output Data Types Intermediate Data Type

Input or output is double. Use double.
Input or output is single, and any non-
single data type is not double.

Use single or double.

Input and output are fixed point. Use fixed point.

Follow these guidelines on setting an intermediate data type explicitly for the
reciprocal square root function, rSqrt:

Input and Output Data Types Intermediate Data Type

Input is double and output is not single. Use double.
Input is not single and output is double. Use double.
Input and output are fixed point. Use fixed point.

Caution Do not set Intermediate results data type to Inherit:Inherit from
output when:

• You select Newton-Raphson to compute the reciprocal of a square root.
• The input data type is floating point.
• The output data type is fixed point.

Under these conditions, selecting Inherit:Inherit from output yields
suboptimal performance and produces an error.

To avoid this error, convert the input signal from a floating-point to fixed-point data
type. For example, insert a Data Type Conversion block in front of the Sqrt block
to perform the conversion.

1 Blocks — Alphabetical List

1-1832

Output data type
Specify the output data type. You can set the data type to:

• A rule that inherits a data type, for example, Inherit:Inherit via back
propagation

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Output minimum

Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Lock output data type setting against changes by the fixed-point tools
Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1833

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

1 Blocks — Alphabetical List

1-1834

Examples

sqrt Function

Suppose that you have the following model:

When the input to the Sqrt block is negative and the Output signal type is auto or
real, the sqrt function outputs NaN. However, setting Output signal type to complex
produces the correct answer.

signedSqrt Function

Suppose that you have the following model:

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1835

When the input to the Sqrt block is negative, the block output is the same for any
Output signal type setting. If you change the first Display block format from short to
decimal (Stored Integer), you see the value of the imaginary part for the complex
output.

1 Blocks — Alphabetical List

1-1836

rSqrt Function with Floating-Point Inputs

Suppose that you have the following model:

In the Sqrt block dialog box, assume that the following parameter settings apply:

Parameter Setting

Method Newton-Raphson

Number of iterations 1

Intermediate results data type Inherit:Inherit from input

After one iteration of the Newton-Raphson algorithm, the block output is within 0.0004 of
the final value (0.4834).

rSqrt Function with Fixed-Point Inputs

Suppose that you have the following model:

In the Sqrt block dialog box, assume that the following parameter settings apply:

Parameter Setting

Method Newton-Raphson

Number of iterations 1

Intermediate results data type Inherit:Inherit from input

After one iteration of the Newton-Raphson algorithm, the block output is within 0.0459 of
the final value (0.4834).

 Sqrt, Signed Sqrt, Reciprocal Sqrt

1-1837

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Math Function, Trigonometric Function

Introduced in R2010a

1 Blocks — Alphabetical List

1-1838

Squeeze

Remove singleton dimensions from multidimensional signal

Library

Math Operations

Description

The Squeeze block removes singleton dimensions from its multidimensional input
signal. A singleton dimension is any dimension whose size is one. The Squeeze block
operates only on signals whose number of dimensions is greater than two. Scalar, one-
dimensional (vector), and two-dimensional (matrix) signals pass through the Squeeze
block unchanged.

Data Type Support

The Squeeze block accepts input signals of any dimension and of any data type that
Simulink supports, including fixed-point and enumerated data types. For more
information, see “ Data Types Supported by Simulink” in the Simulink documentation.

 Squeeze

1-1839

Parameters and Dialog Box

Examples

In the following model, the Squeeze block converts a multidimensional array of size 3-
by-1-by-2 into a 3-by-2 signal:

Because the Constant block supplies a signal with random values to the Squeeze block,
the values in the Display block vary from simulation to simulation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

1 Blocks — Alphabetical List

1-1840

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Reshape

Introduced in R2007b

 State-Space

1-1841

State-Space
Implement linear state-space system

Library

Continuous

Description

The State-Space block implements a system whose behavior you define as

&x Ax Bu

y Cx Du

x x
t t

= +

= +

=
=

0
0 ,

where x is the state vector, u is the input vector, y is the output vector and x0 is
the initial condition of the state vector. The matrix coefficients must have these
characteristics:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

In general, the block has one input port and one output port. The number of rows in
C or D matrix is the same as the width of the output port. The number of columns in

1 Blocks — Alphabetical List

1-1842

the B or D matrix are the same as the width of the input port. If you want to model
an autonomous linear system with no inputs, set the B and D matrices to empty. In
this case, the block acts as a source block with no input port and one output port, and
implements the following system:

&x Ax

y Cx

x x
t t

=

=

=
=

0
0.

Simulink software converts a matrix containing zeros to a sparse matrix for efficient
multiplication.

Data Type Support

A State-Space block accepts and outputs real signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 State-Space

1-1843

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-1844

A

Specify the n-by-n matrix coefficient, where n is the number of states.

Settings

Default: 1

Command-Line Information
Parameter: A
Type: matrix
Value: '1'
Default: '1'

 State-Space

1-1845

B

Specify the n-by-m matrix coefficient, where n is the number of states and m is the
number of inputs.

Settings

Default: 1

Command-Line Information
Parameter: B
Type: matrix
Value: '1'
Default: '1'

1 Blocks — Alphabetical List

1-1846

C

Specify the r-by-n matrix coefficient, where r is the number of outputs and n is the
number of states.

Settings

Default: 1

Command-Line Information
Parameter: C
Type: matrix
Value: '1'
Default: '1'

 State-Space

1-1847

D

Specify the r-by-m matrix coefficient, where r is the number of outputs and m is the
number of inputs.

Settings

Default: 1

Command-Line Information
Parameter: D
Type: matrix
Value: '1'
Default: '1'

1 Blocks — Alphabetical List

1-1848

Initial conditions

Specify the initial state vector.

Settings

Default: 0

The initial conditions of this block cannot be inf or NaN.

Command-Line Information
Parameter: X0
Type: vector
Value: '0'
Default: '0'

 State-Space

1-1849

Absolute tolerance

Specify the absolute tolerance for computing block states.

Settings

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute block states.
• If you enter a real scalar, then that value overrides the absolute tolerance in the

Configuration Parameters dialog box for computing all block states.
• If you enter a real vector, then the dimension of that vector must match the

dimension of the continuous states in the block. These values override the absolute
tolerance in the Configuration Parameters dialog box.

Command-Line Information
Parameter: AbsoluteTolerance
Type: string, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

1 Blocks — Alphabetical List

1-1850

State Name (e.g., 'position')

Assign a unique name to each state.

Settings

Default: ' '

If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string, cell array, or structure.

Command-Line Information
Parameter: ContinuousStateAttributes
Type: string
Value: ' ' | user-defined
Default: ' '

Examples

The following Simulink examples show how to use the State-Space block:

• sldemo_dblcart1

• aero_vibrati

 State-Space

1-1851

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Only if D ≠ 0
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Discrete State-Space

Introduced before R2006a

1 Blocks — Alphabetical List

1-1852

Step

Generate step function

Library

Sources

Description

The Step block provides a step between two definable levels at a specified time. If the
simulation time is less than the Step time parameter value, the block's output is the
Initial value parameter value. For simulation time greater than or equal to the Step
time, the output is the Final value parameter value.

The numeric block parameters must be of the same dimensions after scalar expansion.
If the Interpret vector parameters as 1-D option is off, the block outputs a signal of
the same dimensions and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row or column vectors
(that is, single row or column 2-D arrays), the block outputs a vector (1-D array) signal.
Otherwise, the block outputs a signal of the same dimensionality and dimensions as the
parameters.

Data Type Support

The Step block outputs real signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Step

1-1853

Parameters and Dialog Box

Step time
Specify the time, in seconds, when the output jumps from the Initial value
parameter to the Final value parameter. The default is 1 second.

Initial value
Specify the block output until the simulation time reaches the Step time parameter.
The default is 0.

Final value

1 Blocks — Alphabetical List

1-1854

Specify the block output when the simulation time reaches and exceeds the Step
time parameter. The default is 1.

Sample time
Specify the sample rate of step. See “ Specify Sample Time” in the online
documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block's numeric parameters
result in a vector output signal; otherwise, the block outputs a signal of the same
dimensionality as the parameters. If this option is not selected, the block always
outputs a signal of the same dimensionality as the block's numeric parameters.
See “Determining the Output Dimensions of Source Blocks” in the Simulink
documentation.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Examples

The following Simulink examples show how to use the Step block:

• sldemo_doublebounce

• sldemo_enginewc

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled.
Code Generation Yes

 Step

1-1855

See Also

Ramp

Introduced before R2006a

1 Blocks — Alphabetical List

1-1856

Stop Simulation

Stop simulation when input is nonzero

Library

Sinks

Description

The Stop Simulation block stops the simulation when the input is nonzero. The
simulation completes the current time step before terminating. If the block input is a
vector, any nonzero vector element causes the simulation to stop.

When you use the Stop Simulation block in a For Iterator subsystem, the stop action
occurs after execution of all the iterations in the subsystem during a time step. The stop
action does not interrupt execution until the start of the next time step.

You cannot use the Stop Simulation block to pause the simulation. To create a block that
pauses the simulation, see “Pause Simulation Using Assertion Blocks” in the Simulink
documentation.

Data Type Support

The Stop Simulation block accepts real signals of type double or Boolean. For more
information, see “ Data Types Supported by Simulink” in the Simulink documentation.

 Stop Simulation

1-1857

Parameters and Dialog Box

Examples

Usage with the Relational Operator Block

You can use the Stop Simulation block with the Relational Operator block to control
when a simulation stops. For example, the following model stops simulation when the
simulation time reaches 10.

Usage with the Integrator Block

You can use the Stop Simulation block with the Integrator block to control when a
simulation stops. For example, the sldemo_absbrake model stops simulation when the
saturation port of the Integrator block outputs a value of 1 or –1.

1 Blocks — Alphabetical List

1-1858

Characteristics

Data Types Double | Boolean
Sample Time Inherited from driving block
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1859

Subsystem, Atomic Subsystem, Nonvirtual
Subsystem, CodeReuse Subsystem

Represent system within another system

Library

Ports & Subsystems

Description

A subsystem block contains a subset of blocks or code within an overall model or system.
The subsystem block can represent a virtual subsystem or a nonvirtual subsystem.

In nonvirtual subsystems, you can control when the contents of the subsystem are
evaluated. Nonvirtual subsystems are executed as a single unit (atomic execution).
You can create conditionally executed nonvirtual subsystems that execute only when a
transition occurs on a triggering, function-call, action, or enabling input (see “Conditional
Subsystems”).

A subsystem is virtual if the block is neither conditionally executed nor atomic. Virtual
subsystems do not have checksums.

Tip To determine if a subsystem is virtual, use the get_param function for the Boolean
block parameter IsSubsystemVirtual.

An Atomic Subsystem block is a subsystem block in which Treat as atomic unit is
selected by default.

A CodeReuse Subsystem block is a subsystem block in which Treat as atomic unit
is selected and Function packaging is set to Reusable function, specifying the
function code generation format for the subsystem. (see “Function packaging” on page
1-1874 for details).

1 Blocks — Alphabetical List

1-1860

To create a subsystem, do one of the following:

• Copy a subsystem block from the Ports & Subsystems library into your model. Then
add blocks to the subsystem by opening the subsystem block and copying blocks into
it.

• Select all blocks and lines that make up the subsystem, and select Diagram >
Subsystem & Model Reference > Create Subsystem from Selection. Simulink
replaces the blocks with a subsystem block, along with the necessary Inport and
Outport blocks to reflect signals entering and leaving the subsystem.

The number of input ports drawn on the subsystem block's icon corresponds to the
number of Inport blocks in the subsystem. Similarly, the number of output ports drawn
on the block corresponds to the number of Outport blocks in the subsystem.

The subsystem block supports signal label propagation through subsystem Inport and
Outport blocks.

See “Create a Subsystem” for more information.

Data Type Support

See Inport for information on the data types accepted by a subsystem's input ports. See
Outport for information on the data types output by a subsystem's output ports.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1861

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-1862

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1863

Note: Parameters on the Code Generation tab require a Simulink Coder or Embedded
Coder license. For more information, see the parameter sections.

1 Blocks — Alphabetical List

1-1864

Show port labels

Cause Simulink software to display labels for the subsystem's ports on the subsystem's
icon.

Settings

Default: FromPortIcon

none

Does not display port labels on the subsystem block.
FromPortIcon

If the corresponding port icon displays a signal name, display the signal name on the
subsystem block. Otherwise, display the port block's name.

FromPortBlockName

Display the name of the corresponding port block on the subsystem block.
SignalName

If a name exists, display the name of the signal connected to the port on the
subsystem block; otherwise, the name of the corresponding port block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1865

Read/Write permissions

Control user access to the contents of the subsystem.

Settings

Default: ReadWrite

ReadWrite

Enables opening and modification of subsystem contents.
ReadOnly

Enables opening but not modification of the subsystem. If the subsystem resides in
a block library, you can create and open links to the subsystem and can make and
modify local copies of the subsystem but cannot change the permissions or modify the
contents of the original library instance.

NoReadOrWrite

Disables opening or modification of subsystem. If the subsystem resides in a library,
you can create links to the subsystem in a model but cannot open, modify, change
permissions, or create local copies of the subsystem.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1866

Name of error callback function

Enter name of a function to be called if an error occurs while Simulink software is
executing the subsystem.

Settings

Default: ' '

Simulink software passes two arguments to the function: the handle of the subsystem
and a string that specifies the error type. If no function is specified, Simulink software
displays a generic error message if executing the subsystem causes an error.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1867

Permit hierarchical resolution

Specify whether to resolve names of workspace variables referenced by this subsystem.

Settings

Default: All

All

Resolve all names of workspace variables used by this subsystem, including those
used to specify block parameter values and Simulink data objects (for example,
Simulink.Signal objects).

ExplicitOnly

Resolve only names of workspace variables used to specify block parameter values,
data store memory (where no block exists), signals, and states marked as “must
resolve”.

None

Do not resolve any workspace variable names.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1868

Treat as atomic unit

Causes Simulink software to treat the subsystem as a unit when determining the
execution order of block methods.

Settings

Default: Off

 On
Cause Simulink software to treat the subsystem as a unit when determining the
execution order of block methods. For example, when it needs to compute the output
of the subsystem, Simulink software invokes the output methods of all the blocks in
the subsystem before invoking the output methods of other blocks at the same level
as the subsystem block.

 Off
Cause Simulink software to treat all blocks in the subsystem as being at the same
level in the model hierarchy as the subsystem when determining block method
execution order. This can cause execution of methods of blocks in the subsystem to be
interleaved with execution of methods of blocks outside the subsystem.

Dependencies

This parameter enables:

• “Minimize algebraic loop occurrences” on page 1-1869.
• “Sample time (-1 for inherited)” on page 1-1872
• “Function packaging” on page 1-1874 (requires a Simulink Coder license)

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1869

Minimize algebraic loop occurrences

Try to eliminate any artificial algebraic loops that include the atomic subsystem

Settings

Default: Off

 On
Try to eliminate any artificial algebraic loops that include the atomic subsystem.

 Off
Do not try to eliminate any artificial algebraic loops that include the atomic
subsystem.

Dependency

“Treat as atomic unit” on page 1-1868 enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1870

Propagate execution context across subsystem boundary

Enable execution context propagation across the boundary of this subsystem.

Settings

Default: Off

 On
Enables execution context propagation across this subsystem's boundary.

 Off
Does not enable execution context propagation across this subsystem's boundary.

Dependency

Conditional execution of the subsystem enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1871

Warn if function-call inputs are context-specific

Simulink displays a warning if it has to compute any of this function-call subsystem's
inputs directly or indirectly during execution of a function-call.

Settings

Default: Off

 On
Simulink displays a warning if it has to compute any of this function-call subsystem's
inputs directly or indirectly during execution of a function-call.

 Off
Simulink does not display a warning if it has to compute any of this function-call
subsystem's inputs directly or indirectly during execution of a function-call.

Dependency

Use of a function-call subsystem enables this parameter.

The option is effective only when the Context-dependent inputs diagnostic on the
Diagnostics > Connectivity pane of the Configuration Parameters dialog box is set to
Use local settings.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1872

Sample time (-1 for inherited)

Specify whether all blocks in this subsystem must run at the same rate or can run at
different rates.

Settings

Default: -1

• -1

Specify the inherited sample time. Use this sample time if the blocks in the subsystem
can run at different rates.

• [Ts 0]

Specify periodic sample time.

Tips

• If the blocks in the subsystem can run at different rates, specify the subsystem's
sample time as inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the subsystem's Sample time parameter.

• If any of the blocks in the subsystem specify a different sample time (other than -1
or inf), Simulink software displays an error message when you update or simulate
the model. For example, suppose all the blocks in the subsystem must run 5 times
a second. To ensure this, specify the sample time of the subsystem as 0.2. In this
example, if any of the blocks in the subsystem specify a sample time other than 0.2,
-1, or inf, Simulink software displays an error when you update or simulate the
model.

Dependency

“Treat as atomic unit” on page 1-1868 enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1873

Variant control

Enter the variant activation condition or the variant control that contains the expression
for variant activation.

The variant control can be a boolean condition expression or a Simulink.Variant
object representing a boolean condition expression. If you want to generate code for your
model, define control variables as Simulink.Parameter objects.

Settings

Default: Variant

Dependency

Adding a Subsystem block inside a Variant Subsystem block enables this parameter

Command-Line Information
Structure field: Represented by the variant.Name field in the Variants parameter
structure
Type: string
Value: Variant control associated with the variant
Default: ''

See Also

• Simulink.Variant

1 Blocks — Alphabetical List

1-1874

Function packaging

Specify the code format to be generated for an atomic (nonvirtual) subsystem.

Settings

Default: Auto

Auto

Simulink Coder software chooses the optimal format for you based on the type and
number of instances of the subsystem that exist in the model.

Inline

Simulink Coder software inlines the subsystem unconditionally.
Nonreusable function

Simulink Coder software explicitly generates a separate function in a separate
file. Subsystems with this setting generate functions that might have arguments
depending on the “Function interface” on page 1-1883 parameter setting. You can
name the generated function and file using parameters “Function name” on page
1-1878 and “File name (no extension)” on page 1-1881. These functions are not
reentrant.

Reusable function

Simulink Coder software generates a function with arguments that allows reuse of
subsystem code when a model includes multiple instances of the subsystem.

This option also generates a function with arguments that allows subsystem code to
be reused in the generated code of a model reference hierarchy that includes multiple
instances of a subsystem across referenced models. In this case, the subsystem must
be in a library.

Tips

• When you want multiple instances of a subsystem to be represented as one reusable
function, you can designate each one of them as Auto or as Reusable function. It
is best to use one or the other, as using both creates two reusable functions, one for
each designation. The outcomes of these choices differ only when reuse is not possible.
Selecting Auto does not allow control of the function or file name for the subsystem
code.

• The Reusable function and Auto options both try to determine if multiple
instances of a subsystem exist and if the code can be reused. The difference between
the options' behavior is that when reuse is not possible:

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1875

• Auto yields inlined code, or if circumstances prohibit inlining, separate functions
for each subsystem instance.

• Reusable function yields a separate function with arguments for each
subsystem instance in the model.

• If you select Reusable function while your generated code is under source control,
set File name options to Use subsystem name, Use function name, or User
specified. Otherwise, the names of your code files change whenever you modify
your model, which prevents source control on your files.

Dependencies

• This parameter requires a Simulink Coder license.
• “Treat as atomic unit” on page 1-1868 enables this parameter.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• “Function name options” on page 1-1876
• “File name options” on page 1-1879
• “Memory section for initialize/terminate functions” on page 1-1884 (requires a

license for Embedded Coder software and an ERT-based system target file)
• “Memory section for execution functions” on page 1-1885 (requires a license for

Embedded Coder software and an ERT-based system target file)
• Setting this parameter to Nonreusable function enables “Function with separate

data” on page 1-1882 (requires a license for Embedded Coder software and an ERT-
based system target file).

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1876

Function name options

Specify how Simulink Coder software is to name the function it generates for the
subsystem.

If you have an Embedded Coder license, you can control function names with options on
the Configuration Parameter Code Generation > Symbols pane.

Settings

Default: Auto

Auto

Assign a unique function name using the default naming convention, model,
_subsystem(), where model is the name of the model and subsystem is the name
of the subsystem (or that of an identical one when code is being reused).

If you select Reusable function for the Function packaging parameter
and there are multiple instances of the reusable subsystem in a model reference
hierarchy, in order to generate reusable code for the subsystem, Function name
options must be set to Auto.

Use subsystem name

Use the subsystem name as the function name. Be default, the function name uses
the naming convention model, _subsystem.

Note When a subsystem is a library block and the subsystem parameter “Function
packaging” on page 1-1874 is set to Reusable function, if you set the Use
subsystem name option, the code generator uses the name of the library block for
the subsystem's function name and file name.

User specified

This option enables the Function name field. Enter any legal C or C++ function
name, which must be unique.

Dependencies

• This parameter requires a Simulink Coder license.
• Setting “Function packaging” on page 1-1874 to Nonreusable function or

Reusable function enables this parameter.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1877

• Setting this parameter to User specified enables the “Function name” on page
1-1878 parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1878

Function name

Specify a unique, valid C or C++ function name for subsystem code.

Settings

Default: ' '

Use this parameter if you want to give the function a specific name instead of allowing
the Simulink Coder code generator to assign its own autogenerated name or use the
subsystem name.

Dependencies

• This parameter requires a Simulink Coder license.
• Setting “Function name options” on page 1-1876 to User specified enables this

parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1879

File name options

Specify how Simulink Coder software names the separate file for the function it
generates for the subsystem.

Settings

Default: Auto

Auto

Depending on the configuration of the subsystem and how many instances are in the
model, Auto yields different results:

• If the code generator does not generate a separate file for the subsystem,
the subsystem code is generated within the code module generated from the
subsystem's parent system. If the subsystem's parent is the model itself, the
subsystem code is generated within model.c or model.cpp.

• If you select Reusable function for the Function packaging parameter and
your generated code is under source control, consider specifying a File name
options value other than Auto. This prevents the generated file name from
changing due to unrelated model modifications, which is problematic for using
source control to manage configurations.

• If you select Reusable function for the Function packaging parameter
and there are multiple instances of the reusable subsystem in a model reference
hierarchy, in order to generate reusable code for the subsystem, File name
options must be set to Auto.

Use subsystem name

The code generator generates a separate file, using the subsystem (or library block)
name as the file name.

Note When File name options is set to Use subsystem name, the subsystem file
name is mangled if the model contains Model blocks, or if a model reference target is
being generated for the model. In these situations, the file name for the subsystem
consists of the subsystem name prefixed by the model name.

Use function name

1 Blocks — Alphabetical List

1-1880

The code generator uses the function name specified by Function name options) as
the file name.

User specified

This option enables the File name (no extension) text entry field. The code
generator uses the name you enter as the file name. Enter any file name, but do not
include the .c or .cpp (or any other) extension. This file name need not be unique.

Note While a subsystem source file name need not be unique, you must avoid giving
nonunique names that result in cyclic dependencies (for example, sys_a.h includes
sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

Dependencies

• This parameter requires a Simulink Coder license.
• Setting “Function packaging” on page 1-1874 to Nonreusable function or

Reusable function enables this parameter.
• Setting this parameter to User specified enables the “File name (no extension)” on

page 1-1881 parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1881

File name (no extension)

Specify how Simulink Coder software is to name the file for the function it generates for
the subsystem.

Settings

Default: ' '

• The filename that you specify does not have to be unique. However, avoid giving non-
unique names that result in cyclic dependencies (for example, sys_a.h includes
sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

Dependencies

• This parameter requires a Simulink Coder license.
• Setting “File name options” on page 1-1879 to User specified enables this

parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1882

Function with separate data

Generate subsystem function code in which the internal data for an atomic subsystem is
separated from its parent model and is owned by the subsystem.

Settings

Default: Off

 On
Generate subsystem function code in which the internal data for an atomic
subsystem is separated from its parent model and is owned by the subsystem. The
subsystem data structure is declared independently from the parent model data
structures. A subsystem with separate data has its own block I/O and DWork data
structure. As a result, the generated code for the subsystem is easier to trace and
test. The data separation also tends to reduce the maximum size of global data
structures throughout the model, because they are split into multiple data structures.

 Off
Do not generate subsystem function code in which the internal data for an atomic
subsystem is separated from its parent model and is owned by the subsystem.

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function enables
this parameter.

• Selecting this check box enables these parameters:

• “Memory section for constants” on page 1-1886
• “Memory section for internal data” on page 1-1888
• “Memory section for parameters” on page 1-1890

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1883

Function interface

For this subsystem, specify whether the generated function uses arguments.

Settings

Default: void_void

void_void

Generate a function without arguments and passes data as global variables. For
example:

void subsystem_function(void)

Allow arguments

Generate a function that uses arguments instead of passing data as global variables.
This specification reduces global RAM. It might reduce code size and improve
execution speed, and allow the code generator to apply additional optimizations. For
example:

void subsystem_function(real_T rtu_In1, real_T rtu_In2,

 real_T *rty_Out1)

Dependencies

• This parameter requires an Embedded Coder license and an ERT-based system target
file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function enables
this parameter.

Command-Line Information

For the command-line information, see “Block-Specific Parameters” on page 6-96.

1 Blocks — Alphabetical List

1-1884

Memory section for initialize/terminate functions

Indicate how the Embedded Coder software is to apply memory sections to the
subsystem's initialization and termination functions.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's function code
Default

Not apply memory sections to the subsystem's system code, overriding any model-
level specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” and “Code Generation Pane: Memory Sections” in the
Embedded Coder documentation.

• If you have not configured the model with a package, Inherit from model is
the only value that appears. Otherwise, the list includes Default and all memory
sections the model's package contains.

• These options can be useful for overriding the model's memory section settings for the
given subsystem.

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function or
Reusable function enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1885

Memory section for execution functions

Indicate how the Embedded Coder software is to apply memory sections to the
subsystem's execution functions.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's function code
Default

Not apply memory sections to the subsystem's system code, overriding any model-
level specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” and “Code Generation Pane: Memory Sections” in the
Embedded Coder documentation.

• If you have not configured the model with a package, Inherit from model is
the only value that appears. Otherwise, the list includes Default and all memory
sections the model's package contains.

• These options can be useful for overriding the model's memory section settings for the
given subsystem.

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function or
Reusable function enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1886

Memory section for constants

Indicate how the Embedded Coder software is to apply memory sections to the
subsystem's data.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's data
Default

Not apply memory sections to the subsystem's data, overriding any model-level
specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data
structures in the generated code. For basic information about the global data
structures generated for atomic subsystems, see “Default Data Structures in the
Generated Code”.

• Can be useful for overriding the model's memory section settings for the given
subsystem.

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” in the Embedded Coder documentation.

• If you have not configured the model with a package, Inherit from model is
the only value that appears. Otherwise, the list includes Default and all memory
sections the model's package contains.

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function and
selecting the “Function with separate data” on page 1-1882 check box enables this
parameter.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1887

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1888

Memory section for internal data

Indicate how the Embedded Coder software is to apply memory sections to the
subsystem's data.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's data
Default

Not apply memory sections to the subsystem's data, overriding any model-level
specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data
structures in the generated code. For basic information about the global data
structures generated for atomic subsystems, see “Default Data Structures in the
Generated Code”.

• Can be useful for overriding the model's memory section settings for the given
subsystem.

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” in the Embedded Coder documentation.

• If you have not configured the model with a package, Inherit from model is
the only value that appears. Otherwise, the list includes Default and all memory
sections the model's package contains.

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function and
selecting the “Function with separate data” on page 1-1882 check box enables this
parameter.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1889

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1890

Memory section for parameters

Indicate how the Embedded Coder software is to apply memory sections to the
subsystem's data.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's function code
Default

Not apply memory sections to the subsystem's system code, overriding any model-
level specification

The memory section of interest
Apply one of the model's memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data
structure in the generated code. For basic information about the global data
structures generated for atomic subsystems, see “Default Data Structures in the
Generated Code”.

• Can be useful for overriding the model's memory section settings for the given
subsystem.

• The possible values vary depending on what (if any) package of memory sections you
have set for the model's configuration. See “Control Data and Function Placement in
Memory by Inserting Pragmas” in the Embedded Coder documentation.

• If you have not configured the model with a package, Inherit from model is
the only value that appears. Otherwise, the list includes Default and all memory
sections the model's package contains.

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based
system target file.

• Setting “Function packaging” on page 1-1874 to Nonreusable function and
selecting the “Function with separate data” on page 1-1882 check box enables this
parameter.

 Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

1-1891

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Depends on the blocks in the subsystem
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, for enable and trigger ports if present
Code Generation Yes

Introduced in R2007a

1 Blocks — Alphabetical List

1-1892

Sum, Add, Subtract, Sum of Elements

Add or subtract inputs

Library

Math Operations

Description

The Sum block performs addition or subtraction on its inputs. This block can add or
subtract scalar, vector, or matrix inputs. It can also collapse the elements of a signal.

You specify the operations of the block with the List of signs parameter. Plus (+),
minus (-), and spacer (|) characters indicate the operations to be performed on the
inputs:

• If there are two or more inputs, then the number of + and - characters must equal the
number of inputs. For example, “+-+” requires three inputs and configures the block
to subtract the second (middle) input from the first (top) input, and then add the third
(bottom) input.

• All nonscalar inputs must have the same dimensions. Scalar inputs will be expanded
to have the same dimensions as the other inputs.

• A spacer character creates extra space between ports on the block's icon.
• For a round Sum block, the first input port is the port closest to the 12 o'clock position

going in a counterclockwise direction around the block. Similarly, other input ports
appear in counterclockwise order around the block.

• If only addition of all inputs is required, then a numeric parameter value equal to the
number of inputs can be supplied instead of “+” characters.

• If only one input port is required, a single “+” or “-” collapses the element via the
specified operation.

 Sum, Add, Subtract, Sum of Elements

1-1893

The Sum block first converts the input data type(s) to its accumulator data type, then
performs the specified operations. The block converts the result to its output data type
using the specified rounding and overflow modes.

Calculation of Block Output

Output calculation for the Sum block depends on the number of block inputs and the sign
of input ports:

If the Sum block has... And... The formula for output
calculation is...

Where...

The input port sign is + y = e[0] + e[1] + e[2] ...
+ e[m]

One input port

The input port sign is – y = 0.0 – e[0] – e[1] –
e[2] ... – e[m]

e[i] is the ith element
of input u

All input port signs are
–

y = 0.0 – u[0] – u[1] –
u[2] ... – u[n]

Two or more input
ports

The kth input port is
the first port where the
sign is +

y = u[k] – u[0] – u[1] –
u[2] – u[k–1] (+/–) u[k
+1] ... (+/–) u[n]

u[i] is the input to the
ith input port

Data Type Support

The Sum block accepts real or complex signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The inputs can be of different data types, unless you select the Require all inputs
to have the same data type parameter. For more information, see “ Data Types
Supported by Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-1894

Parameters and Dialog Box

The Main pane of the Sum block dialog box appears as follows:

 Sum, Add, Subtract, Sum of Elements

1-1895

The Signal Attributes pane of the Sum block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1896

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

 Sum, Add, Subtract, Sum of Elements

1-1897

Icon shape

Designate the icon shape of the block.

Settings

Default: round

rectangular

Designate the icon shape of the block as rectangular.
round

Designate the icon shape of the block as round.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1898

List of signs

Enter plus (+) and minus (-) characters.

Settings

Default: |++

• Addition is the default operation, so if you only want to add the inputs, enter the
number of input ports.

• For a single vector input, “+” or “-” will collapse the vector using the specified
operation.

• Enter as many plus (+) and minus (-) characters as there are inputs.

Tips

You can manipulate the positions of the input ports on the block by inserting spacers (|)
between the signs in the List of signs parameter. For example, “++|--” creates an extra
space between the second and third input ports.

Dependencies

Entering only one element enables the Sum over parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Sum, Add, Subtract, Sum of Elements

1-1899

Sum over

Select dimension over which to perform the sum over operation.

Settings

Default: All dimensions

All dimensions

Sum all input elements, yielding a scalar.
Specified dimension

Display the Dimension parameter, where you specify the dimension over which to
perform the operation.

Dependencies

Selecting Specified dimension enables the Dimension parameter.

List of signs (when it has only one element) enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1900

Dimension

Specify the dimension over which to perform the operation.

Settings

Default: 1

The block follows the same summation rules as the MATLAB sum function.

Suppose that you have a 2-by-3 matrix U.

• Setting Dimension to 1 results in the output Y being computed as:

Y U i j
i

=
=Â (,)
1

2

• Setting Dimension to 2 results in the output Y being computed as:

Y U i j
j

=
=Â (,)

1

3

If the specified dimension is greater than the dimension of the input, an error message
appears.

Dependencies

Setting Sum over to Specified dimension enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Sum, Add, Subtract, Sum of Elements

1-1901

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-1902

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

 On
Require that all inputs have the same data type.

 Off
Do not require that all inputs have the same data type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Sum, Add, Subtract, Sum of Elements

1-1903

Lock data type settings against changes by the fixed-point tools

Select to lock data type settings of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor.

Settings

Default: Off

On
Locks all data type settings for this block.

Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings
for this block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1904

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

 Sum, Add, Subtract, Sum of Elements

1-1905

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1 Blocks — Alphabetical List

1-1906

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

 Sum, Add, Subtract, Sum of Elements

1-1907

Accumulator data type

Specify the accumulator data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Use internal rule to determine accumulator data type.
Inherit: Same as first input

Use data type of first input signal.
double

Accumulator data type is double.
single

Accumulator data type is single.
int8

Accumulator data type is int8.
uint8

Accumulator data type is uint8.
int16

Accumulator data type is int16.
uint16

Accumulator data type is uint16.
int32

Accumulator data type is int32.
uint32

Accumulator data type is uint32.
fixdt(1,16,0)

Accumulator data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Accumulator data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

1 Blocks — Alphabetical List

1-1908

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Specify Data Types Using Data Type Assistant”.

 Sum, Add, Subtract, Sum of Elements

1-1909

Mode

Select the category of accumulator data to specify

Settings

Default: Inherit

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables a list of possible
values:

• Inherit via internal rule (default)
• Same as first input

Built in

Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Specifies fixed-point data types.
Expression

Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

Dependency

Clicking the Show data type assistant button for the accumulator data type enables
this parameter.

1 Blocks — Alphabetical List

1-1910

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 Sum, Add, Subtract, Sum of Elements

1-1911

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

1 Blocks — Alphabetical List

1-1912

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.
Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 Sum, Add, Subtract, Sum of Elements

1-1913

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1914

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Binary point

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.

Dependencies

Selecting Mode > Fixed point for the accumulator data type enables this parameter.

Selecting Binary point enables:

• Fraction length

Selecting Slope and bias enables:

• Slope
• Bias

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 Sum, Add, Subtract, Sum of Elements

1-1915

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1916

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 Sum, Add, Subtract, Sum of Elements

1-1917

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias for the accumulator data type enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1918

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Sum, Add, Subtract, Sum of Elements

1-1919

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-1920

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Note: The accumulator internal rule favors greater numerical accuracy, possibly at
the cost of less efficient generated code. To get the same accuracy for the output, set
the output data type to Inherit: Inherit same as accumulator.

Inherit: Inherit via back propagation

Use data type of the driving block.
Inherit: Same as first input

Use data type of first input signal.
Inherit: Same as accumulator

 Sum, Add, Subtract, Sum of Elements

1-1921

Output data type is the same as accumulator data type.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).
<data type expression>

Use a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

1 Blocks — Alphabetical List

1-1922

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

• Inherit via internal rule (default)
• Inherit via back propagation

• Same as first input

• Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

 Sum, Add, Subtract, Sum of Elements

1-1923

Dependency

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1924

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Sum, Add, Subtract, Sum of Elements

1-1925

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1926

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Binary point

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

 Sum, Add, Subtract, Sum of Elements

1-1927

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1928

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

How the Sum Block Reorders Inputs

If you use - on the first input port, the Sum block reorders the inputs so that, if possible,
the first input uses a + operation. For example, in the expression output = -a-b+c, the

 Sum, Add, Subtract, Sum of Elements

1-1929

Sum block reorders the inputs so that output = c-a-b. To initialize the accumulator,
the Sum block uses the first + input port.

The block avoids performing a unary minus operation on the first operand a because
doing so can change the value of a for fixed-point data types. In that case, the output
value differs from the result of accumulating the values for a, b, and c.

Tip To explicitly specify a unary minus operation for output = -a-b+c, you can use the
Unary Minus block in the Math Operations library.

Suppose that you have the following model:

The following block parameters apply:

• Both Constant blocks, Input1 and Input 2, use int8 for the Output data type.
• The Sum block uses int8 for both Accumulator data type and Output data type.
• The Sum block has Saturate on integer overflow turned on.

The Sum block reorders the inputs so that the following operations occur and you get the
ideal result of 127.

Step Block Operation

1 Reorders inputs from (–Input1 + Input2) to (Input2 – Input1).
2 Initializes the accumulator by using the first + input port:

Accumulator = int8(-1) = -1

3 Continues to accumulate values:

Accumulator = Accumulator – int8(-128) = 127

1 Blocks — Alphabetical List

1-1930

Step Block Operation

4 Calculates the block output:

Output = int8(127) = 127

If the Sum block does not reorder the inputs, the following operations occur instead and
you get the nonideal result of 126.

Step Block Operation

1 Initializes the accumulator by using the first input port:

Accumulator = int8(-(-128)) = 127

Because saturation is on, the initial value of the accumulator saturates at 127
and does not wrap.

2 Continues to accumulate values:

Accumulator = Accumulator + int8(-1) = 126

3 Calculates the block output:

Output = int8(126) = 126

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Switch

1-1931

Switch
Switch output between first input and third input based on value of second input

Library

Signal Routing

Description

Types of Block Inputs

The Switch block passes through the first input or the third input based on the value
of the second input. The first and third inputs are called data inputs. The second input
is called the control input. Specify the condition under which the block passes the first
input by using the Criteria for passing first input and Threshold parameters.

To immediately back propagate a known output data type to the first and third input
ports, set the Output data type parameter to Inherit: Inherit via internal
rule and select the Require all data port inputs to have the same data type check
box.

Limitations on Data Inputs

The sizes of the two data inputs can be different if you select Allow different data
input sizes on the block dialog box. However, this block does not support variable-size
input signals. Therefore, the size of each input cannot change during simulation.

If the data inputs to the Switch block are buses, the element names of both buses must
be the same. Using the same element names ensures that the output bus has the same
element names no matter which input bus the block selects. To ensure that your model
meets this requirement, use a bus object to define the buses and set the Element name
mismatch diagnostic to error. See “Connectivity Diagnostics Overview” for more
information.

1 Blocks — Alphabetical List

1-1932

Block Icon Appearance

The block icon helps you identify Criteria for passing first input and Threshold
without having to open the block dialog box.

For information about port order for various block orientations, see “How to Rotate a
Block” in the Simulink documentation.

Block Behavior for Boolean Control Input

When the control input is a Boolean signal, use one of these combinations of criteria and
threshold value:

• u2 >= Threshold, where the threshold value equals 1
• u2 > Threshold, where the threshold value equals 0
• u2 ~=0

Otherwise, the Switch block ignores the threshold and uses the Boolean input for signal
routing. For a control input of 1, the block passes the first input, and for a control input
of 0, the block passes the third input. In this case, the block icon changes after compile
time and uses T and F to label the first and third inputs, respectively.

Data Type Support

The control input can be of any data type that Simulink supports, including fixed-point
and enumerated types. The control input cannot be complex. If the control input is
enumerated, the Threshold parameter must be a value of the same enumerated type.

The data inputs can be of any data type that Simulink supports. If either data input is of
an enumerated type, the other must be of the same enumerated type.

When the output is of enumerated type, both data inputs should use the same
enumerated type as the output.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Switch

1-1933

Parameters and Dialog Box

The Switch block dialog box appears as follows:

1 Blocks — Alphabetical List

1-1934

• “Criteria for passing first input” on page 1-1935
• “Threshold” on page 1-1937
• “Enable zero-crossing detection” on page 1-1519
• “Sample time” on page 1-297
• “Require all data port inputs to have the same data type” on page 1-1940
• “Lock output data type setting against changes by the fixed-point tools” on page 1-235
• “Integer rounding mode” on page 1-294
• “Saturate on integer overflow” on page 1-296
• “Allow different data input sizes” on page 1-1945
• “Output minimum” on page 1-298
• “Output maximum” on page 1-299
• “Output data type” on page 1-1948
• “Mode” on page 1-1950
• “Data type override” on page 1-230
• “Signedness” on page 1-231
• “Word length” on page 1-232
• “Scaling” on page 1-225
• “Fraction length” on page 1-233
• “Slope” on page 1-234
• “Bias” on page 1-234

 Switch

1-1935

Criteria for passing first input

Select the condition under which the block passes the first input. If the control input
meets the condition set in the Criteria for passing first input parameter, the block
passes the first input. Otherwise, the block passes the third input.

Settings

Default: u2 > Threshold

u2 >= Threshold

Checks whether the control input is greater than or equal to the threshold value.
u2 > Threshold

Checks whether the control input is greater than the threshold value.
u2 ~=0

Checks whether the control input is nonzero.

Note: The Switch block does not support u2 ~=0 mode for enumerated data types.

Tip

When the control input is a Boolean signal, use one of these combinations of condition
and threshold value:

• u2 >= Threshold, where the threshold value equals 1
• u2 > Threshold, where the threshold value equals 0
• u2 ~=0

Otherwise, the Switch block ignores threshold values and uses the Boolean value for
signal routing. For a value of 1, the block passes the first input, and for a value of 0,
the block passes the third input. A warning message that describes this behavior also
appears in the MATLAB Command Window.

Dependencies

Selecting u2 ~=0 disables the Threshold parameter.

1 Blocks — Alphabetical List

1-1936

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Switch

1-1937

Threshold

Assign the switch threshold that determines which input the block passes to the output.

Settings

Default: 0

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

Tip

To specify a nonscalar threshold, use brackets. For example, the following entries are
valid:

• [1 4 8 12]

• [MyColors.Red, MyColors.Blue]

Dependencies

Setting Criteria for passing first input to u2 ~=0 disables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1938

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Settings

Default: On

 On
Enable zero-crossing detection.

 Off
Do not enable zero-crossing detection.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

 Switch

1-1939

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1 Blocks — Alphabetical List

1-1940

Require all data port inputs to have the same data type

Require all data inputs to have the same data type.

Settings

Default: Off

 On
Requires all data inputs to have the same data type.

 Off
Does not require all data inputs to have the same data type.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Switch

1-1941

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

1 Blocks — Alphabetical List

1-1942

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

 Switch

1-1943

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1 Blocks — Alphabetical List

1-1944

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

 Switch

1-1945

Allow different data input sizes

Select this check box to allow input signals with different sizes.

Settings

Default: Off

 On
Allows input signals with different sizes, and propagates the input signal size to the
output signal. If the two data inputs are variable-size signals, the maximum size of
the signals can be equal or different.

 Off
Inputs signals must be the same size.

Command-Line Information
Parameter: AllowDiffInputSize
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-1946

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value is [] (unspecified).

Simulink uses this value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Tip

This number must be a finite real double scalar value.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Switch

1-1947

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value is [] (unspecified).

Simulink uses this value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Tip

This number must be a finite real double scalar value.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-1948

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Uses the following rules to determine the output data type.

Data Type of First Input Port Output Data Type

Has a larger positive range than the
third input port

Inherited from the first input port

Has the same positive range as the third
input port
Has a smaller positive range than the
third input port

Inherited from the third input port

Inherit: Inherit via back propagation

Uses data type of the driving block.
double

Specifies output data type is double.
single

Specifies output data type is single.
int8

Specifies output data type is int8.
uint8

Specifies output data type is uint8.
int16

Specifies output data type is int16.
uint16

Specifies output data type is uint16.
int32

 Switch

1-1949

Specifies output data type is int32.
uint32

Specifies output data type is uint32.
fixdt(1,16,0)

Specifies output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Specifies output data type is fixed point fixdt(1,16,2^0,0).
Enum: <class name>

Uses an enumerated data type, for example, Enum: BasicColors.
<data type expression>

Uses a data type object, for example, Simulink.NumericType.

Tip

When the output is of enumerated type, both data inputs should use the same
enumerated type as the output.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Control Signal Data Types” for more information.

1 Blocks — Alphabetical List

1-1950

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Specifies inheritance rules for data types. Selecting Inherit enables a list of possible
values:

• Inherit via internal rule (default)
• Inherit via back propagation

Built in

Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

Fixed point

Specifies fixed-point data types.
Enumerated

Specifies enumerated data types. Selecting Enumerated enables you to enter a class
name.

Expression

Specifies expressions that evaluate to data types. Selecting Expression enables you
to enter an expression.

 Switch

1-1951

Dependencies

Clicking the Show data type assistant button enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1 Blocks — Alphabetical List

1-1952

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Switch

1-1953

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specifies the fixed-point data as signed.
Unsigned

Specifies the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1954

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 Switch

1-1955

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-1956

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

 Switch

1-1957

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

1 Blocks — Alphabetical List

1-1958

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type” for more information.

Bus Support

The Switch block is a bus-capable block. The data inputs can be virtual or nonvirtual bus
signals subject to the following restrictions:

• All the buses must be equivalent (same hierarchy with identical names and attributes
for all elements).

• All signals in a nonvirtual bus input to a Switch block must have the same sample
time. The requirement holds even if the elements of the associated bus object specify
inherited sample times.

You can use a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus. See “Composite Signals” and Bus-Capable Blocks for
more information.

You can use an array of buses as an input signal to a Switch block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”. When
using an array of buses with a Switch block, set the Threshold parameter to a scalar
value.

 Switch

1-1959

Examples

Use of Boolean Input for the Control Port

In the sldemo_fuelsys model, the fuel_rate_control/airflow_calc subsystem uses
a Switch block:

The value of the control port on the Switch block determines whether or not feedback
correction occurs. The control port value depends on the output of the Logical Operator
block.

When the Logical Operator
block output is...

The control port of the Switch
block is...

And feedback control...

TRUE 1 Occurs
FALSE 0 Does not occur

Use of Simulation Time for the Control Port

The sldemo_zeroxing model uses a Switch block:

1 Blocks — Alphabetical List

1-1960

The value of the control port on the Switch block determines when the output changes
from the first input to the third input.

When simulation time is... The Switch block output is...

Less than or equal to 5 The first input from the Abs block
Greater than 5 The third input from the Saturation block

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

 Switch

1-1961

See Also

Multiport Switch

Introduced before R2006a

1 Blocks — Alphabetical List

1-1962

Switch Case

Implement C-like switch control flow statement

Library

Ports & Subsystems

Description

A Switch Case block receives a single input. Each output port is attached to a Switch
Case Action Subsystem. Data outputs are action signals to Switch Case Action
subsystems, which you create with Action Port blocks and subsystems.

The Switch Case block uses its input value to select a case condition that determines
which subsystem to execute. The cases are evaluated top down starting with the first
case. If a case value (in brackets) corresponds to the value of the input, its Switch Case
Action Subsystem is executed.

If a default case exists, it executes if none of the other cases executes. Providing
a default case is optional, even if the other case conditions do not exhaust every
possible value. The following diagram shows a completed Simulink switch control flow
statement:

 Switch Case

1-1963

Cases for the Switch Case block contain an implied break after their Switch Case Action
subsystems are executed. Thus there is no fall-through behavior for the Simulink
switch control flow statement as found in standard C switch statements. The following
pseudocode represents generated code for the preceding switch control example:

switch (u1) {

 case [u1=1]:

 body_1;

 break;

 case [u1=2 or u1=3]:

 body_23;

 break;

 default:

 body_default;

}

To construct the Simulink switch control flow statement shown in the above example:

1 Place a Switch Case block in the current system and attach the input port labeled u1
to the source of the data you are evaluating.

2 Open the Switch Case block dialog box and update parameters:

a Populate the Case conditions field with the individual cases.
b To show a default case, select the Show default case check box.

1 Blocks — Alphabetical List

1-1964

3 Create a Switch Case Action Subsystem for each case port you added to the
Switch Case block.

These consist of subsystems with Action Port blocks inside them. When you place the
Action Port block inside a subsystem, the subsystem becomes an atomic subsystem
with an input port labeled Action.

4 Connect each case output port and the default output port of the Switch Case block
to the Action port of an Action subsystem.

Each connected subsystem becomes a case body. This is indicated by the change in
label for the Switch Case Action Subsystem block and the Action Port block
inside of it to the name case{}.

During simulation of a switch control flow statement, the Action signals from the
Switch Case block to each Switch Case Action Subsystem turn from solid to
dashed.

5 In each Switch Case Action Subsystem, enter the Simulink logic appropriate to
the case it handles.

Control Algorithm Execution Using Enumerated Signal

This example shows how to use a signal of an enumerated data type to control the
execution of a block algorithm. For basic information about using enumerated data types
in models, see “Use Enumerated Data in Simulink Models”.

When you use enumerated data in a Switch Case block, follow these best practices:

• Use the same enumerated type for the input u1 and all of the case condition values.
• Use a different underlying integer for each of the enumerated values that you specify

in the Case conditions box.

Define Enumerated Type

Copy the enumerated type definition ex_SwitchCase_MyColors into a script file in
your current folder.

classdef ex_SwitchCase_MyColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 Switch Case

1-1965

 Mauve(3)

 end

end

Alternatively, you can use the function Simulink.defineIntEnumType to define the
type.

 Simulink.defineIntEnumType('ex_SwitchCase_MyColors',...

 {'Red','Yellow','Blue','Mauve'},[0;1;2;3])

Explore Example Model

1 Open the example model ex_enum_switch_case.
2 Open the Enumerated Constant block dialog box. The constant output value is

ex_SwitchCase_MyColors.Blue.
3 Open the Switch Case block dialog box. The Case conditions box is set to a cell

array containing three of the four possible enumeration members. The block has four
outputs corresponding to the three specified enumeration members and a default
case.

4 Open the Switch Case Action Subsystem blocks. The subsystems each contain a
Constant block that uses a unique constant value.

Control Execution During Simulation

1 In the Simulink Editor, set the simulation stop time to Inf.
2 Simulate the model. The Display block shows the value 5, which corresponds to the

case ex_SwitchCase_MyColors.Blue.
3 In the Enumerated Constant block dialog box, set Value to

ex_SwitchCase_MyColors.Red and click Apply. The Display block shows 19.
4 Set Value to ex_SwitchCase_MyColors.Mauve and click Apply. The Display

block shows 3, which corresponds to the default case.

Data Type Support

The input to the port labeled u1 of a Switch Case block can be:

• A scalar value having a built-in data type that Simulink supports. The block does not
support Boolean or fixed-point data types and truncates the numeric inputs to 32-bit
signed integers.

1 Blocks — Alphabetical List

1-1966

• A scalar value of any enumerated data type, as described in “Control Algorithm
Execution Using Enumerated Signal” on page 1-1964.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Case conditions

 Switch Case

1-1967

Specify the case conditions using MATLAB cell notation. For example, entering {1,
[7,9,4]} specifies that output port case[1] is run when the input value is 1, and
output port case[7 9 4] is run when the input value is 7, 9, or 4.

You can use colon notation to specify a range of integer case conditions. For example,
entering {[1:5]} specifies that output port case[1 2 3 4 5] is run when the input
value is 1, 2, 3, 4, or 5.

Depending on block size, cases with long lists of conditions are displayed in shortened
form in the Switch Case block, using a terminating ellipsis (...).

You can use the enumeration function to specify a case condition that includes a
case for every value in an enumerated type.

Show default case
If you select this check box, the default output port appears as the last case on
the Switch Case block, allowing you to specify a default case. This case executes
when the input value does not match any of the case values specified in the Case
conditions field. With Show default case selected, a default output port always
appears, even if the preceding cases exhaust all possibilities for the input value.

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Characteristics

Data Types Double | Single | Base Integer | Enumerated
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No

1 Blocks — Alphabetical List

1-1968

Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

 Switch Case Action Subsystem

1-1969

Switch Case Action Subsystem
Represent subsystem whose execution is triggered by Switch Case block

Library

Ports & Subsystems

Description

This block is a Subsystem block that is preconfigured to serve as a starting point for
creating a subsystem whose execution is triggered by a Switch Case block.

Note: All blocks in a Switch Case Action Subsystem must run at the same rate as the
driving Switch Case block. You can achieve this by setting each block's sample time
parameter to be either inherited (-1) or the same value as the Switch Case block's
sample time.

For more information, see “Create an Action Subsystem”, Switch Case block and “Use
Control Flow Logic” in the “Creating a Model” chapter of the Simulink documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-1970

Introduced before R2006a

 Tapped Delay

1-1971

Tapped Delay

Delay scalar signal multiple sample periods and output all delayed versions

Library

Discrete

Description

The Tapped Delay block delays an input by the specified number of sample periods and
outputs all the delayed versions. Use this block to discretize a signal in time or resample
a signal at a different rate.

The block accepts one scalar input and generates an output vector that contains each
delay. Specify the order of the delays in the output vector with the Order output vector
starting with parameter:

• Oldest orders the output vector starting with the oldest delay version and ending
with the newest delay version.

• Newest orders the output vector starting with the newest delay version and ending
with the oldest delay version.

Specify the output vector for the first sampling period with the Initial condition
parameter. Careful selection of this parameter can minimize unwanted output behavior.

Specify the time between samples with the Sample time parameter. Specify the number
of delays with the Number of delays parameter. A value of -1 instructs the block to
inherit the number of delays by back propagation. Each delay is equivalent to the z-1

discrete-time operator, which the Unit Delay block represents.

1 Blocks — Alphabetical List

1-1972

Data Type Support

The Tapped Delay block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Tapped Delay

1-1973

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation. The Initial condition parameter is
converted from a double to the input data type offline using round-to-nearest and
saturation. Simulink software does not allow you to set the initial condition of this
block to inf or NaN.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online Simulink documentation
for more information.

Number of delays

1 Blocks — Alphabetical List

1-1974

Specify the number of discrete-time operators.
Order output vector starting with

Specify whether to output the oldest delay version first, or the newest delay version
first.

Include current input in output vector
Select to include the current input in the output vector.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, when Include current input in output

vector check box is selected. No, otherwise.
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also
Delay | Resettable Delay | Unit Delay | Variable Integer Delay

Introduced before R2006a

 Terminator

1-1975

Terminator

Terminate unconnected output port

Library

Sinks

Description

Use the Terminator block to cap blocks whose output ports do not connect to other blocks.
If you run a simulation with blocks having unconnected output ports, Simulink issues
warning messages. Using Terminator blocks to cap those blocks helps prevent warning
messages.

Data Type Support

The Terminator block accepts real or complex signals of any data type that Simulink
supports, including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-1976

Parameters and Dialog Box

Examples

The following Simulink examples show how to use the Terminator block:

• sldemo_bounce

• sldemo_fuelsys

• aero_six_dof

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Timed-Based Linearization

1-1977

Timed-Based Linearization
Generate linear models in base workspace at specific times

Library

Model-Wide Utilities

Description

This block calls linmod or dlinmod to create a linear model for the system when the
simulation clock reaches the time specified by the Linearization time parameter. No
trimming is performed. The linear model is stored in the base workspace as a structure,
along with information about the operating point at which the snapshot was taken.
Multiple snapshots are appended to form an array of structures.

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'

• RTWInlineParameters = 'on'

• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended
by _Timed_Based_Linearization, for example, vdp_Timed_Based_Linearization.
The structure has the following fields:

Field Description

a The A matrix of the linearization
b The B matrix of the linearization
c The C matrix of the linearization
d The D matrix of the linearization

1 Blocks — Alphabetical List

1-1978

Field Description

StateName Names of the model's states
OutputName Names of the model's output ports
InputName Names of the model's input ports
OperPoint A structure that specifies the operating point of the

linearization. The structure specifies the operating point
time (OperPoint.t). The states (OperPoint.x) and inputs
(OperPoint.u) fields are not used.

Ts The sample time of the linearization for a discrete linearization

Use the Trigger-Based Linearization block if you need to generate linear models
conditionally.

You can use state and simulation time logging to extract the model states and inputs at
operating points. For example, suppose that you want to get the states of the f14 example
model at linearization times of 2 seconds and 5 seconds.

1 Open the model and drag an instance of this block from the Model-Wide Utilities
library and drop the instance into the model.

2 Open the block's parameter dialog box and set the Linearization time to 2 and 5.
3 Open the model's Model Configuration Parameters dialog box.
4 Select the Data Import/Export pane.
5 Check States and Time on the Save to Workspace control panel
6 Select OK to confirm the selections and close the dialog box.
7 Simulate the model.

At the end of the simulation, the following variables appear in the MATLAB
workspace: f14_Timed_Based_Linearization, tout, and xout.

8 Get the indices to the operating point times by entering the following at the
MATLAB command line:
ind1 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

ind2 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vectors at the operating points.

x1 = xout(ind1,:);

x2 = xout(ind2,:);

 Timed-Based Linearization

1-1979

Data Type Support

Not applicable.

Parameters and Dialog Box

Linearization time
Time at which you want the block to generate a linear model. Enter a vector of times
if you want the block to generate linear models at more than one time step.

Sample time (of linearized model)
Specify a sample time to create discrete-time linearizations of the model (see
“Discrete-Time System Linearization” on page 2-34).

Characteristics

Data Types Not applicable

1 Blocks — Alphabetical List

1-1980

Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Code Generation No

See Also

Trigger-Based Linearization

Introduced in R2010a

 To File

1-1981

To File
Write data to file

Library

Sinks

Description

The To File block inputs a signal and writes the signal data into a MAT-file. Use the To
File block to log signal data.

The To File block icon shows the name of the output file.

The block writes to the output file incrementally, with minimal memory overhead during
simulation. If the output file exists when the simulation starts, the block overwrites the
file. The file automatically closes when simulation is complete or paused. If simulation
terminates abnormally, the To File block saves the data it has logged up until the point
of the abnormal termination.

Specifying the Format for Writing Data

Use the Save format parameter to specify the format for writing data:

• Timeseries (default)
• Array

Use the Array format only for vector, double, noncomplex signals. To save bus data, use
the Timeseries format.

For the Timeseries format, the To File block:

1 Blocks — Alphabetical List

1-1982

• Writes data in a MATLAB timeseries object
• Supports writing multidimensional, real or complex output values
• Supports writing output values that have any built-in data type, including Boolean,

enumerated (enum), and fixed-point data with a word length of up to 32 bits
• For bus input signals, creates a MATLAB structure that matches the bus hierarchy.

Each leaf of the structure is a MATLAB timeseries object.

For the Array format, the To File block:

• Writes data into a matrix containing two or more rows. The matrix has the following
form:

t t t

u u u

un un un

final

final

final

1 2

1 2

1 2

1 1 1

…

…

…

…

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

Simulink writes one column to the matrix for each data sample. The first element of
the column contains the time stamp. The remainder of the column contains data for
the corresponding output values.

• Supports writing data that is one-dimensional, double, and noncomplex.

The following table shows how simulation mode support depends on the Save format
value.

Simulation Mode Timeseries Array

Normal Supported. Supported.
Accelerator Supported. Supported.
Rapid Accelerator Supported. Supported.
Software-in-the-Loop (SIL) Not supported. Supported if MAT-file logging is

enabled.
Processor-in-the-Loop
(PIL)

Not supported. Supported if MAT-file logging is
available and enabled.

External Not supported. Supported if MAT-file logging is
enabled.

 To File

1-1983

Simulation Mode Timeseries Array

RSim target Supported. Supported if MAT-file logging is
enabled.

Controlling When Data Is Written to the File

The To File block Decimation and Sample Time parameters control when data is
written to the file.

The To File block does not log data outside of the intervals specified by the Model
Configuration Parameters > Data Import/Export > Logging intervals parameter.
The block stores the logged data in the file associated with the block instead of storing
the data in the variable that you specify for the Save simulation output as single
object parameter.

Saving Data for Use by a From File Block

The From File block can use data written by a To File block in any format
(Timeseries or Array) without any modifications to the data or other special
provisions.

Saving Data for Use by a From Workspace Block

The From Workspace block can read data that is in the Array format and is the
transposition of the data written by the To File block. To provide the required format, use
MATLAB commands to load and transpose the data from the MAT-file.

Simulation Stepper Interaction with To File Block

If you pause using the Simulation Stepper, the To File block captures the simulation data
up to the point of the pause. When you step back, the To File data file no longer contains
any simulation data past the new reduced time of the last output.

Limitations of To File blocks in a Referenced Model

When a To File block is in a referenced model, that model must be a single-instance
model. Only one instance of such a model can exist in a model hierarchy. See “General
Reusability Limitations” for more information.

1 Blocks — Alphabetical List

1-1984

Compressing MAT-File Data

To avoid the overhead of compressing data in real time, the To File block writes an
uncompressed Version 7.3 MAT-file. To compress the data within the MAT-file, load and
save the file in MATLAB. The resaved file is smaller than the original MAT-file that the
To File block created, because the Save command compresses the data in the MAT-file.

Saving Bus Data

The To File block supports virtual and nonvirtual bus input.

To save bus data, set the Save format parameter to Timeseries.

If the input signal is a bus, then the To File block creates a MATLAB structure that
matches the bus hierarchy. Each leaf of the structure is a MATLAB timeseries object.

Pausing a Simulation

After pausing a simulation, do not alter any file that a To File block logs into. For
example, do not save such a file with the MATLAB save command. Altering the file
can cause an error when you resume the simulation. If you want to alter the file after
pausing, copy the file and work with the copy of the file.

Generating Code

To generate code for a To File block, on the Code Generation > Interface pane, you
must select the configuration parameter “MAT-file logging”.

Data Type Support

The To File block accepts real or complex signal data of any data type that Simulink
supports, with the exception that the word length for fixed-point data must be 32 bits or
less.

The To File block accepts bus data.

 To File

1-1985

Parameters and Dialog Box

File name

The path or file name of the MAT-file in which to store the output. On UNIX systems,
the pathname can start with a tilde (~) character signifying your home folder. The
default file name is untitled.mat. If you specify a file name without path information,
Simulink stores the file in the MATLAB working folder. (To determine the working
folder, type pwd at the MATLAB command line.) If the file already exists, Simulink
overwrites it.

1 Blocks — Alphabetical List

1-1986

Variable name

The name of the matrix contained in the named file. The default name is ans.

Save format

The data format that the To File block uses for writing data:

• Timeseries (default)
• Array

Decimation

The decimation factor, n, where n specifies writing data at every nth time that the block
executes. The default decimation is 1, which writes data at every time step.

Sample time

Specifies the sample period and offset at which to collect points. This parameter is useful
when you are using a variable-step solver where the interval between time steps might
not be constant. The default is-1, which inherits the sample time from the driving block.
See “ Specify Sample Time” for more information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also

“Save Runtime Data from Simulation”, From File, From Workspace, To Workspace

 To File

1-1987

Introduced before R2006a

1 Blocks — Alphabetical List

1-1988

To Workspace
Write data to MATLAB workspace

Library

Sinks

Description

The To Workspace block inputs a signal and writes the signal data to the MATLAB
workspace. During the simulation, the block writes data to an internal buffer. When the
simulation is completed or paused, that data is written to the workspace.

The block icon shows the name of the variable to which the data is written. To specify the
name of the workspace variable to which the To Workspace block writes the data, use the
Variable name parameter.

To specify the data format of the variable, use the Save format parameter. You can
specify to save the data in one of the following formats:

• A MATLAB timeseries object (or structure of MATLAB timeseries objects for bus
data)

• An array
• Structure
• Structure with time

From one of these formats, you can convert the data to Dataset format. Converting to
Dataset format makes it easier to post-process with other logged data (for example,
logged states), which can also use Dataset format. For more information, see “Convert
Logged Data to Dataset Format”. You can also use signal logging with a variable-size
signal exception.

 To Workspace

1-1989

Saving Data for Use by a From Workspace Block

To use a From Workspace block to read into Simulink the sample-based data that was
saved by a To Workspace block in a previous simulation, in the To Workspace block,
specify time information using the Timeseries or Structure with time format.

Controlling the Amount of Data Saved

If you specify intervals with the Model Configuration Parameters > Data Import/
Export > Logging intervals parameter, the block does not log data outside of the
intervals. For example, the block logs no data if the intervals are empty ([]).

For variable-step solvers, to control the amount of data available to the To Workspace
block, use the Model Configuration Parameters > Data Import/Export > Output
options parameter. For example, to have Simulink write data at identical time points
over multiple simulations, select the Produce specified output only option.

Then use To Workspace block parameters to control when and how much of this data the
block writes:

• Use the Limit data points to last parameter to specify how many sample points to
save. If the simulation generates more data points than the specified maximum, the
simulation saves only the most recently generated samples. To capture all the data,
set this value to inf.

• Use the Decimation parameter to have the To Workspace block write data at every
nth sample, where n is the decimation factor. The default decimation, 1, writes data
at every time hit.

• Use the Sample time parameter to specify a sampling interval at which to collect
points. This parameter is useful when you are using a variable-step solver where
the interval between time hits might not be the same. The default value of -1 causes
the block to inherit the sample time from the driving block when determining the
points to write. See “ Specify Sample Time” in the online documentation for more
information.

For example, suppose you have a simulation where the start time is 0, the Limit data
points to last is 100, the Decimation is 1, and the Sample time is 0.5. The To
Workspace block collects a maximum of 100 points, at time values of 0, 0.5, 1.0, 1.5, ...,
seconds. Specifying a Decimation value of 1 directs the block to write data at each step.

In a similar example, the Limit data points to last is 100 and the Sample time is 0.5,
but the Decimation is 5. In this example, the block collects up to 100 points, at time

1 Blocks — Alphabetical List

1-1990

values of 0, 2.5, 5.0, 7.5, ..., seconds. Specifying a Decimation value of 5 directs the block
to write data at every fifth sample. The sample time ensures that data is written at these
points.

In another example, all parameters are as defined in the first example except that the
Limit data points to last is 3. In this case, only the last three sample points collected
are written to the workspace. If the simulation stop time is 100, data corresponds to
times 99.0, 99.5, and 100.0 seconds (three points).

MAT-File Logging

When you enable the Model Configuration Parameters > Code Generation >
Interface > MAT-file logging parameter, To Workspace logs its data to a MAT-file.
For information about this parameter, in the Simulink Coder documentation, see “MAT-
file logging”.

Frame-Based Signals

By default, the To Workspace block treats input signals as sample-based.

To have the To Workspace block treat input signals as frame-based, set:

1 Save format to either Array or Structure
2 Save 2-D signals as to 2-D array (concatenate along first dimension)

Data Type Support

The To Workspace block can save to the MATLAB workspace real or complex inputs of
any data type that Simulink supports, including fixed-point and enumerated data types,
as well as bus objects.

For more information, see “ Data Types Supported by Simulink”.

 To Workspace

1-1991

Parameters and Dialog Box

Variable name

Specify the name of the variable for the saved the data.

Limit data points to last

Specify the maximum number of input samples to save. The default is inf.

Decimation

Specify the decimation factor. The default is 1.

Save format

Specify one of these formats for saving simulation output to the workspace:

1 Blocks — Alphabetical List

1-1992

• Timeseries (Default)

Save non-bus signals as a MATLAB timeseries object and bus signals as a structure of
MATLAB timeseries objects.

• Array

Save the input as an N-dimensional array where N is one more than the number
of dimensions of the input signal. For example, if the input signal is a vector, the
resulting workspace array is two-dimensional. If the input signal is a matrix, then the
array is three-dimensional.

How Simulink stores samples in the array depends on whether the input signal is
a scalar, vector, or matrix. If the input is a scalar or a vector, each input sample
is output as a row of the array. For example, suppose that the name of the output
array is simout. Then, simout(1,:) corresponds to the first sample, simout(2,:)
corresponds to the second sample, and so on. If the input signal is a matrix, time
corresponds to the third dimension. For example, suppose again that simout is the
name of the resulting workspace array. Then, simout(:,:,1) is the value of the
input signal at the first sample point; simout(:,:,2) is the value of the input signal
at the second sample point; and so on.

If you select Array, the Save 2-D signals as parameter appears.

To treat input signals as frame-based, set Save format to either Array or
Structure and set the Save 2-D signals parameter to 2-D array (concatenate
along first dimension).

• Structure

This format consists of a structure with three fields:

• time — This field is empty for this format.
• signals — A structure with three fields: values, dimensions, and label. The

values field contains the array of signal values. The dimensions field specifies
the dimensions of the corresponding signals. The label field contains the label of
the input line.

• blockName — Name of the To Workspace block

If you select Structure, the Save 2-D signals as parameter appears.

 To Workspace

1-1993

To treat input signals as frame-based, set Save format to either Structure or
Array and set the Save 2-D signals parameter to 2-D array (concatenate
along first dimension).

• Structure With Time

This format is the same as Structure, except that the time field contains a vector of
simulation time hits.

To read To Workspace block output directly with a From Workspace block, use either
the Timeseries or Structure with Time format. For details, see “Techniques for
Importing Signal Data”.

Structure with Time format does not support frame-based signals. Use Array or
Structure format instead.

The following table shows how simulation mode support depends on the Save format
value.

Simulation Mode Timeseries Array, Structure, or
Structure With Time

Normal Supported. Supported.
Accelerator Supported. Supported only in top model, not

referenced models.
Rapid Accelerator Not supported. Supported only in top model, not

referenced models.
Software-in-the-Loop (SIL) Not supported. If MAT-file logging is enabled,

supported only in top model, not
referenced models.

Processor-in-the-Loop
(PIL)

Not supported. If MAT-file logging is available
and enabled, supported only in top
model, not referenced models.

External Not supported. Supported only in top model, not
referenced models.

Simulink Coder Targets Not supported. If MAT-file logging is enabled,
supported only in top model, not
referenced models.

1 Blocks — Alphabetical List

1-1994

Save 2-D signal as

If you set Save format to Array or Structure, the Save 2-D signals as parameter
appears.

Specify one of these formats for saving 2-D signals to the workspace:

• 3-D array (concatenate along third dimension) (Default)

This setting is well-suited for sample-based signals. Data is concatenated along
the third dimension. For example, 2-by-4 matrix input for 10 samples is stored as a
2x4x10 array.

• 2-D array (concatenate along first dimension)

This setting is well-suited for frame-based signals. The data is concatenated along the
first dimension. For example, 2-by-4 matrix input for 10 samples is stored as a 20x4
array

• Inherit from input (this choice will be removed — see release

notes)

This setting is for backward compatibility. To configure this block to treat input
signals as frame-based in future releases, set this parameter to 2-D array
(concatenate along first dimension). To configure this block to treat
input signals as sample-based in future releases, set this parameter to 3-D array
(concatenate along third dimension).

When the Save format is set to Array or Structure, the dimensions of the output
depend on the input dimensions and the setting of the Save 2-D signals as parameter.
The following table summarizes the output dimensions under various conditions. In the
table, K represents the value of the Limit data points to last parameter.

Input Signal Dimensions Save 2-D Signals as ... Signal To Workspace Output
Dimension

M-by-N matrix 2-D array

(concatenate along

first dimension)

K-by-N matrix.

If you set the Limit data
points to last parameter
to inf, K represents the
total number of samples
acquired in each column by

 To Workspace

1-1995

Input Signal Dimensions Save 2-D Signals as ... Signal To Workspace Output
Dimension

the end of simulation. This
is equivalent to multiplying
the input frame size (M) by
the total number of M-by-N
inputs acquired by the block.

M-by-N matrix 3-D array

(concatenate along

third dimension)

M-by-N-by-K array.

If you set the Limit data
points to last parameter to
inf, K represents the total
number of M-by-N inputs
acquired by the end of the
simulation.

Length-N unoriented vector Any setting K-by-N matrix
N-dimensional array where
N > 2

Any setting Array with N+1 dimensions,
where the size of the last
dimension is equal to K.
If you set the Limit data
points to last parameter
to inf, K represents the
total number of M-by-N
inputs acquired by the end of
simulation

Log fixed-point data as a fi object

By default, the To Workspace block logs fixed-point data to the MATLAB workspace as a
Fixed-Point Designer fi object. If you clear this parameter, fixed-point data is logged to
the workspace as double.

Sample time

Specify the sample period and offset at which to collect data. This parameter is useful
when you are using a variable-step solver where the interval between time hits might not
be constant. The default is-1, which inherits the sample time from the driving block. See
“ Specify Sample Time” for more information.

1 Blocks — Alphabetical List

1-1996

Examples

The sldemo_varsize_basic example shows how to use the To Workspace block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation No

See Also

“Export Simulation Data”, From File, From Workspace, To File

Introduced before R2006a

 Toggle Switch

1-1997

Toggle Switch
Set on/off values to tune parameters or variables

Library

Dashboard

Description

The Toggle Switch block enables you to control tunable parameters and variables in your
model during simulation. The block has two states that can be set to two different values.

To control a tunable parameter or variable using the Toggle Switch block, double-click
the Toggle Switch block to open the dialog box. Select a block in the model canvas. The
tunable parameter or variable appears in the dialog box Connection table. Select the
option button next to the tunable parameter or variable you want to control. Click Apply
to connect the tunable parameter or variable to the block.

Limitations

The Toggle Switch block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or
properties in model files that use the MDL
format.

Save the model file to SLX format to be able
to save connections and properties.

Parameters that index a variable array do
not appear in the Connection table.

For example, a block parameter specified
using the variable engine(1) will not
appear in the table because the parameter
uses an index of the variable engine,

1 Blocks — Alphabetical List

1-1998

Limitation Workaround

which is not a scalar variable. To make
the parameter appear in the Connection
table, change the block parameter field to a
scalar variable, such as engine_1.

Parameters and Dialog Box

 Toggle Switch

1-1999

Connection

Select a block to connect and control a tunable parameter or variable.

To control a tunable parameter or variable, select a block in the model. The tunable
parameter or variable appears in the Connection table. Select the option button next
to the tunable parameter or variable you want to control. Click Apply to connect the
tunable parameter or variable.

Settings

The table has a row for the tunable parameter or variable connected to the block. If there
are no tunable parameters or variables selected in the model or the block is not connected
to any tunable parameters or variables, then the table is empty.

States

Switch values and labels.

Settings

Default Labels: Off and On

Default Values: 0 and 1

By default, the Off state label corresponds to the set value of 0, and the On state label
corresponds to the set value of 1.

The state labels appear on the outside of the switch. You can change the state labels to
another text string. You can change the state values to any real value that is between
negative realmax and positive realmax.

Label

Position of the block label or instructional text if the block is not connected.

Settings

Default: Top

Top

1 Blocks — Alphabetical List

1-2000

Show the label at the top of the block.
Bottom

Show the label at the bottom of the block.
Hide

Do not show the label or instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

 Transfer Fcn

1-2001

Transfer Fcn

Model linear system by transfer function

Library

Continuous

Description

The Transfer Fcn block models a linear system by a transfer function of the Laplace-
domain variable s. The block can model single-input single-output (SISO) and single-
input multiple output (SIMO) systems.

Conditions for Using This Block

The Transfer Fcn block assumes the following conditions:

• The transfer function has the form

H s
y s

u s

num s

den s

num s num s num nnn nn

()
()

()

()

()

() () (
= = =

+ + +
- -1 21 2

… nn

den s den s den ndnd nd

)

() () ()
,

1 21 2- -
+ + +…

where u and y are the system input and outputs, respectively, nn and nd are the
number of numerator and denominator coefficients, respectively. num(s) and den(s)
contain the coefficients of the numerator and denominator in descending powers of s.

• The order of the denominator must be greater than or equal to the order of the
numerator.

• For a multiple-output system, all transfer functions have the same denominator and
all numerators have the same order.

1 Blocks — Alphabetical List

1-2002

Modeling a Single-Output System

For a single-output system, the input and output of the block are scalar time-domain
signals. To model this system:

1 Enter a vector for the numerator coefficients of the transfer function in the
Numerator coefficients field.

2 Enter a vector for the denominator coefficients of the transfer function in the
Denominator coefficients field.

Modeling a Multiple-Output System

For a multiple-output system, the block input is a scalar and the output is a vector,
where each element is an output of the system. To model this system:

1 Enter a matrix in the Numerator coefficients field.

Each row of this matrix contains the numerator coefficients of a transfer function
that determines one of the block outputs.

2 Enter a vector of the denominator coefficients common to all transfer functions of the
system in the Denominator coefficients field.

Specifying Initial Conditions

A transfer function describes the relationship between input and output in Laplace
(frequency) domain. Specifically, it is defined as the Laplace transform of the response
(output) of a system with zero initial conditions to an impulse input.

Operations like multiplication and division of transfer functions rely on zero initial state.
For example, you can decompose a single complicated transfer function into a series of
simpler transfer functions. Apply them sequentially to get a response equivalent to that
of the original transfer function. This will not be correct if one of the transfer functions
assumes a non-zero initial state. Furthermore, a transfer function has infinitely many
time domain realizations, most of whose states do not have any physical meaning.

For these reasons, Simulink presets the initial conditions of the Transfer Fcn block
to zero. To specify initial conditions for a given transfer function, convert the transfer
function to its controllable, canonical state-space realization using tf2ss . Then, use the
State-Space block. The tf2ss utility provides the A, B, C, and D matrices for the system.

 Transfer Fcn

1-2003

For more information, type help tf2ss or see the Control System Toolbox™
documentation.

Transfer Function Display on the Block

The Transfer Fcn block displays the transfer function depending on how you specify the
numerator and denominator parameters.

• If you specify each parameter as an expression or a vector, the block shows the
transfer function with the specified coefficients and powers of s. If you specify a
variable in parentheses, the block evaluates the variable.

For example, if you specify Numerator coefficients as [3,2,1] and Denominator
coefficients as (den), where den is [7,5,3,1], the block looks like this:

• If you specify each parameter as a variable, the block shows the variable name
followed by (s).

For example, if you specify Numerator coefficients as num and Denominator
coefficients as den, the block looks like this:

Data Type Support

The Transfer Fcn block accepts and outputs signals of type double.

1 Blocks — Alphabetical List

1-2004

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Transfer Fcn

1-2005

Numerator coefficients

Define the row vector of numerator coefficients.

Settings

Default: [1]

Tips

• For a single-output system, enter a vector for the numerator coefficients of the
transfer function.

• For a multiple-output system, enter a matrix. Each row of this matrix contains the
numerator coefficients of a transfer function that determines one of the block outputs.

Command-Line Information
Parameter: Numerator
Type: vector or matrix
Value: '[1]'
Default: '[1]'

See Also

See the Transfer Fcn block reference page for more information.

1 Blocks — Alphabetical List

1-2006

Denominator coefficients

Define the row vector of denominator coefficients.

Settings

Default: [1 1]

Tips

• For a single-output system, enter a vector for the denominator coefficients of the
transfer function.

• For a multiple-output system, enter a vector containing the denominator coefficients
common to all transfer functions of the system.

Command-Line Information
Parameter: Denominator
Type: vector
Value: '[1 1]'
Default: '[1 1]'

 Transfer Fcn

1-2007

Absolute tolerance

Specify the absolute tolerance for computing block states.

Settings

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute block states.
• If you enter a real scalar, then that value overrides the absolute tolerance in the

Configuration Parameters dialog box for computing all block states.
• If you enter a real vector, then the dimension of that vector must match the

dimension of the continuous states in the block. These values override the absolute
tolerance in the Configuration Parameters dialog box.

Command-Line Information
Parameter: AbsoluteTolerance
Type: string, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

1 Blocks — Alphabetical List

1-2008

State Name (e.g., 'position')

Assign a unique name to each state.

Settings

Default: ' '

If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string, cell array, or structure.

Command-Line Information
Parameter: ContinuousStateAttributes
Type: string
Value: ' ' | user-defined
Default: ' '

Examples

The following Simulink examples show how to use the Transfer Fcn block:

• slexAircraftExample

• sldemo_absbrake

 Transfer Fcn

1-2009

• penddemo

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Only if the lengths of the Numerator coefficients

and Denominator coefficients parameters are
equal

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Discrete Transfer Fcn

Introduced before R2006a

1 Blocks — Alphabetical List

1-2010

Transfer Fcn Direct Form II

Implement Direct Form II realization of transfer function

Library

Additional Math & Discrete / Additional Discrete

Description

The Transfer Fcn Direct Form II block implements a Direct Form II realization of the
transfer function that the Numerator coefficients and Denominator coefficients
excluding lead parameters specify. The block supports only single input-single output
(SISO) transfer functions.

The block automatically selects the data types and scalings of the output, the coefficients,
and any temporary variables.

Data Type Support

The Transfer Fcn Direct Form II block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Transfer Fcn Direct Form II

1-2011

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-2012

Numerator coefficients
Specify the numerator coefficients.

Denominator coefficients excluding lead
Specify the denominator coefficients, excluding the leading coefficient, which must be
1.0.

Initial condition
Set the initial condition.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Transfer Fcn Direct Form II Time Varying

Introduced before R2006a

 Transfer Fcn Direct Form II Time Varying

1-2013

Transfer Fcn Direct Form II Time Varying
Implement time varying Direct Form II realization of transfer function

Library

Additional Math & Discrete / Additional Discrete

Description

The Transfer Fcn Direct Form II Time Varying block implements a Direct Form II
realization of the specified transfer function. The block supports only single input-single
output (SISO) transfer functions.

The input signal labeled Den No Lead contains the denominator coefficients of the
transfer function. The full denominator has a leading coefficient of one, but it is excluded
from the input signal. For example, a denominator of [1 -1.7 0.72] is represented by a
signal with the value [-1.7 0.72]. The input signal labeled Num contains the numerator
coefficients. The data types of the numerator and denominator coefficients can be
different, but the length of the numerator vector and the full denominator vector must be
the same. Pad the numerator vector with zeros, if needed.

The block automatically selects the data types and scalings of the output, the coefficients,
and any temporary variables.

Data Type Support

The Transfer Fcn Direct Form II Time Varying block accepts signals of the following data
types:

• Floating point

1 Blocks — Alphabetical List

1-2014

• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Transfer Fcn Direct Form II Time Varying

1-2015

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-2016

Initial condition
Set the initial condition.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Transfer Fcn Direct Form II

Introduced before R2006a

 Transfer Fcn First Order

1-2017

Transfer Fcn First Order

Implement discrete-time first order transfer function

Library

Discrete

Description

The Transfer Fcn First Order block implements a discrete-time first order transfer
function of the input. The transfer function has a unity DC gain.

Data Type Support

The Transfer Fcn First Order block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2018

Parameters and Dialog Box

Pole (in Z plane)
Set the pole.

Initial condition for previous output
Set the initial condition for the previous output.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can

 Transfer Fcn First Order

1-2019

detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-2020

Transfer Fcn Lead or Lag

Implement discrete-time lead or lag compensator

Library

Discrete

Description

The Transfer Fcn Lead or Lag block implements a discrete-time lead or lag compensator
of the input. The instantaneous gain of the compensator is one, and the DC gain is equal
to (1-z)/(1-p), where z is the zero and p is the pole of the compensator.

The block implements a lead compensator when 0 < z < p < 1, and implements a lag
compensator when 0 < p < z < 1.

Data Type Support

The Transfer Fcn Lead or Lag block accepts signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Transfer Fcn Lead or Lag

1-2021

Parameters and Dialog Box

Pole of compensator (in Z plane)
Set the pole.

1 Blocks — Alphabetical List

1-2022

Zero of compensator (in Z plane)
Set the zero.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous input
Set the initial condition for the previous input.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Transfer Fcn Real Zero

1-2023

Transfer Fcn Real Zero

Implement discrete-time transfer function that has real zero and no pole

Library

Discrete

Description

The Transfer Fcn Real Zero block implements a discrete-time transfer function that has a
real zero and effectively no pole.

Data Type Support

The Transfer Fcn Real Zero block accepts signals of any numeric data type that Simulink
supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2024

Parameters and Dialog Box

Zero (in Z plane)
Set the zero.

Initial condition for previous input
Set the initial condition for the previous input.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

• Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

 Transfer Fcn Real Zero

1-2025

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

• Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur
Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

1 Blocks — Alphabetical List

1-2026

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Transport Delay

1-2027

Transport Delay

Delay input by given amount of time

Library

Continuous

Description

The Transport Delay block delays the input by a specified amount of time. You can use
this block to simulate a time delay. The input to this block should be a continuous signal.

At the start of simulation, the block outputs the Initial output parameter until the
simulation time exceeds the Time delay parameter. Then, the block begins generating
the delayed input. During simulation, the block stores input points and simulation times
in a buffer. You specify this size with the Initial buffer size parameter.

When you want output at a time that does not correspond to times of the stored input
values, the block interpolates linearly between points. When the delay is smaller than
the step size, the block extrapolates from the last output point, which can produce
inaccurate results. Because the block does not have direct feedthrough, it cannot use the
current input to calculate an output value. For example, consider a fixed-step simulation
with a step size of 1 and the current time at t = 5. If the delay is 0.5, the block must
generate a point at t = 4.5. Because the most recent stored time value is at t = 4, the
block performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals. Instead, the block
returns the discrete value at the required time.

This block differs from the Unit Delay block, which delays and holds the output on
sample hits only.

1 Blocks — Alphabetical List

1-2028

Tip Avoid using linmod to linearize a model that contains a Transport Delay block. For
more information, see “Linearizing Models” in the Simulink documentation.

Data Type Support

The Transport Delay block accepts and outputs real signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 Transport Delay

1-2029

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-2030

Time delay

Specify the amount of simulation time to delay the input signal before propagation to the
output.

Settings

Default: 1

This value must be nonnegative.

Command-Line Information
Parameter: DelayTime
Type: scalar or vector
Value: '1'
Default: '1'

 Transport Delay

1-2031

Initial output

Specify the output that the block generates until the simulation time first exceeds the
time delay input.

Settings

Default: Run-to-run tunable parameter

A Run-to-run tunable parameter cannot be changed during a simulation’s run
time. However, changing it before a simulation begins will not cause Accelerator or Rapid
Accelerator to regenerate code.

Also, the initial output of this block cannot be inf or NaN.

Command-Line Information
Parameter: InitialOutput
Type: scalar or vector
Value: '0'
Default: '0'

1 Blocks — Alphabetical List

1-2032

Initial buffer size

Define the initial memory allocation for the number of input points to store.

Settings

Default: 1024

• If the number of input points exceeds the initial buffer size, the block allocates
additional memory.

• After simulation ends, a message shows the total buffer size needed.

Tips

• Because allocating memory slows down simulation, choose this value carefully if
simulation speed is an issue.

• For long time delays, this block can use a large amount of memory, particularly for
dimensionalized input.

Command-Line Information
Parameter: BufferSize
Type: scalar
Value: '1024'
Default: '1024'

 Transport Delay

1-2033

Use fixed buffer size

Specify use of a fixed-size buffer to save input data from previous time steps.

Settings

Default: Off

 On
The block uses a fixed-size buffer.

 Off
The block does not use a fixed-size buffer.

The Initial buffer size parameter specifies the size of the buffer. If the buffer is full,
new data replaces data already in the buffer. Simulink software uses linear extrapolation
to estimate output values that are not in the buffer.

Note: If you have a Simulink Coder license, ERT or GRT code generation uses a fixed-
size buffer even if you do not select this check box.

Tips

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so can yield

inaccurate results.

Command-Line Information
Parameter: FixedBuffer
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-2034

Direct feedthrough of input during linearization

Cause the block to output its input during linearization and trim, which sets the block
mode to direct feedthrough.

Settings

Default: Off

 On
Enables direct feedthrough of input.

 Off
Disables direct feedthrough of input.

Tips

• Selecting this check box can cause a change in the ordering of states in the model
when you use the functions linmod, dlinmod, or trim. To extract this new state
ordering:

1 Compile the model using the following command, where model is the name of the
Simulink model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');

2 Terminate the compilation with the following command.

 model([],[],[],'term');

• The output argument x_str, which is a cell array of the states in the Simulink
model, contains the new state ordering. When you pass a vector of states as input to
the linmod, dlinmod, or trim functions, the state vector must use this new state
ordering.

Command-Line Information
Parameter: TransDelayFeedthrough
Type: string
Value: 'off' | 'on'
Default: 'off'

 Transport Delay

1-2035

Pade order (for linearization)

Set the order of the Pade approximation for linearization routines.

Settings

Default: 0

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a

more accurate linear model of the transport delay.

Command-Line Information
Parameter: PadeOrder
Type: string
Value: '0'
Default: '0'

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough No
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Variable Time Delay

Introduced before R2006a

1 Blocks — Alphabetical List

1-2036

Trigger
Add trigger port to model or subsystem

Library

Ports & Subsystems

Description

Adding a Trigger block to a model allows an external signal to trigger its execution. You
can add a trigger port to a root-level model or to a subsystem.

Configure the Trigger block to execute the model either:

• Once on each integration step, when the value of the external signal changes in a way
that you specify.

• Multiple times during a time step, when the external signal is a function-call from a
Function-Call Generator block or S-function.

Include only one Trigger block in a model or a subsystem.

Specify the properties that the trigger port enforces for any incoming signal, using the
Signal Attributes tab.

The Trigger block supports signal label propagation.

For more information, see:

• “Create a Triggered Subsystem”
• “Create Conditional Models”
• “Function-Call Models”
• “Create a Function-Call Subsystem”

 Trigger

1-2037

Data Type Support

The Trigger block accepts signals of supported Simulink numeric data types, including
fixed-point data types. For more information, see “ Data Types Supported by Simulink”
in the Simulink documentation.

Parameters and Dialog Box

The Main tab of the Trigger block dialog box appears as follows:

1 Blocks — Alphabetical List

1-2038

The Signal Attributes tab of the Trigger block dialog box appears as follows:

 Trigger

1-2039

• “Trigger type” on page 1-2042
• “Treat as Simulink Function” on page 1-2043
• “Function name” on page 1-2044
• “States when enabling” on page 1-2044
• “Propagate sizes of variable-size signals” on page 1-2046
• “Show output port” on page 1-2047

1 Blocks — Alphabetical List

1-2040

• “Output data type” on page 1-2048
• “Sample time type” on page 1-2049
• “Sample time” on page 1-2050
• “Enable zero-crossing detection” on page 1-2051
• “Port dimensions” on page 1-2052
• “Trigger signal sample time” on page 1-2053
• “Minimum” on page 1-632
• “Maximum” on page 1-633
• “Data type” on page 1-2056
• “Mode” on page 1-2058
• “Data type override” on page 1-230
• “Signedness” on page 1-231
• “Scaling” on page 1-1295
• “Word length” on page 1-232
• “Fraction length” on page 1-233
• “Slope” on page 1-234
• “Bias” on page 1-234
• “Interpolate data” on page 1-2067

 Trigger

1-2041

1 Blocks — Alphabetical List

1-2042

Trigger type

Select the type of event that triggers execution of the subsystem.

Settings

Default: rising

rising

Triggers execution of the model or subsystem when the control signal rises from a
negative or zero value to a positive value. If the initial value is negative, rising to
zero triggers execution.

falling

Triggers execution of the model or subsystem when the control signal falls from a
positive or a zero value to a negative value. If the initial value is positive, falling to
zero triggers execution.

either

Triggers execution of the model or subsystem when the signal is either rising or
falling.

function-call

Allows a Function-Call Generator or S-function to control execution of the subsystem
or model.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Trigger

1-2043

Treat as Simulink Function

Configure the Function-call subsystem to be a Simulink Function callable with
arguments.

Settings

Default: Off

When you select the check box, a function prototype appears on the subsystem block icon,
which you can edit to configure input and output arguments to the Simulink Function.

Tip

To use this check box to configure a subsystem as a Simulink Function, the Trigger block
must reside in the subsystem.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Dependency

This parameter appears only when you select function-call as the Trigger type
parameter.

Setting Trigger type to function-call and selecting the Treat as a Simulink
Function check box enables the Function name parameter.

1 Blocks — Alphabetical List

1-2044

Function name

Specify the function name of Simulink Function.

Settings

Default: f

This parameter provides the function name in the function prototype of the Simulink
Function.

Dependency

Setting Trigger type to function-call and selecting the Treat as a Simulink
Function check box enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

States when enabling

Specify the state values when triggered by a function-call.

Settings

Default: held

held

Leaves the states at their current values.
reset

Resets the states.
inherit

Uses the held/reset setting from the parent subsystem initiating the function-
call. If the parent of the initiator is the model root, the inherited setting is held. If
the trigger has multiple initiators, set the parents of all initiators to either held or
reset.

Dependencies

To enable this parameter, select function-call from the Trigger Type list.

 Trigger

1-2045

The parameter setting applies only if the model explicitly enables and disables the
function-call subsystem. For example:

• The function-call subsystem resides in an enabled subsystem. In this case, the model
enables and disables the function-call subsystem along with the parent subsystem.

• The function-call initiator that controls the function-call subsystem resides in an
enabled subsystem. In this case, the model enables and disables the function-call
subsystem along with the enabled subsystem containing the function-call initiator.

• The function-call initiator is a Stateflow event bound to a particular state.
See “Control Function-Call Subsystems Using Bind Actions” in the Stateflow
documentation.

• The function-call initiator is an S-function that explicitly enables and disables the
function-call subsystem. See ssEnableSystemWithTid for an example.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2046

Propagate sizes of variable-size signals

Specify when to propagate a variable-size signal.

Settings

Default: During execution

Only when enabling

Propagates variable-size signals only when enabling the model or subsystem
containing the Trigger block.

During execution

Propagates variable-size signals at each time step.

Dependency

Select Function-call from the Trigger type list to enable this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Trigger

1-2047

Show output port

Select this check box to output a signal that indicates the trigger type.

Settings

Default: On

 On
Shows the Trigger block output port and outputs the trigger type. Selecting this
check box allows the system to determine which signal caused the trigger. The width
of the signal is the width of the triggering signal. The signal value is:

• 1 for a signal that causes a rising trigger
• -1 for a signal that causes a falling trigger
• 2 for a function-call trigger
• 0 in all other cases

 Off
Removes the output port.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2048

Output data type

Specify the trigger output data type.

Settings

Default: auto

auto

Specifies that the data type is the same as the port connected to output.
double

Sets the date type to double.
int8

Sets the data type to integer.

Dependencies

To enable this parameter, select the Show output port check box.

The Trigger block ignores the Data type override setting of the Fixed-Point Tool.

 Trigger

1-2049

Sample time type

Specify the calling frequency of a subsystem.

Settings

Default: triggered

triggered

Applies to applications that do not have a periodic calling frequency.
periodic

Applies if the caller of the parent function-call subsystem calls the subsystem
once per time step when the subsystem is active (enabled). A Stateflow chart is an
example of a caller.

Dependency

Select Function-call from the Trigger type list to enable this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2050

Sample time

Specify the calling rate for blocks.

Settings

Default: 1

Set this parameter to the sample time you expect for the calling rate of the function-
call subsystem containing this Trigger block. If the actual calling rate for the subsystem
differs from the rate that this parameter specifies, Simulink displays an error.

Dependency

Setting Trigger type to function-call and Sample time type to periodic enables
this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Trigger

1-2051

Enable zero-crossing detection

Select to enable zero-crossing detection.

Settings

Default: On

 On
Detects zero crossings.

 Off
Does not detect zero crossings.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2052

Port dimensions

Specify the dimensions of the input signal to the block.

Settings

Default: 1

Valid values are:

Value Description
n Accepts vector signal of width n
[m n] Accepts matrix signal having m rows and n columns

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Trigger

1-2053

Trigger signal sample time

Specify the rate at which the block driving the triggered signal is expected to run.

Settings

Default: -1

To inherit the sample time, set this parameter to -1.

See “ Specify Sample Time” for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2054

Minimum

Specify the minimum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Trigger

1-2055

Maximum

Specify the maximum value that the block should output.

Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges”)
• Automatic scaling of fixed-point data types

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2056

Data type

Specify the expected data type of the signal feeding the trigger port.

Settings

Default: Inherit: auto

Inherit: auto

Data type is double
double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
int16

Data type is int16.
uint16

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.
boolean

Data type is boolean.
fixdt(1,16,0)

Data type is fixed point, fixdt(1,16,0).
fixdt(1,16,2^0,0)

Data type is fixed point, fixdt(1,16,2^0,0).
Enum: <class name>

 Trigger

1-2057

Data type is enumerated, for example, Enum: Basic Colors.
<data type expression>

The name of a data type object, for example, Simulink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2058

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second list.
Built in

Built-in data types. Selecting Built in enables a second list. Select one of the
following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second text box, where you
can enter the class name.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second text
box, where you can enter the expression.

Dependency

To enable this parameter, click Show data type assistant.

 Trigger

1-2059

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2060

Data type override

Specify data type override mode for this signal.

Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Trigger

1-2061

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-2062

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Best precision, Binary point, Integer

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values. This option appears for some blocks.
Integer

Specify integer. This setting has the same result as specifying a binary point location
and setting fraction length to 0. This option appears for some blocks.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Selecting Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Trigger

1-2063

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-2064

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Trigger

1-2065

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-2066

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Trigger

1-2067

Interpolate data

Cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

Settings

Default: On

 On
Causes the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

 Off
Does not cause the block to interpolate or extrapolate output at time steps for which
no corresponding workspace data exists when loading data from the workspace.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified by the Sample time parameter if:

• Trigger type is function-call

• Sample time type is periodic

Otherwise, specified by the signal at the trigger
port.

Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

1 Blocks — Alphabetical List

1-2068

See Also

• “Create Conditional Models”
• Triggered Subsystem

• Function-Call Subsystem

• Simulink Function

Introduced before R2006a

 Trigger-Based Linearization

1-2069

Trigger-Based Linearization
Generate linear models in base workspace when triggered

Library

Model-Wide Utilities

Description

When triggered, this block calls linmod or dlinmod to create a linear model for the
system at the current operating point. No trimming is performed. The linear model is
stored in the base workspace as a structure, along with information about the operating
point at which the snapshot was taken. Multiple snapshots are appended to form an
array of structures.

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'

• RTWInlineParameters = 'on'

• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the
model appended by _Trigger_Based_Linearization, for example,
vdp_Trigger_Based_Linearization. The structure has the following fields:

Field Description

a The A matrix of the linearization
b The B matrix of the linearization
c The C matrix of the linearization

1 Blocks — Alphabetical List

1-2070

Field Description

d The D matrix of the linearization
StateName Names of the model's states
OutputName Names of the model's output ports
InputName Names of the model's input ports
OperPoint A structure that specifies the operating point of the

linearization. The structure specifies the value of the model's
states (OperPoint.x) and inputs (OperPoint.u) at the
operating point time (OperPoint.t).

Ts The sample time of the linearization for a discrete
linearization

Use the Timed-Based Linearization block to generate linear models at predetermined
times.

You can use state and simulation time logging to extract the model states at operating
points. For example, suppose that you want to get the states of the vdp example model
when the signal x1 triggers the Trigger-Based Linearization block on a rising edge.

1 Open the model and drag an instance of this block from the Model-Wide Utilities
library and drop the instance into the model.

2 Connect the block's trigger port to the signal labeled x1.
3 Open the model's Model Configuration Parameters dialog box.
4 Select the Data Import/Export pane.
5 Check States and Time on the Save to Workspace control panel
6 Select OK to confirm the selections and close the dialog box.
7 Simulate the model.

At the end of the simulation, the following variables appear in the MATLAB
workspace: vdp_Trigger_Based_Linearization, tout, and xout.

8 Get the index to the first operating point time by entering the following at the
MATLAB command line:
ind1 = find(vdp_Trigger_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vector at this operating point.

x1 = xout(ind1,:);

 Trigger-Based Linearization

1-2071

Data Type Support

The trigger port accepts signals of any numeric data type that Simulink supports.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Trigger type
Type of event on the trigger input signal that triggers generation of a linear model.
See the Trigger type parameter of the Trigger block for an explanation of the
various trigger types that you can select.

Sample time (of linearized model)
Specify a sample time to create a discrete-time linearization of the model (see
“Discrete-Time System Linearization” on page 2-34).

1 Blocks — Alphabetical List

1-2072

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Code Generation No

See Also

Timed-Based Linearization

Introduced before R2006a

 Triggered Subsystem

1-2073

Triggered Subsystem
Represent subsystem whose execution is triggered by external input

Library

Ports & Subsystems

Description

This block is a Subsystem block that is preconfigured to serve as the starting point for
creating a triggered subsystem (see “Create a Triggered Subsystem”).

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-2074

Trigonometric Function
Specified trigonometric function on input

Library

Math Operations

Description

Supported Functions

The Trigonometric Function block performs common trigonometric functions. You can
select one of the following functions from the Function parameter list.

Function Description Mathematical
Expression

MATLAB Equivalent

sin Sine of the input sin(u) sin

cos Cosine of the input cos(u) cos

tan Tangent of the input tan(u) tan

asin Inverse sine of the
input

asin(u) asin

acos Inverse cosine of the
input

acos(u) acos

atan Inverse tangent of
the input

atan(u) atan

atan2 Four-quadrant
inverse tangent of
the input

atan2(u) atan2

 Trigonometric Function

1-2075

Function Description Mathematical
Expression

MATLAB Equivalent

sinh Hyperbolic sine of
the input

sinh(u) sinh

cosh Hyperbolic cosine of
the input

cosh(u) cosh

tanh Hyperbolic tangent
of the input

tanh(u) tanh

asinh Inverse hyperbolic
sine of the input

asinh(u) asinh

acosh Inverse hyperbolic
cosine of the input

acosh(u) acosh

atanh Inverse hyperbolic
tangent of the input

atanh(u) atanh

sincos Sine of the input;
cosine of the input

— —

cos + jsin Complex exponential
of the input

— —

The block output is the result of applying the function to one or more inputs in radians.
Each function supports:

• Scalar operations
• Element-wise vector and matrix operations

Note: Not all compilers support the asinh, acosh, and atanh functions. If you use a
compiler that does not support those functions, a warning appears and the generated
code fails to link.

Block Appearance for the atan2 Function

If you select the atan2 function, the block shows two inputs. The first input is the y-axis
or imaginary part of the function argument. The second input is the x-axis or real part of
the function argument. (See “How to Rotate a Block” in the Simulink documentation for a
description of the port order for various block orientations.)

1 Blocks — Alphabetical List

1-2076

Block Appearance for the sincos Function

If you select the sincos function, the block shows two outputs. The first output is
the sine of the function argument, and the second output is the cosine of the function
argument.

Definitions

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm is one of the most hardware-efficient algorithms available
because it requires only iterative shift-add operations (see References). The CORDIC
algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate
various functions, such as sine, cosine, arc sine, arc cosine, arc tangent, and vector
magnitude. You can also use this algorithm for divide, square root, hyperbolic, and
logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but
doing so also increases the expense of the computation and adds latency.

Data Type Support

The block accepts input signals of the following data types:

Functions Input Data Types

• sin

• cos

• sincos

• cos + jsin

• atan2

• Floating point
• Fixed point (only when Approximation

method is CORDIC)

• tan

• asin

• acos

• Floating point

 Trigonometric Function

1-2077

Functions Input Data Types

• atan

• sinh

• cosh

• tanh

• asinh

• acosh

• atanh

Complex input signals are supported for all functions in this block, except atan2.

1 Blocks — Alphabetical List

1-2078

You can use floating-point input signals when you set Approximation method to
None or CORDIC. However, the block output data type depends on which of these
approximation method options you choose.

Input Data Type Approximation Method Output Data Type

Floating point None Depends on your selection for Output
signal type. Options are auto
(same data type as input), real, or
complex.

Floating point CORDIC Same as input. Output signal type
is not available when you use the
CORDIC approximation method to
compute the block output.

You can use fixed-point input signals only when Approximation method is set to
CORDIC. The CORDIC approximation is available for the sin, cos, sincos, cos +
jsin, and atan2 functions. For the atan2 function, the relationship between input and
output data types depends also on whether the fixed-point input is signed or unsigned.

Input Data Type Function Output Data Type

Fixed point, signed or
unsigned

sin, cos, sincos, and
cos + jsin

fixdt(1, WL, WL – 2) where WL is the
input word length

This fixed-point type provides the best
precision for the CORDIC algorithm.

Fixed point, signed atan2 fixdt(1, WL, WL – 3)
Fixed point, unsigned atan2 fixdt(1, WL, WL – 2)

 Trigonometric Function

1-2079

For CORDIC approximations:

• Input must be real for the sin, cos, sincos, cos + jsin, and atan2 functions.
• Output is real for the sin, cos, sincos, and atan2 functions.
• Output is complex for the cos + jsin function.

Invalid Inputs for CORDIC Approximations

If you use the CORDIC approximation method (see “Definitions” on page 1-2076), the
block input has some further requirements.

For the sin, cos, sincos, and cos + jsin functions:

• When you use signed fixed-point types, the input angle must fall within the range [–
2π, 2π) radians.

• When you use unsigned fixed-point types, the input angle must fall within the range
[0, 2π) radians.

For the atan2 function:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

This table summarizes what happens for an invalid input.

Block Usage Effect of Invalid Input

Simulation An error appears.
Generated code
Accelerator modes

Undefined behavior occurs. Avoid relying
on undefined behavior for generated code or
Accelerator modes.

1 Blocks — Alphabetical List

1-2080

Parameters and Dialog Box

Function
Specify the trigonometric function. The name of the function on the block icon
changes to match your selection.

Approximation method
Specify the type of approximation for computing output. This parameter appears only
when you set Function to sin, cos, sincos, cos + jsin, or atan2.

Approximation Method Data Types Supported When to Use This Method

None (default) Floating point You want to use the default
Taylor series algorithm.

CORDIC Floating point and fixed
point

You want a fast,
approximate calculation.

 Trigonometric Function

1-2081

If you select CORDIC and enlarge the block from the default size, the block icon
changes:

Function Block Icon

sin

cos

sincos

cos + jsin

atan2

Number of iterations

1 Blocks — Alphabetical List

1-2082

Specify the number of iterations to perform the CORDIC algorithm. The default
value is 11.

• When the block input uses a floating-point data type, the number of iterations can
be a positive integer.

• When the block input is a fixed-point data type, the number of iterations cannot
exceed the word length.

For example, if the block input is fixdt(1,16,15), the word length is 16. In this
case, the number of iterations cannot exceed 16.

This parameter appears when both of the following conditions hold:

• You set Function to sin, cos, sincos, cos + jsin, or atan2.
• You set Approximation method to CORDIC.

Output signal type
Specify the output signal type of the Trigonometric Function block as auto, real, or
complex.

Output Signal TypeFunction Input Signal Type

Auto Real Complex

real real real complexAny selection
for the
Function
parameter

complex complex error complex

Note: When Function is atan2, complex input signals are not supported for
simulation or code generation.

Setting Approximation method to CORDIC disables this parameter.
Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

 Trigonometric Function

1-2083

Examples

sin Function with Floating-Point Input

Suppose that you have the following model:

The key block parameters for the Constant block are:

Parameter Setting

Constant value 1

Output data type Inherit: Inherit from 'Constant

value'

The block parameters for the Trigonometric Function block are:

Parameter Setting

Function sin

Approximation method None

Output signal type auto

The output type of the Trigonometric Function block is the same as the input because the
input type is floating point and Approximation method is None.

sincos Function with Fixed-Point Input

Suppose that you have the following model:

1 Blocks — Alphabetical List

1-2084

The key block parameters for the Constant block are:

Parameter Setting

Constant value 1

This value must fall within the range [–2π,
2π) because the Trigonometric Function
block uses the CORDIC algorithm and the
block input uses a signed fixed-point type.

Output data type fixdt(1,13,5)

The block parameters for the Trigonometric Function block are:

Parameter Setting

Function sincos

Approximation method CORDIC

Number of iterations 11

The output type of the Trigonometric Function block is fixdt(1,13,11) because the
input type is fixed point and Approximation method is CORDIC. The output fraction
length equals the input word length – 2.

Block Behavior for Complex Exponential Output

The following model compares the complex exponential output for the two different
approximation methods:

 Trigonometric Function

1-2085

The key block parameters for the Constant blocks are:

Block Parameter Setting

Constant value [-pi/2 0 pi]Constant

Output data type fixdt(1,16,2)

Constant value [-pi/2 0 pi]Constant1

Output data type double

The block parameters for the Trigonometric Function blocks are:

Block Parameter Setting

Function cos + jsin

Approximation method CORDIC

Approximation =

'CORDIC'

Number of iterations 11

Function cos + jsinApproximation =

'None' Approximation method None

When the Approximation method is CORDIC, the input data type can be fixed point,
in this case: fixdt(1,16,2). The output data type is fixdt(1,16,14) because the
output fraction length equals the input word length – 2.

1 Blocks — Alphabetical List

1-2086

When the Approximation method is None, the input data type must be floating point.
The output data type is the same as the input.

Characteristics

Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on
Electronic Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable
gate arrays. Feb. 22–24, 1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard
Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379–386.
(from the collection of the Computer History Museum). www.computer.org/csdl/
proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American
Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317–325.

See Also

Math Function, Sqrt

 Trigonometric Function

1-2087

Introduced before R2006a

1 Blocks — Alphabetical List

1-2088

Unary Minus

Negate input

Library

Math Operations

Description

The Unary Minus block negates the input.

For signed-integer data types, the unary minus of the most negative value is not
representable by the data type. In this case, the Saturate on integer overflow check
box controls the behavior of the block:

If you... The block... And...

Select this check
box

Saturates to the most
positive value of the
integer data type

• For 8-bit signed integers, -128 maps to
127.

• For 16-bit signed integers, -32768
maps to 32767.

• For 32-bit signed integers,
-2147483648 maps to 2147483647.

Do not select this
check box

Wraps to the most
negative value of the
integer data type

• For 8-bit signed integers, -128
remains -128.

• For 16-bit signed integers, -32768
remains -32768.

• For 32-bit signed integers,
-2147483648 remains -2147483648.

 Unary Minus

1-2089

Data Type Support

The Unary Minus block accepts and outputs signals of the following data types:

• Floating point
• Signed integer
• Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Saturate on integer overflow
Select to have integer overflows saturate. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can

1 Blocks — Alphabetical List

1-2090

detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 Uniform Random Number

1-2091

Uniform Random Number
Generate uniformly distributed random numbers

Library

Sources

Description

The Uniform Random Number block generates uniformly distributed random numbers
over an interval that you specify. To generate normally distributed random numbers, use
the Random Number block.

You can generate a repeatable sequence using any Uniform Random Number block with
the same nonnegative seed and parameters. The seed resets to the specified value each
time a simulation starts.

Avoid integrating a random signal, because solvers must integrate relatively smooth
signals. Instead, use the Band-Limited White Noise block.

The numeric parameters of this block must have the same dimensions after scalar
expansion. If you select the Interpret vector parameters as 1-D check box and the
numeric parameters are row or column vectors after scalar expansion, the block outputs
a 1-D signal. If you clear the Interpret vector parameters as 1-D check box, the block
outputs a signal of the same dimensionality as the parameters.

Data Type Support

The Uniform Random Number block accepts and outputs a real signal of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2092

Parameters and Dialog Box

Minimum
Specify the minimum of the interval. The default is -1.

Maximum
Specify the maximum of the interval. The default is 1.

Seed
Specify the starting seed for the random number generator. The default is 0.

 Uniform Random Number

1-2093

The seed must be 0 or a positive integer. Output is repeatable for a given seed.
Sample time

Specify the time interval between samples. The default is 0.1. See “ Specify Sample
Time” in the Simulink documentation for more information.

Interpret vector parameters as 1-D
If you select this check box and the other parameters are row or column vectors after
scalar expansion, the block outputs a 1-D signal. Otherwise, the block outputs a
signal of the same dimensionality as the other parameters. For more information,
see “Determining the Output Dimensions of Source Blocks” in the Simulink
documentation.

Characteristics

Data Types Double
Sample Time Specified in the Sample time parameter
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

The generator algorithm is identical to the one used in MATLAB Version 4.0 by the rand
and randn functions. For details on the mcg16807 algorithm, see “ Choosing a Random
Number Generator” in the MATLAB documentation.

To use other algorithms supported by MATLAB in a Simulink model, generate a set of
random numbers in MATLAB, and store the output as a .mat file. Use this .mat file as
the random number input for your simulation. For more information, see “Creating and
Controlling a Random Number Stream”. To create multiple independent streams using
MATLAB, see “Multiple streams”

Note: Using multiple seeds to generate multiple parallel independent streams for a
generator algorithm is not recommended for the mcg16807 algorithm. Instead, use the
method described above.

1 Blocks — Alphabetical List

1-2094

See Also

Random Number

Introduced before R2006a

 Unit Delay

1-2095

Unit Delay
Delay signal one sample period

Library

Discrete

Description

The Unit Delay block holds and delays its input by the sample period you specify. This
block is equivalent to the z-1 discrete-time operator. The block accepts one input and
generates one output. Each signal can be scalar or vector. If the input is a vector, the
block holds and delays all elements of the vector by the same sample period.

You specify the block output for the first sampling period with the Initial conditions
parameter. Careful selection of this parameter can minimize unwanted output behavior.
You specify the time between samples with the Sample time parameter. A setting of -1
means the block inherits the Sample time.

Tip Do not use the Unit Delay block to create a slow-to-fast transition between blocks
operating at different sample rates. Instead, use the Rate Transition block.

Comparison with Similar Blocks

Blocks with Similar Functionality

The Unit Delay, Memory, and Zero-Order Hold blocks provide similar functionality but
have different capabilities. Also, the purpose of each block is different. The sections that
follow highlight some of these differences.

1 Blocks — Alphabetical List

1-2096

Recommended Usage for Each Block

Block Purpose of the Block Reference Examples

Unit Delay Implement a delay using a
discrete sample time that you
specify. The block accepts and
outputs signals with a discrete
sample time.

• sldemo_enginewc

(Compression subsystem)

Memory Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed
in minor time step) signals and
outputs a signal that is fixed in
minor time step.

• sldemo_bounce

• sldemo_clutch (Friction
Mode Logic/Lockup FSM
subsystem)

Zero-Order

Hold

Convert an input signal with a
continuous sample time to an
output signal with a discrete
sample time.

• sldemo_radar_eml

• aero_dap3dof

Overview of Block Capabilities

BlockCapability

Unit Delay Memory Zero-Order Hold

Specification of
initial condition

Yes Yes No, because the block
output at time t = 0
must match the input
value.

Specification of
sample time

Yes No, because the block
can only inherit
sample time (from the
driving block or the
solver used for the
entire model).

Yes

Support for
frame-based
signals

Yes No Yes

 Unit Delay

1-2097

BlockCapability

Unit Delay Memory Zero-Order Hold

Support for state
logging

Yes No No

Data Type Support

The Unit Delay block accepts real or complex signals of any data type that Simulink
supports, including fixed-point and enumerated data types. If the data type of the input
signal is user-defined, the initial condition must be zero.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

1 Blocks — Alphabetical List

1-2098

During simulation, the block uses the following values:

• The initial value of the signal object to which the state name is resolved
• Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

 Unit Delay

1-2099

Initial conditions

Specify the output of the simulation for the first sampling period, during which the
output of the Unit Delay block is otherwise undefined.

Settings

Default: 0

The Initial conditions parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2100

Input processing

Specify whether the Unit Delay block performs sample- or frame-based processing.

Settings

Default: Elements as channels (sample based)

Elements as channels (sample based)

Treat each element of the input as a separate channel (sample-based processing).
Columns as channels (frame based)

Treat each column of the input as a separate channel (frame-based processing).
Inherited

Sets the block to inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals with a
single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing parameter,
and the input signal is frame-based, Simulink® will generate a warning or error in
future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal u Input Processing Mode Block Works?

Sample based Yes
Frame based

Sample based
No, produces an error

Sample based Yes
Frame based

Frame based
Yes

Sample based Yes
Frame based

Inherited
Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

 Unit Delay

1-2101

Dependency

Frame-based processing requires a DSP System Toolbox license.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2102

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify -1 to inherit the sample
time.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within
the model. To set a different sample time, enter a valid sample time based upon the table
in “Types of Sample Time”.

See also “ Specify Sample Time” in the online documentation for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Unit Delay

1-2103

State name

Use this parameter to assign a unique name to each state.

Settings

Default: ' '

• If left blank, no name is assigned.

Tips

• A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

• The state name applies only to the selected block.

Dependency

This parameter enables State name must resolve to Simulink signal object when
you click the Apply button.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Command-Line Information
Parameter: StateIdentifier
Type: string
Value: ' '
Default: ' '

1 Blocks — Alphabetical List

1-2104

State name must resolve to Simulink signal object

Require that state name resolve to Simulink signal object.

Settings

Default: Off

 On
Require that state name resolve to Simulink signal object.

 Off
Do not require that state name resolve to Simulink signal object.

Dependencies

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Command-Line Information
Parameter: StateMustResolveToSignalObject
Type: string
Value: 'off' | 'on'
Default: 'off'

 Unit Delay

1-2105

Package

Select a package that defines the custom storage class you want to apply.

Settings

Default: ---None---

---None---

Sets internal storage class attributes.
mpt

Applies the built-in mpt package.
Simulink

Applies the built-in Simulink package.

Dependencies

If you have defined any packages of your own, click Refresh. This action adds all user-
defined packages on your search path to the package list.

1 Blocks — Alphabetical List

1-2106

Code generation storage class

Select custom storage class for state.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are included.
FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

 Unit Delay

1-2107

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

Dependencies

State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer and Package to ---None--- enables Code generation
storage type qualifier.

See Also

“Storage Classes for Block States” in the Simulink Coder documentation.

1 Blocks — Alphabetical List

1-2108

Code generation storage type qualifier

Specify the Simulink Coder storage type qualifier.

Settings

Default: ' '

If left blank, no qualifier is assigned.

Dependency

Setting Package to ---None--- and Code generation storage class to
ExportedGlobal, ImportedExtern, or ImportedExternPointer enables this
parameter.

Command-Line Information
Parameter: RTWStateStorageTypeQualifier
Type: string
Value: ' '
Default: ' '

Bus Support

The Unit Delay block is a bus-capable block. The input can be a virtual or nonvirtual bus
signal subject to the following restrictions:

• Initial conditions must be zero, a nonzero scalar, or a finite numeric structure.
• If Initial conditions is zero or a structure, and you specify a State name, the input

cannot be a virtual bus.
• If Initial conditions is a nonzero scalar, no State name can be specified.

For information about specifying an initial condition structure, see “Specify Initial
Conditions for Bus Signals”.

All signals in a nonvirtual bus input to a Unit Delay block must have the same sample
time, even if the elements of the associated bus object specify inherited sample times.
You can use a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus. See “Composite Signals” and Bus-Capable Blocks for
more information.

 Unit Delay

1-2109

You can use an array of buses as an input signal to a Unit Delay block. You can specify
the Initial conditions parameter with:

• The value 0. In this case, all of the individual signals in the array of buses use the
initial value 0.

• An array of structures that specifies an initial condition for each of the individual
signals in the array of buses.

• A single scalar structure that specifies an initial condition for each of the elements
that the bus type defines. Use this technique to specify the same initial conditions for
each of the buses in the array.

For details about defining and using an array of buses, see “Combine Buses into an Array
of Buses”.

Examples

For an example of how to use the Unit Delay block, see the sldemo_enginewc model.
The Unit Delay block appears in the Compression subsystem.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also
“Scalar Expansion of Inputs and Parameters” | Delay | Memory | Resettable Delay
| Tapped Delay | Variable Integer Delay | Zero-Order Hold

1 Blocks — Alphabetical List

1-2110

Introduced before R2006a

 Unit Delay Enabled

1-2111

Unit Delay Enabled
Delay signal one sample period, if external enable signal is on

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Enabled block delays a signal by one sample period when the external
enable signal E is on. While the enable is off, the block is disabled. It holds the current
state at the same value and outputs that value. The enable signal is on when E is not 0,
and off when E is 0.

You specify the block output for the first sampling period with the value of the Initial
condition parameter.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay Enabled block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

1 Blocks — Alphabetical List

1-2112

The output has the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

 Unit Delay Enabled

1-2113

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough No
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled External IC, Unit Delay Enabled
Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay Resettable External
IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled
Resettable, Unit Delay With Preview Enabled Resettable External
RV, Unit Delay With Preview Resettable, Unit Delay With Preview
Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2114

Unit Delay Enabled External IC
Delay signal one sample period, if external enable signal is on, with external initial
condition

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Enabled External IC block delays a signal by one sample period when
the enable signal E is on. While the enable is off, the block holds the current state at the
same value and outputs that value. The enable E is on when E is not 0, and off when E is
0.

The initial condition of this block is given by the signal IC.

You specify the time between samples with the Sample time parameter. A setting of -1
means the block inherits the Sample time.

Data Type Support

The Unit Delay Enabled External IC block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The data types of the inputs u and IC must be the same. The output has the same data
type as u and IC.

 Unit Delay Enabled External IC

1-2115

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter

1 Blocks — Alphabetical List

1-2116

Direct Feedthrough Yes, of the reset input port

No, of the enable input port

Yes, of the external IC port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled Resettable, Unit
Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

 Unit Delay Enabled Resettable

1-2117

Unit Delay Enabled Resettable
Delay signal one sample period, if external enable signal is on, with external Boolean
reset

Library
Additional Math & Discrete / Additional Discrete

Description
The Unit Delay Enabled Resettable block combines the features of the Unit Delay
Enabled and Unit Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When the enable signal
E is on and the reset signal R is false, the block outputs the input signal delayed by one
sample period.

When the enable signal E is on and the reset signal R is true, the block resets the current
state to the initial condition, specified by the Initial condition parameter, and outputs
that state delayed by one sample period.

When the enable signal is off, the block is disabled, and the state and output do not
change except for resets. The enable signal is on when E is not 0, and off when E is 0.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support
The Unit Delay Enabled Resettable block accepts signals of the following data types:

• Floating point
• Built-in integer

1 Blocks — Alphabetical List

1-2118

• Fixed point
• Boolean
• Enumerated

The output has the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

 Unit Delay Enabled Resettable

1-2119

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough No, of the input port

No, of the enable port

Yes, of the reset port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2120

Unit Delay Enabled Resettable External IC
Delay signal one sample period, if external enable signal is on, with external Boolean
reset and initial condition

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Enabled Resettable External IC block combines the features of the Unit
Delay Enabled, Unit Delay External IC, and Unit Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When the enable signal
E is on and the reset signal R is false, the block outputs the input signal delayed by one
sample period.

When the enable signal E is on and the reset signal R is true, the block resets the current
state to the initial condition given by the signal IC, and outputs that state delayed by one
sample period.

When the enable signal is off, the block is disabled, and the state and output do not
change except for resets. The enable signal is on when E is not 0, and off when E is 0.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay Enabled Resettable External IC block accepts signals of the following
data types:

 Unit Delay Enabled Resettable External IC

1-2121

• Floating point
• Built-in integer
• Fixed point
• Boolean

The data types of the inputs u and IC must be the same. The output has the same data
type as u and IC.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

1 Blocks — Alphabetical List

1-2122

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Direct Feedthrough No, of the input port

No, of the enable port

Yes, of the enable port

Yes, of the external IC port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay External IC, Unit Delay
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

 Unit Delay External IC

1-2123

Unit Delay External IC
Delay signal one sample period, with external initial condition

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay External IC block delays its input by one sample period. This block is
equivalent to the z-1 discrete-time operator. The block accepts one input and generates
one output, both of which can be scalar or vector. If the input is a vector, all elements of
the vector are delayed by the same sample period.

The block's output for the first sample period is equal to the signal IC.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay External IC block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The data types of the inputs u and IC must be the same. The output has the same data
type as u and IC.

1 Blocks — Alphabetical List

1-2124

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Direct Feedthrough No, of the input port

Yes, of the external IC port

 Unit Delay External IC

1-2125

Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay
With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2126

Unit Delay Resettable
Delay signal one sample period, with external Boolean reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Resettable block delays a signal one sample period.

The block can reset both its state and output based on an external reset signal R. The
block has two input ports, one for the input signal u and the other for the external reset
signal R.

At the start of simulation, the block's Initial condition parameter determines its
initial output. During simulation, when the reset signal is false, the block outputs the
input signal delayed by one time step. When the reset signal is true, the block resets the
current state and its output to the Initial condition.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay Resettable block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point

 Unit Delay Resettable

1-2127

• Boolean
• Enumerated

The output has the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time

1 Blocks — Alphabetical List

1-2128

Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough No, of the input port

Yes, of the reset port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable External IC, Unit Delay
With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

 Unit Delay Resettable External IC

1-2129

Unit Delay Resettable External IC
Delay signal one sample period, with external Boolean reset and initial condition

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Resettable External IC block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The block has two input
ports, one for the input signal u and the other for the reset signal R. When the reset
signal is false, the block outputs the input signal delayed by one time step. When the
reset signal is true, the block resets the current state to the initial condition given by the
signal IC and outputs that state delayed by one time step.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay Resettable External IC block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The data types of the inputs u and IC must be the same. The output has the same data
type as u and IC.

1 Blocks — Alphabetical List

1-2130

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter

 Unit Delay Resettable External IC

1-2131

Direct Feedthrough No, of the input port

Yes, of the reset port

Yes, of the external IC port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2132

Unit Delay With Preview Enabled
Output signal and signal delayed by one sample period, if external enable signal is on

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Enabled block supports calculations that have feedback
and depend on the current input.

The block has two input ports: one for the input signal u and one for the external enable
signal E.

When the enable signal E is on, the first port outputs the signal and the second port
outputs the signal delayed by one sample period. When the enable signal E is off, the
block is disabled, and the state and output values do not change, except during resets.

The enable signal is on when E is not 0, and off when E is 0. This enable action is
vectorized and supports scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result
includes the most recent inputs. The second output can feed back into calculations of the
block's inputs without causing an algebraic loop. Meanwhile, the first output shows the
most up-to-date calculations.

You specify the block output for the first sampling period with the value of the Initial
condition parameter.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

 Unit Delay With Preview Enabled

1-2133

Data Type Support

The Unit Delay With Preview Enabled block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The outputs have the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2134

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Characteristics

Direct Feedthrough Yes, to first output port

 Unit Delay With Preview Enabled

1-2135

No, to second output port
Sample Time Specified in the Sample time parameter
Scalar Expansion Yes
Zero-Crossing Detection No

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, to first output port

No, to second output port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled Resettable, Unit Delay
With Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2136

Unit Delay With Preview Enabled Resettable
Output signal and signal delayed by one sample period, if external enable signal is on,
with external reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Enabled Resettable block supports calculations that have
feedback and depend on the current input. The block can reset its state based on a reset
signal R.

The block has three input ports: one for the input signal u, one for the external enable
signal E, and one for the external reset signal R.

When the enable signal E is on and the reset signal R is false, the first port outputs the
signal and the second port outputs the signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets the current
state to the initial condition given by the Initial condition parameter. The first output
signal is forced to equal the initial condition. The second output signal is not affected
until one time step later.

When the enable signal is off, the block is disabled, and the state and output values do
not change, except during resets.

The enable signal is on when E is not 0, and off when E is 0. The enable and reset actions
are vectorized and support scalar expansion.

 Unit Delay With Preview Enabled Resettable

1-2137

Having two outputs is useful for implementing recursive calculations where the result
includes the most recent inputs. The second output can feed back into calculations of the
block's inputs without causing an algebraic loop. Meanwhile, the first output shows the
most up-to-date calculations.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay With Preview Enabled Resettable block accepts signals of the following
data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The outputs have the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2138

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

 Unit Delay With Preview Enabled Resettable

1-2139

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, to first output port

No, to second output port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With Preview
Enabled Resettable External RV, Unit Delay With Preview Resettable,
Unit Delay With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2140

Unit Delay With Preview Enabled Resettable External
RV

Output signal and signal delayed by one sample period, if external enable signal is on,
with external RV reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Enabled Resettable External RV block supports
calculations that have feedback and depend on the current input. The block can reset its
state based on a reset signal R.

The block has four input ports: one for the input signal u, one for the external enable
signal E, one for the external reset signal R, and one for the external reset value RV.

When the enable signal E is on and the reset signal R is false, the first port outputs the
signal and the second port outputs the signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the first output signal is
forced to equal the reset value RV. The second output signal is not affected until one time
step later, at which time it is equal to the reset value RV at the previous time step. The
internal Initial condition has a direct effect on the second output only when the model
starts or when a parent enabled subsystem is reset.

When the enable signal is off, the block is disabled, and the state and output values do
not change, except during resets.

 Unit Delay With Preview Enabled Resettable External RV

1-2141

The enable signal is on when E is not 0, and off when E is 0. The enable and reset actions
are vectorized and support scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result
includes the most recent inputs. The second output can feed back into calculations of the
block's inputs without causing an algebraic loop. Meanwhile, the first output shows the
most up-to-date calculations.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay With Preview Enabled Resettable External RV block accepts signals of
the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The outputs have the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2142

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

 Unit Delay With Preview Enabled Resettable External RV

1-2143

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, to first output port

No, to second output port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With Preview
Enabled Resettable, Unit Delay With Preview Resettable, Unit Delay
With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2144

Unit Delay With Preview Resettable
Output signal and signal delayed by one sample period, with external reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Resettable block supports calculations that have feedback
and depend on the current input. The block can reset its state based on a reset signal R.

The block has two input ports: one for the input signal u and one for the external reset
signal R.

When the reset signal R is false, the first port outputs the signal and the second port
outputs the signal delayed by one sample period.

When the reset signal R is true, the block resets the current state to the initial condition
given by the Initial condition parameter. The first output signal is forced to equal the
initial condition. The second output signal is not affected until one time step later.

This reset action is vectorized and supports scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result
includes the most recent inputs. The second output can feed back into calculations of the
block's inputs without causing an algebraic loop. Meanwhile, the first output shows the
most up-to-date calculations.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

 Unit Delay With Preview Resettable

1-2145

Data Type Support

The Unit Delay With Preview Resettable block accepts signals of the following data
types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The outputs have the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2146

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

 Unit Delay With Preview Resettable

1-2147

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, to first output port

No, to second output port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With Preview
Enabled Resettable, Unit Delay With Preview Enabled Resettable
External RV, Unit Delay With Preview Resettable External RV

Introduced before R2006a

1 Blocks — Alphabetical List

1-2148

Unit Delay With Preview Resettable External RV

Output signal and signal delayed by one sample period, with external RV reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Resettable External RV block supports calculations that
have feedback and depend on the current input. The block can reset its state based on a
reset signal R.

The block has three input ports: one for the input signal u, one for the external reset
signal R, and one for the external reset value RV.

When the reset signal R is false, the first port outputs the signal and the second port
outputs the signal delayed by one sample period.

When the reset signal R is true, the first output signal is forced to equal the reset value
RV. The second output signal is not affected until one time step later, at which time it is
equal to the reset value RV at the previous time step. The internal Initial condition has
a direct effect on the second output only when the model starts or when a parent enabled
subsystem is reset.

This reset action is vectorized and supports scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result
includes the most recent inputs. The second output can feed back into calculations of the

 Unit Delay With Preview Resettable External RV

1-2149

block's inputs without causing an algebraic loop. Meanwhile, the first output shows the
most up-to-date calculations.

You specify the time between samples with the Sample time parameter. A setting of -1
means that the block inherits the Sample time.

Data Type Support

The Unit Delay With Preview Resettable External RV block accepts signals of the
following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The outputs have the same data type as the input u. For enumerated signals, the Initial
condition must be of the same enumerated type as the input u.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2150

Parameters and Dialog Box

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

 Unit Delay With Preview Resettable External RV

1-2151

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, to first output port

No, to second output port
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With Preview
Enabled Resettable, Unit Delay With Preview Enabled Resettable
External RV, Unit Delay With Preview Resettable

Introduced before R2006a

1 Blocks — Alphabetical List

1-2152

Variable Integer Delay
Delay input signal by variable sample period

Library
Discrete

Description
The Variable Integer Delay block is a variant of the Delay block that has the source of
the delay length set to Input port, by default.

Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated | Bus

 Variable Integer Delay

1-2153

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

See Also
Delay | Resettable Delay | Tapped Delay | Unit Delay

Introduced in R2012b

1 Blocks — Alphabetical List

1-2154

Variable Time Delay, Variable Transport Delay

Delay input by variable amount of time

Library

Continuous

Description

The Variable Transport Delay and Variable Time Delay appear as two blocks in the
Simulink block library. However, they are the same Simulink block with different
settings of a Select delay type parameter. Use this parameter to specify the mode in
which the block operates.

Variable Time Delay

In this mode, the block has a data input, a time delay input, and a data output. (See
“How to Rotate a Block” in the Simulink documentation for a description of the port order
for various block orientations.) The output at the current time step equals the value of its
data input at a previous time step. This time step is the current simulation time minus a
delay time specified by the time delay input.

y t u t t u t t() () (())= - = -0 t

u(t)

τ(t)
y(t) = u(t − τ(t))

To

Variable
Time Delay

−C−

−C−

 Variable Time Delay, Variable Transport Delay

1-2155

During the simulation, the block stores time and input value pairs in an internal buffer.
At the start of simulation, the block outputs the value of the Initial output parameter
until the simulation time exceeds the time delay input. Then, at each simulation step,
the block outputs the signal at the time that corresponds to the current simulation time
minus the delay time.

If you want the output at a time between input storing times and the solver is a
continuous solver, the block interpolates linearly between points. If the time delay is
smaller than the step size, the block extrapolates an output point from a previous point.
For example, consider a fixed-step simulation with a step size of 1 and the current time
at t = 5. If the delay is 0.5, the block needs to generate a point at t = 4.5, but the most
recent stored time value is at t = 4. Thus, the block extrapolates the input at 4.5 from the
input at 4 and uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less accurate result
than extrapolating back from the current time step. However, the block cannot use the
current input to calculate its output value because the input port does not have direct
feedthrough.

If the model specifies a discrete solver, the block does not interpolate between time steps.
Instead, it returns the nearest stored value that precedes the required value.

Variable Transport Delay

In this mode, the block output at the current time step is equal to the value of its
data (top, or left) input at an earlier time step equal to the current time minus a
transportation delay.

y t u t t td() (())= -

Simulink software finds the transportation delay, t t
d

() , by solving the following
equation:

1
1

t
d

i
t t t

t

d (() t
t

)
=

-Ú

This equation involves an instantaneous time delay, t t
i
() , given by the time delay

(bottom, or right) input.

1 Blocks — Alphabetical List

1-2156

u(t)

t
i
(t)

y(t) = u(t − t
d
(t))

Ti

Variable
Transport Delay

−C−

1

Suppose you want to use this block to model the fluid flow through a pipe where the fluid
speed varies with time. In this case, the time delay input to the block is

t t
L

v t
i

i

()
()

=

where L is the length of the pipe and v t
i
() is the speed of the fluid.

Data Type Support

The Variable Time Delay and Variable Transport Delay blocks accept and output real
signals of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The parameters and dialog box differ, based on the mode in which the block is operating:
variable time or variable transport. Most parameters exist in both modes.

The dialog box for the Variable Time Delay block appears as follows.

 Variable Time Delay, Variable Transport Delay

1-2157

1 Blocks — Alphabetical List

1-2158

The dialog box for the Variable Transport Delay block appears as follows.

 Variable Time Delay, Variable Transport Delay

1-2159

1 Blocks — Alphabetical List

1-2160

 Variable Time Delay, Variable Transport Delay

1-2161

Select delay type

Specify the mode in which the block operates.

Settings

Default: The Variable Time Delay block has a default value of Variable time delay.
The Variable Transport Delay block has a default value of Variable transport
delay.

Variable time delay

Specifies a Variable Time Delay block.
Variable transport delay

Specifies a Variable Transport Delay block.

Dependencies

Setting this parameter to Variable time delay enables the Handle zero delay
parameter.

Setting this parameter to Variable transport delay enables the Absolute
tolerance and State Name parameters.

Command-Line Information
Parameter: VariableDelayType
Type: string
Value: 'Variable transport delay' | 'Variable time delay'
Default: 'Variable time delay'

1 Blocks — Alphabetical List

1-2162

Maximum delay

Set the maximum value of the time delay input.

Settings

Default: 10

• This value defines the largest time delay input that this block allows. The block clips
any delay that exceeds this value.

• This value cannot be negative. If the time delay becomes negative, the block clips it to
zero and issues a warning message.

Command-Line Information
Parameter: MaximumDelay
Type: scalar or vector
Value: '10'
Default: '10'

 Variable Time Delay, Variable Transport Delay

1-2163

Initial output

Specify the output that the block generates until the simulation time first exceeds the
time delay input.

Settings

Default:Run-to-run tunable parameter

A Run-to-run tunable parameter cannot be changed during simulation run time.
However, changing it before a simulation begins will not cause Accelerator or Rapid
Accelerator to regenerate code. Also, the initial output of this block cannot be inf or NaN.

Command-Line Information
Parameter: InitialOutput
Type: scalar or vector
Value: '0'
Default: '0'

1 Blocks — Alphabetical List

1-2164

Initial buffer size

Define the initial memory allocation for the number of input points to store. The input
points define the history of the input signal up to the current simulation time.

Settings

Default: 1024

• If the number of input points exceeds the initial buffer size, the block allocates
additional memory.

• After simulation ends, a message displays if the buffer is not sufficient and more
memory needs to be allocated.

Tips

• Because allocating memory slows down simulation, choose this value carefully if
simulation speed is an issue.

• For long time delays, this block might use a large amount of memory, particularly for
dimensionalized input.

Command-Line Information
Parameter: MaximumPoints
Type: scalar
Value: '1024'
Default: '1024'

 Variable Time Delay, Variable Transport Delay

1-2165

Use fixed buffer size

Specify use of a fixed-size buffer to save input data from previous time steps.

Settings

Default: Off

 On
The block uses a fixed-size buffer.

 Off
The block does not use a fixed-size buffer.

The Initial buffer size parameter specifies the buffer size. If the buffer is full, new
data replaces data already in the buffer. Simulink software uses linear extrapolation to
estimate output values that are not in the buffer.

Note: ERT or GRT code generation uses a fixed-size buffer even if you do not select this
check box.

Tips

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so might yield

inaccurate results.

Command-Line Information
Parameter: FixedBuffer
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-2166

Handle zero delay

Convert this block to a direct feedthrough block.

Settings

Default: Off

 On
The block uses direct feedthrough.

 Off
The block does not use direct feedthrough.

Dependency

Setting Select delay type to Variable time delay enables this parameter.

Command-Line Information
Parameter: ZeroDelay
Type: string
Value: 'off' | 'on'
Default: 'off'

 Variable Time Delay, Variable Transport Delay

1-2167

Direct feedthrough of input during linearization

Cause the block to output its input during linearization and trim, which sets the block
mode to direct feedthrough.

Settings

Default: Off

 On
Enables direct feedthrough of input.

 Off
Disables direct feedthrough of input.

Tips

• Selecting this check box can cause a change in the ordering of states in the model
when you use the functions linmod, dlinmod, or trim. To extract this new state
ordering:

1 Compile the model using the following command, where model is the name of the
Simulink model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');

2 Terminate the compilation with the following command.

 model([],[],[],'term');

• The output argument x_str, which is a cell array of the states in the Simulink
model, contains the new state ordering. When you pass a vector of states as input to
the linmod, dlinmod, or trim functions, the state vector must use this new state
ordering.

Command-Line Information
Parameter: TransDelayFeedthrough
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-2168

Pade order (for linearization)

Set the order of the Pade approximation for linearization routines.

Settings

Default: 0

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a

more accurate linear model of the transport delay.

Command-Line Information
Parameter: PadeOrder
Type: string
Value: '0'
Default: '0'

 Variable Time Delay, Variable Transport Delay

1-2169

Absolute tolerance

Specify the absolute tolerance for computing the block state.

Default: auto

• You can enter auto, -1, or a positive real scalar or vector.
• If you enter auto, or -1, then Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute the block states.
• If you enter a real scalar, then that value overrides the absolute tolerance in the

Configuration Parameters dialog box for computing all block states.
• If you enter a real vector, then the dimension of that vector must match the

dimension of the continuous states in the block. These values override the absolute
tolerance in the Configuration Parameters dialog box.

Dependency

Setting Select delay type to Variable transport delay enables this parameter.

Command-Line Information
Parameter: AbsoluteTolerance
Type: string, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State Name (e.g., 'position')

Assign a unique name to each state.

Settings

Default: ' '

If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

1 Blocks — Alphabetical List

1-2170

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string, cell array, or structure.

Dependency

Setting Select delay type to Variable transport delay enables this parameter.

Command-Line Information
Parameter: ContinuousStateAttributes
Type: string
Value: ' ' | user-defined
Default: ' '

Examples

The sldemo_VariableTransportDelay and
sldemo_VariableTransportDelay_pipe models show how you can use the Variable
Transport Delay block.

The sldemo_VariableTransportDelay model shows how to model vertical wheel
displacement on a one-dimensional car. The Variable Transport Delay block models the
delay in vertical displacement of the rear wheel when the road profile changes:

 Variable Time Delay, Variable Transport Delay

1-2171

The sldemo_VariableTransportDelay_pipe model shows how to model
incompressible flow through a fixed-length pipe. The Variable Transport Delay block
models the delay in temperature change at the outlet when fluid flow occurs:

1 Blocks — Alphabetical List

1-2172

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Yes, of the time delay (second) input
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Transport Delay

Introduced in R2007a

 Variant Subsystem

1-2173

Variant Subsystem

Represent a subsystem with multiple subsystems

Library

Ports & Subsystems

Description

Variant subsystems provide multiple implementations for a subsystem where only one
implementation is active during simulation. You can programmatically swap out the
active implementation with another implementation without modifying the model.

The Variant Subsystem block includes multiple child subsystems, where only one
subsystem is active during simulation. The Variant Subsystem block can include Inport,
Outport, and Connection Port blocks. There are no drawn connections inside the Variant
Subsystem block. Each child subsystem is associated with a variant control, which is
created in the base workspace. The variant control that evaluates to true, determines
the active variant.

Data Type Support

For information on the data types accepted by a subsystem input ports, see Inport
block. For information on data types output by a subsystem output ports, see Outport
block.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2174

Mapping Inports and Outports

Each subsystem block within a Variant Subsystem represents one variant configuration.
These subsystem blocks can have different numbers of inports and outports than their
parent variant subsystem, provided the following conditions are satisfied.

• The inport names on a variant are a subset of the inport names used by the parent
variant subsystem.

• The outport names on a variant are a subset of the outport names used by the parent
variant subsystem.

During simulation, Simulink disables the inactive ports in a variant subsystem block.

Parameters and Dialog Box

 Variant Subsystem

1-2175

• “Variant choices (list of child subsystems)” on page 1-2176
• “Name (read-only)” on page 1-2178
• “Variant Control” on page 1-2179
• “Condition (read-only)” on page 1-2180
• “Override variant conditions and use following variant” on page 1-2181
• “Variant” on page 1-2182
• “Analyze all choices during update diagram and generate preprocessor conditionals”

on page 1-2183

1 Blocks — Alphabetical List

1-2176

Variant choices (list of child subsystems)

Displays a table of variant choices, variant control, and conditions. The Variant control
that evaluates to true determines the active variant.

Settings

Default: The table has a row for each subsystem in the Variant Subsystem block. If the
Variant Subsystem block does not contain any subsystems, then the table is empty. See
each column parameter for its default value:

• “Name (read-only)” on page 1-2178
• “Variant Control” on page 1-2179
• “Condition (read-only)” on page 1-2180

Tip

You can use buttons to the left of the Variant choices table to modify the elements in
the table.

To... Click...

Create and add a new subsystem choice: Places a new
subsystem choice in the table and creates a new subsystem block
in the Variant Subsystem block diagram.
Create and add a new model variant choice: Places a new
model choice in the table and creates a model block in the Variant
Subsystem block diagram.
Create/Edit selected variant object: Creates a
Simulink.Variant object in the base workspace and opens the
Simulink.Variant object parameter dialog box to specify the
variant Condition.
Open selected variant choice block: Opens the subsystem
block diagram for the selected row in the Variant choices table.

Refresh dialog information from variant subsystem
contents: Updates the Variant choices table according to the
Subsystem block configuration and values of the variant control
in the base workspace.

 Variant Subsystem

1-2177

See Also

• “Define, Configure, and Activate Variants”
• “Switch Between Variant Choices”

1 Blocks — Alphabetical List

1-2178

Name (read-only)

Name of the subsystem or model variant choice (contained in the Variant Subsystem
block)

Settings

A read-only field, based on the subsystem or model variant choice contained in the
Variant Subsystem block.

Click to add a subsystem variant choice or to add a model variant choice to the
Variant Subsystem block.

 Variant Subsystem

1-2179

Variant Control

Displays the variant controls available in the base workspace. The variant control can be
a boolean condition expression, or a Simulink.Variant object representing a boolean
condition expression. If you want to generate code for your model, you must define the
control variables as Simulink.Parameter objects.

Settings

Default: Variant

To enter a variant name, double-click a Variant control cell in a new row and type in
the variant control expression.

Command-Line Information

To programmatically change this parameter, access the VariantControl parameter of
the child subsystem or model inside the parent variant subsystem. For example, consider
a Variant Subsystem block LeftController that contains two variant choices: Linear
and Nonlinear. To edit the variant control for Linear, run the following command:

set_param('rtwdemo_preprocessor_subsys/LeftController/Linear',...

'VariantControl','NONLINEAR');

Structure field: Represented by the read-only variant.Name field in the Variant
parameter structure
Type: string
Value: Variant control that is associated with the variant choice.
Default: ''

1 Blocks — Alphabetical List

1-2180

Condition (read-only)

Displays the Condition for the variant controls that are of type Simulink.Variant
object.

Settings

A read-only field, based on the condition for the associated variant control in the base
workspace. Create or change a variant condition in the Simulink.Variant parameter
dialog box or in the base workspace.

See Also

• “Create, Export, and Reuse Variant Controls”
• Simulink.Variant

 Variant Subsystem

1-2181

Override variant conditions and use following variant

Specify whether to designate the active variant from the evaluation of the variant
conditions or from the value of the Variant parameter.

Settings

Default: Off

 On
Override the variant conditions and set the active variant to the variant choice
represented by the Variant field.

 Off
Determine the active variant by the value of the variant conditions.

Dependencies

This parameter enables Variant.

Command-Line Information
Parameter: OverrideUsingVariant
Type: string
Value: '' if no overriding variant is specified.
Default: ''

See Also

• “Set and Open Active Variants”

1 Blocks — Alphabetical List

1-2182

Variant

Specify the name of the variant to use if you select Override variant conditions and
use the following variant.

Settings

Default: ''

Must be a valid MATLAB identifier.

Tips

You can use the Variant drop-down list to see a list of all variants currently in the base
workspace.

Dependencies

Enable variants and Override variant conditions and use the following variant
enables this parameter.

Command-Line Information
Parameter: OverrideUsingVariant
Type: string
Value: Specified by the variant control expression.

See Also

• Simulink.Variant

 Variant Subsystem

1-2183

Analyze all choices during update diagram and generate preprocessor
conditionals

When generating code for an ERT target, this parameter determines whether variant
choices are enclosed within C preprocessor conditional statements (#if).

When you select this option, Simulink analyzes all variant choices during an update
diagram or simulation. This analysis provides early validation of the code generation
readiness of all variant choices.

Settings

Default: Disabled

Dependencies

• The check box is available for generating only ERT targets.
• Override variant conditions and use following variant is cleared ('off')

Command-Line Information
Parameter: GeneratePreprocessorConditionals
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

• “Define, Configure, and Activate Variants”
• “Variant Systems”

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-2184

Introduced in R2010b

 Vector Concatenate, Matrix Concatenate

1-2185

Vector Concatenate, Matrix Concatenate
Concatenate input signals of same data type to create contiguous output signal

Library

Math Operations, Signal Routing

Description

The Concatenate block concatenates the signals at its inputs to create an output signal
whose elements reside in contiguous locations in memory.

Tip The Concatenate block is useful for creating an output signal that is nonvirtual.
However, to create a vector of function calls, use a Mux block instead.

You use a Concatenate block to define an array of buses. For details about defining an
array of buses, see “Combine Buses into an Array of Buses”.

The Concatenate block operates in either vector or multidimensional array concatenation
mode, depending on the setting of its Mode parameter. In either case, the block
concatenates the inputs from the top to bottom, or left to right, input ports.

Vector Mode

In vector mode, all input signals must be either vectors or row vectors [1xM matrices]
or column vectors [Mx1 matrices] or a combination of vectors and either row or column
vectors. The output is a vector if all inputs are vectors.

The output is a row or column vector if any of the inputs are row or column vectors,
respectively.

1 Blocks — Alphabetical List

1-2186

Multidimensional Array Mode

Multidimensional array mode accepts vectors and arrays of any size. It assumes that
the trailing dimensions are all ones for input signals with lower dimensionality. For
example, if the output is 4-D and the input is [2x3] (2-D) this block treats the input
as [2x3x1x1]. The output is always an array. The block's Concatenate dimension
parameter allows you to specify the output dimension along which the block concatenates
its input arrays.

If you set the Concatenate dimension parameter to 2 and inputs are 2-D matrices, the
block performs horizontal matrix concatenation and places the input matrices side-by-
side to create the output matrix, for example:

If you set the Concatenate dimension parameter to 1 and inputs are 2-D matrices, the
block performs vertical matrix concatenation and stacks the input matrices on top of each
other to create the output matrix, for example:

 Vector Concatenate, Matrix Concatenate

1-2187

For horizontal concatenation, the input matrices must have the same column dimension.
For vertical concatenation, the input matrices must have the same row dimension.
All input signals must have the same dimension for all dimensions other than the
concatenation dimensions.

If you set the Mode parameter to Multidimensional array, the Concatenate
dimension parameter to 3, and the inputs are 2-D matrices, the block performs
multidimensional matrix concatenation, for example:

Data Type Support

Accepts signals of any data type that Simulink supports, including fixed-point,
enumerated, and nonvirtual bus data types. All inputs must be of the same data type.
Outputs have the same data type as the input.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The parameters and dialog box differ, based on the mode in which the block is operating:
vector or matrix. Most parameters exist in both modes.

The dialog box for the Vector Concatenate block appears as follows.

1 Blocks — Alphabetical List

1-2188

The dialog box for the Matrix Concatenate block appears as follows.

 Vector Concatenate, Matrix Concatenate

1-2189

1 Blocks — Alphabetical List

1-2190

Number of inputs

Specifies the number of inputs for the block.

Settings

Default: 2

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Vector Concatenate, Matrix Concatenate

1-2191

Mode

Select the type of concatenation that this block performs.

Settings

Default: Vector (for the Vector Concatenate block), Multidimensional array (for
the Matrix Concatenate block)

Vector

Perform vector concatenation (see “Vector Mode” on page 1-2185 for details).
Multidimensional array

Perform matrix concatenation (see “Multidimensional Array Mode” on page 1-2186
for details).

Dependency

This parameter enables Concatenate dimension.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2192

Concatenate dimension

Specifies the output dimension along which to concatenate the input arrays.

Settings

Default: 2

• Enter 1 to concatenate input arrays vertically.
• Enter 2 to concatenate input arrays horizontally.
• Enter a higher dimension to perform multidimensional concatenation on the inputs.

Dependency

Selecting Multidimensional array for Mode enables this parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

cat in the MATLAB reference documentation

Introduced in R2009b

 Weighted Sample Time

1-2193

Weighted Sample Time
Support calculations involving sample time

Library

Signal Attributes

Description

The Weighted Sample Time block is an implementation of the Weighted Sample Time
Math block. See Weighted Sample Time Math for more information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-2194

Waveform Generator

Output waveforms using signal notations

Library

Sources

Description

The Waveform Generator block outputs waveforms based on signal notations that you
enter in the Waveform Definition table.

This block supports these syntaxes for the signal notations:

• Function syntax — Specify all arguments in the specific order for the signal syntax
(see “Supported Waveforms” on page 1-2195).

• Name-value syntax — Specify optional comma-separated pairs of Name,Value
arguments. Name is the argument name and Value is the corresponding value. Name
must appear inside single quotes (' '). You can specify several name and value
pair arguments in any order as Name1,Value1,...,NameN,ValueN. For more
information, see “Supported Waveforms” on page 1-2195.

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Supported Operators

Operation Operator

Absolute value abs()

Addition +

Division /

 Waveform Generator

1-2195

Operation Operator

Multiplication *

Parentheses ()

Subtraction -

Unary minus -

The Waveform block observes the following rules of operator precedence:

1 ()

2 + - (unary)
3 * /

4 + -

Supported Waveforms

Enter signal notations in the Waveform Definition table, one waveform definition per
line. To add a waveform definition, click Add. The new waveform appears as an empty
string. The block interprets empty strings or white space strings as ground.

To remove a waveform definition, click Remove. You can select multiple waveforms
using Ctrl+click or Shift+click.

• “Constant” on page 1-2195
• “Gaussian Noise” on page 1-2196
• “Pulse” on page 1-2197
• “Sawtooth” on page 1-2198
• “Sine Wave” on page 1-2199
• “Square” on page 1-2201
• “Step” on page 1-2202

Constant

Constant values can be:

1 Blocks — Alphabetical List

1-2196

• Numbers
• Workspace variables

• Scalar, real variables only
• Built-in MATLAB constant, pi

Examples

• 1

• 1.1

• x

• pi

Gaussian Noise

Syntax

gaussian(mean,variance,seed)

gaussian('Mean',mean,'Variance',variance,'Seed',seed)

Input Arguments

• mean — Mean value of the random variable output.

• Default: 0
• variance — Standard deviation squared of the random variable output.

• Default: 1
• Value: Positive constant or positive real scalar variable

• seed — Initial seed value for the random number generator.

• Default: 0
• Value: Constant or real scalar variable

Example

gaussian('Mean',0,'Variance',10,'Seed',1)

 Waveform Generator

1-2197

Pulse

Syntax

pulse(amplitude,trigger_time,duration)

pulse('Amplitude',amplitude,'TriggerTime',trigger_time,'Duration',duration)

Input Arguments

• amplitude — Value of signal when pulse is high.

• Default: 1
• trigger_time — Elapsed simulation time when signal changes to amplitude, in

seconds.

• Default: 1
• Value: Constant or real scalar variable

• duration — How long the signal remains at the given amplitude before returning to
ground, in seconds.

• Default: 1

1 Blocks — Alphabetical List

1-2198

• Value: Positive constant or positive real scalar variable

Example

pulse('Amplitude',1,'TriggerTime',1,'Duration',1)

Sawtooth

Syntax

sawtooth(amplitude,frequency,phase_offset)

sawtooth('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_offset)

Input Arguments

• amplitude — Sawtooth peak value.

• Default: 1
• frequency — Waveform frequency, in rad/s.

• Default: 1

 Waveform Generator

1-2199

• phase_offset — Horizontal signal shift, based on elapsed simulation time, in
seconds.

• Default: 0

Example

sawtooth('Amplitude',1,'Frequency',1,'Phase',0)

Sine Wave

Syntax

sin(amplitude,frequency,phase_offset)

1 Blocks — Alphabetical List

1-2200

sin('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_offset)

Input Arguments

• amplitude — Amplitude of sine wave.

• Default: 1
• frequency — Waveform frequency, in rad/s.

• Default: 1
• phase_offset — Phase offset, in rads.

• Default: 0

Examples

sin('Amplitude',1,'Frequency',1,'Phase',0)

To get the cosine waveform:

sin('Amplitude',1,'Frequency',1,'Phase',pi/2)

 Waveform Generator

1-2201

Square

Syntax

square(amplitude,frequency,phase_delay,duty_cycle)

square('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_delay,...

'DutyCycle',duty_cycle)

Input Arguments

• amplitude — Amplitude of signal.

• Default: 1
• frequency — Waveform frequency in rad/s.

• Default: 1
• phase_delay — Horizontal signal shift based on elapsed simulation time, in seconds.

• Default: 0
• duty_cycle — Percentage of high signal per period (0–100%). The block clips the

minimum signal to 0% and the maximum signal to 100%.

1 Blocks — Alphabetical List

1-2202

• Default: 50

Example

square('Amplitude',1,'Frequency',1,'Phase',0,'DutyCycle',50)

Step

Syntax

step(step_time,initial_value,final_value)

step('StepTime',step_time,'InitialValue',initial_value,'FinalValue',final_value)

Input Arguments

• step_time — Elapsed simulation time when signal changes from initial value to
final value, in seconds.

• Default: 1
• Value: Constant or positive real scalar variable.

 Waveform Generator

1-2203

• initial_value — Value of signal when elapsed simulation time is less than
step_time, in seconds.

• Default: 0
• final_value — Value of signal when elapsed simulation time is greater than or

equal to step time, in seconds.

• Default: 1

Example

step('StepTime',1,'InitialValue',0,'FinalValue',1)

Supported Operations

The Waveform Generator block outputs one signal at a time. You can change this output
signal. Express frequency and phase offset parameters in radians. You can also:

• Nest signal notations, for example:
sin('Amplitude',sin('Amplitude',1,'Frequency',1,'Phase',0),'Frequency',1,'Phase',1)

1 Blocks — Alphabetical List

1-2204

• Reference real scalar variables in the base or model workspace, for example:

sin('Amplitude',x,'Frequency',y,'Phase',z)

x, y, and z exist in the base workspace.

For more information on waveforms, see “Supported Waveforms” on page 1-2195.

To quickly determine the response of a system to different types of inputs, you can vary
the output signal of the Waveform Generator block while a simulation is in progress.

 Waveform Generator

1-2205

Data Type Support

The Waveform Generator block outputs scalar values. The default data type is double.
However, the block also supports a large subset of Simulink data types, including fixed
point (see “Output data type” on page 1-800).

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1 Blocks — Alphabetical List

1-2206

Parameters and Dialog Box

Output Signal

Select the signal. The number corresponds to the line item in the Waveform Definition
table. You can change this parameter while a simulation is running.

 Waveform Generator

1-2207

Settings
Default: 1

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1 Blocks — Alphabetical List

1-2208

Output minimum

Lower value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string
Value: '[]'
Default: '[]'

 Waveform Generator

1-2209

Output maximum

Upper value of the output range that Simulink checks.

Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Check Parameter Values”) for some blocks
• Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range

Checking”)
• Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string
Value: '[]'
Default: '[]'

1 Blocks — Alphabetical List

1-2210

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via back propagation

Inherit: Inherit via back propagation

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type
int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type,
the output data type is sfix24. If Unspecified (assume 32-bit Generic),
i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output
data type is int32. If none of the word lengths provided by the target microprocessor
can accommodate the output range, Simulink software displays an error in the
Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the internal rule doesn’t meet your specific needs for
numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the

Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.
double

Output data type is double.
single

Output data type is single.

 Waveform Generator

1-2211

int8

Output data type is int8.
uint8

Output data type is uint8.
int16

Output data type is int16.
uint16

Output data type is uint16.
int32

Output data type is int32.
uint32

Output data type is uint32.
boolean

Output data type is boolean.
fixdt(1,16)

Output data type is fixed point fixdt(1,16).
fixdt(1,16,0)

Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2^0,0)

Output data type is fixed point fixdt(1,16,2^0,0).

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Control Signal Data Types” for more information.

1 Blocks — Alphabetical List

1-2212

Data type override

Specify data type override mode for this signal.

Settings

Default: double

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built in or Fixed point.

 Waveform Generator

1-2213

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-2214

Word length

Specify the bit size of the word that holds the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Waveform Generator

1-2215

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings

Default: Binary point

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.

Dependencies

Selecting Mode > Fixed point enables this parameter.

Selecting Binary point enables:

• Fraction length

Selecting Slope and bias enables:

• Slope
• Bias

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-2216

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

Selecting Scaling > Binary point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

 Waveform Generator

1-2217

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1 Blocks — Alphabetical List

1-2218

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

 On
Locks the output data type setting for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string
Value: 'off' | 'on'
Default: 'off'

See Also

For more information, see “Use Lock Output Data Type Setting”.

 Waveform Generator

1-2219

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero

Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information
Parameter: RndMeth
Type: string
Value: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' |
'Simplest' | 'Zero'
Default: 'Floor'

1 Blocks — Alphabetical List

1-2220

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

 Waveform Generator

1-2221

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

 On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

• In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information
Parameter: SaturateOnIntegerOverflow
Type: string
Value: 'off' | 'on'
Default: 'off'

1 Blocks — Alphabetical List

1-2222

Sample time

Enter the time interval between sample time hits or specify -1 to inherit the sample
time.

Settings
Default: 0.1

This value cannot be 0 (continuous) or inf (constant). For more information, see “Sample
Time”.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

 Waveform Generator

1-2223

Mode

Select the category of data to specify.

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables Inherit via back
propagation.

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right.
Select one of the following choices:

• double (default)
• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Fixed point

Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

1 Blocks — Alphabetical List

1-2224

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

 Waveform Generator

1-2225

>> (Show data type assistant)

Displays the Data Type Assistant, to help you to set the Output data type parameter.

1 Blocks — Alphabetical List

1-2226

Characteristics

Data Types See “Data Type Support” on page 1-2205
Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced in R2015b

 Weighted Sample Time Math

1-2227

Weighted Sample Time Math

Support calculations involving sample time

Library

Math Operations

Description

The Weighted Sample Time Math block adds, subtracts, multiplies, or divides its input
signal, u, by a weighted sample time, Ts. If the input signal is continuous, Ts is the
sample time of the Simulink model. Otherwise, Ts is the sample time of the discrete
input signal. If the input signal is constant, Simulink assigns a finite sample time to the
block based on its connectivity and context.

You specify the math operation with the Operation parameter. Additionally, you can
specify to use only the weight with either the sample time or its inverse.

Enter the weighting factor in the Weight value parameter. If the weight, w, is 1, that
value does not appear in the equation on the block icon.

The block computes its output using the precedence rules for MATLAB operators (see
“Operator Precedence” in the MATLAB documentation). For example, if the Operation
parameter specifies +, the block calculates output using this equation:

u + (Ts * w)

However, if the Operation parameter specifies /, the block calculates output using this
equation:

(u / Ts) / w

1 Blocks — Alphabetical List

1-2228

Data Type Support

The Weighted Sample Time Math block accepts signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Weighted Sample Time Math block dialog box appears as follows:

 Weighted Sample Time Math

1-2229

Operation
Specify operation to use: +, -, *, /, Ts Only, or 1/Ts Only.

Weight value
Enter the weight of sample time.

Implement using
Select one of two modes: online calculations or offline scaling adjustment. This
parameter is visible only when you set Operation to * or /.

Result of (Ts * w) Output Data Type of Two
Modes

Block Execution

A power of 2, or an integer
value

The same, when Output
data type is Inherit:
Inherit via internal

rule

Equally efficient in both
modes

Not power of 2 and not an
integer value

Different More efficient for the offline
scaling mode

Note: When the Implement using parameter is not visible, operations default to
online calculations.

The Signal Attributes pane of the Weighted Sample Time Math block dialog box
appears as follows:

1 Blocks — Alphabetical List

1-2230

Tip The Saturate on integer overflow parameter is visible only if:

• The Operation parameter specifies + or -.
• The Operation parameter specifies * or / and the Implement using parameter

specifies Online Calculations.

Output data type
Specify whether the block inherits the output data type by an internal rule or back
propagation.

Tip If you enter an expression in the edit field, the expression must evaluate to one of
the two inherit rules.

 Weighted Sample Time Math

1-2231

Integer rounding mode
Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a
block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value
that the int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as int8, is -126.

1 Blocks — Alphabetical List

1-2232

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough For all math operations except Ts and 1/Ts
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

 While Iterator

1-2233

While Iterator

Repeatedly execute contents of subsystem at current time step while condition is
satisfied

Library

Ports & Subsystems

Description

The While Iterator block, when placed in a subsystem, repeatedly executes the contents
of the subsystem at the current time step while a specified condition is true.

Note: Placing a While Iterator block in a subsystem makes it an atomic subsystem if it is
not already an atomic subsystem.

The output of a While Iterator subsystem cannot be a function-call signal. Otherwise,
Simulink displays an error when you simulate the model or update the diagram.

You can use this block to implement the block-diagram equivalent of a C program while
or do-while loop. In particular, use While loop type to select one of the following while
loop modes:

• do-while

In this mode, the While Iterator block has one input, the while condition input, whose
source must reside in the subsystem. At each time step, the block runs all the blocks
in the subsystem once and then checks whether the while condition input is true.
If the input is true, the iterator block runs the blocks in the subsystem again. This

1 Blocks — Alphabetical List

1-2234

process continues as long as the while condition input is true and the number of
iterations is less than or equal to the Maximum number of iterations.

• while

In this mode, the iterator block has two inputs: a while condition input and an initial
condition (IC) input. The source of the initial condition signal must be external to the
while subsystem. At the beginning of the time step, if the IC input is true, the iterator
block executes the contents of the subsystem and then checks the while condition
input. If the while condition input is true, the iterator executes the subsystem again.
This process continues as long as the while condition input is true and the number
of iterations is less than or equal to the Maximum number of iterations. If the
IC input is false at the beginning of a time step, the iterator does not execute the
contents of the subsystem during the time step.

Tip Specify a maximum number of iterations to avoid infinite loops, which you can
break only by terminating MATLAB.

Data Type Support

Acceptable data inputs for the condition ports are any numeric data type that Simulink
supports, as well as any fixed-point type that includes a 0 value. For more information,
see “ Data Types Supported by Simulink” in the Simulink documentation.

The optional output port can output any of the following data types: double, int32,
int16, or int8.

 While Iterator

1-2235

Parameters and Dialog Box

Maximum number of iterations
Specify the maximum number of iterations allowed. A value of -1 allows any number
of iterations as long as the while condition input is true. Note that if you specify
-1 and the while condition never becomes false, the simulation will run forever. In
this case, the only way to stop the simulation is to terminate the MATLAB process.

1 Blocks — Alphabetical List

1-2236

Therefore, do not specify –1 as the value of this parameter unless you are certain that
the while condition becomes false at some point in the simulation.

While loop type
Specify the type of while loop that this block implements.

States when starting
Set this field to reset if you want the iterator block to reset the states of the blocks
in the while subsystem to their initial values at the beginning of each time step (i.e.,
before executing the first loop iteration in the current time step). To cause the states
of blocks in the subsystem to persist across time steps, set this field to held (the
default).

Show iteration number port
If you select this check box, the While Iterator block outputs its iteration value. This
value starts at 1 and is incremented by 1 for each succeeding iteration. By default,
this check box is not selected.

Output data type
If you select the Show iteration number port check box (the default), this field is
enabled. Use it to set the data type of the iteration number output to int32, int16,
int8, or double.

Examples

The While Iterator block can optionally output the current iteration number, starting at
1. The following model uses this capability to compute N, where N is the first N integers
whose sum is less than 100.

The contents of the While Iterator subsystem are:

 While Iterator

1-2237

The While Iterator block uses the following parameter settings:

• Maximum number of iterations set to 20
• States when starting set to reset

The model is the diagrammatic equivalent of the following pseudocode:

max_sum = 100;

sum = 0;

iteration_number = 0;

cond = (max_sum > 0);

while (cond != 0) {

 iteration_number = iteration_number + 1;

 sum = sum + iteration_number;

 if (sum > max_sum OR iteration_number > max_iterations)

 cond = 0;

}

Characteristics

Direct Feedthrough No
Sample Time Inherited from the driving block
Scalar Expansion No
Dimensionalized No
Zero-Crossing Detection No

1 Blocks — Alphabetical List

1-2238

Introduced before R2006a

 While Iterator Subsystem

1-2239

While Iterator Subsystem
Represent subsystem that executes repeatedly while condition is satisfied during
simulation time step

Library

Ports & Subsystems

Description

The While Iterator Subsystem block is a Subsystem block that is preconfigured to serve
as a starting point for creating a subsystem that executes repeatedly while a condition is
satisfied during a simulation time step.

See the While Iterator block and “Use Control Flow Logic” for more information.

When using simplified initialization mode, you cannot place any block needing elapsed
time within an Iterator Subsystem. In simplified initialization mode, Iterator subsystems
do not maintain elapsed time, so Simulink will report an error if any such block (such as
the Discrete-Time Integrator block) is placed within the subsystem. For more information
on simplified initialization modes, see “Underspecified initialization detection”.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes
Variable-Size Signals Yes
Code Generation Yes

1 Blocks — Alphabetical List

1-2240

Introduced before R2006a

 Width

1-2241

Width
Output width of input vector

Library

Signal Attributes

Description

The Width block generates as output the width of its input vector.

You can use an array of buses as an input signal to a Width block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Data Type Support

The Width block accepts real or complex signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean
• Enumerated

The Width block also supports mixed-type signal vectors.

When the Output data type mode is not Choose intrinsic data type, the block
supports only built-in numeric types. For more information, see “ Data Types Supported
by Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-2242

Parameters and Dialog Box

Note The Width block ignores the Data type override setting of the Fixed-Point Tool.

Output data type mode
Specify the output data type to be the same as the input, or inherit the data type by
back propagation. You can also choose to specify a built-in data type from the drop-
down list in the Output data type parameter.

Output data type
This parameter is visible when you select Choose intrinsic data type for
Output data type mode. Select a built-in data type from the drop-down list.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Constant
Multidimensional Signals Yes

 Width

1-2243

Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-2244

Wrap To Zero

Set output to zero if input is above threshold

Library

Discontinuities

Description

The Wrap To Zero block sets the output to zero when the input is above the Threshold
value. However, the block outputs the input when the input is less than or equal to the
Threshold.

Data Type Support

The Wrap To Zero block accepts inputs of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

The block output has the same data type as the input. For more information, see “ Data
Types Supported by Simulink” in the Simulink documentation.

Tip If the input data type cannot represent zero, parameter overflow occurs. To detect
this overflow, go to the Diagnostics > Data Validity pane of the Configuration
Parameters dialog box and set Parameters > Detect overflow to warning or error.

 Wrap To Zero

1-2245

Parameters and Dialog Box

Threshold
When the input exceeds the threshold, the block sets the output to zero.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1 Blocks — Alphabetical List

1-2246

XY Graph
Display X-Y plot of signals using MATLAB figure window

Library

Sinks

Description

The XY Graph block displays an X-Y plot of its inputs in a MATLAB figure window.

The block has two scalar inputs. The block plots data in the first input (the x direction)
against data in the second input (the y direction). (See “How to Rotate a Block” for a
description of the port order for various block orientations.) This block is useful for
examining limit cycles and other two-state data. Data outside the specified range does
not appear.

A figure window appears for each XY Graph block in the model at the start of simulation.

Data Type Support

The XY Graph block accepts real signals of the following data types:

• Floating point
• Built-in integer
• Fixed point
• Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

 XY Graph

1-2247

Parameters and Dialog Box

x-min
Specify the minimum x-axis value. The default is -1.

x-max

1 Blocks — Alphabetical List

1-2248

Specify the maximum x-axis value. The default is 1.
y-min

Specify the minimum y-axis value. The default is -1.
y-max

Specify the maximum y-axis value. The default is 1.
Sample time

Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the Simulink documentation for more
information.

Examples

The following model computes the points that define a circle of radius 4, centered at the
origin of the x-y plane.

When you simulate the model, a figure window appears.

 XY Graph

1-2249

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time Specified in the Sample time parameter
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation No

Introduced before R2006a

1 Blocks — Alphabetical List

1-2250

Zero-Order Hold

Implement zero-order hold of one sample period

Library

Discrete

Description

The Zero-Order Hold block holds its input for the sample period you specify. The block
accepts one input and generates one output. Each signal can be scalar or vector. If the
input is a vector, the block holds all elements of the vector for the same sample period.

You specify the time between samples with the Sample time parameter. A setting of -1
means the block inherits the Sample time.

Tip Do not use the Zero-Order Hold block to create a fast-to-slow transition between
blocks operating at different sample rates. Instead, use the Rate Transition block.

Comparison with Similar Blocks

Blocks with Similar Functionality

The Unit Delay, Memory, and Zero-Order Hold blocks provide similar functionality but
have different capabilities. Also, the purpose of each block is different. The sections that
follow highlight some of these differences.

 Zero-Order Hold

1-2251

Recommended Usage for Each Block

Block Purpose of the Block Reference Examples

Unit Delay Implement a delay using a
discrete sample time that you
specify. The block accepts and
outputs signals with a discrete
sample time.

• sldemo_enginewc

(Compression subsystem)

Memory Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed
in minor time step) signals and
outputs a signal that is fixed in
minor time step.

• sldemo_bounce

• sldemo_clutch (Friction
Mode Logic/Lockup FSM
subsystem)

Zero-Order

Hold

Convert an input signal with a
continuous sample time to an
output signal with a discrete
sample time.

• sldemo_radar_eml

• aero_dap3dof

Overview of Block Capabilities

BlockCapability

Unit Delay Memory Zero-Order Hold

Specification of
initial condition

Yes Yes No, because the block
output at time t = 0
must match the input
value.

Specification of
sample time

Yes No, because the block
can only inherit
sample time (from the
driving block or the
solver used for the
entire model).

Yes

Support for
frame-based
signals

Yes No Yes

1 Blocks — Alphabetical List

1-2252

BlockCapability

Unit Delay Memory Zero-Order Hold

Support for state
logging

Yes No No

Data Type Support
The Zero-Order Hold block accepts real or complex signals of any data type that Simulink
supports, including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample time, set this
parameter to -1. See “ Specify Sample Time” in the online documentation for more
information.

Do not specify a continuous sample time, either 0 or [0,0]. This block supports only
discrete sample times. When this parameter is -1, the inherited sample time must be
discrete and not continuous.

 Zero-Order Hold

1-2253

Bus Support

The Zero-Order Hold block is a bus-capable block. The input can be a virtual or
nonvirtual bus signal. No block-specific restrictions exist. All signals in a nonvirtual
bus input to a Zero-Order Hold block must have the same sample time, even if the
elements of the associated bus object specify inherited sample times. You can use a Rate
Transition block to change the sample time of an individual signal, or of all signals in a
bus. See “Composite Signals” and “Bus-Capable Blocks” for more information.

You can use an array of buses as an input signal to a Zero-Order Hold block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Examples

The following models show how to use the Zero-Order Hold block:

• sldemo_radar_eml

• aero_dap3dof

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Memory, Unit Delay

1 Blocks — Alphabetical List

1-2254

Introduced before R2006a

 Zero-Pole

1-2255

Zero-Pole

Model system by zero-pole-gain transfer function

Library

Continuous

Description

The Zero-Pole block models a system that you define with the zeros, poles, and gain of a
Laplace-domain transfer function. This block can model single-input single output (SISO)
and single-input multiple-output (SIMO) systems.

Conditions for Using This Block

The Zero-Pole block assumes the following conditions:

• The transfer function has the form

H s K
Z s

P s
K

s Z s Z s Z m

s P s P
()

()

()

(())(()) (())

(())(())
= =

- - -

- -

1 2

1 2

…

…((())
,

s P n-

where Z represents the zeros, P the poles, and K the gain of the transfer function.
• The number of poles must be greater than or equal to the number of zeros.
• If the poles and zeros are complex, they must be complex-conjugate pairs.
• For a multiple-output system, all transfer functions must have the same poles. The

zeros can differ in value, but the number of zeros for each transfer function must be
the same.

1 Blocks — Alphabetical List

1-2256

Note: You cannot use a Zero-Pole block to model a multiple-output system when the
transfer functions have a differing number of zeros or a single zero each. Use multiple
Zero-Pole blocks to model such systems.

Modeling a Single-Output System

For a single-output system, the input and the output of the block are scalar time-domain
signals. To model this system:

1 Enter a vector for the zeros of the transfer function in the Zeros field.
2 Enter a vector for the poles of the transfer function in the Poles field.
3 Enter a 1-by-1 vector for the gain of the transfer function in the Gain field.

Modeling a Multiple-Output System

For a multiple-output system, the block input is a scalar and the output is a vector,
where each element is an output of the system. To model this system:

1 Enter a matrix of zeros in the Zeros field.

Each column of this matrix contains the zeros of a transfer function that relates the
system input to one of the outputs.

2 Enter a vector for the poles common to all transfer functions of the system in the
Poles field.

3 Enter a vector of gains in the Gain field.

Each element is the gain of the corresponding transfer function in Zeros.

Each element of the output vector corresponds to a column in Zeros.

Transfer Function Display on the Block

The Zero-Pole block displays the transfer function depending on how you specify the zero,
pole, and gain parameters.

• If you specify each parameter as an expression or a vector, the block shows the
transfer function with the specified zeros, poles, and gain. If you specify a variable in
parentheses, the block evaluates the variable.

 Zero-Pole

1-2257

For example, if you specify Zeros as [3,2,1], Poles as (poles), where poles is
[7,5,3,1], and Gain as gain, the block looks like this:

• If you specify each parameter as a variable, the block shows the variable name
followed by (s) if appropriate.

For example, if you specify Zeros as zeros, Poles as poles, and Gain as gain, the
block looks like this:

Data Type Support

The Zero-Pole block accepts real signals of type double. For more information, see “ Data
Types Supported by Simulink” in the Simulink documentation.

1 Blocks — Alphabetical List

1-2258

Parameters and Dialog Box

 Zero-Pole

1-2259

Zeros

Define the matrix of zeros.

Settings

Default: [1]

Tips

• For a single-output system, enter a vector for the zeros of the transfer function.
• For a multiple-output system, enter a matrix. Each column of this matrix contains the

zeros of a transfer function that relates the system input to one of the outputs.

Command-Line Information
Parameter: Zeros
Type: vector
Value: '[1]'
Default: '[1]'

1 Blocks — Alphabetical List

1-2260

Poles

Define the vector of poles.

Settings

Default: [0 -1]

Tips

• For a single-output system, enter a vector for the poles of the transfer function.
• For a multiple-output system, enter a vector for the poles common to all transfer

functions of the system.

Command-Line Information
Parameter: Poles
Type: vector
Value: '[0 -1]'
Default: '[0 -1]'

 Zero-Pole

1-2261

Gain

Define the vector of gains.

Settings

Default: [1]

Tips

• For a single-output system, enter a 1-by-1 vector for the gain of the transfer function.
• For a multiple-output system, enter a vector of gains. Each element is the gain of the

corresponding transfer function in Zeros.

Command-Line Information
Parameter: Gain
Type: vector
Value: '[1]'
Default: '[1]'

1 Blocks — Alphabetical List

1-2262

Absolute tolerance

Specify the absolute tolerance for computing block states.

Settings

Default: auto

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the

Configuration Parameters dialog box (see “Solver Pane”) to compute block states.
• If you enter a real scalar, then that value overrides the absolute tolerance in the

Configuration Parameters dialog box for computing all block states.
• If you enter a real vector, then the dimension of that vector must match the

dimension of the continuous states in the block. These values override the absolute
tolerance in the Configuration Parameters dialog box.

Command-Line Information
Parameter: AbsoluteTolerance
Type: string, scalar, or vector
Value: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

 Zero-Pole

1-2263

State Name (e.g., 'position')

Assign a unique name to each state.

Settings

Default: ' '

If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by
braces, for example, {'a', 'b', 'c'}. Each name must be unique.

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than

states.

For example, you can specify two names in a system with four states. The first name
applies to the first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable
without quotes. A variable can be a string, cell array, or structure.

Command-Line Information
Parameter: ContinuousStateAttributes
Type: string
Value: ' ' | user-defined
Default: ' '

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Only if the lengths of the Poles and Zeros

parameters are equal

1 Blocks — Alphabetical List

1-2264

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Discrete Zero-Pole

Introduced before R2006a

2

Functions — Alphabetical List

2 Functions — Alphabetical List

2-2

add_block
Add block to model

Syntax

add_block('src', 'dest')

block = add_block('src', 'dest')

add_block('src', 'dest', 'param1', value1, ...)

add_block('src', 'dest', 'MakeNameUnique', 'on')

add_block('src_inport', 'dest_inport', 'CopyOption', 'duplicate')

add_block('built-in/Note', 'path/text', 'Position', position_array)

add_block('built-in/Area', 'path/text', 'Position', rect_array)

add_block('built-in/Image', 'path/text', 'Position', position_array,

'imagePath', path_to_image)

Description

add_block('src', 'dest') copies the block with the full path name that you specify
with 'src' to a new block with a full path name that you specify with 'dest'. The block
parameters of the new block are identical to those of the original. The new block appears
in front of any blocks that it overlaps. If the 'src' block is a Subsystem block, then
add_block copies all the blocks in the subsystem.

Note: Load the models for the ‘src’ and ‘dest’ block paths before using the
add_block command. If the ‘src’ block is in a custom library, load the library first
using load_system or open_system.

block = add_block('src', 'dest') returns the handle of the newly created block.

add_block('src', 'dest', 'param1', value1, ...) creates a copy of the 'src'
block, with the named parameters having the specified values. Additional arguments
must occur in parameter/value pairs.

add_block('src', 'dest', 'MakeNameUnique', 'on') creates a unique name for
the new block, based on the name of the 'dest' block. The add_block function creates

 add_block

2-3

a unique name only if the 'dest' block name exists in the model into which you add the
new block. By default, MakeNameUnique is off.

add_block('src_inport', 'dest_inport', 'CopyOption', 'duplicate')

applies only to Inport blocks. It creates a copy with the same port number as the
'src_inport' block.

add_block('built-in/Note', 'path/text', 'Position', position_array)

creates an annotation in a Simulink model or a note in a Stateflow chart. The first
part of the path/text argument is the path of the model or chart where you want the
annotation or note. Append to the path a slash (/), followed by the text for the annotation
or note. The position_array argument is a 1x4 array, specified as [left, top,
right, bottom], that gives the position of the upper-left corner of the annotation or
note in pixels, relative to the upper left corner of the model or chart. If the annotation is
autosized (the default), you can specify a 1x2 array [left top]. Positive x and y values
are to the right of and down from the origin, respectively.

add_block('built-in/Area', 'path/text', 'Position', rect_array)

creates an area in a Simulink model. The first part of the path/text argument is the
path of the model where you want the area. Append to the path a slash (/), followed by
the text for the area. The rect_array argument is a 1x4 array, specified as [left,
top, right, bottom], that gives the coordinates of the upper-left and lower-right
corners of the area in pixels. These coordinates are relative to the upper left corner of
the model or chart. Positive x and y values are to the right of and down from the origin,
respectively.

add_block('built-in/Image', 'path/text', 'Position', position_array,

'imagePath', path_to_image) creates an image in a Simulink model. The first part
of the path/text argument is the path of the model where you want to place the image.
Append to the path a slash (/), followed by the text for the image. The position_array
argument is a 1x2 array, specified as [left, top], that gives the coordinates of the
upper-left corner in pixels. These coordinates are relative to the upper-left corner of
the model or chart. Positive x and y values are to the right of and down from the origin,
respectively. Specify the path to the image you want to insert in the path_to_image
argument.

Calling add_block triggers the CopyFcn and PreCopyFcn block callback functions.

You can use 'built-in/blocktype' as a source block path name for Simulink built-in
blocks, where blocktype is the built-in block type (that is, the value of its BlockType
parameter (see “Common Block Properties” on page 6-85). However, using 'built-

2 Functions — Alphabetical List

2-4

in/blocktype' causes some default parameter values of some blocks to be different
from the defaults that you get if you added those blocks interactively using Simulink.

Tips

Do not use delete_block to delete an annotation. For details, see “Delete an
Annotation Programmatically”.

Examples

Copy the Scope block from the Sinks subsystem of the simulink system to a block
named Scope in the Controller subsystem of the f14 system.

simulink;

open_system('f14');

add_block('simulink/Sinks/Scope', 'f14/Controller/Scope')

Create a subsystem named Controller2 in the f14 system. You do not have to open the
Library Browser.

open_system('f14');

add_block('built-in/SubSystem', 'f14/Controller2')

Copy the built-in Gain block to a block named Speed in the f14 system and assign the
Gain parameter a value of 4. You do not have to open the Library Browser.

open_system('f14');

add_block('built-in/Gain', 'F14/Speed', 'Gain', '4')

Copy the block named Mu in vdp and create a copy. Because the model already contains a
Mu block, the command names the new block Mu1. Open the vdp model, which is both the
source and destination model, and get the handle of the added block.

open_system('vdp');

block = add_block('vdp/Mu', 'vdp/Mu', 'MakeNameUnique', 'on')

Create an annotation that says This simulates a nonlinear second order
system. Position the annotation above the copyright line.

open_system('vdp');

 add_block

2-5

block = add_block('built-in/Note', ...

'vdp/This simulates a nonlinear second order system', ...

'Position', [200 250])

In the vdp model, create an area labeled Sample Area. Position the annotation above
the copyright line.

open_system('vdp');

block = add_block('built-in/Area', ...

'vdp/Sample Area', ...

'Position', [200 250 300 270]);

In the vdp model, insert an image of an airplane. Position the image below the copyright
line.

open_system('vdp');

block = add_block('built-in/Image', ...

'vdp/My Image', ...

'Position', [0 300], ...

'imagePath', fullfile(matlabroot, 'toolbox', 'simulink', 'simulink', 'b747.jpg'));

More About
• “Annotation Callback Functions”

See Also
delete_block | replace_block | set_param | Simulink.Annotation

Introduced before R2006a

2 Functions — Alphabetical List

2-6

add_exec_event_listener
Register listener for block method execution event

Syntax
h = add_exec_event_listener(blk, event, listener);

Description

h = add_exec_event_listener(blk, event, listener) registers a listener
for a block method execution event where the listener is a MATLAB program that
performs some task, such as logging runtime data for a block, when the event occurs (see
“Listen for Method Execution Events”). Simulink software invokes the registered listener
whenever the specified event occurs during simulation of the model.

Note Simulink software can register a listener only while a simulation is running.
Invoking this function when no simulation is running results in an error message. To
ensure that a listener catches all relevant events triggered by a model's simulation, you
should register the listener in the model's StartFcn callback function (see “Callbacks for
Customized Model Behavior”).

Input Arguments
blk

Specifies the block whose method execution event the listener is intended to handle.
May be one of the following:

• Full pathname of a block
• A block handle
• A block runtime object (see “Access Block Data During Simulation”.)

event

Specifies the type of event for which the listener listens. It may be any of the
following:

 add_exec_event_listener

2-7

Event Occurs...

'PreDerivatives' Before a block's Derivatives method
executes

'PostDerivatives' After a block's Derivatives method
executes

'PreOutputs' Before a block's Outputs method
executes.

'PostOutputs' After a block's Outputs method executes
'PreUpdate' Before a block's Update method executes
'PostUpdate' After a block's Update method executes

listener
Specifies the listener to be registered. It may be either a string specifying a MATLAB
expression, e.g., 'disp(''here'')' or a handle to a MATLAB function that accepts
two arguments. The first argument is the block runtime object of the block that
triggered the event. The second argument is an instance of EventData class that
specifies the runtime object and the name of the event that just occurred.

Output Arguments

add_exec_event_listener returns a handle to the listener that it registered. To stop
listening for an event, use the MATLAB clear command to clear the listener handle
from the workspace in which the listener was registered.

Introduced before R2006a

2 Functions — Alphabetical List

2-8

add_line
Add line to Simulink system

Syntax
h = add_line('sys','oport','iport')

h = add_line('sys','oport','iport', 'autorouting','on')

h = add_line('sys', points)

Description

The add_line command adds a line to the specified system and returns a handle to the
new line. You can define the line in two ways:

• By naming the block ports that are to be connected by the line
• By specifying the location of the points that define the line segments

add_line('sys', 'oport', 'iport') adds a straight line to a system
from the specified block output port 'oport' to the specified block input port
'iport'. 'oport' and 'iport' are strings consisting of a block name and a
port identifier in the form 'block/port'. Most block ports are identified by
numbering the ports from top to bottom or from left to right, such as 'Gain/1' or
'Sum/2'. Enable, Trigger, State, and Action ports are identified by name, such as
'subsystem_name/Enable', 'subsystem_name/Trigger', 'Integrator/State',
or if_action_subsystem_name/Ifaction'.

add_line('sys','oport','iport', 'autorouting','on') works like
add_line('sys','oport','iport') except that it routes the line around intervening
blocks. The default value for autorouting is 'off'.

add_line(system, points) adds a segmented line to a system. Each row of the
points array specifies the x and y coordinates of a point on a line segment. The origin is
the top-left corner of the window. The signal flows from the point defined in the first row
to the point defined in the last row. If the start of the new line is close to the output of an
existing block or line, a connection is made. Likewise, if the end of the line is close to an
existing input, a connection is made.

 add_line

2-9

Examples

This command adds a line to the mymodel system connecting the output of the Sine
Wave block to the first input of the Mux block.

add_line('mymodel','Sine Wave/1','Mux/1')

This command adds a line to the mymodel system extending from (20,55) to (40,10) to
(60,60).

add_line('mymodel',[20 55; 40 10; 60 60])

See Also
delete_line

Introduced before R2006a

2 Functions — Alphabetical List

2-10

add_param
Add parameter to Simulink system

Syntax
add_param('sys','parameter1',value1,'parameter2',value2,...)

Description

The add_param command adds the specified parameters to the specified system and
initializes the parameters to the specified values. Case is ignored for parameter names.
Value strings are case sensitive. The value of the parameter must be a string. Once the
parameter is added to a system, set_param and get_param can be used on the new
parameters as if they were standard Simulink parameters. Simulink software saves
these new parameters with the model file.

Note: If you attempt to add a parameter that has the same name as an existing
parameter of the system, Simulink software displays an error.

Examples

This command
add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

adds the parameters DemoName and EquationOrder with string values
'VanDerPolEquation' and '2' to the vdp system. Afterward, you can use the
following command to retrieve the value of the DemoName parameter.

get_param('vdp','DemoName')

See Also
delete_param | get_param | set_param

Introduced before R2006a

 addFile

2-11

addFile
Add file to Simulink Project

Syntax

addFile(proj,file)

Description

addFile(proj,file) adds a file to the project proj.

Examples

Add Files to a Project

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = simulinkproject;

Remove a file.

removeFile(proj,'models/AnalogControl.mdl')

Add the file back to the project.

addFile(proj,'models/AnalogControl.mdl');

Create and save a new model.

new_system('mymodel');

save_system('mymodel');

Add the new file to the project and return a project file object.

newPrjFile = addFile(proj,'mymodel.slx');

Use the project file object to manipulate the file, for example, adding a label.

2 Functions — Alphabetical List

2-12

addLabel(newPrjFile, 'Classification', 'Design')

Input Arguments

proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

file — Path of file
string

Path of the file to add relative to the project root folder, including the file extension,
specified as a string. The file must be within the root folder.
Example: ‘models/myModelName.slx’

See Also

Functions
addFolderIncludingChildFiles | removeFile | simulinkproject

Introduced in R2013a

 addFolderIncludingChildFiles

2-13

addFolderIncludingChildFiles
Add folder and child files to Simulink Project

Syntax

addFolderIncludingChildFiles(proj,folder)

Description

addFolderIncludingChildFiles(proj,folder) adds a folder and all child files to
the project proj.

Examples

Add Folders to a Project

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = simulinkproject;

Create a new folder in the project folder.

new_folder_path = fullfile(proj.RootFolder, 'new_folder')

mkdir(new_folder_path);

Create a new folder in the previous folder.

new_sub_folder_path = fullfile(new_folder_path, 'new_sub_folder')

mkdir(new_sub_folder_path);

Create a new file in the folder.

filepath = fullfile(new_sub_folder_path, 'new_model_in_subfolder.slx')

new_system('new_model_in_subfolder');

save_system('new_model_in_subfolder', filepath)

Add this new folder and child files to the project.

2 Functions — Alphabetical List

2-14

projectFile = addFolderIncludingChildFiles(proj, new_folder_path)

Input Arguments

proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

folder — Path of folder
string

Path of the folder to add relative to the project root folder, specified as a string. The
folder must be within the root folder.
Example: ‘models’

See Also

Functions
addFile | removeFile | simulinkproject

Introduced in R2015b

 addterms

2-15

addterms
Add terminators to unconnected ports in model

Syntax
addterms('sys')

Description

addterms('sys') adds Terminator and Ground blocks to the unconnected ports in the
Simulink block diagram sys.

See Also
slupdate

Introduced before R2006a

2 Functions — Alphabetical List

2-16

attachConfigSet
Associate configuration set or configuration reference with model

Syntax
attachConfigSet(model, configObj)

attachConfigSet(model, configObj, allowRename)

Arguments

model

The name of an open model, or gcs to specify the current model
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

allowRename

Boolean that determines how Simulink software handles a name conflict

Description

attachConfigSet associates the configuration set or configuration reference
(configuration object) specified by configObj with model.

You cannot attach a configuration object to a model if the configuration object is already
attached to another model, or has the same name as another configuration object
attached to the same model. The optional Boolean argument allowRename determines
how Simulink software handles a name conflict between configuration objects. If
allowRename is false and the configuration object specified by configObj has the
same name as a configuration object already attached to model, Simulink software
generates an error. If allowRename is true and a name conflict occurs, Simulink
software provides a unique name for configObj before associating configObj with
model.

 attachConfigSet

2-17

Examples

The following example creates a copy of the current model's active configuration object
and attaches it to the model, changing its name if necessary to be unique. The code is the
same whether the object is a configuration set or configuration reference.

myConfigObj = getActiveConfigSet(gcs);

copiedConfig = myConfigObj.copy;

copiedConfig.Name = 'DevConfig';

attachConfigSet(gcs, copiedConfig, true);

More About
• “Manage a Configuration Set”
• “Manage a Configuration Reference”

See Also
attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | openDialog |
setActiveConfigSet

Introduced before R2006a

2 Functions — Alphabetical List

2-18

attachConfigSetCopy
Copy configuration set or configuration reference and associate it with model

Syntax
myConfigObj = attachConfigSetCopy(model, configObj)

myConfigObj = attachConfigSetCopy(model, configObj, allowRename)

Arguments

model

The name of an open model, or gcs to specify the current model
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

allowRename

Boolean that specifies how Simulink software handles a name conflict

Description

attachConfigSetCopy copies the configuration set or configuration reference
(configuration object) specified by configObj and associates the copy with model.
Simulink software returns the copied configuration object as newConfigObj.

You cannot attach a configuration object to a model if the configuration object has the
same name as another configuration object attached to the same model. The optional
Boolean argument allowRename determines how Simulink software handles a name
conflict between configuration objects. If allowRename is false and the configuration
object specified by configObj has the same name as a configuration object already
attached to model, Simulink software generates an error. If allowRename is true
and a name conflict occurs, Simulink software provides a unique name for the copy of
configObj before associating it with model.

 attachConfigSetCopy

2-19

Examples

The following example creates a copy of ModelA's active configuration object and
attaches it to ModelB, changing the name if necessary to be unique. The code is the same
whether the object is a configuration set or configuration reference.
myConfigObj = getActiveConfigSet('ModelA');

newConfigObj = attachConfigSetCopy('ModelB', myConfigObj, true);

More About
• “Manage a Configuration Set”
• “Manage a Configuration Reference”

See Also
attachConfigSet | closeDialog | detachConfigSet | getActiveConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

Introduced in R2006b

2 Functions — Alphabetical List

2-20

addLabel
Attach label to Simulink Project file

Syntax
addLabel(file,categoryName,labelName)

addLabel(file,categoryName,labelName,labelData)

Description
addLabel(file,categoryName,labelName) attaches the specified label labelName
in the category categoryName to the file.

addLabel(file,categoryName,labelName,labelData) attaches the label with
data labelData.

Examples

Attach a Label to a Project File

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

Get the Labels property of the file.

myfile.Labels

 addLabel

2-21

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Design'

 CategoryName: 'Classification'

Attach the label 'Artifact' to the file.

addLabel(myfile,'Classification','Artifact')

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Artifact'

 CategoryName: 'Classification'

Index into the Labels property to get the label attached to this file.

reviewlabel = myfile.Labels(1)

reviewlabel =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Artifact'

 CategoryName: 'Classification'

Detach the new label from the file.

removeLabel(myfile,reviewlabel)

Attach a Label to a Subset of Files

Attach the 'Classification' category label 'Utility' to all files in the project that
have the .m file extension.

2 Functions — Alphabetical List

2-22

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get the list of files.

files = proj.Files;

Loop through each file. If a file has the extension .m, attach the label To Review.

for fileIndex = 1:numel(files)

 file = files(fileIndex);

 [~, ~, fileExtension] = fileparts(file.Path);

 if strcmp(fileExtension,'.m')

 addLabel(file,'Classification','Utility');

 end

end

In the Simulink Project Files view, the Classification column displays the label
Utility for each .m file in the utilities folder.

Attach a Label and Label Data to a File

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Create a new category 'Review'.

createCategory(proj,'Review','char');

For the new category, create a label 'To Review'.

reviewCategory = findCategory(proj,'Review');

createLabel(reviewCategory,'To Review');

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 addLabel

2-23

 Path: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

Attach the label 'To Review' and a string of label data to the file.

addLabel(myfile,'Review','To Review','Whole team design review')

Index into the Labels property to get the second label attached to this particular file, and
see the label data.

myfile.Labels(2)

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: 'Whole team design review'

 DataType: 'char'

 Name: 'To Review'

 CategoryName: 'Review'

In the Simulink Project Files view, for the AnalogControl.mdl file, the Review
column displays the To Review label with label data.

Alternatively, you can set or change label data using the data property.

mylabel = myfile.Labels(2);

mylabel.Data = 'Final review';

Input Arguments

file — File to attach label to
file object

File to attach the label to, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to find a file by
name. The file must be within the root folder.

categoryName — Name of category for label
string

2 Functions — Alphabetical List

2-24

Name of the category for the label, specified as a string.

labelName — Name of label
string | label definition object

Name of the label to attach, specified as a string or a label definition object returned by
the file.Label property or findLabel. You can specify a new label name that does not
already exist in the project.

labelData — Data to attach to label
string | numeric

Data to attach to the label, specified as a string or numeric. Data type depends on the
label definition. Get a label to examine its DataType property using file.Label or
findLabel.

See Also

Functions
createLabel | findFile | findLabel | removeLabel | simulinkproject

Introduced in R2013a

 bdclose

2-25

bdclose
Close any or all Simulink system windows unconditionally

Syntax
bdclose

bdclose('sys')

bdclose('all')

Description

bdclose with no arguments closes the current system window unconditionally and
without confirmation. Any changes made to the system since it was last saved are lost.

bdclose('sys') closes the specified system window.

bdclose('all') closes all system windows.

Examples

This command closes the vdp system.

bdclose('vdp')

See Also
close_system | new_system | open_system | save_system

Introduced before R2006a

2 Functions — Alphabetical List

2-26

bdIsLibrary
Whether block diagram is a library

Syntax

isLibrary = bdIsLibrary(bdnames)

Description

isLibrary = bdIsLibrary(bdnames) returns whether the loaded block diagrams
specified by bdnames are libraries.

Examples

Check Whether Block Diagrams Are Libraries

Load some block diagrams and get a handle to one of them.

load_system({'sf_car','hydlib','vdp'})

h = get_param('hydlib','Handle');

Check whether sf_car is a library. The returned value 0 indicates that it is not.

bdIsLibrary('sf_car')

ans =

 0

Check whether hydlib and vdp are libraries. The returned value shows that hydlib is
a library and vdp is not.

bdIsLibrary({'hydlib','vdp'})

ans =

1 0

 bdIsLibrary

2-27

Using the handle to hydlib, check whether hdlib is a library. The value returned
shows that it is.

bdIsLibrary(h)

ans =

1

Input Arguments

bdnames — Names or handles of loaded block diagrams
string | cell array of strings | double | array of doubles

Names or handles of loaded block diagrams, specified as a string, a cell array of strings, a
double, or a double array. All strings are names of loaded block diagrams. All doubles are
handles of loaded block diagrams.
Data Types: char | cell | double

Output Arguments

isLibrary — Logical array showing whether block diagrams are libraries
logical scalar | logical array

Logical array showing whether block diagrams are libraries, returned as a logical scalar
or array (1 for a library, 0 otherwise).

See Also
bdIsLoaded | bdroot | find_system

Introduced in R2015a

2 Functions — Alphabetical List

2-28

bdIsLoaded
Whether block diagram is in memory

Syntax
isLoaded = bdIsLoaded(bdnames)

Description

isLoaded = bdIsLoaded(bdnames) returns whether or not a block diagram is in
memory. bdnames can be a string or a cell array of strings. All strings must be valid
block diagram names (which are the same as valid MATLAB variable names). It is an
error to supply a path to a block or subsystem.

isLoaded is a logical array with one entry for each block diagram name.

Examples

bdIsLoaded('sf_car')

returns a logical scalar.

bdIsLoaded({'sf_car','vdp'})

returns a 1-by-2 logical array.

See Also
find_system | bdIsLibrary

Introduced in R2008a

 bdroot

2-29

bdroot
Return name of top-level Simulink system

Syntax

bdroot

bdroot(obj)

bdroot(handle)

bdroot(sys)

Description

bdroot with no arguments returns the name of the current top-level system.

bdroot(obj), where obj is a string specifying a system or block path name, returns
the name of the top-level system containing the specified object name. The bdroot of an
empty string generates an error. Prior to issuing bdroot, make sure that the top-level
system is loaded.

bdroot(handle), where handle is the numeric handle for a system or block, returns
the numeric handle of the top-level system containing the specified object. Prior to
issuing bdroot, make sure that the top-level system for each element in the cell array
is loaded. If you specify a vector of handles, Simulink returns a list of handles of the top-
level systems.

bdroot(sys), where sys is a cell array of system names or a vector of system handles.
Prior to issuing bdroot, make sure that the top-level system for each element in the cell
array is loaded. If you specify a vector of handles, Simulink returns a list of handles of
the top-level systems.

Examples

This command returns the name of the top-level system that contains the current block.

bdroot(gcb)

2 Functions — Alphabetical List

2-30

This command returns the name of the top-level system that contains the current
system.

bdroot (gcs)

This command returns the name of the top-level system that contains the current block.

bdroot (gcbh)

If bdroot is a cell array of system names or handles, it returns a cell array containing
the corresponding top-level system names or handles.

If bdroot is a numeric array of system handles, it returns a numeric array containing
the corresponding top-level system handles.

See Also
find_system | gcb | gcs | gcbh | load_system

Introduced before R2006a

 dlinmod

2-31

dlinmod
Extract discrete-time linear state-space model around operating point

Syntax
argout = dlinmod('sys', Ts, x, u)

argout = dlinmod('sys', Ts, x, u, para, 'v5')

argout = dlinmod('sys', Ts, x, u, para, xpert, upert, 'v5')

Arguments
sys Name of the Simulink system from which the linear model is

extracted.
x, u State (x) and the input (u) vectors. If specified, they set the

operating point at which the linear model is extracted. When
a model has model references using the Model block, you must
use the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

Ts Sample time of the discrete-time linearized model
'v5' An optional argument that invokes the perturbation algorithm

created prior to MATLAB 5.3. Invoking this optional argument is
equivalent to calling linmodv5.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the

2 Functions — Alphabetical List

2-32

model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

xpert, upert The perturbation values used to perform the perturbation of all the
states and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)

upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you
must use the Simulink structure format to specify xpert. To
extract the xpert structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure
by editing xpert.signals.values.

The perturbation input arguments are only available when
invoking the perturbation algorithm created prior to MATLAB 5.3,
either by calling linmodv5 or specifying the 'v5' input argument
to linmod.

 dlinmod

2-33

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified
state variables x and the input u. If you omit x and u, the
default values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the
linearized model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names,
input and output names, and information about the operating
point.

Description

dlinmod compute a linear state-space model for a discrete-time system by linearizing
each block in a model individually.

linmod obtains linear models from systems of ordinary differential equations described
as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using
Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks
which should result in more accurate linearization than numerical perturbation of
block inputs and states. A list of blocks that have preprogrammed analytic Jacobians is
available in the Simulink Control Design documentation along with a discussion of the
block-by-block analytic algorithm for linearization.

The default algorithm also allows for special treatment of problematic blocks such as the
Transport Delay and the Quantizer. See the mask dialog of these blocks for more
information and options.

2 Functions — Alphabetical List

2-34

Discrete-Time System Linearization

The function dlinmod can linearize discrete, multirate, and hybrid continuous and
discrete systems at any given sampling time. Use the same calling syntax for dlinmod
as for linmod, but insert the sample time at which to perform the linearization as the
second argument. For example,

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the operating
point given by the state vector x and input vector u. To obtain a continuous model
approximation of a discrete system, set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous blocks, dlinmod
produces linear models having identical frequency and time responses (for constant
inputs) at the converted sampling time Ts, provided that

• Ts is an integer multiple of all the sampling times in the system.
• The system is stable.

For systems that do not meet the first condition, in general the linearization is a time-
varying system, which cannot be represented with the [A,B,C,D] state-space model that
dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an indication of the
stability of the system. The system is stable if Ts>0 and the eigenvalues are within the
unit circle, as determined by this statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the left half plane, as
determined by this statement:

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer multiple of the other
sampling times, dlinmod produces Ad and Bd matrices, which can be complex. The
eigenvalues of the Ad matrix in this case still, however, provide a good indication of
stability.

You can use dlinmod to convert the sample times of a system to other values or to
convert a linear discrete system to a continuous system or vice versa.

 dlinmod

2-35

You can find the frequency response of a continuous or discrete system by using the bode
command.

Notes

By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained.
For Simulink systems, a string variable that contains the block name associated with
each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using
the routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by
replacing the linearization of the blocks with a Pade approximation. For the 'v5'
algorithm, linearization of a model that contains Derivative or Transport Delay blocks
can be troublesome. For more information, see “Linearizing Models”.

See Also
linmod | linmod2 | linmodv5

Introduced in R2007a

2 Functions — Alphabetical List

2-36

close_system
Close Simulink system window or block dialog box

Syntax
close_system

close_system('sys')

close_system('sys', saveflag)

close_system('sys', 'newname')

close_system('sys', 'newname','ErrorIfShadowed', true)

Description

close_system with no arguments closes the current system or subsystem window. If
the current system is the top-level system and it has been modified, close_system
returns an error. The current system is defined in the description of the gcs command.

close_system('sys') closes the specified system, subsystem, or block window.

close_system('sys') unloads a model after specifying

• load_system('sys').

'sys' can be a string (which can be a system, a subsystem, or a full block pathname), a
cell array of strings, a numeric handle, or an array of numeric handles. This command
displays an error if 'sys' is a MATLAB keyword, 'simulink', or more than 63
characters long.

close_system('sys', saveflag), if saveflag is 1, saves the specified top-level
system to a file with its current name, then closes the specified top-level system window
and removes it from memory. If saveflag is 0, the system is closed without saving.
A single saveflag can be supplied, in which case it is applied to all block diagrams.
Alternatively, separate saveflags can be supplied for each block diagram, as a numeric
array.

 close_system

2-37

close_system('sys', 'newname') saves the specified top-level system to a file with
the specified new name, then closes the system.

Additional arguments can be supplied when saving a block diagram. These are exactly
the same as for save_system:

• ErrorIfShadowed: true or false (default: false)
• BreakAllLinks: true or false (default: false)
• SaveAsVersion: MATLAB version name (default: current)
• OverwriteIfChangedOnDisk: true or false (default: false)
• SaveModelWorkspace: true or false (default: false)

If you try to specify additional options when you are doing something other than saving
a block diagram, they are ignored. You see a warning if you try to save when closing
something other than a block diagram (e.g., a subsystem or a Block Properties dialog).

Examples

This command closes the current system.

close_system

This command closes the vdp system, unless it has been modified, in which case it
returns an error.

close_system('vdp')

This command saves the engine system with its current name, then closes it.

close_system('engine', 1)

This command saves the mymdl12 system under the new name testsys, then closes it.

close_system('mymdl12', 'testsys')

This command tries to save the vdp system to a file with the name 'max', but returns an
error because 'max' is the name of an existing MATLAB function.

close_system('vdp','max','ErrorIfShadowed', true)

2 Functions — Alphabetical List

2-38

All three of the following commands save and close mymodel (saved with the same
name), and replace links to library blocks with copies of the library blocks in the saved
file:

close_system('mymodel',1,'BreakAllLinks',true)

close_system('mymodel','mymodel','BreakAllLinks',true)

close_system('mymodel',[],'BreakAllLinks',true)

This command closes the dialog box of the Unit Delay block in the Combustion
subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

Note The close_system command cannot be used in a block or menu callback to close
the root-level model. Attempting to close the root-level model in a block or menu callback
results in an error and discontinues the callback's execution.

See Also
bdclose | gcs | new_system | open_system | save_system | load_system

Introduced before R2006a

 closeDialog

2-39

closeDialog
Close configuration parameters dialog

Syntax
closeDialog(configObj)

Arguments
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description

closeDialog closes an open configuration parameters dialog box. If configObj is a
configuration set, the function closes the dialog box that displays the configuration set. If
configObj is a configuration reference, the function closes the dialog box that displays
the referenced configuration set, or generates an error if the reference does not specify a
valid configuration set. If the dialog box is already closed, the function does nothing.

Examples

The following example closes a configuration parameters dialog box that shows the
current parameters for the current model. The parameter values derive from the active
configuration set or configuration reference (configuration object). The code is the same in
either case; the only difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);

closeDialog(myConfigObj);

More About
• “Manage a Configuration Set”

2 Functions — Alphabetical List

2-40

• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | openDialog |
setActiveConfigSet

Introduced in R2006b

 close

2-41

close
Close Simulink Project

Syntax
close(proj)

Description
close(proj) closes the project proj.

Examples

Open and Close a Simulink Project

Open a specified project and get a project object to manipulate the project at the
command line. For example,

proj = simulinkproject('C:/projects/project1/myproject.prj')

Close the project.

close(proj)

Input Arguments

proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

See Also

Functions
simulinkproject

2 Functions — Alphabetical List

2-42

Introduced in R2013a

 coder.allowpcode

2-43

coder.allowpcode
Package: coder

Control code generation from protected MATLAB files

Syntax

coder.allowpcode('plain')

Description

coder.allowpcode('plain') allows you to generate protected MATLAB code (P-code)
that you can then compile into optimized MEX functions or embeddable C/C++ code. This
function does not obfuscate the generated MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as protected P-files that provide
code generation optimizations, providing intellectual property protection for your source
MATLAB code.

Call this function in the top-level function before control-flow statements, such as if,
while, switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the
same folder, the P-file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples

Generate optimized embeddable code from protected MATLAB code:

1 Write an function p_abs that returns the absolute value of its input:

function out = p_abs(in) %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

2 Functions — Alphabetical List

2-44

coder.allowpcode('plain');

out = abs(in);

2 Generate protected P-code. At the MATLAB prompt, enter:

pcode p_abs

The P-file, p_abs.p, appears in the current folder.
3 Generate a MEX function for p_abs.p, using the -args option to specify the size,

class, and complexity of the input parameter (requires a MATLAB Coder license). At
the MATLAB prompt, enter:

codegen p_abs -args { int32(0) }

codegen generates a MEX function in the current folder.
4 Generate embeddable C code for p_abs.p (requires a MATLAB Coder license). At

the MATLAB prompt, enter:

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\lib\p_abs folder.

See Also
pcode | codegen

Introduced in R2011a

 coder.ceval

2-45

coder.ceval
Package: coder

Call external C/C++ function

Syntax

coder.ceval('cfun_name')

coder.ceval('cfun_name', cfun_arguments)

cfun_return = coder.ceval('cfun_name')

cfun_return = coder.ceval('cfun_name', cfun_arguments)

coder.ceval('-global','cfun_name',cfun_arguments)

cfun_return=coder.ceval('-global','cfun_name',cfun_arguments)

Description

coder.ceval('cfun_name') executes the external C/C++ function specified by the
quoted string cfun_name. Define cfun_name in an external C/C++ source file or library.

coder.ceval('cfun_name', cfun_arguments) executes cfun_name with
arguments cfun_arguments. cfun_arguments is a comma-separated list of input
arguments in the order that cfun_name requires.

cfun_return = coder.ceval('cfun_name') executes cfun_name and returns a
single scalar value, cfun_return, corresponding to the value that the C/C++ function
returns in the return statement. To be consistent with C/C++, coder.ceval can return
only a scalar value; it cannot return an array.

cfun_return = coder.ceval('cfun_name', cfun_arguments) executes
cfun_name with arguments cfun_arguments and returns cfun_return.

coder.ceval('-global','cfun_name',cfun_arguments)

cfun_return=coder.ceval('-global','cfun_name',cfun_arguments)

For code generation, you must specify the type, size, and complexity data type of return
values and output arguments before calling coder.ceval.

2 Functions — Alphabetical List

2-46

By default, coder.ceval passes arguments by value to the C/C++ function whenever
C/C++ supports passing arguments by value. To make coder.ceval pass arguments
by reference, use the constructs coder.ref, coder.rref, and coder.wref. If C/C
++ does not support passing arguments by value, for example, if the argument is an
array, coder.ceval passes arguments by reference. In this case, if you do not use the
coder.ref, coder.rref, and coder.wref constructs, a copy of the argument might
appear in the generated code to enforce MATLAB semantics for arrays.

If you pass a global variable by reference using coder.ref, coder.rref or
coder.wref, and the custom C code saves the address of this global variable, use
the -global flag to synchronize for the variables passed to the custom C code.
Synchronization occurs before and after calls to the custom code. If you do not
synchronize global variables under these circumstances and the custom C code saves the
address and accesses it again later, the value of the variable might be out of date.

Note: The -global flag does not apply for MATLAB Function blocks.

You cannot use coder.ceval on functions that you declare extrinsic with
coder.extrinsic.

Use coder.ceval only in MATLAB for code generation. coder.ceval generates an
error in uncompiled MATLAB code. Use coder.target to determine if the MATLAB
function is executing in MATLAB. If it is, do not use coder.ceval to call the C/C++
function. Instead, call the MATLAB version of the C/C++ function.

When the LCC compiler creates a library, it adds a leading underscore to the library
function names. If the compiler for the library was LCC and your code generation
compiler is not LCC, you must add the leading underscore to the function name in a
coder.ceval call. For example, coder.ceval('_mylibfun'). If the compiler for
a library was not LCC, you cannot use LCC to generate code from MATLAB code that
calls functions from that library. Those library function names do not have the leading
underscore that the LCC compiler requires.

Examples
Call a C function foo(u) from a MATLAB function from which you intend to generate C
code:

 coder.ceval

2-47

1 Create a C header file foo.h for a function foo that takes two input parameters of
type double and returns a value of type double.

#ifdef MATLAB_MEX_FILE

#include <tmwtypes.h>

#else

#include "rtwtypes.h"

#endif

double foo(double in1, double in2);

2 Write the C function foo.c.

#include <stdio.h>

#include <stdlib.h>

#include "foo.h"

double foo(double in1, double in2)

{

 return in1 + in2;

}

3 Write a function callfoo that calls foo using coder.ceval.

function y = callfoo %#codegen

y = 0.0;

if coder.target('MATLAB')

 % Executing in MATLAB, call MATLAB equivalent of

 % C function foo

 y = 10 + 20;

else

 % Executing in generated code, call C function foo

 y = coder.ceval('foo', 10, 20);

end

end

4 Generate C library code for function callfoo, passing foo.c and foo.h as
parameters to include this custom C function in the generated code.

codegen -config:lib callfoo foo.c foo.h

codegen generates C code in the codegen\lib\callfoo subfolder.

double callfoo(void)

{

 /* Executing in generated code, call C function foo */

 return foo(10.0, 20.0);

2 Functions — Alphabetical List

2-48

}

In this case, you have not specified the type of the input arguments, that is, the
type of the constants 10 and 20. Therefore, the arguments are implicitly of double-
precision, floating-point type by default, because the default type for constants in
MATLAB is double.

Call a C library function from MATLAB code:

1 Write a MATLAB function absval.

function y = absval(u) %#codegen

y = abs(u);

2 Generate the C library for absval.m, using the -args option to specify the size,
type, and complexity of the input parameter.

codegen -config:lib absval -args {0.0}

codegen creates the library absval.lib and header file absval.h in the folder /
codegen/lib/absval. It also generates the functions absval_initialize and
absval_terminate in the same folder.

3 Write a MATLAB function to call the generated C library functions using
coder.ceval.

function y = callabsval %#codegen

y = -2.75;

% Check the target. Do not use coder.ceval if callabsval is

% executing in MATLAB

if coder.target('MATLAB')

 % Executing in MATLAB, call function absval

 y = absval(y);

else

 % Executing in the generated code.

 % Call the initialize function before calling the

 % C function for the first time

 coder.ceval('absval_initialize');

 % Call the generated C library function absval

 y = coder.ceval('absval',y);

 % Call the terminate function after

 % calling the C function for the last time

 coder.ceval('absval_terminate');

end

 coder.ceval

2-49

4 Convert the code in callabsval.m to a MEX function so you can call the C library
function absval directly from MATLAB.

codegen -config:mex callabsval codegen/lib/absval/absval.lib...

 codegen/lib/absval/absval.h

5 Call the C library by running the MEX function from MATLAB.

callabsval_mex

More About
• “Compilation Directive %#codegen”
• “External Code Integration”
• “Data Definition Basics”

See Also
| | | | | coder.extrinsic | coder.ref | coder.rref | coder.wref |
coder.target |

Introduced in R2011a

2 Functions — Alphabetical List

2-50

coder.cinclude

Include header file in generated code

Syntax

coder.cinclude(AppHeaderFile)

coder.cinclude(SysHeaderFile)

Description

coder.cinclude(AppHeaderFile) includes an application header file in generated
code using this format:

#include "HeaderFile"

coder.cinclude(SysHeaderFile) includes a system header file in generated code
using this format:

#include <HeaderFile>

Examples

Include Header File Conditionally in Generated Code

Generate code from a MATLAB function that calls an external C function to double its
input. The MATLAB function uses coder.cinclude to include an application header
file in generated C code running on a target machine, but not when the function runs in
the MATLAB environment.

Write a C function myMult2.c that doubles its input. Save it in a subfolder mycfiles.

#include "myMult2.h"

double myMult2(double u)

{

 return 2 * u;

 coder.cinclude

2-51

}

Write the application header file myMult2.h. Save it in the subfolder mycfiles.

#if !defined(MYMULT2)

#define MYMULT2

extern double myMult2(double);

#endif

Write a MATLAB function that conditionally includes the application header file and
calls the external C function.

function y = myfunc

%#codegen

 y = 21;

 if ~coder.target('MATLAB')

 % Running in generated code

 coder.cinclude('myMult2.h');

 y = coder.ceval('myMult2', y);

 else

 % Running in MATLAB

 y = y * 2;

 end

end

Compile the MATLAB function. Use the -I option to specify the path to the external
header and C files.

codegen -config:lib myfunc -I mycfiles

Here is the generated C code:

/* Include files */

#include "rt_nonfinite.h"

#include "myfunc.h"

#include "myMult2.h"

/* Function Definitions */

double myfunc(void)

{

 /* Running in generated code */

 return myMult2(21.0);

}

/* End of code generation (myfunc.c) */

2 Functions — Alphabetical List

2-52

Besides the files that coder.cinclude specifies, codegen automatically includes the
following files:

• Header file that defines the prototype for your entry-point function (in this case,
myMult2.h)

• rt_nonfinite.h (if you do not specify SupportNonFinite=false using
coder.config when you compile the entry-point function).

Input Arguments

AppHeaderFile — Name of application header file
string

Name of an application header file, specified as a string. The header file must be located
in the include path that you specify with the -I option when generating code using
codegen.

Example: coder.cinclude('myheader.h')

Data Types: char

SysHeaderFile — Name of system header file
string

Name of a system header file, specified as a string enclosed in angle brackets < >. The
header file must come from a standard list of system directories or from the include path
that you specify with the -I option when generating code using codegen.

Example: coder.cinclude('<stdio.h>')

Data Types: char

Limitations

• Do not call coder.cinclude inside run-time conditional constructs such as
if statements, switch statements, while-loops, and for-loops. However, you
can call coder.cinclude inside compile-time conditional statements, such as
coder.target. For example:

...

 coder.cinclude

2-53

 if ~coder.target('MATLAB')

 coder.cinclude('foo.h');

 coder.ceval('foo');

end

...

More About

Tips

• Call coder.cinclude before calling an external C/C++ function using coder.ceval
to include in the generated code the header files required for the external function.

• Localize use of coder.cinclude at the call sites where you want to include each
header file. Do not place all of your coder.cinclude calls in the top-level (entry-
point) function unless you want to include the specified header files in every build.

See Also
coder.ceval | coder.target

Introduced in R2013a

2 Functions — Alphabetical List

2-54

coder.const
Fold expressions into constants in generated code

Syntax

out = coder.const(expression)

[out1,...,outN] = coder.const(handle,arg1,...,argN)

Description

out = coder.const(expression) evaluates expression and replaces out with the
result of the evaluation in generated code.

[out1,...,outN] = coder.const(handle,arg1,...,argN) evaluates the multi-
output function having handle handle. It then replaces out1,...,outN with the
results of the evaluation in the generated code.

Examples

Specify Constants in Generated Code

This example shows how to specify constants in generated code using coder.const.

Write a function AddShift that takes an input Shift and adds it to the elements of
a vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen

y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

 coder.const

2-55

The code generation software generates code for creating the vector. It adds Shift
to each element of the vector during vector creation. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int k;

 for (k = 0; k < 10; k++) {

 y[k] = (double)((1 + k) * (1 + k)) + Shift;

 }

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software creates the vector containing the squares of the first 10
natural numbers. In the generated code, it adds Shift to each element of this vector.
The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int i0;

 static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,

 49, 64, 81, 100 };

 for (i0 = 0; i0 < 10; i0++) {

 y[i0] = (double)iv0[i0] + Shift;

 }

}

Create Lookup Table in Generated Code

This example shows how to fold a user-written function into a constant in generated code.

2 Functions — Alphabetical List

2-56

Write a function getsine that takes an input index and returns the element referred
to by index from a lookup table of sines. The function getsine creates the lookup table
using another function gettable.

function y = getsine(index) %#codegen

 assert(isa(index, 'int32'));

 persistent tbl;

 if isempty(tbl)

 tbl = gettable(1024);

 end

 y = tbl(index);

function y = gettable(n)

 y = zeros(1,n);

 for i = 1:n

 y(i) = sin((i-1)/(2*pi*n));

 end

Generate code for getsine using an argument of type int32. Open the Code Generation
Report.

codegen -config:lib -launchreport getsine -args int32(0)

The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation
Report.

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not
contain instructions for the evaluation. The generated code contains the result of the
evaluation itself.

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output
function in a coder.const statement.

 coder.const

2-57

Write a function MultiplyConst that takes an input factor and multiplies every
element of two vectors vec1 and vec2 with factor. The function generates vec1 and
vec2 using another function EvalConsts.

function [y1,y2] = MultiplyConst(factor) %#codegen

 [vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

 y1=vec1.*factor;

 y2=vec2.*factor;

function [f1,f2]=EvalConsts(z,n)

 f1=z.^(2*n)/factorial(2*n);

 f2=z.^(2*n+1)/factorial(2*n+1);

Generate code for MultiplyConst using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generation software generates code for creating the vectors.

Replace the statement

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

with

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

Generate code for MultiplyConst using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generation software does not generate code for creating the vectors. Instead, it
calculates the vectors and specifies the calculated vectors in generated code.

Read Constants by Processing XML File

This example shows how to call an extrinsic function using coder.const.

Write an XML file MyParams.xml containing the following statements:

<params>

 <param name="hello" value="17"/>

 <param name="world" value="42"/>

2 Functions — Alphabetical List

2-58

</params>

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies
the XML tag param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field
name of a structure s. The function also assigns the value of attribute value to the value
of the field.

function s = xml2struct(file)

s = struct();

doc = xmlread(file);

els = doc.getElementsByTagName('params');

for i = 0:els.getLength-1

 it = els.item(i);

 ps = it.getElementsByTagName('param');

 for j = 0:ps.getLength-1

 param = ps.item(j);

 paramName = char(param.getAttribute('name'));

 paramValue = char(param.getAttribute('value'));

 paramValue = evalin('base', paramValue);

 s.(paramName) = paramValue;

 end

end

Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a
structure s using the function xml2struct. Declare xml2struct as extrinsic using
coder.extrinsic and call it in a coder.const statement.

function y = MyFunc(u) %#codegen

 assert(isa(u, 'double'));

 coder.extrinsic('xml2struct');

 s = coder.const(xml2struct('MyParams.xml'));

 y = s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation
Report.

codegen -config:dll -launchreport MyFunc -args 0

 coder.const

2-59

The code generation software executes the call to xml2struct during code generation.
It replaces the structure fields s.hello and s.world with the values 17 and 42 in
generated code.

Input Arguments

expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant
arguments only. For instance, the following code leads to a code generation error, because
x is not a compile-time constant.

function y=func(x)

 y=coder.const(log10(x));

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)

Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin

Data Types: function_handle

arg1,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to
a code generation error, because x and y are not compile-time constants.

function y=func(x,y)

2 Functions — Alphabetical List

2-60

 y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during
code generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments

out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of
out with the value of expression.

out1,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle.MATLAB Coder evaluates the function and
replaces occurrences of out1,...,outN with constants in the generated code.

More About

Tips

• The code generation software constant-folds expressions automatically when possible.
Typically, automatic constant-folding occurs for expressions with scalars only. Use
coder.const when the code generation software does not constant-fold expressions
on its own.

Introduced in R2013b

 coder.cstructname

2-61

coder.cstructname

Package: coder

Name structure in generated code

Syntax

coder.cstructname(var,'structName')

coder.cstructname(var,'structName','extern')

coder.cstructname(var,'structName','extern',Name,Value)

Description

coder.cstructname(var,'structName') specifies the name of the structure
type that represents var in the generated C/C++ code. var is a structure or cell array
variable. structName is the name for the structure type in the generated code. Call
coder.cstructname before the first use of the variable. If var is a cell array element,
call coder.cstructname after the first assignment to the element.

coder.cstructname(var,'structName','extern') declares an externally defined
structure. It does not generate the definition of the structure type. Provide the definition
in a custom include file.

coder.cstructname(var,'structName','extern',Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Limitations

• You cannot use coder.cstructname with global variables.
• If var is a cell array or the field names of externally defined structures must be f1,

f2, and so on.
• If var is a cell array element, call coder.cstructname after the first assignment to

the element. For example:

2 Functions — Alphabetical List

2-62

...

x = cell(2,2);

x{1} = struct('a', 3);

coder.cstructname(x{1}, 'mytype');

...

Tips
• The code generation software represents a heterogeneous cell array as a structure in

the generated C/C++ code. To specify the name of the generated structure type, use
coder.cstructname. Using coder.cstructname with a cell array variable makes
the cell array heterogeneous.

• To use coder.cstructname on arrays, use single indexing. For example, you cannot
use coder.cstructname(x(1,2)). Instead, use single indexing, for example
coder.cstructname(x(n)).

• If you use coder.cstructname on an array, it sets the name of the base type of the
array, not the name of the array. Therefore, you cannot use coder.cstructname
on the base element and then on the array. For example, the following code does not
work. The second coder.cstructname attempts to set the name of the base type
to myStructArrayName, which conflicts with the previous coder.cstructname,
myStructName.

% Define scalar structure with field a

myStruct = struct('a', 0);

coder.cstructname(myStruct,'myStructName');

% Define array of structure with field a

myStructArray = repmat(myStruct,k,n);

coder.cstructname(myStructArray,'myStructArrayName');

• If you are using custom structure types, specify the name of the header file that
includes the external definition of the structure. Use the HeaderFile input
argument.

• If you have an Embedded Coder license and use Code Replacement Libraries (CRLs),
the CRLs provide the ability to align data objects passed into a replacement function
to a specified boundary. To take advantage of target-specific function implementations
that require data to be aligned, use the Alignment input argument.

• You can also use coder.cstructname to assign a name to a substructure, which is
a structure that appears as a field of another structure. For more information, see
“Assign a Name to a SubStructure” on page 2-66.

 coder.cstructname

2-63

Input Arguments

structName

The name of the structure type in the generated code.

var

Structure or cell array variable.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alignment'

The run-time memory alignment of structures of this type in bytes. If you have an
Embedded Coder license and use Code Replacement Libraries (CRLs), the CRLs provide
the ability to align data objects passed into a replacement function to a specified
boundary. This capability allows you to take advantage of target-specific function
implementations that require data to be aligned. By default, the structure is not aligned
on a specific boundary. Hence it is not matched by CRL functions that require alignment.

Alignment must be either -1 or a power of 2 that is not greater than 128.

Default: -1

'HeaderFile'

Name of the header file that contains the external definition of the structure, for
example, 'mystruct.h'.

By default, the generated code contains #include statements for custom header files
after the standard header files. If a standard header file refers to the custom structure
type, then the compilation fails. By specifying the HeaderFile option, MATLAB Coder
includes that header file exactly at the point where it is required.

2 Functions — Alphabetical List

2-64

Must be a non-empty string.

Examples

Apply coder.cstructname to Top-Level Inputs

Generate code for a MATLAB function that takes structure inputs.

1 Write a MATLAB function, topfun, that assigns the name MyStruct to its input
parameter.

function y = topfun(x) %#codegen

% Assign the name 'MyStruct' to the input variable in

% the generated code

 coder.cstructname(x, 'MyStruct');

 y = x;

end

2 Declare a structure s in MATLAB. s is the structure definition for the input variable
x.

s = struct('a',42,'b',4711);

3 Generate a MEX function for topfun, using the -args option to specify that the
input parameter is a structure.

codegen topfun.m -args { s }

codegen generates a MEX function in the default folder codegen\mex\topfun. In
this folder, the structure definition is in topfun_types.h.

typedef struct

{

 double a;

 double b;

} MyStruct;

Assign a Name to a Structure and Pass It to a Function

Assign the name MyStruct to the structure var. Pass the structure to a C function
use_struct.

1 Create a C header file, use_struct.h, for a use_structfunction that takes a
parameter of type MyStruct. Define a structure of type MyStruct in the header file.

 coder.cstructname

2-65

#ifdef MATLAB_MEX_FILE

#include <tmwtypes.h>

#else

#include "rtwtypes.h"

#endif

typedef struct MyStruct

{

 double s1;

 double s2;

} MyStruct;

void use_struct(struct MyStruct *my_struct);

2 Write the C function use_struct.c.

#include <stdio.h>

#include <stdlib.h>

#include "use_struct.h"

void use_struct(struct MyStruct *my_struct)

{

 double x = my_struct->s1;

 double y = my_struct->s2;

}

3 Write a m_use_struct compliant with MATLAB that declares a structure. Have the
function assign the name MyStruct to the structure. Then, have the function call
the C function use_struct using coder.ceval.

function m_use_struct %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

% Declare a MATLAB structure

var.s1 = 1;

var.s2 = 2;

% Assign the name MyStruct to the structure variable.

% extern indicates this is an externally defined

% structure.

coder.cstructname(var, 'MyStruct', 'extern');

% Call the C function use_struct. The type of var

% matches the signature of use_struct.

2 Functions — Alphabetical List

2-66

% Use coder.rref to pass the the variable var by

% reference as a read-only input to the external C

% function use_struct

coder.ceval('use_struct', coder.rref(var));

4 Generate C library code for function m_use_struct, passing use_struct.h to
include the structure definition.

codegen -config:lib m_use_struct use_struct.c use_struct.h

codegen generates C code in the default folder codegen\lib\m_use_struct. The
generated header file m_use_struct_types.h in this folder does not contain a
definition of the structure MyStruct because MyStruct is an external type.

Assign a Name to a SubStructure

Use coder.cstructname to assign a name to a substructure.

1 Define a MATLAB structure, top, that has another structure, lower, as a field.

% Define structure top with field lower,

% which is a structure with fields a and b

top.lower = struct('a',1,'b',1);

top.c = 1;

2 Define a function, MyFunc, which takes an argument, TopVar, as input. Mark the
function for code generation using %#codegen.

function out = MyFunc(TopVar) %#codegen

3 Inside MyFunc, include the following lines

coder.cstructname(TopVar,'topType');

coder.cstructname(TopVar.lower,'lowerType');

4 So that TopVar has the same type as top, generate C code for MyFunc with an
argument having the same type as top.

codegen -config:lib MyFunc -args coder.typeof(top)

In the generated C code, the field variable TopVar.lower is assigned the type name
lowerType. For instance, the structure declaration of the variable TopVar.lower
appears in the C code as:

typedef struct

{

 /* Definitions of a and b appear here */

} lowerType;

 coder.cstructname

2-67

and the structure declaration of the variable TopVar appears as:

typedef struct

{

 lowerType lower;

 /* Definition of c appears here */

} topType;

Assign a Name to a Structure That Is an Element of a Cell Array

Write a function struct_in_cell that has a cell array x{1} that contains a structure.
The coder.cstructname call follows the assignment to x{1}.

function z = struct_in_cell()

x = cell(2,2);

x{1} = struct('a', 3);

coder.cstructname(x{1}, 'mytype');

z = x{1};

end

Generate a static library for struct_in_cell.

codegen -config:lib struct_in_cell -report

The type for a has the name mytype.

 typedef struct {

 double a;

} mytype;

More About
• “Homogeneous vs. Heterogeneous Cell Arrays”

Introduced in R2011a

2 Functions — Alphabetical List

2-68

coder.extrinsic
Package: coder

Declare extrinsic function or functions

Syntax

coder.extrinsic('function_name');

coder.extrinsic('function_name_1', ... , 'function_name_n');

coder.extrinsic('-sync:on', 'function_name');

coder.extrinsic('-sync:on', 'function_name_1', ... ,

'function_name_n');

coder.extrinsic('-sync:off','function_name');

coder.extrinsic('-sync:off', 'function_name_1', ... ,

'function_name_n');

Arguments
function_name

function_name_1, ... , function_name_n

Declares function_name or function_name_1 through function_name_n as
extrinsic functions.

–sync:on

function_name or function_name_1 through function_name_n.

Enables synchronization of global data between MATLAB and MEX functions before
and after calls to the extrinsic functions, function_name or function_name_1
through function_name_n. If only a few extrinsic calls modify global data, turn
off synchronization before and after all extrinsic function calls by setting the global
synchronization mode to At MEX-function entry and exit. Use the –sync:on
option to turn on synchronization for only the extrinsic calls that do modify global
data.

 coder.extrinsic

2-69

–sync:off

Disables synchronization of global data between MATLAB and MEX functions before
and after calls to the extrinsic functions, function_name or function_name_1
through function_name_n. If most extrinsic calls modify global data, but a few do
not, you can use the –sync:off option to turn off synchronization for the extrinsic calls
that do not modify global data.

Description

coder.extrinsic declares extrinsic functions. During simulation, the code generation
software generates code for the call to an extrinsic function, but does not generate
the function's internal code. Therefore, simulation can run only on platforms where
MATLAB software is installed. During standalone code generation, MATLAB attempts
to determine whether the extrinsic function affects the output of the function in which
it is called — for example by returning mxArrays to an output variable. Provided that
there is no change to the output, MATLAB proceeds with code generation, but excludes
the extrinsic function from the generated code. Otherwise, compilation errors occur.

You cannot use coder.ceval on functions that you declare extrinsic by using
coder.extrinsic.

coder.extrinsic is ignored outside of code generation.

Tips
• The code generation software detects calls to many common visualization functions,

such as plot, disp, and figure. The software treats these functions like extrinsic
functions, but you do not have to declare them extrinsic using the coder.extrinsic
function.

• Use the coder.screener function to detect which functions you must declare
extrinsic. This function opens the code generations readiness tool that detects code
generation issues in your MATLAB code.

During code generation, MATLAB attempts to determine whether the extrinsic
function affects the output of the function in which it is called—for example, by
returning mxArrays to an output variable. Provided that there is no change to the
output, MATLAB proceeds with code generation, but excludes the extrinsic function
from the generated code. Otherwise, a MATLAB issues a compiler error.

2 Functions — Alphabetical List

2-70

Examples

The following code declares the MATLAB functions patch and axis extrinsic in the
MATLAB local function create_plot:

function c = pythagoras(a,b,color) %#codegen

% Calculates the hypotenuse of a right triangle

% and displays the triangle as a patch object.

c = sqrt(a^2 + b^2);

create_plot(a, b, color);

function create_plot(a, b, color)

%Declare patch and axis as extrinsic

coder.extrinsic('patch', 'axis');

x = [0;a;a];

y = [0;0;b];

patch(x, y, color);

axis('equal');

By declaring these functions extrinsic, you instruct the software not to compile or
generate code for patch and axis. Instead it dispatches these functions to MATLAB for
execution.

More About
• “Call MATLAB Functions”
• “Controlling Synchronization for Extrinsic Function Calls”
• “Resolution of Function Calls for Code Generation”
• “Restrictions on Extrinsic Functions for Code Generation”

See Also
coder.ceval | coder.screener

Introduced in R2011a

 coder.inline

2-71

coder.inline
Package: coder

Control inlining in generated code

Syntax

coder.inline('always')

coder.inline('never')

coder.inline('default')

Description

coder.inline('always') forces inlining of the current function in generated code.

coder.inline('never') prevents inlining of the current function in generated code.
For example, you may want to prevent inlining to simplify the mapping between the
MATLAB source code and the generated code.

coder.inline('default') uses internal heuristics to determine whether or not to
inline the current function.

In most cases, the heuristics used produce highly optimized code. Use coder.inline
only when you need to fine-tune these optimizations.

Place the coder.inline directive inside the function to which it applies. The code
generation software does not inline entry-point functions.

coder.inline('always') does not inline functions called from parfor-loops. The
code generation software does not inline functions into parfor-loops.

Examples

• “Preventing Function Inlining” on page 2-72
• “Using coder.inline In Control Flow Statements” on page 2-72

2 Functions — Alphabetical List

2-72

Preventing Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)

 coder.inline('never');

 y = x;

end

Using coder.inline In Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and
issues a warning.

Suppose you want to generate code for a division function that will be embedded in
a system with limited memory. To optimize memory use in the generated code, the
following function, inline_division, manually controls inlining based on whether it
performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code

% than the function call itself.

if isscalar(dividend) && isscalar(divisor)

 coder.inline('always');

else

% Vector division produces a for-loop.

% Prohibit inlining to reduce code size.

 coder.inline('never');

end

if any(divisor == 0)

 error('Can not divide by 0');

end

y = dividend / divisor;

Introduced in R2011a

 coder.load

2-73

coder.load
Load compile-time constants from MAT-file or ASCII file into caller workspace

Syntax

S = coder.load(filename)

S = coder.load(filename,var1,...,varN)

S = coder.load(filename,'-regexp',expr1,...,exprN)

S = coder.load(filename,'-ascii')

S = coder.load(filename,'-mat')

S = coder.load(filename,'-mat',var1,...,varN)

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

Description

S = coder.load(filename) loads compile-time constants from filename.

• If filename is a MAT-file, then coder.load loads variables from the MAT-file into a
structure array.

• If filename is an ASCII file, then coder.load loads data into a double-precision
array.

S = coder.load(filename,var1,...,varN) loads only the specified variables from
the MAT-file filename.

S = coder.load(filename,'-regexp',expr1,...,exprN) loads only the variables
that match the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless
of the file extension.

S = coder.load(filename,'-mat') treats filename as a MAT-file, regardless of
the file extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-
file and loads only the specified variables from the file.

2 Functions — Alphabetical List

2-74

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats
filename as a MAT-file and loads only the variables that match the specified regular
expressions.

Examples

Load compile-time constants from MAT-file

Generate code for a function edgeDetect1 which given a normalized image, returns an
image where the edges are detected with respect to the threshold value. edgeDetect1
uses coder.load to load the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.mat k

Write the function edgeDetect1.

function edgeImage = edgeDetect1(originalImage, threshold) %#codegen

assert(all(size(originalImage) <= [1024 1024]));

assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

S = coder.load('sobel.mat','k');

H = conv2(double(originalImage),S.k, 'same');

V = conv2(double(originalImage),S.k','same');

E = sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect1.

codegen -report -config cfg edgeDetect1

 coder.load

2-75

codegen generates C code in the codegen\lib\edgeDetect1 folder.

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an
image where the edges are detected with respect to the threshold value. edgeDetect2
uses coder.load to load the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.dat k -ascii

Write the function edgeDetect2.

function edgeImage = edgeDetect2(originalImage, threshold) %#codegen

assert(all(size(originalImage) <= [1024 1024]));

assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

k = coder.load('sobel.dat');

H = conv2(double(originalImage),k, 'same');

V = conv2(double(originalImage),k','same');

E = sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect2.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\lib\edgeDetect2 folder.

Input Arguments

filename — Name of file
string

Name of file, specified as a string constant.

2 Functions — Alphabetical List

2-76

filename can include a file extension and a full or partial path. If filename has no
extension, load looks for a file named filename.mat. If filename has an extension
other than .mat, load treats the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of
elements in each row. The file delimiter (the character between elements in each row)
can be a blank, comma, semicolon, or tab character. The file can contain MATLAB
comments (lines that begin with a percent sign, %).

Example: 'myFile.mat’

Data Types: char

var1,...,varN — Names of variables to load
string

Names of variables, specified as string constants. Use the * wildcard to match patterns.

Example: load('myFile.mat','A*') loads all variables in the file whose names start
with A.

Data Types: char

expr1,...,exprN — Regular expressions indicating which variables to load
string

Regular expressions indicating which variables to load, specified as string constants.
Example: load('myFile.mat', '^A', '^B') loads only variables whose names begin
with A or B.

Data Types: char

Output Arguments

S — Loaded variables or data
structure array | m-by-n array

If filename is a MAT-file, S is a structure array.

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of
lines in the file and n is the number of values on a line.

 coder.load

2-77

Limitations

• coder.load does not support loading objects.
• Arguments to coder.load must be compile-time constant strings.
• The output S must be the name of a structure or array without any subscripting. For

example, S(i) = coder.load('myFile.mat') is not allowed.
• You cannot use save to save workspace data to a file inside a function intended for

code generation. The code generation software does not support the save function.
Furthermore, you cannot use coder.extrinsic with save. Prior to generating code,
you can use save to save workspace data to a file.

More About

Tips

• coder.load loads data at compile time, not at run time. If you are generating MEX
code or code for Simulink simulation, you can use the MATLAB function load to load
run-time values.

• If the MAT-file contains unsupported constructs, use
coder.load(filename,var1,...,varN) to load only the supported constructs.

• If you generate code in a MATLAB Coder project, the code generation software
practices incremental code generation for the coder.load function. When the MAT-
file or ASCII file used by coder.load changes, the software rebuilds the code.

• “Regular Expressions”

See Also
matfile | regexp | save

Introduced in R2013a

2 Functions — Alphabetical List

2-78

coder.nullcopy
Package: coder

Declare uninitialized variables

Syntax

X = coder.nullcopy(A)

Description

X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy
element values. Preallocates memory for X without incurring the overhead of initializing
memory.

coder.nullcopy does not support MATLAB classes as inputs.

Use With Caution

Use this function with caution. See “How to Eliminate Redundant Copies by Defining
Uninitialized Variables”.

Examples

The following example shows how to declare variable X as a 1-by-5 vector of real doubles
without performing an unnecessary initialization:

function X = foo

N = 5;

X = coder.nullcopy(zeros(1,N));

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 coder.nullcopy

2-79

 X(i) = 0;

 end

end

Using coder.nullcopy with zeros lets you specify the size of vector X without
initializing each element to zero.

More About
• “Eliminate Redundant Copies of Variables in Generated Code”

Introduced in R2011a

2 Functions — Alphabetical List

2-80

coder.opaque

Declare variable in generated code

Syntax

y = coder.opaque(type)

y = coder.opaque(type,value)

y = coder.opaque(type,'HeaderFile',HeaderFile)

y = coder.opaque(type,value,'HeaderFile',HeaderFile)

Description

y = coder.opaque(type) declares a variable y with the specified type and no initial
value in the generated code.

• y can be a variable or a structure field.
• MATLAB code cannot set or access y, but external C functions can accept y as an

argument.
• y can be an:

• Argument to coder.rref, coder.wref, or coder.ref
• Input or output argument to coder.ceval
• Input or output argument to a user-written MATLAB function
• Input to a subset of MATLAB toolbox functions supported for code generation

• Assignment from y declares another variable with the same type in the generated
code. For example:

y = coder.opaque('int');

z = y;

declares a variable z of type int in the generated code.
• You can assign y from another variable declared using either coder.opaque or

assignment from a variable declared using coder.opaque. The variables must have
identical types.

 coder.opaque

2-81

• You can compare y to another variable declared using either coder.opaque or
assignment from a variable declared using coder.opaque. The variables must have
identical types.

y = coder.opaque(type,value) declares a variable y and specifies the initial value
of y in the generated code.

y = coder.opaque(type,'HeaderFile',HeaderFile) declares a variable y
and specifies the header file that contains the definition of type. The code generation
software generates the #include statement for the header file where required in the
generated code.

y = coder.opaque(type,value,'HeaderFile',HeaderFile) declares a variable y
with the specified type, initial value, and header file in the generated code.

Examples

Declare Variable Specifying Initial Value

Generate code for a function valtest which returns 1 if the call to myfun is successful.
This function uses coder.opaque to declare a variable x1 with type int and initial
value 0. The assignment x2 = x1 declares x2 to be a variable with the type and initial
value of x1 .

Write a function valtest.

function y = valtest

%codegen

%declare x1 to be an integer with initial value '0')

x1 = coder.opaque('int','0');

%Declare x2 to have same type and intial value as x1

x2 = x1;

x2 = coder.ceval('myfun');

%test the result of call to 'myfun' by comparing to value of x1

if x2 == x1;

 y = 0;

else

 y = 1;

end

end

2 Functions — Alphabetical List

2-82

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for valtest.

codegen -report -config cfg valtest

codegen generates C code in the codegen\lib\valtest folder.

Declare Variable Specifying Initial Value and Header File

Generate code for a MATLAB function filetest which returns its own source
code using fopen/fread/fclose. This function uses coder.opaque to declare
the variable that stores the file pointer used by fopen/fread/fclose. The call to
coder.opaque declares the variable f with type FILE *, initial value NULL, and
header file <stdio.h>.

Write a MATLAB function filetest.
function buffer = filetest

%#codegen

% Declare 'f' as an opaque type 'FILE *' with intial value 'NULL"

%Specify the header file that contains the type definition of 'FILE *';

f = coder.opaque('FILE *', 'NULL','HeaderFile','<stdio.h>');

% Open file in binary mode

f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put

% contents into buffer

n = int32(1);

i = int32(1);

buffer = char(zeros(1,8192));

while n > 0

 % By default, MATLAB converts constant values

 % to doubles in generated code

 % so explicit type conversion to int32 is inserted.

 n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...

 int32(numel(buffer)), f);

 i = i + n;

end

coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB string

function y = cstring(x)

 y = [x char(0)];

 coder.opaque

2-83

% Remove all character 13 (CR) but keep character 10 (LF)

function buffer = strip_cr(buffer)

j = 1;

for i = 1:numel(buffer)

 if buffer(i) ~= char(13)

 buffer(j) = buffer(i);

 j = j + 1;

 end

end

buffer(i) = 0;

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for filetest.

codegen -report -config cfg filetest

codegen generates C code in the codegen\lib\filetest folder.

Compare Variables Declared Using coder.opaque

Compare variables declared using coder.opaque to test for successfully opening a file.

Use coder.opaque to declare a variable null with type FILE * and initial value NULL.

null = coder.opaque('FILE *', 'NULL', 'HeaderFile', '<stdio.h>');

Use assignment to declare another variable ftmp with the same type and value as null.

ftmp = null;

ftmp = coder.ceval('fopen', ['testfile.txt', char(0)], ['r', char(0)]);

Compare the variables.

if ftmp == null

 %error condition

end

Cast to and from Types of Variables Declared Using coder.opaque

This example shows how to cast to and from types of variables that are declared using
coder.opaque. The function castopaque calls the C run-time function strncmp to
compare at most n characters of the strings s1 and s2. n is the number of characters in

2 Functions — Alphabetical List

2-84

the shorter of the strings. To generate the correct C type for the strncmp input nsizet,
the function casts n to the C type size_t and assigns the result to nsizet. The function
uses coder.opaque to declare nsizet. Before using the output retval from strncmp,
the function casts retval to the MATLAB type int32 and stores the results in y.

Write this MATLAB function:

function y = castopaque(s1,s2)

% <0 - the first character that does not match has a lower value in s1 than in s2

% 0 - the contents of both strings are equal

% >0 - the first character that does not match has a greater value in s1 than in s2

%

%#codegen

coder.cinclude('<string.h>');

n = min(numel(s1), numel(s2));

% Convert the number of characters to compare to a size_t

nsizet = cast(n,'like',coder.opaque('size_t','0'));

% The return value is an int

retval = coder.opaque('int');

retval = coder.ceval('strncmp', cstr(s1), cstr(s2), nsizet);

% Convert the opaque return value to a MATLAB value

y = cast(retval, 'int32');

%--------------

function sc = cstr(s)

% NULL terminate a MATLAB string for C

sc = [s, char(0)];

Generate the MEX function.

codegen castopaque -args {blanks(3), blanks(3)} -report

Call the MEX function with inputs 'abc' and 'abc'.

castopaque_mex('abc','abc')

ans =

 coder.opaque

2-85

 0

The output is 0 because the strings are equal.

Call the MEX function with inputs 'abc' and 'abd'.

castopaque_mex('abc','abd')

ans =

 -1

The output is -1 because the third character d in the second string is greater than the
third character c in the first string.

Call the MEX function with inputs 'abd' and 'abc'.

castopaque_mex('abd','abc')

ans =

 1

The output is 1 because the third character d in the first string is greater than the third
character c in the second string.

In the MATLAB workspace, you can see that the type of y is int32.

Input Arguments

type — Type of variable
string

Type of variable in generated code specified as a string constant. The type must be a:

• Built-in C data type or a type defined in a header file
• C type that supports copy by assignment
• Legal prefix in a C declaration

Example: 'FILE *'

2 Functions — Alphabetical List

2-86

Data Types: char

value — Initial value of variable
string

Initial value of variable in generated code specified as a string constant. Specify a C
expression not dependent on MATLAB variables or functions.

If you do not provide the initial value in value, initialize the value of the variable prior
to using it. To initialize a variable declared using coder.opaque:

• Assign a value from another variable with the same type declared using either
coder.opaque or assignment from a variable declared using coder.opaque.

• Assign a value from an external C function.
• Pass the variable’s address to an external function using coder.wref.

Specify a value that has the type that type specifies. Otherwise, the generated code can
produce unexpected results.
Example: 'NULL'

Data Types: char

HeaderFile — Name of header file
string

Name of header file, specified as a string constant, that contains the definition of type.

For a system header file, use angle brackets.
Example: '<stdio.h>' generates #include <stdio.h>

For an application header file, use double quotes.
Example: '"foo.h"' generates #include "foo.h"

If you omit the angle brackets or double quotes, the code generation software generates
double quotes.
Example: 'foo.h' generates #include "foo.h"

Specify the include path in the build configuration parameters.
Example: cfg.CustomInclude = 'c:\myincludes'

 coder.opaque

2-87

Data Types: char

More About

Tips

• Specify a value that has the type that type specifies. Otherwise, the generated
code can produce unexpected results. For example, the following coder.opaque
declaration can produce unexpected results.

y = coder.opaque('int', '0.2')

• coder.opaque declares the type of a variable. It does not instantiate the variable.
You can instantiate a variable by using it later in the MATLAB code. In the following
example, assignment of fp1 from coder.ceval instantiates fp1.
% Declare fp1 of type FILE *

fp1 = coder.opaque('FILE *');

%Create the variable fp1

fp1 = coder.ceval('fopen', ['testfile.txt', char(0)], ['r', char(0)]);

• In the MATLAB environment, coder.opaque returns the value specified in value. If
value is not provided, it returns the empty string.

• You can compare variables declared using either coder.opaque or assignment from
a variable declared using coder.opaque. The variables must have identical types.
The following example demonstrates how to compare these variables. “Compare
Variables Declared Using coder.opaque” on page 2-83

• To avoid multiple inclusions of the same header file in generated code, enclose the
header file in the conditional preprocessor statements #ifndef and #endif. For
example:

#ifndef MyHeader_h

#define MyHeader_h

<body of header file>

#endif

• You can use the MATLAB cast function to cast a variable to or from a variable that
is declared using coder.opaque. Use cast with coder.opaque only for numeric
types.

To cast a variable declared by coder.opaque to a MATLAB type, you can use the B
= cast(A,type) syntax. For example:

x = coder.opaque('size_t','0');

2 Functions — Alphabetical List

2-88

x1 = cast(x, 'int32');

You can also use the B = cast(A,'like',p) syntax. For example:

x = coder.opaque('size_t','0');

x1 = cast(x, 'like', int32(0));

To cast a MATLAB variable to the type of a variable declared by coder.opaque, you
must use the B = cast(A,'like',p) syntax. For example:

x = int32(12);

x1 = coder.opaque('size_t', '0');

x2 = cast(x, 'like', x1));

Use cast with coder.opaque to generate the correct data types for:

• Inputs to C/C++ functions that you call using coder.ceval.
• Variables that you assign to outputs from C/C++ functions that you call using

coder.ceval.

Without this casting, it is possible to receive compiler warnings during code
generation.

See Also
coder.ceval | coder.ref | coder.rref | coder.wref

Introduced in R2011a

 coder.ref

2-89

coder.ref
Package: coder

Pass argument by reference as read input or write output

Syntax

[y =] coder.ceval('function_name', coder.ref(arg), ... un)

Arguments
arg

Variable passed by reference as an input or an output to the external C/C++ function
called in coder.ceval. arg must be a scalar variable, a matrix variable, or an
element of a matrix variable.

Description

[y =] coder.ceval('function_name', coder.ref(arg), ... un) passes
the variable arg by reference as an input or an output to the external C/C++ function
called in coder.ceval. You add coder.ref inside coder.ceval as an argument to
function_name. The argument list can contain multiple coder.ref constructs. Add a
separate coder.ref construct for each argument that you want to pass by reference to
function_name.

Only use coder.ref in MATLAB code that you have compiled with codegen.
coder.ref generates an error in uncompiled MATLAB code.

Examples

In the following example, a MATLAB function fcn has a single input u and a single
output y. fcn calls a C function my_fcn, passing u by reference as an input. The value of
output y is passed to fcn by the C function through its return statement.

2 Functions — Alphabetical List

2-90

Here is the MATLAB function code:

function y = fcn(u) %#codegen

y = 0; %Constrain return type to double

y = coder.ceval('my_fcn', coder.ref(u));

The C function prototype for my_fcn must be as follows:

double my_fcn(double *u)

In this example, the generated code infers the type of the input u from the codegen
argument.

The C function prototype defines the input as a pointer because it is passed by reference.

The generated code cannot infer the type of the output y, so you must set it explicitly—in
this case to a constant value 0 whose type defaults to double.

See Also
coder.ceval | coder.rref | coder.wref

Introduced in R2011a

 coder.rref

2-91

coder.rref

Package: coder

Pass argument by reference as read-only input

Syntax

[y =] coder.ceval('function_name', coder.rref(argI), ... un)

Arguments

argI

Variable passed by reference as a read-only input to the external C/C++ function
called in coder.ceval.

Description

[y =] coder.ceval('function_name', coder.rref(argI), ... un) passes
the variable argI by reference as a read-only input to the external C/C++ function
called in coder.ceval. You add coder.rref inside coder.ceval as an argument to
function_name. The argument list can contain multiple coder.rref constructs. Add
a separate coder.rref construct for each read-only argument that you want to pass by
reference to function_name.

Caution The generated code assumes that a variable passed by coder.rref is read-only
and is optimized accordingly. Consequently, the C/C++ function must not write to the
variable or results can be unpredictable.

Only use coder.rref in MATLAB code that you have compiled with codegen.
coder.rref generates an error in uncompiled MATLAB code.

2 Functions — Alphabetical List

2-92

Examples

In the following example, a MATLAB function fcn has a single input u and a single
output y. fcn calls a C function foo, passing u by reference as a read-only input. The
value of output y is passed to fcn by the C function through its return statement.

Here is the MATLAB function code:

function y = fcn(u) %#codegen

y = 0; % Constrain return type to double

y = coder.ceval('foo', coder.rref(u));

The C function prototype for foo must be as follows:

double foo(const double *u)

In this example, the generated code infers the type of the input u from the codegen
argument.

The C function prototype defines the input as a pointer because it is passed by reference.

The generated code cannot infer the type of the output y, so you must set it explicitly—in
this case to a constant value 0 whose type defaults to double.

See Also
coder.ceval | coder.opaque | coder.ref | coder.wref | | |

Introduced in R2011a

 coder.screener

2-93

coder.screener

Determine if function is suitable for code generation

Syntax

coder.screener(fcn)

coder.screener(fcn_1,...,fcn_n)

Description

coder.screener(fcn) analyzes the entry-point MATLAB function, fcn. It identifies
unsupported functions and language features, such as recursion and nested functions,
as code generation compliance issues. It displays the code generation compliance issues
in a report. If fcn calls other functions directly or indirectly that are not MathWorks®

functions, coder.screener analyzes these functions. It does not analyze MathWorks
functions. It is possible that coder.screener does not detect all code generation issues.
Under certain circumstances, it is is possible that coder.screener reports false errors.

coder.screener(fcn_1,...,fcn_n) analyzes entry-point functions
(fcn_1,...,fcn_n).

Input Arguments

fcn

Name of entry-point MATLAB function that you want to analyze.

fcn_1,...,fcn_n

Comma-separated list of names of entry-point MATLAB functions that you want to
analyze.

2 Functions — Alphabetical List

2-94

Examples

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for
code generation. It checks both the entry-point function, foo1, and the function foo2
that foo1 calls.

Analyze the MATLAB function foo1 that calls foo2. Put foo1 and foo2 in separate
files.

function out = foo1(in)

 out = foo2(in);

 disp(out);

end

function out = foo2(in)

 out = eval(in);

end

coder.screener('foo1')

The code generation readiness report displays a summary of the unsupported MATLAB
function calls. The function foo2 calls one unsupported MATLAB function.

 coder.screener

2-95

In the report, click the Code Structure tab and select the Show MATLAB functions
check box.

This tab displays a pie chart showing the relative size of each file and how suitable each
file is for code generation. In this case, the report:

• Colors foo1.m green to indicate that it is suitable for code generation.
• Colors foo2.m yellow to indicate that it requires significant changes.

2 Functions — Alphabetical List

2-96

• Assigns foo1.m a code generation readiness score of 4 and foo2.m a score of 3. The
score is based on a scale of 1–5. 1 indicates that significant changes are required; 5
indicates that the code generation readiness tool does not detect issues.

• Displays a call tree.

The report Summary tab indicates that foo2.m contains one call to the eval function
which code generation does not support. To generate a MEX function for foo2.m, modify
the code to make the call to eval extrinsic.

 coder.screener

2-97

function out = foo2(in)

 coder.extrinsic('eval');

 out = eval(in);

end

Rerun the code generation readiness tool.

coder.screener('foo1')

The report no longer flags that code generation does not support the eval function.
When you generate a MEX function for foo1, the code generation software dispatches
eval to MATLAB for execution. For standalone code generation, it does not generate
code for it.

Identify Unsupported Data Types

The coder.screener function identifies data types that code generation does not
support.

Analyze the MATLAB function foo3 that uses unsupported data types.

function [outSparse,outCategorical] = foo3(A,B,C)

 outSparse = sparse(A);

 outCategorical = categorical(B);

 outTable = table(C);

end

coder.screener('foo3')

The code generation readiness report displays a summary of the unsupported data types.

2 Functions — Alphabetical List

2-98

The report assigns the code a code readiness score of 2. This score indicates that the code
requires extensive changes.

Before generating code, you must fix the reported issues.

Determine Code Generation Readiness for Multiple Entry-Point Functions

The coder.screener function identifies calls to functions that code generation does not
support. It checks the entry-point functions foo4 and foo5.

Analyze the MATLAB functions foo4 and foo5.

function out = foo4(in)

 out = in;

 disp(out);

end

function out = foo5(in)

 out = eval(in);

end

 coder.screener

2-99

coder.screener('foo4', 'foo5')

The code generation readiness report displays a summary of the unsupported MATLAB
function calls. The function foo5 calls one unsupported MATLAB function.

In the report, click the Code Structure tab. Select the Show MATLAB functions
check box.

This tab displays a pie chart showing the relative size of each file and how suitable each
file is for code generation. In this case, the report:

2 Functions — Alphabetical List

2-100

• Colors foo4.m green to indicate that it is suitable for code generation.
• Colors foo5.m yellow to indicate that it requires significant changes.
• Assigns foo4.m a code generation readiness score of 4 and foo5.m a score of 4. The

score is based on a scale of 1–5. 1 indicates that significant changes are required; 5
indicates that the code generation readiness tool cannot detect issues.

• Displays a call tree.

 coder.screener

2-101

Alternatives

• “Run the Code Generation Readiness Tool From the Current Folder Browser”

2 Functions — Alphabetical List

2-102

More About

Tips

• Before using coder.screener, fix issues that the Code Analyzer identifies.
• Before generating code, use coder.screener to check that a function is suitable for

code generation. Fix all the issues that it detects.

• “Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List”

• “Functions and Objects Supported for C and C++ Code Generation — Category List”
• “Code Generation Readiness Tool”

Introduced in R2012b

 coder.target

2-103

coder.target
Determine if code generation target is specified target

Syntax

tf = coder.target(target)

Description

tf = coder.target(target) returns true (1) if the code generation target is target.
Otherwise, it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at
class loading time before code generation. If you use coder.target in MATLAB class
property initialization, coder.target('MATLAB') returns true.

Examples

Use coder.target to parameterize a MATLAB function

Parameterize a MATLAB function so that it works in MATLAB or generated code. When
the function runs in MATLAB, it calls the MATLAB function myabsval. The generated
code, however, calls a C library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u) %#codegen

y = abs(u);

Generate the C library for myabsval.m, using the -args option to specify the size, type,
and complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

codegen creates the library myabsval.lib and header file myabsval.h in the folder /
codegen/lib/myabsval. It also generates the functions myabsval_initialize and
myabsval_terminate in the same folder.

2 Functions — Alphabetical List

2-104

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval %#codegen

y = -2.75;

% Check the target. Do not use coder.ceval if callmyabsval is

% executing in MATLAB

if coder.target('MATLAB')

 % Executing in MATLAB, call function myabsval

 y = myabsval(y);

else

 % Executing in the generated code.

 % Call the initialize function before calling the

 % C function for the first time

 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval

 y = coder.ceval('myabsval',y);

 % Call the terminate function after

 % calling the C function for the last time

 coder.ceval('myabsval_terminate');

end

Convert callmyabsval.m to the MEX function callmyabsval_mex.

codegen -config:mex callmyabsval codegen/lib/myabsval/myabsval.lib...

 codegen/lib/myabsval/myabsval.h

Run the MATLAB function callmyabsval .

callmyabsval

ans =

 2.7500

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex

ans =

 coder.target

2-105

 2.7500

Input Arguments

target — code generation target
string

Code generation target specified as one of the following strings:

'MATLAB' Running in MATLAB (not generating code)
'MEX' Generating a MEX function
'Sfun' Simulating a Simulink model
'Rtw' Generating a LIB, DLL, or EXE target
'HDL ' Generating an HDL target
'Custom' Generating a custom target

Example: tf = coder.target('MATLAB')

Data Types: char

See Also
coder.ceval

Introduced in R2011a

2 Functions — Alphabetical List

2-106

coder.typeof
Package: coder

Convert MATLAB value into its canonical type

Syntax
t = coder.typeof(v)

t = coder.typeof(v, sz, variable_dims)

t = coder.typeof(t)

Description
t = coder.typeof(v) creates a coder.Type object denoting the smallest nonconstant
type that contains v. v must be a MATLAB numeric, logical, char, enumeration or fixed-
point array, or a cell array or struct constructed from these types. Use coder.typeof to
specify only input parameter types.

t = coder.typeof(v, sz, variable_dims) returns a modified copy of t =
coder.typeof(v) with (upper bound) size specified by sz and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is
unbounded and the dimension is variable size. When sz is [], the (upper bound) sizes of
v do not change. If you do not specify the variable_dims input parameter, the bounded
dimensions of the type are fixed. When variable_dims is a scalar, it is applied to
bounded dimensions or dimensions that are 1 or 0, which are fixed.

When v is a cell array whose elements have the same classes, but different sizes, if you
specify variable-size dimensions, coder.typeof creates a homogeneous cell array type.
If the elements have different classes, coder.typeof reports an error.

t = coder.typeof(t), where t is a coder.Type object, returns t itself.

Input Arguments
sz

Size vector specifying each dimension of type object.

 coder.typeof

2-107

t

coder.Type object

v

MATLAB expression that describes the set of values represented by this type.

v must be a MATLAB numeric, logical, char, enumeration or fixed-point array, or a cell
array or struct constructed from the preceding types.

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size
(false).

For a cell array, if the elements have different classes, you cannot specify variable-size
dimensions.

Output Arguments

t

coder.Type object

Examples

Create a type for a simple fixed-size 5x6 matrix of doubles.

coder.typeof(ones(5, 6))

 % returns 5x6 double

coder.typeof(0, [5 6])

 % also returns 5x6 double

Create a type for a variable-size matrix of doubles.

coder.typeof(ones(3,3), [], 1)

% returns :3 x :3 double

% ':' indicates variable-size dimensions

2 Functions — Alphabetical List

2-108

Create a type for a structure with a variable-size field.

x.a = coder.typeof(0,[3 5],1);

x.b = magic(3);

coder.typeof(x)

% Returns

% coder.StructType

% 1x1 struct

% a: :3x:5 double

% b: 3x3 double

% ':' indicates variable-size dimensions

Create a type for a homogeneous cell array with a variable-size field.

a = coder.typeof(0,[3 5],1);

b = magic(3);

coder.typeof({a b})

% Returns

% coder.CellType

% 1x2 homogeneous cell

% base: :3x:5 double

% ':' indicates variable-size dimensions

Create a type for a heterogeneous cell array.

a = coder.typeof('a');

b = coder.typeof(1);

coder.typeof({a b})

% Returns

% coder.CellType

% 1x2 heterogeneous cell

% f0: 1x1 char

% f1: 1x1 double

Create a variable-size homogeneous cell array type from a cell array that has the same
class but different sizes.

1 Create a type for a cell array that has two strings with different sizes. The cell array
type is heterogeneous.

coder.typeof({'aa', 'bbb'})

% Returns

% coder.CellType

% 1x2 heterogeneous cell

% f0: 1x2 char

 coder.typeof

2-109

% f1: 1x3 char

2 Create a type using the same cell array input. This time, specify that the cell array
type has variable-size dimensions. The cell array type is homogeneous.

coder.typeof({'aa','bbb'},[1,10],[0,1])

% Returns

% coder.CellType

% 1x:10 homogeneous cell

% base: 1x:3 char

Create a type for a matrix with fixed-size and variable-size dimensions.

coder.typeof(0, [2,3,4], [1 0 1]);

% Returns :2x3x:4 double

% ':' indicates variable-size dimensions

coder.typeof(10, [1 5], 1)

% returns double 1 x :5

% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with
fixed size.

coder.typeof(10,[inf,3])

% returns double:inf x 3

% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with
variable size with an upper bound of 3.

coder.typeof(10, [inf,3],[0 1])

% returns double :inf x :3

% ':' indicates variable-size dimensions

Convert a fixed-size matrix to a variable-size matrix.

 coder.typeof(ones(5,5), [], 1)

% returns double :5x:5

% ':' indicates variable-size dimensions

Create a nested structure (a structure as a field of another structure).

S = struct('a',double(0),'b',single(0))

SuperS.x = coder.typeof(S)

SuperS.y = single(0)

2 Functions — Alphabetical List

2-110

coder.typeof(SuperS)

% Returns

% coder.StructType

% SuperS: 1x1 struct

% with fields

% x: 1x1 struct

% with fields

% a: 1x1 double

% b: 1x1 single

% y: 1x1 single

Create a structure containing a variable-size array of structures as a field.

S = struct('a',double(0),'b',single(0))

SuperS.x = coder.typeof(S,[1 inf],[0 1])

SuperS.y = single(0)

coder.typeof(SuperS)

% Returns

% coder.StructType

% SuperS: 1x1 struct

% with fields

% x: 1x:inf struct

% with fields

% a: 1x1 double

% b: 1x1 single

% y: 1x1 single

% ':' indicates variable-size dimensions

Tips

• If you are already specifying the type of an input variable using a type function, do
not use coder.typeof unless you also want to specify the size. For instance, instead
of coder.typeof(single(0)), use the syntax single(0).

• For cell array types, coder.typeof determines whether the cell array type is
homogeneous or heterogeneous. If the cell array elements have the same class
and size, coder.typeof returns a homogeneous cell array type. If the elements
have different classes, coder.typeof returns a heterogeneous cell array type. For
some cell arrays, the classification as homogeneous or heterogeneous is ambiguous.
For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type where the first
element is double and the second element is 1x2 double. The type can also be a 1x3
homogeneous type in which the elements have class double and size 1x:2. For these
ambiguous cases, coder.typeof uses heuristics to classify the type as homogeneous

 coder.typeof

2-111

or heterogeneous. If you want a different classification, use the coder.CellType
makeHomogeneous or makeHeterogeneous methods to make a type with the
classification that you want. The makeHomogeneous method makes a homogeneous
copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a
type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the
classification as heterogeneous and homogeneous, respectively. You cannot later use
one of these methods to create a copy that has a different classification.

See Also

Introduced in R2011a

2 Functions — Alphabetical List

2-112

coder.unroll
Package: coder

Copy body of for-loop in generated code for each iteration

Syntax

for i = coder.unroll(range)

for i = coder.unroll(range,flag)

Description

for i = coder.unroll(range) copies the body of a for-loop (unrolls a for-loop) in
generated code for each iteration specified by the bounds in range. i is the loop counter
variable.

for i = coder.unroll(range,flag) unrolls a for-loop as specified in range if
flag is true.

You must use coder.unroll in a for-loop header. coder.unroll modifies the
generated code, but does not change the computed results.

coder.unroll must be able to evaluate the bounds of the for-loop at compile time. The
number of iterations cannot exceed 1024; unrolling large loops can increase compile time
significantly and generate inefficient code

This function is ignored outside of code generation.

Input Arguments

flag

Boolean expression that indicates whether to unroll the for-loop:

true Unroll the for-loop

 coder.unroll

2-113

false Do not unroll the for-loop

range

Specifies the bounds of the for-loop iteration:

init_val : end_val Iterate from init_val to end_val, using
an increment of 1

init_val : step_val : end_val Iterate from init_val to end_val, using
step_val as an increment if positive or as
a decrement if negative

Matrix variable Iterate for a number of times equal to the
number of columns in the matrix

Examples

To limit the number of times to copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a vector
of length n and assign random numbers to specific elements. Add a test function
test_unroll. This function calls getrand(n) with n equal to values both less than
and greater than the threshold for copying the for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

 % Calling getrand 8 times triggers unroll

 y1 = getrand(8);

 % Calling getrand 50 times does not trigger unroll

 y2 = getrand(50);

function y = getrand(n)

 % Turn off inlining to make

 % generated code easier to read

 coder.inline('never');

 % Set flag variable dounroll to repeat loop body

 % only for fewer than 10 iterations

 dounroll = n < 10;

 % Declare size, class, and complexity

2 Functions — Alphabetical List

2-114

 % of variable y by assignment

 y = zeros(n, 1);

 % Loop body begins

 for i = coder.unroll(1:2:n, dounroll)

 if (i > 2) && (i < n-2)

 y(i) = rand();

 end;

 end;

 % Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static library
code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body of the
for-loop (unrolls the loop) because the number of iterations is less than 10:

static void getrand(double y[8])

{

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, sizeof(double) << 3);

 /* Loop body begins */

 y[2] = b_rand();

 y[4] = b_rand();

 /* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because the
number of iterations is greater than 10:

static void b_getrand(double y[50])

{

 int i;

 int b_i;

 /* Turn off inlining to make */

 /* generated code easier to read */

 coder.unroll

2-115

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, 50U * sizeof(double));

 /* Loop body begins */

 for (i = 0; i < 25; i++) {

 b_i = (i << 1) + 1;

 if ((b_i > 2) && (b_i < 48)) {

 y[b_i - 1] = b_rand();

 }

 }

More About
• “ Using Logicals in Array Indexing”

See Also
| | for | |

Introduced in R2011a

2 Functions — Alphabetical List

2-116

coder.updateBuildInfo
Update build information object RTW.BuildInfo

Syntax

coder.updateBuildInfo('addCompileFlags',options)

coder.updateBuildInfo('addLinkFlags',options)

coder.updateBuildInfo('addDefines',options)

coder.updateBuildInfo(___ ,group)

coder.updateBuildInfo('addLinkObjects',filename,path)

coder.updateBuildInfo('addLinkObjects',filename,path, priority,

precompiled)

coder.updateBuildInfo('addLinkObjects',filename,path, priority,

precompiled,linkonly)

coder.updateBuildInfo(___ ,group)

coder.updateBuildInfo('addNonBuildFiles',filename)

coder.updateBuildInfo('addSourceFiles',filename)

coder.updateBuildInfo('addIncludeFiles',filename)

coder.updateBuildInfo(___ ,path)

coder.updateBuildInfo(___ ,path,group)

coder.updateBuildInfo('addSourcePaths',path)

coder.updateBuildInfo('addIncludePaths',path)

coder.updateBuildInfo(___ ,group)

Description

coder.updateBuildInfo('addCompileFlags',options) adds compiler options to
the build information object.

coder.updateBuildInfo('addLinkFlags',options) adds link options to the build
information object.

coder.updateBuildInfo('addDefines',options) adds preprocessor macro
definitions to the build information object.

 coder.updateBuildInfo

2-117

coder.updateBuildInfo(___ ,group) assigns a group name to options for later
reference.

coder.updateBuildInfo('addLinkObjects',filename,path) adds a link object
from a file to the build information object.

coder.updateBuildInfo('addLinkObjects',filename,path, priority,

precompiled) specifies if the link object is precompiled.

coder.updateBuildInfo('addLinkObjects',filename,path, priority,

precompiled,linkonly) specifies if the object is to be built before being linked or used
for linking alone. If the object is to be built, it specifies if the object is precompiled.

coder.updateBuildInfo(___ ,group) assigns a group name to the link object for
later reference.

coder.updateBuildInfo('addNonBuildFiles',filename) adds a nonbuild-related
file to the build information object.

coder.updateBuildInfo('addSourceFiles',filename) adds a source file to the
build information object.

coder.updateBuildInfo('addIncludeFiles',filename) adds an include file to
the build information object.

coder.updateBuildInfo(___ ,path) adds the file from specified path.

coder.updateBuildInfo(___ ,path,group) assigns a group name to the file for
later reference.

coder.updateBuildInfo('addSourcePaths',path) adds a source file path to the
build information object.

coder.updateBuildInfo('addIncludePaths',path) adds an include file path to
the build information object.

coder.updateBuildInfo(___ ,group) assigns a group name to the path for later
reference.

2 Functions — Alphabetical List

2-118

Examples

Add Multiple Compiler Options

Add the compiler options -Zi and -Wall during code generation for function, func.

Anywhere in the MATLAB code for func, add the following line:

coder.updateBuildInfo('addCompileFlags','-Zi -Wall');

Generate code for func using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport func

Add Source File Name

Add a source file to the project build information while generating code for a function,
calc_factorial.

1 Write a header file fact.h that declares a C function factorial.

 double factorial(double x);

fact.h will be included as a header file in generated code. This inclusion ensures
that the function is declared before it is called.

Save the file in the current folder.
2 Write a C file fact.c that contains the definition of factorial. factorial

calculates the factorial of its input.

#include "fact.h"

 double factorial(double x)

 {

 int i;

 double fact = 1.0;

 if (x == 0 || x == 1) {

 return 1.0;

 } else {

 for (i = 1; i <= x; i++) {

 fact *= (double)i;

 }

 return fact;

 coder.updateBuildInfo

2-119

 }

 }

fact.c is used as a source file during code generation.

Save the file in the current folder.
3 Write a MATLAB function calc_factorial that uses coder.ceval to call the

external C function factorial.

Use coder.updateBuildInfo with option 'addSourceFiles' to add the source
file fact.c to the build information. Use coder.cinclude to include the header
file fact.h in the generated code.

function y = calc_factorial(x) %#codegen

 coder.cinclude('fact.h');

 coder.updateBuildInfo('addSourceFiles', 'fact.c');

 y = 0;

 y = coder.ceval('factorial', x);

4 Generate code for calc_factorial using the codegen command.

 codegen -config:dll -launchreport calc_factorial -args 0

Add Link Object

Add a link object LinkObj.lib to the build information while generating code for a
function func. For this example, you must have a link object LinkObj.lib saved in a
local folder, for example, c:\Link_Objects.

Anywhere in the MATLAB code for func, add the following lines:

libPriority = '';

libPreCompiled = true;

libLinkOnly = true;

libName = 'LinkObj.lib';

libPath = 'c:\Link_Objects';

coder.updateBuildInfo('addLinkObjects', libName, libPath, ...

 libPriority, libPreCompiled, libLinkOnly);

Generate a MEX function for func using the codegen command. Open the Code
Generation Report.

2 Functions — Alphabetical List

2-120

codegen -launchreport func

Add Include Paths

Add an include path to the build information while generating code for a function, adder.
Include a header file, adder.h, existing on the path.

When header files do not reside in the current folder, to include them, use this method:

1 Write a header file mysum.h that contains the declaration for a C function mysum.

double mysum(double, double);

Save it in a local folder, for example c:\coder\myheaders.
2 Write a C file mysum.c that contains the definition of the function mysum.

#include "mysum.h"

double mysum(double x, double y)

 {

 return(x+y);

 }

Save it in the current folder.
3 Write a MATLAB function adder that adds the path c:\coder\myheaders to the

build information.

Use coder.cinclude to include the header file mysum.h in the generated code.

function y = adder(x1, x2) %#codegen

 coder.updateBuildInfo('addIncludePaths','c:\coder\myheaders');

 coder.updateBuildInfo('addSourceFiles','mysum.c');

 %Include the source file containing C function definition

 coder.cinclude('mysum.h');

 y = 0;

 if coder.target('MATLAB')

 % This line ensures that the function works in MATLAB

 y = x1 + x2;

 else

 y = coder.ceval('mysum', x1, x2);

 end

end

4 Generate code for adder using the codegen command.

 coder.updateBuildInfo

2-121

codegen -config:lib -launchreport adder -args {0,0}

Input Arguments

options — Build options
string

Build options, specified as a string. The string must be a compile-time constant.

Depending on the leading argument, options specifies the relevant build options to be
added to the project’s build information.

Leading Argument Values in options

'addCompileFlags' Compiler options
'addLinkFlags' Link options
'addDefines' Preprocessor macro definitions

The function adds the options to the end of an option vector.
Example: coder.updateBuildInfo('addCompileFlags','-Zi -Wall')

group — Group name
string

Name of user-defined group, specified as a string. The string must be a compile-time
constant.

The group option assigns a group name to the parameters in the second argument.

Leading Argument Second Argument Parameters Named by group

'addCompileFlags' options Compiler options
'addLinkFlags' options Link options
'addLinkObjects' filename Name of file containing

linkable objects
'addNonBuildFiles' filename Name of nonbuild-related file
'addSourceFiles' filename Name of source file
'addSourcePaths' path Name of source file path

2 Functions — Alphabetical List

2-122

You can use group to:

• Document the use of specific parameters.
• Retrieve or apply multiple parameters together as one group.

filename — File name
string

File name, specified as a string. The string must be a compile-time constant.

Depending on the leading argument, filename specifies the relevant file to be added to
the project’s build information.

Leading Argument File Specified by filename

'addLinkObjects' File containing linkable objects
'addNonBuildFiles' Nonbuild-related file
'addSourceFiles' Source file

The function adds the file name to the end of a file name vector.

path — Full path name
string

Full path name, specified as a string. The string must be a compile-time constant.

Depending on the leading argument, path specifies the relevant path name to be added
to the project’s build information.

Leading Argument Path Specified by path

'addLinkObjects' Path to linkable objects
'addNonBuildFiles' Path to nonbuild-related files
'addSourceFiles', 'addSourcePaths' Path to source files

The function adds the path to the end of a path name vector.

priority — Relative priority of link object
' '

Priority of link objects.

 coder.updateBuildInfo

2-123

This feature applies only when several link objects are added. Currently, only a single
link object file can be added for every coder.updateBuildInfo statement. Therefore,
this feature is not available for use.

To use the succeeding arguments, include '' as a placeholder argument.

precompiled — Variable indicating if link objects are precompiled
logical value

Variable indicating if the link objects are precompiled, specified as a logical value. The
value must be a compile-time constant.

If the link object has been prebuilt for faster compiling and linking and exists in a
specified location, specify true. Otherwise, the MATLAB Coder build process creates the
link object in the build folder.

If linkonly is set to true, this argument is ignored.

Data Types: logical

linkonly — Variable indicating if objects must be used for linking only
logical value

Variable indicating if objects must be used for linking only, specified as a logical value.
The value must be a compile-time constant.

If you want that the MATLAB Coder build process must not build or generate rules in
the makefile for building the specified link object, specify true. Instead, when linking
the final executable, the process should just include the object. Otherwise, rules for
building the link object are added to the makefile.

You can use this argument to incorporate link objects for which source files are not
available.

If linkonly is set to true, the value of precompiled is ignored.

Data Types: logical

Introduced in R2013b

2 Functions — Alphabetical List

2-124

coder.varsize
Package: coder

Declare variable-size array

Syntax

coder.varsize('var1', 'var2', ...)

coder.varsize('var1', 'var2', ..., ubound)

coder.varsize('var1', 'var2', ..., ubound, dims)

coder.varsize('var1', 'var2', ..., [], dims)

Description

coder.varsize('var1', 'var2', ...) declares one or more variables as variable-
size data, allowing subsequent assignments to extend their size. Each 'varn' must
be a quoted string that represents a variable or structure field. If the structure field
belongs to an array of structures, use colon (:) as the index expression to make
the field variable-size for all elements of the array. For example, the expression
coder.varsize('data(:).A') declares that the field A inside each element of data is
variable sized.

coder.varsize('var1', 'var2', ..., ubound) declares one or more variables
as variable-size data with an explicit upper bound specified in ubound. The argument
ubound must be a constant, integer-valued vector of upper bound sizes for every
dimension of each 'varn'. If you specify more than one 'varn', each variable must have
the same number of dimensions.

coder.varsize('var1', 'var2', ..., ubound, dims) declares one or more
variables as variable size with an explicit upper bound and a mix of fixed and varying
dimensions specified in dims. The argument dims is a logical vector, or double vector
containing only zeros and ones. Dimensions that correspond to zeros or false in dims
have fixed size; dimensions that correspond to ones or true vary in size. If you specify
more than one variable, each fixed dimension must have the same value across all
'varn'.

 coder.varsize

2-125

coder.varsize('var1', 'var2', ..., [], dims) declares one or more variables
as variable size with a mix of fixed and varying dimensions. The empty vector [] means
that you do not specify an explicit upper bound.

When you do not specify ubound, the upper bound is computed for each 'varn' in
generated code.

When you do not specify dims, dimensions are assumed to be variable except the
singleton ones. A singleton dimension is a dimension for which size(A,dim) = 1.

You must add the coder.varsize declaration before each 'varn' is used (read). You
can add the declaration before the first assignment to each 'varn'. However, for a cell
array element, the coder.varsize declaration must follow the first assignment to the
element. For example:

...

x = cell(3, 3);

x{1} = [1 2];

coder.varsize('x{1}');

...

You cannot use coder.varsize outside the MATLAB code intended for code generation.
For example, the following code does not declare the variable, var, as variable-size data:

coder.varsize('var',10);

codegen -config:lib MyFile -args var

Instead, include the coder.varsize statement inside MyFile to declare var as
variable-size data. Alternatively, you can use coder.typeof to declare var as variable-
size outside MyFile. It can then be passed to MyFile during code generation using the -
args option. For more information, see coder.typeof.

Examples

Develop a Simple Stack That Varies in Size up to 32 Elements as You Push and Pop Data at Run
Time.

Write primary function test_stack to issue commands for pushing data on and popping
data from a stack.

function test_stack %#codegen

 % The directive %#codegen indicates that the function

2 Functions — Alphabetical List

2-126

 % is intended for code generation

 stack('init', 32);

 for i = 1 : 20

 stack('push', i);

 end

 for i = 1 : 10

 value = stack('pop');

 % Display popped value

 value

 end

end

Write local function stack to execute the push and pop commands.

function y = stack(command, varargin)

 persistent data;

 if isempty(data)

 data = ones(1,0);

 end

 y = 0;

 switch (command)

 case {'init'}

 coder.varsize('data', [1, varargin{1}], [0 1]);

 data = ones(1,0);

 case {'pop'}

 y = data(1);

 data = data(2:size(data, 2));

 case {'push'}

 data = [varargin{1}, data];

 otherwise

 assert(false, ['Wrong command: ', command]);

 end

end

The variable data is the stack. The statement coder.varsize('data', [1,
varargin{1}], [0 1]) declares that:

• data is a row vector
• Its first dimension has a fixed size
• Its second dimension can grow to an upper bound of 32

Generate a MEX function for test_stack:

codegen -config:mex test_stack

 coder.varsize

2-127

codegen generates a MEX function in the current folder.

Run test_stack_mex to get these results:

value =

 20

value =

 19

value =

 18

value =

 17

value =

 16

value =

 15

value =

 14

value =

 13

value =

 12

value =

 11

At run time, the number of items in the stack grows from zero to 20, and then shrinks to
10.

Declare a Variable-Size Structure Field.

Write a function struct_example that declares an array data, where each element is a
structure that contains a variable-size field:

function y=struct_example() %#codegen

2 Functions — Alphabetical List

2-128

 d = struct('values', zeros(1,0), 'color', 0);

 data = repmat(d, [3 3]);

 coder.varsize('data(:).values');

 for i = 1:numel(data)

 data(i).color = rand-0.5;

 data(i).values = 1:i;

 end

 y = 0;

 for i = 1:numel(data)

 if data(i).color > 0

 y = y + sum(data(i).values);

 end;

 end

The statement coder.varsize('data(:).values') marks as variable-size the field
values inside each element of the matrix data.

Generate a MEX function for struct_example:

codegen -config:mex struct_example

Run struct_example.

Each time you run struct_example you get a different answer because the function
loads the array with random numbers.

Make a Cell Array Variable Size

Write the function make_varsz_cell that defines a local cell array variable c whose
elements have the same class, but different sizes. Use coder.varsize to indicate that c
has variable size.

function y = make_varsz_cell()

c = {1 [2 3]};

coder.varsize('c', [1 3], [0 1]);

y = c;

end

Generate a C static library.

codegen -config:lib make_varsz_cell -report

In the report, view the MATLAB variables.

 coder.varsize

2-129

c is a 1x:3 homogeneous cell array whose elements are 1x:2 double.

• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation”

Limitations

• If you use the cell function to create a cell array, you cannot use coder.varsize
with that cell array.

• If you use coder.varsize with a cell array element, the coder.varsize
declaration must follow the first assignment to the element. For example:

...

x = cell(3, 3);

x{1} = [1 2];

coder.varsize('x{1}');

...

• You cannot use coder.varsize with global variables.
• You cannot use coder.varsize with MATLAB class properties.

More About

Tips

• If you use input variables (or result of a computation using input variables) to specify
the size of an array, it is declared as variable-size in the generated code. Do not use
coder.varsize on the array again, unless you also want to specify an upper bound
for its size.

• Using coder.varsize on an array without explicit upper bounds causes dynamic
memory allocation of the array. This dynamic memory allocation can reduce the
speed of generated code. To avoid dynamic memory allocation, use the syntax
coder.varsize('var1', 'var2', ..., ubound) to specify an upper bound for
the array size (if you know it in advance).

• A cell array can be variable size only if it is homogeneous. When you use
coder.varsize with a cell array, the code generation software tries to make the cell
array homogeneous. It tries to find a class and size that apply to all elements of the
cell array. For example, if the first element is double and the second element is 1x2
double, all elements can be represented as 1x:2 double. If the code generation software

2 Functions — Alphabetical List

2-130

cannot find a common class and size, code generation fails. For example, suppose that
the first element of a cell array is char and the second element is double. The code
generation software cannot find a class that can represent both elements.

• “Homogeneous vs. Heterogeneous Cell Arrays”

Introduced in R2011a

 coder.wref

2-131

coder.wref

Package: coder

Pass argument by reference as write-only output

Syntax

[y =] coder.ceval('function_name', coder.wref(argO), ... un);

Arguments

argO

Variable passed by reference as a write-only output to the external C/C++ function
called in coder.ceval.

Description

[y =] coder.ceval('function_name', coder.wref(argO), ... un); passes
the variable argO by reference as a write-only output to the external C/C++ function
called in coder.ceval. You add coder.wref inside coder.ceval as an argument to
function_name. The argument list can contain multiple coder.wref constructs. Add
a separate coder.wref construct for each write-only argument that you want to pass by
reference to function_name.

Caution The generated code assumes that a variable passed by coder.wref is write-
only and optimizes the code accordingly. Consequently, the C/C++ function must write to
the variable. If the variable is a vector or matrix, the C/C++ function must write to every
element of the variable. Otherwise, results are unpredictable.

Only use coder.wref in MATLAB code that you have compiled with codegen.
coder.wref generates an error in uncompiled MATLAB code.

2 Functions — Alphabetical List

2-132

Examples

In the following example, a MATLAB function fcn has a single input u and a single
output y, a 5-by-10 matrix. fcn calls a C function init to initialize the matrix, passing y
by reference as a write-only output. Here is the MATLAB function code:

function y = fcn(u)

%#codegen

y = zeros(5,10);

coder.ceval('init', coder.wref(y));

The C function prototype for init must be as follows:

void init(double *x);

In this example:

• Although the C function is void, coder.wref allows it to access, modify, and return a
matrix to the MATLAB function.

• The C function prototype defines the output as a pointer because it is passed by
reference.

• For C/C++ code generation, you must set the type of the output y explicitly—in this
case to a matrix of type double.

• The generated code collapses matrices to a single dimension.

See Also
coder.ceval | coder.ref | coder.rref

Introduced in R2011a

 getHardwareImplementation

2-133

getHardwareImplementation
Class: coder.BuildConfig
Package: coder

Get handle of copy of hardware implementation object

Syntax

hw = bldcfg.getHardwareImplementation()

Description

hw = bldcfg.getHardwareImplementation() returns the handle of a copy of the
hardware implementation object.

Input Arguments

bldcfg

coder.BuildConfig object.

Output Arguments

hw

Handle of copy of hardware implementation object.

2 Functions — Alphabetical List

2-134

getStdLibInfo
Class: coder.BuildConfig
Package: coder

Get standard library information

Syntax

[linkLibPath,linkLibExt,execLibExt,libPrefix]=

bldcfg.getStdLibInfo()

Description

[linkLibPath,linkLibExt,execLibExt,libPrefix]=

bldcfg.getStdLibInfo() returns strings representing the:

• Standard MATLAB architecture-specific library path
• Platform-specific library file extension for use at link time
• Platform-specific library file extension for use at run time
• Standard architecture-specific library name prefix

Input Arguments

bldcfg

coder.BuildConfig object.

Output Arguments

linkLibPath

Standard MATLAB architecture-specific library path specified as a string. The string can
be empty.

 getStdLibInfo

2-135

linkLibExt

Platform-specific library file extension for use at link time, specified as a string. The
value is one of '.lib','.dylib','.so', ''.

execLibExt

Platform-specific library file extension for use at run time, specified as a string. the value
is one of '.dll','.dylib','.so', ''.

linkPrefix

Standard architecture-specific library name prefix, specified as a string. The string can
be empty.

2 Functions — Alphabetical List

2-136

getTargetLang
Class: coder.BuildConfig
Package: coder

Get target code generation language

Syntax

lang = bldcfg.getTargetLang()

Description

lang = bldcfg.getTargetLang() returns a string containing the target code
generation language.

Input Arguments

bldcfg

coder.BuildConfig object.

Output Arguments

lang

A string containing the target code generation language. The value is ‘C’ or ‘C++’.

 getToolchainInfo

2-137

getToolchainInfo
Class: coder.BuildConfig
Package: coder

Returns handle of copy of toolchain information object

Syntax

tc = bldcfg.getToolchainInfo()

Description

tc = bldcfg.getToolchainInfo() returns a handle of a copy of the toolchain
information object.

Input Arguments

bldcfg

coder.BuildConfig object.

Output Arguments

tc

Handle of copy of toolchain information object.

2 Functions — Alphabetical List

2-138

isCodeGenTarget
Class: coder.BuildConfig
Package: coder

Determine if build configuration represents specified target

Syntax

tf = bldcfg.isCodeGenTarget(target)

Description

tf = bldcfg.isCodeGenTarget(target) returns true (1) if the code generation
target of the current build configuration represents the code generation target specified
by target. Otherwise, it returns false (0).

Input Arguments

bldcfg

coder.BuildConfig object.

target

Code generation target specified as a string or cell array of strings.

Specify For code generation target

'rtw' C/C++ dynamic Library, C/C++ static library, or C/C
++ executable

'sfun' S-function (Simulation)
'mex' MEX-function

Specify target as a cell array of strings to test if the code generation target of the build
configuration represents one of the targets specified in the cell array.

 isCodeGenTarget

2-139

For example:

...

mytarget = {'sfun','mex'};

tf = bldcfg.isCodeGenTarget(mytarget);

...

tests whether the build context represents an S-function target or a MEX-function target.

Output Arguments

tf

The value is true (1) if the code generation target of the build configuration represents
the code generation target specified by target. Otherwise, the value is false (0).

See Also
coder.target

2 Functions — Alphabetical List

2-140

isMatlabHostTarget
Class: coder.BuildConfig
Package: coder

Determine if hardware implementation object target is MATLAB host computer

Syntax

tf = bldcfg.isMatlabHostTarget()

Description

tf = bldcfg.isMatlabHostTarget() returns true (1) if the current hardware
implementation object targets the MATLAB host computer. Otherwise, it returns false
(0).

Input Arguments

bldcfg

coder.BuildConfig object.

Output Arguments

tf

Value is true (1) if the current hardware implementation object targets the MATLAB
host computer. Otherwise, the value is false (0).

 coder.ExternalDependency.getDescriptiveName

2-141

coder.ExternalDependency.getDescriptiveName

Class: coder.ExternalDependency
Package: coder

Return descriptive name for external dependency

Syntax

extname = coder.ExternalDependency.getDescriptiveName(bldcfg)

Description

extname = coder.ExternalDependency.getDescriptiveName(bldcfg) returns
the name that you want to associate with an “external dependency” on page 2-142. The
code generation software uses the external dependency name for error messages.

Input Arguments

bldcfg

coder.BuildConfig object. Use coder.BuildConfig methods to get information
about the “build context” on page 2-142

You can use this information when you want to return different names based on the build
context.

Output Arguments

extname

External dependency name returned as a string.

2 Functions — Alphabetical List

2-142

Definitions

external dependency

External code interface represented by a class derived from a
coder.ExternalDependency class. The external code can be a library, object files, or
C/C++ source.

build context

Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Examples

Return external dependency name

Define a method that always returns the same name.

function myextname = getDescriptiveName(~)

 myextname = 'MyLibrary'

end

Return external library name based on the code generation target

Define a method that uses the build context to determine the name.

function myextname = getDescriptiveName(context)

 if context.isMatlabHostTarget()

 myextname = 'MyLibary_MatlabHost';

 else

 myextname = 'MyLibrary_Local';

 end

end

 coder.ExternalDependency.isSupportedContext

2-143

coder.ExternalDependency.isSupportedContext

Class: coder.ExternalDependency
Package: coder

Determine if build context supports external dependency

Syntax

tf = coder.ExternalDependency.isSupportedContext(bldcfg)

Description

tf = coder.ExternalDependency.isSupportedContext(bldcfg) returns true (1)
if you can use the “external dependency” on page 2-144 in the current “build context”
on page 2-144 . You must provide this method in the class definition for a class that
derives from coder.ExternalDependency.

If you cannot use the “external dependency” on page 2-144 in the current “build
context” on page 2-144, display an error message and stop code generation. The
error message must describe why you cannot use the external dependency in this
build context. If the method returns false (0), the code generation software uses a
default error message. The default error message uses the name returned by the
getDescriptiveName method of the coder.ExternalDependency class.

Use coder.BuildConfig methods to determine if you can use the external dependency
in the current build context.

Input Arguments

bldcfg

coder.BuildConfig object. Use coder.BuildConfig methods to get information
about the “build context” on page 2-144.

2 Functions — Alphabetical List

2-144

Output Arguments

tf

Value is true (1) if the build context supports the external dependency.

Definitions

external dependency

External code interface represented by a class derived from
coder.ExternalDependency class. The external code can be a library, object file, or C/
C++ source.

build context

Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Examples

Report error when build context does not support external library

This method returns true(1) if the code generation target is a MATLAB host target.
Otherwise, the method reports an error and stops code generation.

Write isSupportedContext method.

function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 coder.ExternalDependency.isSupportedContext

2-145

 error('adder library not available for this target');

 end

end

2 Functions — Alphabetical List

2-146

coder.ExternalDependency.updateBuildInfo

Class: coder.ExternalDependency
Package: coder

Update build information

Syntax

coder.ExternalDependency.updateBuildInfo(buildInfo, bldcfg)

Description

coder.ExternalDependency.updateBuildInfo(buildInfo, bldcfg) updates
the build information object whose handle is buildInfo. After code generation, the
build information object has standard information. Use this method to provide additional
information required to link to external code. Use coder.BuildConfig methods to get
information about the “build context” on page 2-147.

You must provide this method in the class definition for a class that derives from
coder.ExternalDependency.

Input Arguments

buildInfo

Handle of build information object.

bldcfg

coder.BuildConfig object. Use coder.BuildConfig methods to get information
about the “build context” on page 2-147.

 coder.ExternalDependency.updateBuildInfo

2-147

Definitions

build context

Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

2 Functions — Alphabetical List

2-148

createCategory
Create category of Simulink Project labels

Syntax

createCategory(proj,categoryName)

createCategory(proj,categoryName,dataType)

Description

createCategory(proj,categoryName) creates a new category of labels
categoryName in the project proj.

createCategory(proj,categoryName,dataType) specifies the class of data to store
in labels of the new category.

Examples

Create a New Category of Labels for File Ownership

Create a new category of labels for file ownership, and attach a new label and label data
to a file.

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = simulinkproject;

Create a new category of labels, called Engineers, to denote file ownership in a project.
These labels have the char datatype for attaching string data.

createCategory(proj,'Engineers','char');

Use findCategory to get the new category.

engineersCategory = findCategory(proj,'Engineers');

 createCategory

2-149

Create labels in the new category.

createLabel(engineersCategory,'Tom');

createLabel(engineersCategory,'Dick')

createLabel(engineersCategory,'Harry')

Attach one of the new labels to a file in the project.

myfile = findFile(proj,'models/AnalogControl.mdl')

addLabel(myfile,'Engineers','Tom');

Get the label and add data.

label = findLabel(file,'Engineers','Tom');

label.Data = 'Maintenance responsibility';

disp(label)

Label with properties:

 File: [1x80 char]

 Data: 'Maintenance responsibility'

 DataType: 'char'

 Name: 'Tom'

 CategoryName: 'Engineers'

Create a New Category of Labels with Datatype Double

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = simulinkproject;

Create a new category of labels.

createCategory(proj,'Coverage','double')

category =

 Category with properties:

 Name: 'Coverage'

 DataType: 'double'

 LabelDefinitions: []

Find out what you can do with the new category.

2 Functions — Alphabetical List

2-150

category = findCategory(proj, 'Coverage');

methods(category)

Methods for class slproject.Category:

findLabel removeLabel createLabel

Input Arguments

proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

categoryName — Name of category
string

Name of the category of labels to create, specified as a string.

dataType — Class of data to store in labels
string

The class of data to store in labels in the new category, specified as a string.

More About

Tips

After you create a new category, you can create labels in the new category. See
createLabel.

See Also

Functions
createLabel | simulinkproject

Introduced in R2013a

 createLabel

2-151

createLabel
Define Simulink Project label

Syntax

createLabel(category,newLabelName)

Description

createLabel(category,newLabelName) creates a new label, newLabelName, in a
category. Use this syntax if you previously got a category by accessing a Categories
property, e.g., using a command like proj.Categories(1).

Use addLabel instead to create and attach a new label in an existing category using a
single step.

Use createCategory first if you want to make a new category of labels.

Examples

Create a New Label

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = simulinkproject;

Examine the first existing category.

cat = proj.Categories(1)

cat =

 Category with properties:

 Name: 'Classification'

 DataType: 'none'

2 Functions — Alphabetical List

2-152

 LabelDefinitions: [1x8 slproject.LabelDefinition]

Define a new label in the category.

createLabel(cat,'Future');

Create a New Category of Labels for File Ownership

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = simulinkproject;

Create creates a new category of labels called Engineers which can be used to denote
file ownership in a project. These labels have the char datatype for attaching string
data.

createCategory(proj,'Engineers','char');

Use findCategory to get the new category.

engineersCategory = findCategory(proj,'Engineers');

Create labels in the new category.

createLabel(engineersCategory,'Tom');

createLabel(engineersCategory,'Dick');

createLabel(engineersCategory,'Harry');

Attach one of the new labels to a file in the project.

myfile = findFile(proj,'models/AnalogControl.mdl')

addLabel(myfile,'Engineers', 'Tom');

Get the label and add data.

label = findLabel(myfile,'Engineers','Tom');

label.Data = 'Maintenance responsibility';

disp(label)

Label with properties:

 File: [1x80 char]

 Data: 'Maintenance responsibility'

 DataType: 'char'

 createLabel

2-153

 Name: 'Tom'

 CategoryName: 'Engineers'

Input Arguments

category — Category
category object

Category for the new label, specified as a category object. Get the category by accessing
a Categories property, e.g. with a command like proj.Categories(1), or use
findCategory. To create a new category, use createCategory.

newLabelName — The name of the new label to define
string

The name of the new label to define, specified as a string.

See Also

Functions
addLabel | createCategory

Introduced in R2013a

2 Functions — Alphabetical List

2-154

delete_block
Delete block from Simulink system

Syntax
delete_block('blk')

Description

delete_block('blk'), where blk is a full block pathname or a block handle, deletes
the specified block from a system.

Examples

Remove the Out2 block from the vdp system. Open the vdp model and select the Out2
block. Enter:

delete_block('vdp/Out2')

Remove the Out1 block from the vdp system. Open the vdp model and select the Out1
block. Enter the following commands:

Out1_handle = get_param(gcb,'Handle')

Out1_handle =

 13.0010

delete_block(Out1_handle)

See Also
add_block | replace_block

Introduced before R2006a

 delete_line

2-155

delete_line
Delete line from Simulink system

Syntax
delete_line('model', 'outPort', 'inPort')

delete_line('model', [x y])

delete_line(lineHandle)

Description

delete_line('sys', 'oport', 'iport') deletes the line extending from the
specified block output port oport to the specified block input port iport. oport
and iport are strings consisting of a block name and a port identifier in the form
block/port. Most block ports are identified by numbering the ports from top to bottom
or from left to right, such as Gain/1 or Sum/2. Enable, Trigger, and State ports are
identified by name, such as subsystem_name/Enable, subsystem_name/Trigger,
Integrator/State, or if_action_subsystem_name/Ifaction.

delete_line('sys', [x y]) deletes one of the lines in the system that contains the
specified point (x,y), if any such line exists.

delete_line(LineHandle) deletes the line specified by the handle.

Examples

Remove Line Using Block Port Names

For the model vdp, remove the line connecting the Product block with the Gain block.

open_system('vdp')

delete_line('vdp', 'Product/1', 'Mu/1')

Remove Line Using Line Handle

For the model vdp, remove a line using the line handle.

2 Functions — Alphabetical List

2-156

open_system('vdp')

delete_line('vdp', 'Product/1', 'Mu/1')

LineHandle = add_line('vdp', 'Product/1', 'Mu/1')

delete_line(LineHandle)

See Also
add_line

Introduced before R2006a

 delete_param

2-157

delete_param
Delete system parameter added via add_param command

Syntax
delete_param('sys','parameter1','parameter2',...)

Description

This command deletes parameters that were added to the system using the add_param
command. The command displays an error message if a specified parameter was not
added with the add_param command.

Examples

The following example
add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

delete_param('vdp','DemoName')

adds the parameters DemoName and EquationOrder to the vdp system, then deletes
DemoName from the system.

See Also
add_param

Introduced before R2006a

2 Functions — Alphabetical List

2-158

dependencies.fileDependencyAnalysis
Find model file dependencies

Syntax

files = dependencies.fileDependencyAnalysis('modelname')

[files, missing] = dependencies.fileDependencyAnalysis('modelname')

[files, missing, depfile] = dependencies.fileDependencyAnalysis('

modelname')

[files, missing, depfile, manifestfile] =

dependencies.fileDependencyAnalysis('modelname', 'manifestfile')

Description

files = dependencies.fileDependencyAnalysis('modelname') returns
files, a cell array of strings containing the full paths of all existing files referenced by
the model modelname.

[files, missing] = dependencies.fileDependencyAnalysis('modelname')

returns files, all existing files referenced by the model modelname, and any referenced
files that cannot be found in missing.

[files, missing, depfile] = dependencies.fileDependencyAnalysis('

modelname') also returns depfile, the full path of the user dependencies (.smd) file,
if it exists, that stores the names of any files you manually added or excluded.

[files, missing, depfile, manifestfile] =

dependencies.fileDependencyAnalysis('modelname', 'manifestfile') also
creates a manifest file with the name and path specified in manifestfile.

Input Arguments

modelname

String specifying the name of the model to analyze for dependencies.

 dependencies.fileDependencyAnalysis

2-159

manifestfile

(Optional) String to specify the name of the manifest file to create. You can specify a
full path or just a file name (in which case the file is created in the current folder). The
function adds the suffix .smf to the user-specified name.

Output Arguments

files

A cell array of strings containing the full-paths of all existing files referenced by the
model modelname. If there is only one dependency, the return is a string. If there are no
dependencies, the return is empty.

Default: []

missing

A cell array of strings containing the names of any files that are referenced by the model
modelname, but cannot be found.

Default: []

depfile

String containing the full path of a user dependencies (.smd) file, if it exists, that stores
the names of any files you manually added or excluded. Simulink uses the .smd file to
remember your changes the next time you generate a manifest. See “Edit Manifests”.

Default: []

manifestfile

String containing the name and path of the new manifest file.

Default: []

Examples

The following code analyses the model mymodel for file dependencies:

2 Functions — Alphabetical List

2-160

files = dependencies.fileDependencyAnalysis('mymodel')

If you try dependency analysis on an example model, it returns an empty list of required
files because the standard MathWorks installation includes all the files required for the
example models.

Alternatives

You can interactively run dependency analysis from the Simulink project. See “Run
Dependency Analysis”.

To create a report to identify where dependencies arise, find required toolboxes, and for
more control over dependency analysis options, you can interactively generate a manifest
and report. See “Analyze Model Dependencies”.

To programmatically check which toolboxes are required, see
dependencies.toolboxDependencyAnalysis.

More About

Tips

If you try dependency analysis on an example model, it returns an empty list of required
files because the standard MathWorks installation includes all the files required for the
example models.
• “What Are Model Dependencies?”

See Also
dependencies.toolboxDependencyAnalysis

Introduced in R2012a

 dependencies.toolboxDependencyAnalysis

2-161

dependencies.toolboxDependencyAnalysis
Find toolbox dependencies

Syntax

names = dependencies.toolboxDependencyAnalysis(files_in)

[names, folders] = dependencies.toolboxDependencyAnalysis(files_in)

Description

names = dependencies.toolboxDependencyAnalysis(files_in) returns
names, a cell array of toolbox names required by the files in files_in.

[names, folders] = dependencies.toolboxDependencyAnalysis(files_in)

returns toolbox names and also a cell array of the toolbox folders.

Input Arguments

files_in

Cell array of strings containing .m, .mdl, or .slx files on the MATLAB path. Simulink
model names (without file extension) are also allowed.

Default: []

Output Arguments

names

Cell array of toolbox names required by the files in files_in.

folders

(Optional) Cell-array of the required toolbox folders.

2 Functions — Alphabetical List

2-162

Examples

The following code reports the detectable required toolboxes for the model vdp:

files_in={'vdp'};

names = dependencies.toolboxDependencyAnalysis(files_in)

names =

 'MATLAB' 'Simulink' 'Simulink Coder'

To find all detectable toolbox dependencies of your model and the files it depends on:

1 Call fileDependencyAnalysis on your model.

For example:
files = dependencies.fileDependencyAnalysis('mymodel')

files =

 'C:\Work\foo.m'

 'C:\Work\mymodel.mdl'

2 Call toolboxDependencyAnalysis on the files output of step 1.

For example:

tbxes = dependencies.toolboxDependencyAnalysis(files)

tbxes =

[1x24 char] 'MATLAB' 'Simulink Coder' 'Simulink'

To view long product names examine the tbxes cell array as follows:

tbxes{:}

ans =

Image Processing Toolbox

ans =

MATLAB

ans =

Simulink Coder

ans =

 dependencies.toolboxDependencyAnalysis

2-163

Simulink

Alternatives

You can interactively run dependency analysis from the Simulink project. See “Run
Dependency Analysis”.

To create a report to identify where dependencies arise, and for more control over
dependency analysis options, you can interactively generate a manifest and report. See
“Analyze Model Dependencies”.

To programmatically check which files are required, see
dependencies.fileDependencyAnalysis.

More About

Tips

The function dependencies.toolboxDependencyAnalysis looks for toolbox
dependencies of the files in files_in but does not analyze any subsequent
dependencies. See “Examples” on page 2-162.

For command-line dependency analysis, the analysis uses the default settings for
analysis scope to determine required toolboxes. For example, if you have code generation
products, then the check Find files required for code generation is on by default and
Simulink Coder is always reported as required. See “Required Toolboxes” in the manifest
documentation for more examples of how your installed products and analysis scope
settings can affect reported toolbox requirements.
• “What Are Model Dependencies?”

See Also
dependencies.fileDependencyAnalysis

Introduced in R2012a

2 Functions — Alphabetical List

2-164

detachConfigSet
Dissociate configuration set or configuration reference from model

Syntax
detachConfigSet(model, configObjName)

Arguments

model

The name of an open model, or gcs to specify the current model
configObjName

The name of a configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description

detachConfigSet detaches the configuration set or configuration reference
(configuration object) specified by configObjName from model. If no such configuration
object is attached to the model, an error occurs.

Examples

The following example detaches the configuration object named DevConfig from the
current model. The code is the same whether DevConfig is a configuration set or
configuration reference.

detachConfigSet(gcs, 'DevConfig');

More About
• “Manage a Configuration Set”

 detachConfigSet

2-165

• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | closeDialog |
getActiveConfigSet | getConfigSet | getConfigSets | openDialog |
setActiveConfigSet

Introduced in R2006a

2 Functions — Alphabetical List

2-166

removeLabel(was detachLabelFromFile)

REMOVE — RENAMED TO REMOVELABEL — consolidate with existing removeLabel
page. was: Detach label from Simulink Project file

Syntax

removeLabel(file,labelDefinition)

Description

removeLabel(file,labelDefinition) detaches the specified label
labelDefinition from the file. Before you can detach the label, you need to get the
label from the file.Label property or by using findLabel.

Examples

Detach a Label from a File

Remove a label from a particular project file.

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: [1x86 char]

 Labels: [1x1 slproject.Label]

 removeLabel(was detachLabelFromFile)

2-167

Get the Labels property of the file.

myfile.Labels

ans =

 Label with properties:

 File: 'C:\work\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Design'

 CategoryName: 'Classification'

Attach the label 'To Review' to the file.

addLabel(myfile,'Review','To Review')

Get the label you want to remove. Index into the Labels property to get the second label
attached to the file.

 labeltoremove = myfile.Labels(2)

labeltoremove =

 Label with properties:

 File: [1x86 char]

 Data: []

 DataType: 'char'

 Name: 'To Review'

 CategoryName: 'Review'

Remove the label from the file.

removeLabel(myfile,labeltoremove)

myfile.Labels

ans =

 Label with properties:

 File: [1x86 char]

 Data: []

 DataType: 'none'

2 Functions — Alphabetical List

2-168

 Name: 'Design'

 CategoryName: 'Classification'

Input Arguments

file — File to detach label from
file object

File to detach the label from, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to find a file by
name. The file must be within the root folder.

labelDefinition — Label to detach
label definition object

Name of the label to detach, specified as a label definition object returned by the
file.Label property or findLabel.

See Also

Functions
addLabel | createLabel | findFile | findLabel | simulinkproject

 disableimplicitsignalresolution

2-169

disableimplicitsignalresolution
Convert model to use only explicit signal resolution

Syntax

retVal = disableimplicitsignalresolution('model')

retVal = disableimplicitsignalresolution('model', displayOnly)

Description

retVal = disableimplicitsignalresolution('model') inputs a model, reports
all signals and states that implicitly resolve to signal objects, and converts the model to
resolve only signals and states that explicitly require it. The report and any changes are
limited to the model itself; they do not include blocks that are library links.

Before executing this function, ensure that all relevant Simulink data objects are defined
in the base workspace. The function ignores any data objects that are defined elsewhere.

The function scans model, returns a structure of handles to signals and states that
resolve implicitly to signal objects, and performs the following operations on model:

• Search the model for all output ports and block states that resolve to Simulink signal
objects.

• Modify these ports and blocks to enforce signal object resolution in the future.
• Set the model's SignalResolutionControl parameter to 'UseLocalSettings'

(GUI: Explicit Only.
• If any Stateflow output data resolves to a Simulink signal object:

• Turn off hierarchical scoping of signal objects from within the Stateflow chart.
• Explicitly label the output signal of the Stateflow chart.
• Enforce signal object resolution for this signal in the future.

Any changes made by disableimplicitsignalresolution permanently change
the model. Be sure to back up the model before calling the function with displayOnly
defaulted to or specified as false.

2 Functions — Alphabetical List

2-170

retVal = disableimplicitsignalresolution('model', displayOnly) is
equivalent to disableimplicitsignalresolution(model) if displayOnly is
false.

If displayOnly is true, the function returns a structure of handles to signals and
states that resolve implicitly to signal objects, but leaves the model unchanged.

Input Arguments

displayOnly

Boolean specifying whether to change the model (false) or just generate a report (true)

Default: false

model

Model name or handle

Output Arguments

retVal

A MATLAB structure containing:

Signals Handles to ports with signal names that
resolve to signal objects

States Handles to blocks with states that resolve
to signal objects

More About
• “Data Validity Diagnostics Overview”
• “Symbol Resolution”

See Also
Simulink.Signal

 disableimplicitsignalresolution

2-171

Introduced in R2007a

2 Functions — Alphabetical List

2-172

docblock
Get or set editor invoked by Simulink DocBlock

Syntax

docblock('setEditorHTML', editCmd)

docblock('setEditorDOC', editCmd)

docblock('setEditorTXT', editCmd)

editCmd = docblock('getEditorHTML')

editCmd = docblock('getEditorDOC')

editCmd = docblock('getEditorTXT')

Description

docblock('setEditorHTML', editCmd) sets the HTML editor invoked by a
DocBlock. The editCmd string specifies a command, executed at the MATLAB prompt,
which launches a custom HTML editor. By default, a DocBlock invokes Microsoft Word
(if available) as the HTML editor; otherwise, it opens HTML documents using the editor
you specified on the Editor/Debugger Preferences pane of the MATLAB Preferences
dialog box.

Use the "%<FileName>" token in the editCmd string to represent the full pathname
to the document. Use the empty string '' as the editCmd to reset the DocBlock to its
default editor for a particular document type.

docblock('setEditorDOC', editCmd) sets the Rich Text Format (RTF) editor
invoked by a DocBlock. The editCmd string specifies a command, executed at the
MATLAB prompt, which launches a custom RTF editor. By default, a DocBlock invokes
Microsoft Word (if available) as the RTF editor. Otherwise, it opens RTF documents
using the editor you specified on the Editor/Debugger Preferences pane of the
Preferences dialog box.

docblock('setEditorTXT', editCmd) sets the text editor invoked by a DocBlock.
The editCmd string specifies a command, executed at the MATLAB prompt, which
launches a custom text editor. By default, a DocBlock invokes the editor you specified on
the Editor/Debugger Preferences pane of the Preferences dialog box.

 docblock

2-173

editCmd = docblock('getEditorHTML') returns the value of the current command
used to invoke an HTML editor when double-clicking a DocBlock.

editCmd = docblock('getEditorDOC') returns the value of the current command
used to invoke a RTF editor when double-clicking a DocBlock.

editCmd = docblock('getEditorTXT') returns the value of the current command
used to invoke a text editor when double-clicking a DocBlock.

Examples

Specify Microsoft Notepad as the DocBlock editor for RTF documents:
docblock('setEditorRTF','system(''notepad "%<FileName>"'');')

Reset the DocBlock to use its default editor for RTF documents:

docblock('setEditorRTF','')

Specify Mozilla Composer as the HTML editor for the DocBlock:
docblock('setEditorHTML','system(''/usr/local/bin/mozilla ...

 -edit "%<FileName>" &'');')

More About
• “Use a Simulink DocBlock to Add a Comment”

See Also
DocBlock

Introduced in R2007a

2 Functions — Alphabetical List

2-174

export
Export Simulink Project to zip

Syntax

export(proj,zipFileName)

export(proj,zipFileName,definitionType)

Description

export(proj,zipFileName) exports the project proj to a zip file specified by
zipFileName. The zip archive preserves the project files, structure, labels, and
shortcuts, and does not include any source control information. You can use the zip
archive to send the project to customers, suppliers, or colleagues who do not have access
to your source control repository. Recipients can create a new project from the zip archive
by selecting New > Simulink Project > From Archive in the Simulink Project Tool.

export(proj,zipFileName,definitionType) exports the project using the specified
definitionType for the project definition files, single or multiple. If you do not specify
definitionType, the project's current setting is used. Use the definitionType export
option if you want to change project definition file management from the type selected
when the project was created.

Examples

Export a Project to a Zip File

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Export the project to a zip file.

export(proj,'airframeproj.zip')

• “Archive Projects in Zip Files”

 export

2-175

Input Arguments

proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

zipFileName — Zip file name or path
string

Zip file name or path, specified as a string ending in the file extension .zip. If
zipFileName is a filename, Simulink exports the file to the current folder. You can also
specify a fully qualified path name.
Example: 'project.zip'

Data Types: char

definitionType — Definition file type
slproject.DefinitionFiles.SingleFile | slproject.DefinitionFiles.MultiFile

Definition file type, specified as slproject.DefinitionFiles.SingleFile or
slproject.DefinitionFiles.MultiFile. Use the definitionType export option
if you want to change project definition file management from the type selected when the
project was created. MultiFile is better for avoiding merging issues on shared projects.
SingleFile is faster but is likely to cause merge issues when two users submit changes
in the same project to a source control tool.
Example: export(proj,'proj.zip',slproject.DefinitionFiles.SingleFile)

Introduced in R2013a

2 Functions — Alphabetical List

2-176

findCategory
Get Simulink Project category of labels

Syntax

category = findCategory(proj,categoryName)

Description

category = findCategory(proj,categoryName) returns the project category
specified by categoryName. You need to get a category before you can use createLabel
or removeLabel.

Examples

Get a Category of Project Labels

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Use findCategory to get a category of labels by name.

category = findCategory(proj,'Classification')

category =

 Category with properties:

 Name: 'Classification'

 DataType: 'none'

 LabelDefinitions: [1x8 slproject.LabelDefinition]]

Alternatively, you can examine categories by index. Get the first category.

proj.Categories(1)

ans =

 findCategory

2-177

 Category with properties:

 Name: 'Classification'

 DataType: 'none'

 LabelDefinitions: [1x8 slproject.LabelDefinition]

Find out what you can do with the category.

methods(category)

Methods for class slproject.Category:

createLabel findLabel removeLabel

Input Arguments

proj — Project
project

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

categoryName — Name of category
string

Name of the category to get, specified as a string.

Output Arguments

category — Category of labels
category object

Category of labels, returned as a category object that you can query or modify. If the
specified category is not found, the function returns an empty array.

See Also

Functions
createLabel | removeLabel | simulinkproject

2 Functions — Alphabetical List

2-178

Introduced in R2013a

 findFile

2-179

findFile
Get Simulink Project file by name

Syntax

file = findFile(proj,fileName)

Description

file = findFile(proj,fileName) returns a specific project file by name. You need
to get a file before you can query labels, or use addLabel or removeLabel.

Examples

Find a File By Name

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Use findFile to get a file by name. You need to know the path if it is inside subfolders
under the project root.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: [1x86 char]

 Labels: [1x1 slproject.Label]

Alternatively, you can examine files by index. Get the first file.

file = proj.Files(1);

Find out what you can do with the file.

2 Functions — Alphabetical List

2-180

methods(file)

Methods for class slproject.ProjectFile:

ProjectFile addLabel removeLabel findLabel

Alternatively, you can find project files by their labels using findLabel.

Input Arguments

proj — Project
project

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

fileName — Path of file
string

Path of the file to find, including any subfolders under the project root, specified as a
string.

Output Arguments

file — Project file
file object

Project file, returned as a file object that you can query or modify.

See Also

Functions
addLabel | findCategory | findLabel | removeLabel | simulinkproject

Introduced in R2013a

 findLabel

2-181

findLabel
Get Simulink Project file label

Syntax

label = findLabel(file,categoryName,labelName)

label = findLabel(file,labelDefinition)

label = findLabel(category,labelName)

Description

label = findLabel(file,categoryName,labelName) returns the label and its
attached data for the label labelName in the category categoryName that is attached to
the specified file. Use this syntax when you know the label name and category.

label = findLabel(file,labelDefinition) returns the file label and its attached
data for the label name and category specified by labelDefinition. Use this syntax
if you previously got a labelDefinition by accessing a Labels property, e.g., using a
command like myfile.Labels(1).

label = findLabel(category,labelName) returns the label definition of the label
in this category specified by labelName. Returns an empty array if the label is not
found.

Examples

Find Files with the Label Utilility

Find all project files with a particular label.

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get the list of project files.

2 Functions — Alphabetical List

2-182

files = proj.Files;

Loop through each file. If the file has the extension .m, attach the label Utility.

for fileIndex = 1:numel(files)

 file = files(fileIndex);

 [~, ~, fileExtension] = fileparts(file.Path);

 if strcmp(fileExtension,'.m')

 addLabel(file,'Classification','Utility');

 end

end

Find all the files with the label Utility and add them to a list returned in
utility_files_to_review.

utility_files_to_review = {};

for jj=1:numel(files)

 this_file = files(jj);

 label = findLabel(this_file,'Classification','Utility');

 if (~isempty(label))

 % This is a file labeled 'Utility'. Add to the

 % list of utility files.

 utility_files_to_review = [utility_files_to_review; this_file];

 end

end

Find a Label by Name or Definition

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl');

Get a label by name.

label = findLabel(myfile,'Classification','Design');

Alternatively, examine the Labels property of the file to get an array of Label objects,
one for each label attached to the file.

 findLabel

2-183

labels = myfile.Labels

Index into the Labels property to get the label attached to the particular file.

labeldefinition = myfile.Labels(1)

After you get the label definition from the Labels property, you can use it with
findLabel.

label = findLabel(myfile,labeldefinition);

Find Labels by Name or Definition

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get a category.

category = proj.Categories(1)

category =

 Category with properties:

 Name: 'Classification'

 DataType: 'none'

 LabelDefinitions: [1x8 slproject.LabelDefinition]

Get a label definition.

ld = findLabel(category,'Design')

ld =

 LabelDefinition with properties:

 Name: 'Design'

 CategoryName: 'Classification'

Input Arguments

file — File to search labels of
file object

2 Functions — Alphabetical List

2-184

File to search the labels of, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to get a file by
name. The file must be within the root folder.

categoryName — Name of category
string

Name of the parent category for the label, specified as a string.

labelName — Name of label
string

Name of the label to get, specified as a string.

labelDefinition — Name of label
label definition object

Name of the label to get, specified as a label definition object returned by the
file.Label property.

category — Category of labels
category object

Category of labels, specified as a category object. Get a category object from the
proj.Categories property or by using findCategory.

Output Arguments

label — Label
label object

Label, returned as a label object.

See Also

Functions
addLabel | createLabel | findFile | simulinkproject

Introduced in R2013a

 findLabelDefinition(renamed to findLabel)

2-185

findLabelDefinition(renamed to findLabel)

Get Simulink Project label definition

Syntax

labelDefinition = findLabelDefinition(category,labelName)

Description

labelDefinition = findLabelDefinition(category,labelName) returns the
label definition of the label in this category specified by labelName. Returns an empty
array if the label is not found.

Examples

Find Labels by Name or Definition

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Get a category.

category = proj.Categories(1)

category =

 Category with properties:

 Name: 'Review'

 DataType: 'char'

 LabelDefinitions: [1x4 slproject.LabelDefinition]

Get a label definition.

2 Functions — Alphabetical List

2-186

ld = findLabelDefinition(category,'To Review')

ld =

 LabelDefinition with properties:

 Name: 'To Review'

 CategoryName: 'Review'

Alternatively, get a file and examine the Labels property to get an array of Label
objects, one for each label attached to the file.

myfile = findFile(proj,'models/AnalogControl.mdl');

labels = myfile.Labels

Index into the Labels property to get the second label attached to the particular file.

labeldefinition = myfile.Labels(1)

After you get the label definition from the Labels property, you can use it with
findLabel.

label = findLabel(myfile,labeldefinition);

Alternatively, get a particular file by name, and then get one of its labels by name.

myfile = findFile(proj,'models/AnalogControl.mdl');

label = findLabel(myfile,'Review','To Review');

Input Arguments

labelName — Name of label
string

Name of the label to get, specified as a string.

category — Category of labels
category object

Category of labels, specified as a category object. Get a category object from the
proj.Categories property or by using findCategory.

 findLabelDefinition(renamed to findLabel)

2-187

Output Arguments

labelDefinition — Label definition
label definition object

Label definition, returned as a label definition object. Query the label definition
properties to find the label data type.

See Also

Functions
addLabel | createLabel | findCategory | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-188

find_mdlrefs
Find Model blocks and referenced models at all levels or at top level only

Syntax

[refMdls,mdlBlks] = find_mdlrefs(system)

[refMdls,mdlBlks] = find_mdlrefs(system,Name,Value)

[refMdls,mdlBlks] = find_mdlrefs(system,allLevels)

Description

[refMdls,mdlBlks] = find_mdlrefs(system) finds all referenced models and
Model blocks contained by the subsystem or model reference hierarchy that system is
the top level of.

[refMdls,mdlBlks] = find_mdlrefs(system,Name,Value) finds referenced
models and Model blocks with additional options specified by one or more Name,Value
pair arguments.

[refMdls,mdlBlks] = find_mdlrefs(system,allLevels) specifies the levels of
the system to search.

Tip The find_mdlrefs function provides two different ways to specify the levels of the
system to search. Both techniques give the same results, but only the name and value
technique allows you to control inclusion of protected and variant models in refMdls.

Examples

Find Referenced Models in Model Reference Hierarchy

Find referenced models and Model blocks for all models referenced by the specified
model. Include all model reference variants.

open_system('sldemo_mdlref_variants_enum');

[myModels,myModelBlks] = find_mdlrefs('sldemo_mdlref_variants_enum',...

 find_mdlrefs

2-189

'AllLevels',true,'Variants','AllVariants')

myModels =

 'sldemo_mrv_linear_controller'

 'sldemo_mrv_nonlinear_controller'

 'sldemo_mrv_sig_filter1_production'

 'sldemo_mrv_sig_filter1_prototype'

 'sldemo_mrv_sig_filter2_production'

 'sldemo_mrv_sig_filter2_prototype'

 'sldemo_mrv_sig_filter3_production'

 'sldemo_mrv_sig_filter3_prototype'

 'sldemo_mdlref_variants_enum'

myModelBlks =

 'sldemo_mdlref_variants_enum/Controller'

 'sldemo_mdlref_variants_enum/Filter1'

 'sldemo_mdlref_variants_enum/Filter2'

 'sldemo_mdlref_variants_enum/Filter3'

• “Set Up Model Variants”
• “Protected Model”

Input Arguments

system — System to search
string | handle

System to search, specified as a string or a handle.

• The string can be the path to a Model block, subsystem, or a model in a model
reference hierarchy.

• The handle can be for a Model block, subsystem, or model in a model reference
hierarchy.

allLevels — Levels to search
true (default) | false

Levels to search, specified as true or false.

2 Functions — Alphabetical List

2-190

• true — Search all Model blocks in the model reference hierarchy for which the
system is the top model.

• false — Search only the top-level system.

Data Types: logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: refModels = find_mdlrefs(top_model,'Variants',true)

'AllLevels' — Levels to search
true (default) | false

Levels to search, specified as a true or false.

• true — Search all Model blocks in the model reference hierarchy for which the
system is the top model.

• false — Search only the top-level system.

Data Types: logical

'IncludeProtectedModels' — Include protected models in search results
false (default) | true

Include protected models in search, specified as true or false. This setting does not
affect the list of Model blocks returned.
Data Types: logical

'Variants' — Include variants in search
'ActivePlusCodeVariants' (default) | 'ActiveVariants' | 'AllVariants'

Include variants in search, specified as 'ActivePlusCodeVariants',
'ActiveVariants', or 'AllVariants'.

• 'ActivePlusCodeVariants' — Include all variants for Model Variants blocks for
which you select the Generate preprocessor conditionals option.

 find_mdlrefs

2-191

• 'ActiveVariants' — Include the active variant for Model Variants blocks.
• 'AllVariants' — Include all variants for Model Variants blocks.

'IncludeCommented' — Include commented blocks in search
'off' (default) | 'on'

Include commented blocks in search, specified as 'off' or 'on'.

Output Arguments

refMdls — Names of referenced models
cell array of strings

Names of referenced models, returned as a cell array of strings. The last element is the
system you specified in the system input argument or the parent model of that system.

mdlBlks — Names of Model blocks
cell array of strings

Names of Model blocks, returned as a cell array of strings.

More About
• “Model Reference”

See Also
find_system | Model

Introduced before R2006a

2 Functions — Alphabetical List

2-192

find_system
Find systems, blocks, lines, ports, and annotations

Syntax

find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2', v2,...)

Description

find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2', v2,...)

searches the loaded systems or subsystems specified by sys, using the constraints
c1, c2 etc., with values cv1, cv2, etc., and returns handles or paths to the objects
whose parameters, p1, p2, etc., have the values v1, v2, etc. The sys argument can be
a pathname (or cell array of pathnames), a handle (or vector of handles), or omitted. To
search block dialog parameter values, specify 'BlockDialogParams' as the parameter
name.

Note All the search constraints must precede all the parameter-value pairs in the
argument list.

If sys is a pathname or cell array of pathnames, find_system returns a cell array of
pathnames of the objects it finds. If sys is a handle or a vector of handles, find_system
returns a vector of handles to the objects that it finds. If sys is omitted, find_system
searches all loaded systems and returns a cell array of pathnames.

Case is ignored for parameter names. Value strings are case sensitive by default (see the
'CaseSensitive' search constraint for more information). Any parameters that correspond
to dialog box entries have string values. See “Model Parameters” on page 6-2 and
“Block-Specific Parameters” on page 6-96 for a list of model and block parameters.

You can specify any of the following search constraints.

Name Value Type Description

'SearchDepth' scalar Restricts the search depth to the
specified level (0 for loaded systems

 find_system

2-193

Name Value Type Description

only, 1 for blocks and subsystems of
the top-level system, 2 for the top-level
system and its children, etc.). The
default is all levels.

'none' Search skips masked subsystems.
{'graphical'} Search includes masked subsystems

that have no workspaces and no
dialogs. This is the default.

'functional' Search includes masked subsystems
that do not have dialogs.

'LookUnderMasks'

'all' Search includes all masked
subsystems.

'FollowLinks' 'on' | {'off'} If 'on', search follows links into
library blocks. The default is 'off'.

'FindAll' 'on' | {'off'} If 'on', search extends to lines, ports,
and annotations within systems.
The default is 'off'. Note that
find_system returns a vector of
handles when this option is 'on',
regardless of the array type of sys.

'CaseSensitive' {'on'} | 'off' If 'on', search considers case when
matching search strings. The default
is 'on'.

'RegExp' 'on' | {'off'} If 'on', search treats search
expressions as regular expressions.
Use to search for partial matches. The
default is'off'.

See “Searching with Regular
Expressions” on page 2-196.

'LoadFullyIfNeeded' {'on'} | 'off' If 'on', attempts to load any partially
loaded models. The default is'on'. If
'off', disables the model loading, for
example to prevent load warnings.

2 Functions — Alphabetical List

2-194

Name Value Type Description

{'ActiveVariants'} (Default) Search in only the active
variant subsystems.

'AllVariants' Search in all variants.

'Variants'

'ActivePlusCodeVariants'Search all variants if any generate
preprocessor conditionals. Otherwise,
search only the active variant.

'IncludeCommented' 'on' | {'off'} Specify whether to include commented
blocks in the search.

The table indicates default constraint values in brackets. If you omit a 'constraint',
find_system uses the default constraint value.

Examples

This command returns a cell array containing the names of all loaded systems and
blocks.

find_system

This command returns the names of all loaded block diagrams.

open_bd = find_system('type', 'block_diagram')

This command returns the names of all Goto blocks that are children of the Unlocked
subsystem in the sldemo_clutch system.

sldemo_clutch

find_system('sldemo_clutch/

Unlocked','SearchDepth',1,'BlockType','Goto')

These commands return the names of all Gain blocks in the vdp system having a Gain
parameter value of 1.

vdp

gb = find_system('vdp', 'BlockType', 'Gain')

find_system(gb, 'Gain', '1')

The preceding two commands are equivalent to this command:

 find_system

2-195

vdp

find_system('vdp', 'BlockType', 'Gain', 'Gain', '1')

These commands obtain the handles of all lines and annotations in the vdp system.

vdp

sys = get_param('vdp', 'Handle');

l = find_system(sys, 'FindAll', 'on', 'type', 'line');

a = find_system(sys, 'FindAll', 'on', 'type',

'annotation');

Turn off the LoadFullyIfNeeded search constraint.

find_system(gcs,'LoadFullyIfNeeded','off','ParameterName','ParameterValue')

Search for partial matches for X within any block dialog parameter value:

find_system('Regexp', 'on', 'BlockDialogParams','X')

Searching for Blocks with a Specific Tag

Use the block Tag property to search for blocks.

1 Open the vdp model.

open_system(‘vdp’)

2 Right-click the Sum block, and from the menu, select Properties. The Block
Properties: Sum dialog opens.

3 In the Tag box, enter sum blocks, and then click OK.
4 Search for the tag sum blocks.

find_system('vdp', 'Tag', 'sum blocks')

ans =

 'vdp/Sum'

Searching Block Dialog Parameter Values

Use the parameter 'BlockDialogParams' to search block get_param values. For
example, to find any block which has a dialog parameter whose value is the string 'X+1',
enter:

2 Functions — Alphabetical List

2-196

find_system('BlockDialogParams','X+1')

To find any partial matches within parameter values, for any find_system command,
first specify the option 'Regexp', 'on'. For the example above, to find X within the
parameter value 'X+1', enter:

find_system('Regexp', 'on', 'BlockDialogParams','X')

Searching with Regular Expressions

If you specify the 'RegExp' constraint as 'on', find_system treats search value
strings as regular expressions. A regular expression is a string of characters in which
some characters have special pattern-matching significance. For details, see “Regular
Expressions”.

Regular expressions greatly expand the types of searches you can perform with
find_system. For example, regular expressions allow you to do partial-word searches.
You can search for all objects that have a specified parameter that contains or begins or
ends with a specified string of characters.

To use regular expressions to search Simulink systems, specify the 'regexp' search
constraint as 'on' in a find_system command and use a regular expression anywhere
you would use an ordinary search value string.

For example, the following command finds all the inport and outport blocks in the
sldemo_clutch model that is provided with Simulink software.

sldemo_clutch

find_system('sldemo_clutch', 'regexp', 'on', 'blocktype', 'port')

See Also
get_param | set_param | getSimulinkBlockHandle | find_mdlrefs

Introduced before R2006a

 fixdt

2-197

fixdt
Create Simulink.NumericType object describing fixed-point or floating-point data type

Syntax

a = fixdt(Signed, WordLength)

a = fixdt(Signed, WordLength, FractionLength)

a = fixdt(Signed, WordLength, TotalSlope, Bias)

a = fixdt(Signed, WordLength, SlopeAdjustmentFactor, FixedExponent,

Bias)

a = fixdt(DataTypeNameString)

a = fixdt(..., 'DataTypeOverride', 'Off')

[DataType,IsScaledDouble] = fixdt(DataTypeNameString)

[DataType,IsScaledDouble] = fixdt(DataTypeNameString,

'DataTypeOverride', 'Off')

Description

a = fixdt(Signed, WordLength) returns a Simulink.NumericType object
describing a fixed-point data type with unspecified scaling. The scaling would typically be
determined by another block parameter. Signed can be 0 (false) for unsigned or 1 (true)
for signed.

a = fixdt(Signed, WordLength, FractionLength) returns a
Simulink.NumericType object describing a fixed-point data type with binary point
scaling. FractionLength can be greater than WordLength. For more information, see
“Binary Point Interpretation”.

a = fixdt(Signed, WordLength, TotalSlope, Bias) or a = fixdt(Signed,
WordLength, SlopeAdjustmentFactor, FixedExponent, Bias) returns a
Simulink.NumericType object describing a fixed-point data type with slope and bias
scaling.

a = fixdt(DataTypeNameString) returns a Simulink.NumericType object
describing an integer, fixed-point, or floating-point data type specified by a data
type name. The data type name can be either the name of a built-in Simulink data

2 Functions — Alphabetical List

2-198

type or the name of a fixed-point data type that conforms to the naming convention
for fixed-point names established by the Fixed-Point Designer product. For more
information, see “Fixed-Point Data Type and Scaling Notation” in the Fixed-Point
Designer documentation.

a = fixdt(..., 'DataTypeOverride', 'Off') returns a
Simulink.NumericType object with its DataTypeOverride parameter set to Off.
The default value for this property is Inherit. You can specify the DataTypeOverride
parameter after any combination of other input parameters.

[DataType,IsScaledDouble] = fixdt(DataTypeNameString) returns a
Simulink.NumericType object describing an integer, fixed-point, or floating-point data
type specified by a data type name and a flag that indicates whether the specified data
type name was the name of a scaled double data type.

[DataType,IsScaledDouble] = fixdt(DataTypeNameString,

'DataTypeOverride', 'Off') returns:

• A Simulink.NumericType object describing an integer, fixed-point, or floating-point
data type specified by a data type name. The DataTypeOverride parameter of the
Simulink.NumericType object is set to Off.

• A flag that indicates whether the specified data type name was the name of a scaled
double data type.

Examples

Return a Simulink.NumericType object describing a fixed-point data type with
unspecified scaling:

a = fixdt(1,16)

a =

Simulink.NumericType

 DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Signed'

 WordLength: 16

 IsAlias: false

 HeaderFile: ''

 Description: ''

 fixdt

2-199

Return a Simulink.NumericType object describing a fixed-point data type with binary
point scaling :

a = fixdt(1,16,2)

a =

Simulink.NumericType

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 16

 FractionLength: 2

 IsAlias: false

 HeaderFile: ''

 Description: ''

Return a Simulink.NumericType object describing a fixed-point data type with slope
and bias scaling:

a = fixdt(1, 16, 2^-2, 4)

a =

Simulink.NumericType

 DataTypeMode: 'Fixed-point: slope and bias scaling'

 Signedness: 'Signed'

 WordLength: 16

 Slope: 0.25

 Bias: 4

 IsAlias: false

 HeaderFile: ''

 Description: ''

Return a Simulink.NumericType object describing an integer, fixed-point, or floating-
point data type specified by a data type name:

[DataType,IsScaledDouble] = fixdt('ufix8')

DataType =

Simulink.NumericType

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 8

 FractionLength: 0

2 Functions — Alphabetical List

2-200

 IsAlias: false

 HeaderFile: ''

 Description: ''

IsScaledDouble =

 0

Return a Simulink.NumericType object with its DataTypeOverride property set to
Off:

 a = fixdt(0, 8, 2, 'DataTypeOverride', 'Off')

a =

Simulink.NumericType

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 8

 FractionLength: 2

DataTypeOverride: Off

 IsAlias: false

 HeaderFile: ''

 Description: ''

See Also
float | sint | ufix | sfix | sfrac | ufrac | uint

Introduced before R2006a

 fixpt_evenspace_cleanup

2-201

fixpt_evenspace_cleanup
Modify breakpoints of lookup table to have even spacing

Syntax

xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale)

Description

xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale) modifies
breakpoints of a lookup table to have even spacing after quantization. By adjusting
breakpoints to have even spacing after quantization, Simulink Coder generated code can
exclude breakpoints from memory.

xdata is the breakpoint vector of a lookup table to make evenly spaced, such
as 0:0.005:1. xdt is the data type of the breakpoints, such as sfix(16).
xscale is the scaling of the breakpoints, such as 2^-12. Using these three inputs,
fixpt_evenspace_cleanup returns the modified breakpoints in xdata_modified.

This function works only with nontunable data and considers data to have even spacing
relative to the scaling slope. For example, the breakpoint vector [0 2 5], which has
spacing value 2 and 3, appears to have uneven spacing. However, the difference between
the maximum spacing 3 and the minimum spacing 2 equals 1. If the scaling slope is 1
or greater, a spacing variation of 1 represents a 1-bit change or less. In this case, the
fixpt_evenspace_cleanup function considers a spacing variation of 1 bit or less to be
even.

Modifications to breakpoints can change the numerical behavior of a lookup table.
To check for changes, test the model using simulation, rapid prototyping, or other
appropriate methods.

Examples

Modify breakpoints of a lookup table to have even spacing after quantization:

xdata = 0:0.005:1;

2 Functions — Alphabetical List

2-202

xdt = sfix(16);

xscale = 2^-12;

xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale)

See Also
fixdt | fixpt_interp1 | fixpt_look1_func_approx | fixpt_look1_func_plot
| sfix | ufix

Introduced before R2006a

 fixpt_interp1

2-203

fixpt_interp1
Implement 1-D lookup table

Syntax

y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

Description

y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

implements a one-dimensional lookup table to find output y for input x. If x falls
between two xdata values (breakpoints), y is the result of interpolating between the
corresponding ydata values. If x is greater than the maximum value in xdata, y is the
maximum ydata value. If x is less than the minimum value in xdata, y is the minimum
ydata value.

If the input data type xdt or the output data type ydt is floating point, fixpt_interp1
performs the interpolation using floating-point calculations. Otherwise, fixpt_interp1
uses integer-only calculations. These calculations handle the input scaling xscale and
the output scaling yscale and obey the rounding method rndmeth.

Input Arguments

xdata

Vector of breakpoints for the lookup table, such as linspace(0,8,33).

ydata

Vector of table data that correspond to the breakpoints for the lookup table, such as
sin(xdata).

x

Vector of input values for the lookup table to process, such as linspace(-1,9,201).

2 Functions — Alphabetical List

2-204

xdt

Data type of input x, such as sfix(8).

xscale

Scaling for input x, such as 2^-3.

ydt

Data type of output y, such as sfix(16).

yscale

Scaling for output y, such as 2^-14.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number
in the direction of positive infinity.

'Floor' (default) Round to the nearest representable number
in the direction of negative infinity.

'Nearest' Round to the nearest representable
number.

'Toward Zero' Round to the nearest representable number
in the direction of zero.

Examples

Interpolate outputs for x using a 1-D lookup table that approximates the sine function:

xdata = linspace(0,8,33).';

ydata = sin(xdata);

% Define input x as a vector of 201 evenly

% spaced points between -1 and 9 (includes

% values both lower and higher than the range

% of breakpoints in xdata)

x = linspace(-1,9,201).';

 fixpt_interp1

2-205

% Interpolate output values for x

y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16),...

 2^-14,'Floor')

See Also
fixpt_evenspace_cleanup | fixpt_look1_func_approx |
fixpt_look1_func_plot

Introduced before R2006a

2 Functions — Alphabetical List

2-206

fixpt_look1_func_approx
Optimize fixed-point approximation of nonlinear function by interpolating lookup table
data points

Syntax

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydtydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax) returns the
optimal breakpoints of a lookup table, an ideal function applied to the breakpoints, and
the worst-case approximation error. The lookup table satisfies the maximum acceptable
error and maximum number of points that you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]) returns the optimal
breakpoints of a lookup table, an ideal function applied to the breakpoints, and the worst-
case approximation error. The lookup table satisfies the maximum acceptable error that
you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax) returns the optimal
breakpoints of a lookup table, an ideal function applied to the breakpoints, and the worst-
case approximation error. The lookup table satisfies the maximum number of points that
you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...

 fixpt_look1_func_approx

2-207

xmin,xmax,xdt,xscale,ydtydt,yscale,rndmeth,errmax,nptsmax,spacing)

returns the optimal breakpoints of a lookup table, an ideal function applied to the
breakpoints, and the worst-case approximation error. The lookup table satisfies the
maximum acceptable error, maximum number of points, and breakpoint spacing that you
specify.

In each case, fixpt_look1_func_approx interpolates between lookup table data
points to optimize the fixed-point approximation. The inputs xmin and xmax specify the
range over which to approximate the breakpoints. The inputs xdt, xscale, ydt, yscale,
and rndmeth follow conventions used by fixed-point Simulink blocks.

The inputs errmax, nptsmax, and spacing are optional. Of these inputs, you must
specify at least errmax or nptsmax. If you omit one of those two inputs, you must use
brackets, [], in place of the omitted input. fixpt_look1_func_approx ignores that
requirement for the lookup table.

If you do not specify spacing, and more than one spacing satisfies errmax and nptsmax,
fixpt_look1_func_approx chooses in this order: power-of-2 spacing, even spacing,
uneven spacing. This behavior applies when you specify both errmax and nptsmax, but
not when you specify just one of the two.

Input Arguments

func

Function of x for which to approximate breakpoints. Enclose this expression in single
quotes, for example, 'sin(2*pi*x)'.

xmin

Minimum value of x.

xmax

Maximum value of x.

xdt

Data type of x.

2 Functions — Alphabetical List

2-208

xscale

Scaling for the x values.

ydt

Data type of y.

yscale

Scaling for the y values.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number
in the direction of positive infinity.

'Floor' (default) Round to the nearest representable number
in the direction of negative infinity.

'Nearest' Round to the nearest representable
number.

'Toward Zero' Round to the nearest representable number
in the direction of zero.

errmax

Maximum acceptable error between the ideal function and the approximation given by
the lookup table.

nptsmax

Maximum number of points for the lookup table.

spacing

Spacing of breakpoints for the lookup table:

'even' Even spacing
'pow2' Even, power-of-2 spacing

 fixpt_look1_func_approx

2-209

'unrestricted' (default) Uneven spacing

If you specify... The breakpoints of the lookup table...

errmax and nptsmax Meet both criteria, if possible.

The errmax requirement has higher priority than
nptsmax. If the breakpoints cannot meet both
criteria with the specified spacing, nptsmax does
not apply.

errmax only Meet the error criteria, and
fixpt_look1_func_approx returns the fewest
number of points.

nptsmax only Meet the points criteria, and
fixpt_look1_func_approx returns the smallest
worst-case error.

Output Arguments

xdata

Vector of breakpoints for the lookup table.

ydata

Vector of values from applying the ideal function to the breakpoints.

errworst

Worst-case error, which is the maximum absolute error between the ideal function and
the approximation given by the lookup table.

Examples

Approximate a fixed-point sine function using a lookup table:

func = 'sin(2*pi*x)';

% Define the range over which to optimize breakpoints

2 Functions — Alphabetical List

2-210

xmin = 0;

xmax = 0.25;

% Define the data type and scaling for the inputs

xdt = ufix(16);

xscale = 2^-16;

% Define the data type and scaling for the outputs

ydt = sfix(16);

yscale = 2^-14;

% Specify the rounding method

rndmeth = 'Floor';

% Define the maximum acceptable error

errmax = 2^-10;

% Choose even, power-of-2 spacing for breakpoints

spacing = 'pow2';

% Create the lookup table

[xdata,ydata,errworst] = fixpt_look1_func_approx(func,...

 xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

More About
• “Use Lookup Table Approximation Functions”

See Also
fixpt_evenspace_cleanup | fixpt_interp1 | fixpt_look1_func_plot

Introduced before R2006a

 fixpt_look1_func_plot

2-211

fixpt_look1_func_plot

Plot fixed-point approximation function for lookup table

Syntax

fixpt_look1_func_plot(xdata,ydata,'func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

errworst = fixpt_look1_func_plot(xdata,ydata,'func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description

fixpt_look1_func_plot(xdata,ydata,'func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth) plots a lookup table approximation
function and the error from the ideal function.

errworst = fixpt_look1_func_plot(xdata,ydata,'func',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth) plots a lookup table approximation
function and the error from the ideal function. The output errworst is the maximum
absolute error.

You can use fixpt_look1_func_approx to generate xdata and
ydata, the breakpoints and table data for the lookup table, respectively.
fixpt_look1_func_approx applies the ideal function to the breakpoints in xdata to
produce ydata. While this method is the easiest way to generate ydata, you can choose
other values for ydata as input for fixpt_look1_func_plot. Choosing different
values for ydata can, in some cases, produce a lookup table with a smaller maximum
absolute error.

Input Arguments

xdata

Vector of breakpoints for the lookup table.

2 Functions — Alphabetical List

2-212

ydata

Vector of values from applying the ideal function to the breakpoints.

func

Function of x for which to approximate breakpoints. Enclose this expression in single
quotes, for example, 'sin(2*pi*x)'.

xmin

Minimum value of x.

xmax

Maximum value of x.

xdt

Data type of x.

xscale

Scaling for the x values.

ydt

Data type of y.

yscale

Scaling for the y values.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number
in the direction of positive infinity.

'Floor' (default) Round to the nearest representable number
in the direction of negative infinity.

 fixpt_look1_func_plot

2-213

'Nearest' Round to the nearest representable
number.

'Toward Zero' Round to the nearest representable number
in the direction of zero.

Examples

Plot a fixed-point approximation of the sine function using data points generated by
fixpt_look1_func_approx:

func = 'sin(2*pi*x)';

% Define the range over which to optimize breakpoints

xmin = 0;

xmax = 0.25;

% Define the data type and scaling for the inputs

xdt = ufix(16);

xscale = 2^-16;

% Define the data type and scaling for the outputs

ydt = sfix(16);

yscale = 2^-14;

% Specify the rounding method

rndmeth = 'Floor';

% Define the maximum acceptable error

errmax = 2^-10;

% Choose even, power-of-2 spacing for breakpoints

spacing = 'pow2';

% Generate data points for the lookup table

[xdata,ydata,errworst]=fixpt_look1_func_approx(func,...

 xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

% Plot the sine function (ideal and fixed-point) & errors

fixpt_look1_func_plot(xdata,ydata,func,xmin,xmax,...

 xdt,xscale,ydt,yscale,rndmeth);

fixpt_look1_func_plot plots the fixed-point sine function, using generated data
points, and plots the error between the ideal function and the fixed-point function. The
maximum absolute error and the number of points required appear on the plot. The
error drops to zero at a breakpoint, but increases between breakpoints due to curvature
differences between the ideal function and the line drawn between breakpoints.

2 Functions — Alphabetical List

2-214

The lookup table requires 33 points to achieve a maximum absolute error of
2^-11.3922.

More About
• “Use Lookup Table Approximation Functions”

See Also
fixpt_evenspace_cleanup | fixpt_interp1 | fixpt_look1_func_approx

 fixpt_look1_func_plot

2-215

Introduced before R2006a

2 Functions — Alphabetical List

2-216

fixpt_set_all
Set property for each fixed-point block in subsystem

Syntax

fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description

fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue) sets
the property fixptPropertyName of every applicable block in the model or subsystem
SystemName to the value fixptPropertyValue

Examples

Set each fixed-point block in a model Filter_1 to round towards the floor and saturate
upon overflow:
% Round towards the floor

fixpt_set_all('Filter_1','RndMeth','Floor')

% Saturate upon overflow

fixpt_set_all('Filter_1','DoSatur','on')

Introduced before R2006a

 fixptbestexp

2-217

fixptbestexp
Exponent that gives best precision for fixed-point representation of value

Syntax

out = fixptbestexp(RealWorldValue, TotalBits, IsSigned)

out = fixptbestexp(RealWorldValue, FixPtDataType)

Description

out = fixptbestexp(RealWorldValue, TotalBits, IsSigned) returns
the exponent that gives the best precision for the fixed-point representation of
RealWorldValue. TotalBits specifies the number of bits for the fixed-point number.
IsSigned specifies whether the fixed-point number is signed: 1 indicates the number is
signed and 0 indicates the number is not signed.

out = fixptbestexp(RealWorldValue, FixPtDataType) returns the exponent
that gives the best precision based on the data type FixPtDataType.

Examples

Get the exponent that gives the best precision for the real-world value 4/3 using a signed,
16-bit number:

out = fixptbestexp(4/3,16,1)

out =

 -14

Alternatively, specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))

out =

 -14

This shows that the maximum precision representation of 4/3 is obtained by placing 14
bits to the right of the binary point:

2 Functions — Alphabetical List

2-218

01.01010101010101

You can specify the precision of this representation in fixed-point blocks by setting the
scaling to 2^-14 or 2^fixptbestexp(4/3,16,1).

See Also
fixptbestprec

Introduced before R2006a

 fixptbestprec

2-219

fixptbestprec
Determine maximum precision available for fixed-point representation of value

Syntax

out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)

out = fixptbestprec(RealWorldValue,FixPtDataType)

Description

out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) determines the
maximum precision for the fixed-point representation of the real-world value specified
by RealWorldValue. You specify the number of bits for the fixed- point number with
TotalBits, and you specify whether the fixed-point number is signed with IsSigned.
If IsSigned is 1, the number is signed. If IsSigned is 0, the number is not signed. The
maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines the
maximum precision based on the data type specified by FixPtDataType.

Examples

Example 1

The following command returns the maximum precision available for the real-world
value 4/3 using a signed, 8-bit number:

out = fixptbestprec(4/3,8,1)

out =

 0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))

out =

2 Functions — Alphabetical List

2-220

 0.015625

This value means that the maximum precision available for 4/3 is obtained by placing six
bits to the right of the binary point since 2-6 equals 0.015625:

01.010101

Example 2

You can use the maximum precision as the scaling in fixed-point blocks. This enables you
to use fixptbestprec to perform a type of autoscaling if you would like to designate a
known range of your simulation. For example, if your known range is -13 to 22, and you
are using a safety margin of 30%:

knownMax = 22;

knownMin = -13;

localSafetyMargin = 30;

slope = max(fixptbestprec((1+localSafetyMargin/100)* ...

 [knownMax,knownMin], sfix(16)));

The variable slope can then be used in the expression that you specify for the Output
data type parameter in a block mask. Be sure to select the Lock output data type
setting against changes by the fixed-point tools check box in the same block
to prevent the Fixed-Point Tool from overriding the scaling. If you know the range,
you can use this technique in place of relying on a model simulation to provide the
range to the autoscaling tool, as described in autofixexp in the Fixed-Point Designer
documentation.

See Also
fixptbestexp

Introduced before R2006a

 float

2-221

float
Create Simulink.NumericType object describing floating-point data type

Syntax

a = float('single')

a = float('double')

Description

a = float('single') returns a Simulink.NumericType object that describes the
data type of an IEEE single (32 total bits, 8 exponent bits).

a = float('double') returns a Simulink.NumericType object that describes the
data type of an IEEE double (64 total bits, 11 exponent bits).

Note: float is a legacy function. In new code, use fixdt instead. In existing code,
replace float('single') with fixdt('single') and float('double') with
fixdt('double').

Examples

Define an IEEE single data type.

>> a = float('single')

a =

 NumericType with properties:

 DataTypeMode: 'Single'

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

2 Functions — Alphabetical List

2-222

See Also
fixdt | Simulink.NumericType | sfix | sfrac | sint | ufix | ufrac | uint

Introduced before R2006a

 frameedit

2-223

frameedit

Edit print frames for Simulink and Stateflow block diagrams

Syntax

frameedit

frameedit filename

Description

frameedit starts the PrintFrame Editor, a graphical user interface you use to create
borders for Simulink and Stateflow block diagrams. With no argument, frameedit
opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (.fig) previously created and saved using
frameedit.

More About

Tips

This illustrates the main features of the PrintFrame Editor.

2 Functions — Alphabetical List

2-224

Closing the PrintFrame Editor

To close the PrintFrame Editor window, click the close box in the upper right corner, or
select Close from the File menu.

Printing Simulink Block Diagrams with Print Frames

Select Print from the Simulink File menu. Check the Frame box and supply the
filename for the print frame you want to use. Click OK in the Print dialog box.

 frameedit

2-225

Getting Help for the PrintFrame Editor

For further instructions on using the PrintFrame Editor, select PrintFrame Editor
Help from the Help menu in the PrintFrame Editor.

Introduced in R2008b

2 Functions — Alphabetical List

2-226

fxptdlg
Start Fixed-Point Tool

Syntax
fxptdlg('modelname')

Description

fxptdlg('modelname') starts the Fixed-Point Tool for the Simulink model specified by
modelname. You can also access this tool by the following methods:

• From the Simulink Analysis menu, select Fixed-Point Tool.
• From a subsystem context (right-click) menu, select Fixed-Point Tool.

In conjunction with Fixed-Point Designer software, the Fixed-Point Tool provides
convenient access to:

• Model and subsystem parameters that control the signal logging, fixed-point
instrumentation mode, and data type override. (see “Model Parameters” on page
6-2)

• Plotting capabilities that enable you to plot data that resides in the MATLAB
workspace, namely, simulation results associated with Scope, To Workspace, and
root-level Outport blocks, in addition to logged signal data (see “Signal Logging” in
the Simulink User's Guide)

• An interactive automatic data typing feature that proposes fixed-point data types
for appropriately configured objects in your model, and then allows you to selectively
accept and apply the data type proposals

You can launch the Fixed-Point Tool for any system or subsystem, and the tool controls
the object selected in its System under design pane. If Fixed-Point Designer software
is installed, the Fixed-Point Tool Contents pane displays the name, data type, design
minimum and maximum values, minimum and maximum simulation values, and scaling
of each model object that logs fixed-point data. Additionally, if a signal saturates or
overflows, the tool displays the number of times saturation or overflow occurred. You can
display an object's dialog box by right-clicking the appropriate entry in the Contents
pane and selecting Properties.

 fxptdlg

2-227

Note: The Fixed-Point Tool works only for models that simulate in Normal mode. The
tool does not work when you simulate your model in Accelerator or Rapid Accelerator
mode.

Overriding Fixed-Point Specifications

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer
software. However, even if you do not have Fixed-Point Designer software, you can
configure data type override settings to simulate a model that specifies fixed-point data
types. In this mode, the Simulink software temporarily overrides fixed-point data types
with floating-point data types when simulating the model.

Note: If you use fi objects or embedded numeric data types in your model or workspace,
you might introduce fixed-point data types into your model. You can set fipref to prevent
the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:

1 From the Simulink model Analysis menu, select Fixed Point Tool.

The Fixed-Point Tool opens.
2 Under System under design, select the system you want to convert.
3 Under Configure model settings, click Advanced settings. In the Advanced

Settings dialog box:

• Set the Fixed-point instrumentation mode parameter to Force off.
• Set the Data type override parameter to Double or Single.
• Set the Data type override applies to parameter to All numeric types.

Click Apply and close the dialog box.
4 If you use fi objects or embedded numeric data types in your model, set the

fipref DataTypeOverride property to TrueDoubles or TrueSingles
(to be consistent with the model-wide data type override setting) and the
DataTypeOverrideAppliesTo property to All numeric types.

For example, at the MATLAB command line, enter:

2 Functions — Alphabetical List

2-228

 p = fipref('DataTypeOverride', 'TrueDoubles', ...

 'DataTypeOverrideAppliesTo', 'AllNumericTypes');

See Also
“Propose Fraction Lengths Using Simulation Range Data”

Introduced before R2006a

 gcb

2-229

gcb
Get pathname of current block

Syntax
gcb

gcb('sys')

Description

gcb returns the full block pathname of the current block in the current system.

gcb('sys') returns the full block pathname of the current block in the specified system.

The current block is one of these:

• During editing, the current block is the block most recently clicked.
• During simulation of a system that contains S-Function blocks, the current block is

the S-Function block currently executing its corresponding MATLAB function.
• During callbacks, the current block is the block whose callback routine is being

executed.
• During evaluation of the MaskInitialization string, the current block is the block

whose mask is being evaluated.

Examples

This command returns the path of the most recently selected block.

gcb

ans =

 clutch/Locked/Inertia

This command gets the value of the Gain parameter of the current block.

get_param(gcb,'Gain')

ans =

2 Functions — Alphabetical List

2-230

 1/(Iv+Ie)

See Also
gcbh | gcs

Introduced before R2006a

 gcbh

2-231

gcbh
Get handle of current block

Syntax
gcbh

Description

gcbh returns the handle of the current block in the current system.

You can use this command to identify or address blocks that have no parent system. The
command should be most useful to blockset authors.

Examples

This command returns the handle of the most recently selected block.

gcbh

ans =

 281.0001

See Also
gcb | getSimulinkBlockHandle

Introduced before R2006a

2 Functions — Alphabetical List

2-232

gcs
Get pathname of current system

Syntax
gcs

Description
gcs returns the full pathname of the current system.

The current system is one of these:

• During editing, the current system is the system or subsystem most recently clicked.
• During simulation of a system that contains S-Function blocks, the current system

is the system or subsystem containing the S-Function block that is currently being
evaluated.

• During callbacks, the current system is the system containing any block whose
callback routine is being executed.

• During evaluation of the MaskInitialization string, the current system is the
system containing the block whose mask is being evaluated.

The current system is always the current model or a subsystem of the current model. Use
bdroot to get the current model.

Examples
This example returns the path of the system that contains the most recently selected
block.

gcs

ans =

 clutch/Locked

See Also
bdroot | gcb

 gcs

2-233

Introduced before R2006a

2 Functions — Alphabetical List

2-234

get_param

Get parameter names and values

Syntax

ParamValue = get_param(Object,Parameter)

Description

ParamValue = get_param(Object,Parameter) returns the name or value of the
specified parameter for the specified model or block object. Open or load the Simulink
model first.

Tip If you make multiple calls to get_param for the same block, then specifying the
block using a numeric handle is more efficient than using the full block path. Use
getSimulinkBlockHandle to get a block handle.

For parameter names, see:

• “Model Parameters” on page 6-2
• “Block-Specific Parameters” on page 6-96
• “Common Block Properties” on page 6-85

Examples

Get a Block Parameter Value and a Model Parameter Value

Load the vdp model.

load_system('vdp');

Get the value for the Expression block parameter.

 get_param

2-235

BlockParameterValue = get_param('vdp/Fcn','Expression')

BlockParameterValue =

 1 - u*u

Get the value for the SolverType model parameter.

SolverType = get_param('vdp','SolverType')

SolverType =

 Variable-step

Get Root Parameter Names and Values

Get a list of global parameter names by finding the difference between the Simulink root
parameter names and the model parameter names.

RootParameterNames = fieldnames(get_param(0,'ObjectParameters'));

load_system('vdp')

ModelParameterNames = fieldnames(get_param('vdp','ObjectParameters'));

GlobalParameterNames = setdiff(RootParameterNames,ModelParameterNames)

GlobalParameterNames =

 'AutoSaveOptions'

 'CacheFolder'

 'CallbackTracing'

 'CharacterEncoding'

 . . .

 'CurrentSystem'

Get the value of a global parameter.

GlobalParameterValue = get_param(0,'CurrentSystem')

GlobalParameterValue =

 vdp

Get Model Parameter Names and Values

Get a list of model parameters for the vdp model .

load_system('vdp')

ModelParameterNames = get_param('vdp','ObjectParameters')

ModelParameterNames =

 Name: [1x1 struct]

2 Functions — Alphabetical List

2-236

 Tag: [1x1 struct]

 Description: [1x1 struct]

 Type: [1x1 struct]

 Parent: [1x1 struct]

 Handle: [1x1 struct]

 . . .

 Version: [1x1 struct]

Get the current value of the ModelVersion model parameter for the vdp model.

ModelParameterValue = get_param('vdp','ModelVersion')

ModelParameterValue =

 1.6

Get All Block Parameter Names and Values

Get a list of block paths and names for the vdp model.

load_system('vdp')

BlockPaths = find_system('vdp','Type','Block')

BlockPaths =

 'vdp/Fcn'

 'vdp/More Info'

 'vdp/More Info/Model Info'

 'vdp/Mu'

 'vdp/Mux'

 'vdp/Product'

 'vdp/Scope'

 'vdp/Sum'

 'vdp/x1'

 'vdp/x2'

 'vdp/Out1'

 'vdp/Out2'

Get a list of block dialog parameters for the Fcn block.

BlockDialogParameters = get_param('vdp/Fcn','DialogParameters')

BlockDialogParameters =

 Expr: [1x1 struct]

 SampleTime: [1x1 struct]

Get the value for the Expr block parameter.

 get_param

2-237

BlockParameterValue = get_param('vdp/Fcn','Expr')

BlockParameterValue =

 1 - u*u

Get a Block Parameter Value Using a Block Handle

If you make multiple calls to get_param for the same block, then using the block handle
is more efficient than specifying the full block path as a string, e.g., 'vdp/Fcn'.

You can use the block handle in subsequent calls to get_param or set_param. If you
examine the handle, you can see that it contains a double. Do not try to use the number
of a handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Instead, assign the handle to a variable and use that variable name
to specify a block.

Use getSimulinkBlockHandle to load the vdp model if necessary (by specifying true),
and get a handle to the FCN block.

fcnblockhandle = getSimulinkBlockHandle('vdp/Fcn',true);

Use the block handle with get_param and get the value for the Expr block parameter.

BlockParameterValue = get_param(fcnblockhandle,'Expression')

BlockParameterValue =

 1 - u*u

Display Block Types for all Blocks in a Model

Get a list of block paths and names for the vdp model.

load_system('vdp')

BlockPaths = find_system('vdp','Type','Block')

BlockPaths =

 'vdp/Fcn'

 'vdp/More Info'

 'vdp/More Info/Model Info'

 'vdp/Mu'

 'vdp/Mux'

 'vdp/Product'

 'vdp/Scope'

 'vdp/Sum'

2 Functions — Alphabetical List

2-238

 'vdp/x1'

 'vdp/x2'

 'vdp/Out1'

 'vdp/Out2'

Get the value for the BlockType parameter for each of the blocks in the vdp model.

BlockTypes = get_param(BlockPaths,'BlockType')

BlockTypes =

 'Fcn'

 'SubSystem'

 'SubSystem'

 'Gain'

 'Mux'

 'Product'

 'Scope'

 'Sum'

 'Integrator'

 'Integrator'

 'Outport'

 'Outport'

• “Associating User Data with Blocks”
• “Use MATLAB Commands to Change Workspace Data”

Input Arguments

Object — Name or handle of a model or block, or root
handle | string | cell array of strings | 0

Handle or name of a model or block, or root, specified as a numeric handle or a string, a
cell array of strings for multiple blocks, or 0 for root. A numeric handle must be a scalar.
You can also get parameters of lines and ports, but you must use numeric handles to
specify them.

Tip If you make multiple calls to get_param for the same block, then specifying a
block using a numeric handle is more efficient than using the full block path. Use
getSimulinkBlockHandle to get a block handle. Do not try to use the number of a
handle alone (e.g., 5.007) because you usually need to specify many more digits than

 get_param

2-239

MATLAB displays. Assign the handle to a variable and use that variable name to specify
a block.

Specify 0 to get root parameter names, including global parameters and model
parameters for the current Simulink session.

• Global parameters include Editor preferences and Simulink Coder parameters.
• Model parameters include configuration parameters, Simulink Coder parameters, and

Simulink Code Inspector™ parameters.

Example: 'vdp/Fcn'

Parameter — Parameter of model or block, or root
string

Parameter of model or block, or root, specified as a string or 0 for root. The table shows
special cases.

Specified Parameter Result

'ObjectParameters' Returns a structure array with the
parameter names of the specified object
(model, block, or root) as separate fields in
the structure.

'DialogParameters' Returns a structure array with the block
dialog box parameter names as separate
fields in the structure. If the block has a
mask, the function instead returns the
mask parameters.

Parameter name, e.g., 'BlockType'.
Specify any model or block parameter, or
block dialog box parameter.

Returns the value of the specified model or
block parameter.

If you specified multiple blocks as a cell
array, returns a cell array with the values
of the specified parameter common to all
blocks. All of the specified blocks in the
cell array must contain the parameter,
otherwise the function returns an error.

Example: 'ObjectParameters'

2 Functions — Alphabetical List

2-240

Data Types: char

Output Arguments

ParamValue — The name or value of the specified parameter for the specified model or
block, or root
any data type, depending on the parameter

The name or value of the specified parameter for the specified model or block, or root. If
you specify multiple objects, the output is a cell array of objects. The table shows special
cases.

Specified Parameter ParamValue Returned

'ObjectParameters' A structure array with the parameter
names of the specified object (model, block,
or root) as separate fields in the structure.

'DialogParameters' A structure array with the block dialog
box parameter names as separate fields
in the structure. If the block has a mask,
the function instead returns the mask
parameters.

Parameter name, e.g., 'BlockType' The value of the specified model or block
parameter. If multiple blocks are specified
as a cell array, returns a cell array with the
values of the specified parameter common
to all blocks.

If you get the root parameters by specifying get_param(0,'ObjectParameters'),
then the output ParamValue is a structure array with the root parameter names as
separate fields in the structure. Each parameter field is a structure containing these
fields:

• Type — Parameter type values are: 'boolean', 'string', 'int', 'real',
'point', 'rectangle', 'matrix', 'enum', 'ports', or 'list'

• Enum — Cell array of enumeration string values that applies only to 'enum'
parameter types

 get_param

2-241

• Attributes — Cell array of strings defining the attributes of the parameter. Values
are: 'read-write', 'read-only', 'read-only-if-compiled', 'write-only',
'dont-eval', 'always-save', 'never-save', 'nondirty', or 'simulation'

More About
• “Model Parameters” on page 6-2
• “Block-Specific Parameters” on page 6-96
• “Common Block Properties” on page 6-85

See Also
bdroot | find_system | gcb | gcs | getSimulinkBlockHandle | set_param

Introduced before R2006a

2 Functions — Alphabetical List

2-242

getActiveConfigSet
Get model's active configuration set or configuration reference

Syntax
myConfigObj = getActiveConfigSet(model)

Arguments

model

The name of an open model, or gcs to specify the current model

Description

getActiveConfigSet returns the configuration set or configuration reference
(configuration object) that is the active configuration object of model.

Examples

The following example returns the active configuration object of the current model. The
code is the same whether the object is a configuration set or configuration reference.

myConfigObj = getActiveConfigSet(gcs);

More About
• “Manage a Configuration Set”
• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

 getActiveConfigSet

2-243

Introduced before R2006a

2 Functions — Alphabetical List

2-244

getCallbackAnnotation
Get information about annotation

Syntax
getCallbackAnnotation

Description

getCallbackAnnotation is intended to be invoked by annotation callback functions.
If it is invoked from an annotation callback function, it returns an instance of
Simulink.Annotation class that represents the annotation associated with the
callback function. The callback function can then use the instance to get and set the
annotation’s properties, such as its text, font and color. If this function is not invoked
from an annotation callback function, it returns nothing, i.e., [].

Introduced before R2006a

 getConfigSet

2-245

getConfigSet
Get one of model's configuration sets or configuration references

Syntax
myConfigObj = getConfigSet(model, configObjName)

Arguments

model

The name of an open model, or gcs to specify the current model
configObjName

The name of a configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description

getConfigSet returns the configuration set or configuration reference (configuration
object) that is attached to model and is named configObjName. If no such object exists,
an error occurs.

Examples

The following example returns the configuration object that is named DevConfig
and attached to the current model. The code is the same whether DevConfig is a
configuration set or configuration reference.

 myConfigObj = getConfigSet(gcs, 'DevConfig');

More About
• “Manage a Configuration Set”

2 Functions — Alphabetical List

2-246

• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSets | openDialog | setActiveConfigSet

Introduced before R2006a

 getConfigSets

2-247

getConfigSets
Get names of all of model's configuration sets or configuration references

Syntax
myConfigObjNames = getConfigSets(model)

Arguments

model

The name of an open model, or gcs to specify the current model

Description

getConfigSets returns a cell array of strings specifying the names of all configuration
sets and configuration references (configuration objects) attached to model.

Examples

The following example obtains the names of the configuration objects attached to the
current model.

 myConfigObjNames = getConfigSets(gcs)

More About
• “Manage a Configuration Set”
• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | openDialog | setActiveConfigSet

2 Functions — Alphabetical List

2-248

Introduced before R2006a

 getfullname

2-249

getfullname
Get pathname of block or line

Syntax
path=getfullname(handle)

Description

path=getfullname(handle) returns the full pathname of the block or line specified by
handle.

Examples

getfullname(gcb) returns the pathname of the block currently selected in the model
editor's window.

The following code returns the pathname of the line currently selected in the model
editor's window.
line = find_system(gcs, 'SearchDepth', 1, 'FindAll', 'on', ...

 'Type', 'line', 'Selected', 'on');

path = getfullname(line);

See Also
gcb | find_system

Introduced in R2007a

2 Functions — Alphabetical List

2-250

getInputString
Create comma-separated list of variables to map

Syntax

externalInputString = getInputString(inputmap,'base')

externalInputString = getInputString(inputmap,filename)

Description

externalInputString = getInputString(inputmap,'base') creates an input
string using the supplied mapping inputmap and the variables loaded in the base
workspace ('base').

This function generates a comma-separated list of variables (input string) to be mapped.
You can then use this list:

• As input to the sim command. Load the variables in the base workspace first.
• As input for the Configuration Parameters > Data Import/Export > Input

parameter. Copy the contents of the input string into the text field.

This function is most useful if you have created a custom mapping.

externalInputString = getInputString(inputmap,filename) creates an input
string using the supplied mapping inputmap and the variables defined in filename.

Examples

Create an input string from the base workspace

Create an input string from the base workspace and simulate a model.

Open the model

slexAutotransRootInportsExample;

 getInputString

2-251

Create signal variables in the base workspace

Throttle = timeseries(ones(10,1)*10);

Brake = timeseries(zeros(10,1));

Create a mapping (inputMap) for the model.

inputMap = getRootInportMap('model',...

'slexAutotransRootInportsExample',...

'signalName',{'Throttle','Brake'},...

'blockName',{'Throttle','Brake'});

Call getInputString with inputMap and 'base' as inputs.

externalInputString = getInputString(inputMap,'base')

externalInputString =

Throttle,Brake

Simulate the model with the input string.

sim('slexAutotransRootInportsExample','ExternalInput',...

externalInputString);

Create an external input string from variables in a MAT-file

Create an external input string from variables in a MAT-file named input.mat.

In a writable folder, create a MAT-file with input variables.

Throttle = timeseries(ones(10,1)*10);

Brake = timeseries(zeros(10,1));

save('input.mat','Throttle','Brake');

Open the model.

slexAutotransRootInportsExample;

Create map object.

inputMap = getRootInportMap('model',...

'slexAutotransRootInportsExample',...

'signalName',{'Throttle','Brake'},...

'blockName',{'Throttle','Brake'});

2 Functions — Alphabetical List

2-252

Get the resulting input string.

externalInputString = getInputString(inputMap,'input.mat')

externalInputString =

Throttle,Brake

Load variables from the base workspace for the simulation.

load('input.mat');

Simulate the model.

sim('slexAutotransRootInportsExample','ExternalInput',...

externalInputString);

Alternatively, if you want to input the list of variables through the Configuration
Parameters dialog, copy the contents of externalInputString (Throttle,Brake) into
the Data Import/Export > Input parameter. Apply the changes, and then simulate the
model.

Input Arguments

inputmap — Map object
string

Map object, as returned from the getRootInportMap function.

filename — Input variables
MAT-file name as string

Input variables, contained in a MAT-file. The file contains variables to map.
Example: 'data.mat'

Data Types: char

Output Arguments

externalInputString — External input string
Comma-separated string

 getInputString

2-253

External input string, returned as a comma-separated string. The string contains root
inport information that you can specify to the sim command or the Configuration
Parameters > Data Import/Export > Input parameter.

More About
• “Import and Map Root-Level Inport Data”

See Also
getrootinportmap

Introduced in R2013a

2 Functions — Alphabetical List

2-254

getRootInportMap
Create custom object to map signals to root-level inports

Syntax

map = getRootInportMap('Empty');

map = getRootInportMap(model,mdl,Name,Value);

map = getRootInportMap(inputmap,map,Name,Value);

Description

map = getRootInportMap('Empty'); creates an empty map object, map. Use this
map object to set up an empty custom mapping object. Load the model before using this
function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards.

map = getRootInportMap(model,mdl,Name,Value); creates a map object for
model, mdl, with block names and signal names specified. Load the model before using
this function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards.

map = getRootInportMap(inputmap,map,Name,Value); overrides the mapping
object with the specified property. You can override only the properties model,
blockName, and signalName. Load the model before using this function. If you do not
load the model first, the function loads the model to make the mapping and then closes
the model afterwards.

Use the getRootInportMap function when creating a custom mapping mode to map
data to root-level inports. See BlockNameIgnorePrefix.m for an example of a custom
mapping algorithm.

Input Arguments

Empty

Create an empty map object.

 getRootInportMap

2-255

Default: none

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'model'

Name of model to associate with the root inport map.

Default: None

'blockName'

Block names of root-level input ports. The tool assigns data to ports according to the
name of the root-inport block. If the tool finds a data element whose name matches the
name of a root-inport block, it maps the data to the corresponding port.

The value for this argument can be:
Block name of root-level input ports.
Cell array containing multiple block names of root-level input ports.

Default: None

'signalName'

Signal names to be mapped. The tool assigns data to ports according to the name of the
signal on the port. If the tool finds a data element whose name matches the name of a
signal at a port, it maps the data to the corresponding port.

The value for this argument can be:
Signal name to be mapped.
Cell array containing multiple signal names of signals to be mapped.

Default: None

'inputmap'

Name of mapping object to override.

2 Functions — Alphabetical List

2-256

Default: None

Output Arguments

map

Custom object that you can use to map data to root-level input port.

Examples

Empty Mapping Object

Create an empty custom mapping object.

map = getRootInportMap('Empty')

map =

 1x0 InputMap array with properties:

 Type

 DataSourceName

 Destination

Simple Mapping Object

Create a simple mapping object using a MATLAB time series object.

Create a time series object, signalIn1.

signalIn1 = timeseries((1:10)')

Common Properties:

 Name: 'unnamed'

 Time: [10x1 double]

 TimeInfo: [1x1 tsdata.timemetadata]

 Data: [10x1 double]

 DataInfo: [1x1 tsdata.datametadata]

Create a mapping object for the time series object for the model,
ex_minportsOnlyModel.

 getRootInportMap

2-257

modelFile = fullfile(matlabroot,'help','toolbox','simulink',...

'examples','ex_minportsOnlyModel');

load_system(modelFile);

map = getRootInportMap('model','ex_minportsOnlyModel',...

'blockName','In1','signalname','signalIn1')

map =

 InputMap with properties:

 Type: 'Inport'

 DataSourceName: 'signalIn1'

 Destination: [1x1 Simulink.iospecification.Destination]

Mapping Object with Vectors

Create a mapping object using vectors of block names and signal names for the model
ex_minportsOnlyModel.

Create a mapping object of vectors.

modelFile = fullfile(matlabroot,'help','toolbox','simulink',...

'examples','ex_minportsOnlyModel');

load_system(modelFile);

map = getRootInportMap('model','ex_minportsOnlyModel',...

'blockName',{'In1' 'In2'}, ...

'signalname',{'signalIn1' 'signalIn2'})

map =

 1x2 InputMap array with properties:

 Type

 DataSourceName

 Destination

Overriding Maps

Create a mapping object that contains the signal var2, then override var2 with var1.

Create a mapping object of vectors.

% Load the model and define variables

modelFile = fullfile(matlabroot,'help','toolbox','simulink',...

'examples','ex_minportsOnlyModel');

2 Functions — Alphabetical List

2-258

load_system(modelFile);

modelValue = 'ex_minportsOnlyModel';

blockNameValue = 'In1';

signalNameValue = 'var2';

portType = 'Inport';

% Define var1 and override var2 with var1

signalNameToOverload = 'var1';

mapToOverload = getRootInportMap('model',modelValue,...

'blockName',blockNameValue,...

 'signalName',signalNameToOverload)

mapToOverload =

 InputMap with properties:

 Type: 'Inport'

 DataSourceName: 'var1'

 Destination: [1x1 Simulink.iospecification.Destination]

• “Create Custom Mapping File Function”

More About

Tips

• Load the model before running this function.
• If your custom mapping mode similar to an existing Simulink mapping mode, consider

using the getSlRootInportMap function instead.

See Also
getInputString | getSlRootInportMap

Introduced in R2012b

 getSimulinkBlockHandle

2-259

getSimulinkBlockHandle
Get block handle from block path

Syntax

handle = getSimulinkBlockHandle(path)

handle = getSimulinkBlockHandle(path,'true')

Description

handle = getSimulinkBlockHandle(path) returns the numeric handle of the block
specified by path, if it exists in a loaded model or library. Returns -1 if the block is not
found. Library links are resolved where necessary.

Use the numeric handle returned by getSimulinkBlockHandle to manipulate the
block in subsequent calls to get_param or set_param. This approach is more efficient
than making multiple calls to these functions using the full block path. Do not try to
use the number of a handle alone (e.g., 5.007) because you usually need to specify
many more digits than MATLAB displays. Assign the handle to a variable and use
that variable name to specify a block. The handle applies only to the current MATLAB
session.

Use getSimulinkBlockHandle to check whether a block path is valid. This approach is
more efficient than calling get_param inside a try statement.

handle = getSimulinkBlockHandle(path,'true') attempts to load the model or
library containing the specified block path, and then checks if the block exists. No error
is returned if the model or library is not found. Any models or libraries loaded this way
remain in memory even if the function does not find a block with the specified path.

Examples

Get the Handle of a Block

Get the handle of the Pilot block.

2 Functions — Alphabetical List

2-260

load_system('f14')

handle = getSimulinkBlockHandle('f14/Pilot')

handle =

 562.0004

You can use the handle in subsequent calls to get_param or set_param.

Load the Model and Get the Block Handle

Load the model f14 if necessary (by specifying true), and get the handle of the Pilot
block.

handle = getSimulinkBlockHandle('f14/Pilot',true)

handle =

 562.0004

You can use the handle in subsequent calls to get_param or set_param.

Check If a Model Contains a Specific Block

Check whether the model f14 is loaded and contains a block named Pilot. Valid
handles are always greater than zero. If the function does not find the block, it returns
-1.

valid_block_path = getSimulinkBlockHandle('f14/Pilot') > 0

valid_block_path =

 0

The model contains the block but the model is not loaded, so this returns 0 because it
cannot find the block.

Using getSimulinkBlockHandle to check whether a block path is valid is more
efficient than calling get_param inside a try statement.

Input Arguments

path — Block path name
string | cell array of strings

 getSimulinkBlockHandle

2-261

Block path name, specified as a string or a cell array of strings.
Example: ‘f14/Pilot’

Data Types: char

Output Arguments

handle — Numeric handle of a block
double | array of doubles

Numeric handle of a block, returned as a double or an array of doubles. Valid handles
are always greater than zero. If the function does not find the block, it returns -1. If the
path input is a cell array of strings, then the output is a numeric array of handles.

Data Types: double

See Also
get_param | set_param

Introduced in R2015a

2 Functions — Alphabetical List

2-262

getSlRootInportMap
Create custom object to map signals to root-level inports using Simulink mapping mode

Syntax

inputMap = getSlRootInportMap('model',modelname,'MappingMode',

mappingmode,'SignalName',signalname,'SignalValue',signalvalue)

[inputMap, hasASignal] = getSlRootInportMap('model',

modelname,'MappingMode',mappingmode,'SignalName',

signalname,'SignalValue',signalvalue)

inputMap = getSlRootInportMap('model',

modelname,'MappingMode','Custom','CustomFunction',

customfunction,'SignalName',signalname,'SignalValue',signalvalue)

[inputMap,hasASignal] = getSlRootInportMap('model',

modelname,'MappingMode','Custom','CustomFunction',

customfunction,'SignalName',signalname,'SignalValue',signalvalue)

Description

inputMap = getSlRootInportMap('model',modelname,'MappingMode',

mappingmode,'SignalName',signalname,'SignalValue',signalvalue) creates
a root inport map using one of the Simulink mapping modes. Load the model before using
this function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards.

[inputMap, hasASignal] = getSlRootInportMap('model',

modelname,'MappingMode',mappingmode,'SignalName',

signalname,'SignalValue',signalvalue) returns a vector of logical values
specifying whether or not the root inport map has a signal associated with it.

inputMap = getSlRootInportMap('model',

modelname,'MappingMode','Custom','CustomFunction',

customfunction,'SignalName',signalname,'SignalValue',signalvalue)

creates a root inport map using a custom mapping mode specified in customfunction.
Load the model before using this function. If you do not load the model first, the function
loads the model to make the mapping and then closes the model afterwards.

 getSlRootInportMap

2-263

[inputMap,hasASignal] = getSlRootInportMap('model',

modelname,'MappingMode','Custom','CustomFunction',

customfunction,'SignalName',signalname,'SignalValue',signalvalue)

returns a vector of logical values specifying whether or not the root inport map has a
signal associated with it.

To map signals to root-level inports using custom mapping modes, you can use
getSlRootInport with the Root Inport Mapping dialog box custom mapping capability.

Examples

Create inport map using Simulink mapping mode

Create a vector of inport maps using a built-in mapping mode.

Throttle = timeseries(ones(10,1)*10);

 Brake = timeseries(zeros(10,1));

 inputMap = getSlRootInportMap('model','slexAutotransRootInportsExample',...

 'MappingMode','BlockName', ...

 'SignalName',{'Throttle' 'Brake'},...

 'SignalValue',{Throttle Brake});

Create inport map using custom function

Create a vector of inport maps using a custom function

 port1 = timeseries(ones(10,1)*10);

 port2 = timeseries(zeros(10,1));

 inputMap = getSlRootInportMap('model','slexAutotransRootInportsExample',...

 'MappingMode','Custom', ...

 'CustomFunction','slexCustomMappingMyCustomMap',...

 'SignalName',{'port1' 'port2'},...

 'SignalValue',{port1 port2});

Input Arguments

modelname — Model name
string

Specify the model to associate with the root inport map.
Data Types: char

2 Functions — Alphabetical List

2-264

mappingmode — Simulink mapping mode
string

Specify the mapping mode to use with model name and data source. Possible string
values are:

'Index' Assign sequential index numbers, starting at 1, to the data in the
MAT-file, and map this data to the corresponding inport.

'BlockName’ Assign data to ports according to the name of the root-inport
block. If the block name of a data element matches the name of a
root-inport block, map the data to the corresponding port.

‘SignalName' Assign data to ports according to the name of the signal on the
port. If the signal name of a data element matches the name of a
signal at a port, map the data to the corresponding port.

'BlockPath' Assign data to ports according to the block path of the root-inport
block. If the block path of a data element matches the block path
of a root-inport block, map the data to the corresponding port.

'Custom' Apply mappings according to the definitions in a custom file.

Data Types: char

customfunction — Custom function file name
string

Specify name of file that implements a custom method to map signals to root-level ports.
This function must be on the MATLAB path.
Data Types: char

signalname — signal name
scalar | cell array of strings

Specify the signal name(s) of the signal to associate with the root inport map.
Data Types: char | cell

signalvalue — signal value
scalar | cell arrays

Specify the values of the signals to map to the root inport map. For the list of supported
data types for the values, see “Supported Base Workspace and MAT-File Formats”.

 getSlRootInportMap

2-265

Output Arguments

inputMap — input map
scalar | vector

Mapping object that defines the mapping of input signals to root-level ports.

hasASignal — signal presence indicator
scalar | vector

A vector of logical values with the same length as inputMap. If the value is true the
inputMap has a signal associated with it. If the value is false the inputMap does not have
a signal associated with it and will use a ground value as an input
Data Types: logical

More About

Tips

• Load the model before running this function.
• If your custom mapping mode is not similar to an existing Simulink mapping mode,

consider using the getRootInportMap function instead.

• “Import and Map Root-Level Inport Data”

See Also
getRootInportMap

Introduced in R2013b

2 Functions — Alphabetical List

2-266

getVariable

Get value of variable from workspace

Syntax

variableValue = getVariable(workspaceHandle,variableName)

variableValue = workspaceHandle.getVariable(variableName)

Description

variableValue = getVariable(workspaceHandle,variableName) returns the
value of the variable. If the variable does not exist in the workspace, an error occurs.

variableValue = workspaceHandle.getVariable(variableName) is an
alternative syntax.

Input Arguments

workspaceHandle

Handle to the workspace containing the variable.

variableName

Name of the variable containing the value.

Output Arguments

variableValue

Value of the variable.

 getVariable

2-267

Examples

Get Value of Workspace Variable

Get the value of the workspace variable K, which is defined in model mdl.

wksp = get_param(mdl,'ModelWorkspace’)

value = wksp.getVariable('K')

value =

 5

See Also
get_param

Introduced in R2012a

2 Functions — Alphabetical List

2-268

hasVariable

Determine if variable exists in workspace

Syntax

variableExists = hasVariable(workspaceHandle,variableName)

variableExists = workspaceHandle.hasVariable(variableName)

Description

variableExists = hasVariable(workspaceHandle,variableName) returns 1 if
the variable exists in the workspace, and 0 if not.

variableExists = workspaceHandle.hasVariable(variableName) is an
alternative syntax.

Input Arguments

workspaceHandle

Handle to the workspace.

variableName

Name of the variable.

Output Arguments

variableExists

Boolean value that indicates whether the variable exists in the workspace (1 if true and 0
if false).

 hasVariable

2-269

Examples

Determine Existence of Variable

Determine if the variable K exists in the workspace for model mdl.

wksp = get_param(mdl,‘ModelWorkspace’)

exists = wksp.hasVariable('K')

exists =

 1

See Also
get_param

Introduced in R2012a

2 Functions — Alphabetical List

2-270

hdllib
Display blocks that are compatible with HDL code generation

Syntax

hdllib

hdllib('off')

hdllib('html')

hdllib('librarymodel')

Description

hdllib displays in the Library Browser the blocks that are supported for HDL code
generation and for which you have a license. To build models that are compatible with
the HDL Coder software, use blocks from this Library Browser view.

If you close and reopen the Library Browser in the same MATLAB session, the Library
Browser continues to show only the blocks supported for HDL code generation. To show
all blocks, regardless of HDL code generation compatibility, enter hdllib('off').

hdllib('off') displays in the Library Browser all the blocks for which you have a
license, regardless of HDL code generation compatibility.

hdllib('html') creates a library of blocks that are compatible with HDL code
generation, and generates two additional HTML reports: a categorized list of blocks
(hdlblklist.html), and a table of blocks and their HDL code generation parameters
(hdlsupported.html).

To run hdllib('html'), you must have an HDL Coder license.

hdllib('librarymodel') displays blocks that are compatible with HDL code
generation in the Library Browser. To build models that are compatible with the HDL
Coder software, use blocks from this library.

The default library name is hdlsupported. After you generate the library, you can save
it to a folder of your choice.

To keep the library current, you must regenerate it each time you install a new release.

 hdllib

2-271

To run hdllib('librarymodel'), you must have an HDL Coder license.

Examples

Display Supported Blocks in the Library Browser

To display HDL code generation compatible blocks in the Library Browser:

hdllib

Generating view of HDL Coder compatible blocks in Library Browser.

To restore the Library Browser to the default Simulink view, enter "hdllib off".

Display All Blocks in the Library Browser

To display all blocks in the Library Browser, regardless of HDL code generation
compatibility:

2 Functions — Alphabetical List

2-272

hdllib('off')

Restoring Library Browser to default view; removing the HDL Coder compatibility filter.

Create a Supported Blocks Library and HTML Reports

To create a library and HTML reports showing blocks supported for HDL code
generation:

hdllib('html')

HDL supported block list hdlblklist.html

HDL implementation list hdlsupported.html

The hdlsupported library opens. To view the reports, click the hdlblklist.html and
hdlsupported.html links.

 hdllib

2-273

Create a Supported Blocks Library

To create a library that contains blocks supported for HDL code generation:

hdllib('librarymodel')

The hdlsupported block library opens.

2 Functions — Alphabetical List

2-274

• “Show Blocks Supported for HDL Code Generation”
• “View HDL-Specific Block Documentation”
• “Prepare Simulink Model For HDL Code Generation”

See Also
“Supported Blocks”

Introduced in R2006b

 hilite_system

2-275

hilite_system

Highlight Simulink object

Syntax

hilite_system(block_path)

hilite_system(block_path, hilite_scheme)

Description

hilite_system(block_path) highlights a model object using colors specified by
the default highlighting scheme. hilite_system(block_path, hilite_scheme)
highlights a model object using the foreground and background colors specified in the
highlighting scheme.

Input Arguments

block_path

A string in two possible formats:

• A full block path
• A traceability tag from the comments of Simulink Coder generated code. Using

a traceability tag requires a Simulink Coder license. In this case, the format is
<system>/block_name:

• system is one of the following:

• The string Root.
• A unique system number assigned by the Simulink engine.

• block_name is the name of the source block. If a block name contains a newline
character (\n), in the block path string, replace the newline character with a
space.

2 Functions — Alphabetical List

2-276

hilite_scheme

String identifying a highlighting scheme name. For more information, see “Highlighting
Scheme” on page 2-278.

Examples

1 Open a Simulink model. For example, in the MATLAB Command Window, type

slexAircraftExample

2 Use the block path to highlight the Controller block.

hilite_system('slexAircraftExample/Controller')

In the model diagram, the Controller block is highlighted yellow.

If you have a Simulink Coder license, you can trace generated code to the corresponding
source system or block in a model.

1 Open the Model Configuration Parameters dialog box. In the Solver pane, set solver
parameters as follows:

• Set the solver Type to Fixed-step.
• Set Fixed step size to 0.1.

2 Generate code for the model. Code > C/C++ Code > Build Model.
3 In an editor or within an HTML code generation report, open a generated source or

header file.
4 As you review lines of code, note traceability tags that correspond to code of interest.

To highlight a block using a traceability tag, enter:

hilite_system('<Root>/alpha, rad')

The following figure shows block alpha, rad highlighted.

 hilite_system

2-277

You can also use the hilite_system command to highlight a block within
a subsystem. Specify the Aircraft Dynamics Model subsystem using its
traceability tag.

hilite_system('<S1>/Vertical Channel')

2 Functions — Alphabetical List

2-278

More About

Highlighting Scheme

A highlighting scheme specifies the foreground and background colors for a model object.
Possible highlighting scheme names are:
default

none (clears the highlighting for an object)
find

unique

different

user1

user2

user3

user4

user5

You can alter the specification for a highlighting scheme by using the following
command:

 hilite_system

2-279

set_param(0, 'HiliteAncestorsData', HILITE_DATA)

HILITE_DATA is a MATLAB structure array with the following fields:

• 'HiliteType': string specifying a highlighting scheme.
• 'ForegroundColor': string specifying a foreground “Color” on page 2-279.
• 'BackgroundColor': string specifying a background “Color” on page 2-279.

Color

The supported color strings for foreground and background colors are:
black

white

gray

red

orange

yellow

green

darkGreen

blue

lightBlue

cyan

magenta

Tips

• Calling hilite_system does not clear highlighted objects from previous
hilite_system calls.

• Using a traceability tag for block_path requires a Simulink Coder license. If you call
hilite_system with a traceability tag as input, do the following:

• If you closed and reopened a model, you must update the model before calling
hilite_system.

• If you changed your model, such as adding a block to your diagram, before calling
hilite_system, generate new code for the model. When the system hierarchy
of the model changes, traceability tags change. If you use a traceability tag from
previously generated code, hilite_system might highlight the wrong block.

• If a block name contains a newline character (\n), it is replaced with a space for
readability. When calling hilite_system, in the block path string, replace the
newline character with a space.

2 Functions — Alphabetical List

2-280

• hilite_system might not work for a block, if the block name contains:

• A single quote (').
• An asterisk (*), that causes name ambiguity relative to other names in the model.

This name ambiguity occurs in a block name or at the end of a block name if an
asterisk precedes or follows a slash (/).

• The character ÿ (char(255)).

See Also
rtwtrace

Introduced in R2010a

 isLoaded

2-281

isLoaded
Determine if Simulink Project is loaded

Syntax

loaded = isLoaded(proj)

Description

loaded = isLoaded(proj) returns whether the project referenced by the project
object proj is loaded.

Examples

Find Out if Project Is Loaded

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Find out if the project is still loaded.

loaded = isLoaded(proj)

loaded =

 1

Input Arguments

proj — Project
project

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

2 Functions — Alphabetical List

2-282

Output Arguments

loaded — Loaded status
1 | 0

Project loaded status, returned as true (1) if the project is loaded.

Data Types: logical

See Also

Functions
reload | simulinkproject

Introduced in R2013a

 legacy_code

2-283

legacy_code
Use Legacy Code Tool

Syntax

legacy_code('help')

specs = legacy_code('initialize')

legacy_code('sfcn_cmex_generate', specs)

legacy_code('compile', specs, compilerOptions)

legacy_code('generate_for_sim', specs, modelname)

legacy_code('slblock_generate', specs, modelname)

legacy_code('sfcn_tlc_generate', specs)

legacy_code('rtwmakecfg_generate', specs)

legacy_code('backward_compatibility')

Description

The legacy_code function creates a MATLAB structure for registering the specification
for existing C or C++ code and the S-function being generated. In addition, the function
can generate, compile and link, and create a masked block for the specified S-function.
Other options include generating

• A TLC file for simulation in Accelerator mode or code generation
• An rtwmakecfg.m file that you can customize to specify dependent source and header

files that reside in a different directory than that of the generated S-function

legacy_code('help') displays instructions for using Legacy Code Tool.

specs = legacy_code('initialize') initializes the Legacy Code Tool data
structure, specs, which registers characteristics of existing C or C++ code and properties
of the S-function that the Legacy Code Tool generates.

legacy_code('sfcn_cmex_generate', specs) generates an S-function source file
as specified by the Legacy Code Tool data structure, specs.

legacy_code('compile', specs, compilerOptions) compiles and links the S-
function generated by the Legacy Code Tool based on the data structure, specs, and any

2 Functions — Alphabetical List

2-284

compiler options that you might specify. The following examples show how to specify no
options, one option, and multiple options:

legacy_code('compile', s);

legacy_code('compile', s, '-DCOMPILE_VALUE1=1');

legacy_code('compile', s,...

 {'-DCOMPILE_VALUE1=1', '-DCOMPILE_VALUE2=2',...

 '-DCOMPILE_VALUE3=3'});

legacy_code('generate_for_sim', specs, modelname) generates, compiles,
and links the S-function in a single step. If the Options.useTlcWithAccel field of the
Legacy Code Tool data structure is set to logical 1 (true), the function also generates a
TLC file for accelerated simulations.

legacy_code('slblock_generate', specs, modelname) generates a masked S-
Function block for the S-function generated by the Legacy Code Tool based on the data
structure, specs. The block appears in the Simulink model specified by modelname. If
you omit modelname, the block appears in an empty model editor window.

legacy_code('sfcn_tlc_generate', specs) generates a TLC file for the S-
function generated by the Legacy Code Tool based on the data structure, specs. This
option is relevant if you want to:

• Force Accelerator mode in Simulink software to use the TLC inlining code of
the generated S-function. See the description of the ssSetOptions SimStruct
function and SS_OPTION_USE_TLC_WITH_ACCELERATOR S-function option for more
information.

• Use Simulink Coder software to generate code from your Simulink model. For more
information, see “Integrate External Code Using Legacy Code Tool”.

legacy_code('rtwmakecfg_generate', specs) generates an rtwmakecfg.m file
for the S-function generated by the Legacy Code Tool based on the data structure, specs.
This option is relevant only if you use Simulink Coder software to generate code from
your Simulink model. For more information, see “Use rtwmakecfg.m API to Customize
Generated Makefiles” and “Integrate External Code Using Legacy Code Tool” in the
Simulink Coder documentation.

legacy_code('backward_compatibility') automatically updates syntax for
using Legacy Code Tool to the supported syntax described in this reference page and in
“Integrate C Functions Using Legacy Code Tool”.

 legacy_code

2-285

Input Arguments
specs

A structure with the following fields:

Name the S-function

SFunctionName (Required) — A string specifying a name for the S-function to be
generated by the Legacy Code Tool.

Define Legacy Code Tool Function Specifications

• InitializeConditionsFcnSpec — A nonempty string specifying a reentrant
function that the S-function calls to initialize and reset states. You must declare
this function by using tokens that Simulink software can interpret as explained in
“Declaring Legacy Code Tool Function Specifications”.

• OutputFcnSpec — A nonempty string specifying the function that the S-function
calls at each time step. You must declare this function by using tokens that
Simulink software can interpret as explained in “Declaring Legacy Code Tool
Function Specifications”.

• StartFcnSpec — A string specifying the function that the S-function calls when
it begins execution. This function can access S-function parameter arguments
only. You must declare this function by using tokens that Simulink software can
interpret as explained in “Declaring Legacy Code Tool Function Specifications”.

• TerminateFcnSpec — A string specifying the function that the S-function calls
when it terminates execution. This function can access S-function parameter
arguments only. You must declare this function by using tokens that Simulink
software can interpret as explained in “Declaring Legacy Code Tool Function
Specifications”.

Define Compilation Resources

• HeaderFiles — A cell array of strings specifying the file names of header files
required for compilation.

• SourceFiles — A cell array of strings specifying source files required for
compilation. You can specify the source files using absolute or relative path
names.

• HostLibFiles — A cell array of strings specifying library files required for
host compilation. You can specify the library files using absolute or relative path
names.

2 Functions — Alphabetical List

2-286

• TargetLibFiles — A cell array of strings specifying library files required for
target (that is, standalone) compilation. You can specify the library files using
absolute or relative path names.

• IncPaths — A cell array of strings specifying directories containing header files.
You can specify the directories using absolute or relative path names.

• SrcPaths — A cell array of strings specifying directories containing source files.
You can specify the directories using absolute or relative path names.

• LibPaths — A cell array of strings specifying directories containing host and
target library files. You can specify the directories using absolute or relative path
names.

Specify a Sample Time

SampleTime — One of the following:

• 'inherited' (default) — Sample time is inherited from the source block.
• 'parameterized' — Sample time is represented as a tunable parameter.

Generated code can access the parameter by calling MEX API functions, such as
mxGetPr or mxGetData.

• Fixed — Sample time that you explicitly specify. For information on how to
specify sample time, see “ Specify Sample Time”.

If you specify this field, you must specify it last.

Define S-Function Options

Options — A structure that controls S-function options. The structure's fields
include:

• isMacro — A logical value specifying whether the legacy code is a C macro. By
default, the value is false (0).

• isVolatile — A logical value specifying the setting of the S-function
SS_OPTION_NONVOLATILE option. By default, the value is true (1).

• canBeCalledConditionally — A logical value specifying the setting of the S-
function SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option. By default, the
value is true (1).

• useTlcWithAccel — A logical value specifying the setting of the S-function
SS_OPTION_USE_TLC_WITH_ACCELERATOR option. By default, the value is true
(1).

 legacy_code

2-287

• language — A string specifying either 'C' or 'C++' as the target language of
the S-function that Legacy Code Tool will produce. By default, the value is 'C'.

Note: The Legacy Code Tool can interface with C++ functions, but not C++
objects. For a work around, see “Legacy Code Tool Limitations” in the Simulink
documentation.

• singleCPPMexFile — A logical value that, if true, specifies that generated
code:

• Requires you to generate and manage an inlined S-function as only one file
(.cpp) instead of two (.c and .tlc).

• Maintains model code style (level of parentheses usage and preservation of
operand order in expressions and condition expressions in if statements) as
specified by model configuration parameters.

By default, the value is false.

Limitations You cannot set the singleCPPMexFile field to true if

• Options.language='C++'

• You use one of the following Simulink objects with the IsAlias
property set to true:
• Simulink.Bus

• Simulink.AliasType

• Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or
void** to represent scalar work data for a state argument

• HeaderFiles field of the Legacy Code Tool structure specifies multiple
header files

• supportsMultipleExecInstances— A logical value specifying whether to
include a call to the ssSupportsMultipleExecInstances function. By default,
the value is false (0).

• convert2DMatrixToRowMajor— A logical value specifying the automatic
conversion of a matrix between a 2–D column-major format and a row-major

2 Functions — Alphabetical List

2-288

format. The 2-D column-major format is used by MATLAB, Simulink, and the
generated code. The row-major format is used by C. By default, the value is false
(0).

Note: This option does not support a 2–D matrix of complex data.
• supportCoverage— A logical value specifying whether the generated S-function

must be compatible with Model Coverage. By default, the value is false (0).
• supportCoverageAndDesignVerifier— A logical value specifying whether

the generated S-function must be compatible with Model Coverage and Simulink
Design Verifier™. By default, the value is false (0).

• outputsConditionallyWritten— A logical value specifying whether
the legacy code conditionally writes the output ports. If true, the generated
S-function specifies that the memory associated with each output port
cannot be overwritten and is global (SS_NOT_REUSABLE_AND_GLOBAL). If
false, the memory associated with each output port is reusable and is local
(SS_REUSABLE_AND_LOCAL). By default, the value is false (0). For more
information, see ssSetOutputPortOptimOpts.

modelname

The name of a Simulink model into which Legacy Code Tool is to insert the masked
S-function block generated when you specify legacy_code with the action string
'slblock_generate'. If you omit this argument, the block appears in an empty
model editor window.

More About
• “Integrate C Functions Using Legacy Code Tool”
• “Integrate External Code Using Legacy Code Tool”

Introduced in R2006b

 libinfo

2-289

libinfo
Get information about library blocks referenced by model

Syntax

libdata = libinfo('system')

libdata = libinfo('system', constraint1, value1, ...)

Description

libdata = libinfo('system') returns information about library blocks referenced
by system and all the systems underneath it.

libdata = libinfo('system', constraint1, value1, ...) restricts the search
as indicated by the search constraint(s) c1, v1, ...

Input Arguments

system

The system to search recursively for library blocks.

constraint1, value1, ...

One or more pairs, each consisting of a search constraint followed by a constraint value.
You can specify any of the search constraints that you can use with find_system.

Output Arguments

libdata

An array of structures that describes each library block referenced by system. Each
structure has the following fields:

Block Path of the link to the library block

2 Functions — Alphabetical List

2-290

Library Name of the library containing the
referenced block

ReferenceBlock Path of the library block
LinkStatus Value of the LinkStatus parameter for

the link to the library block

More About
• “About Block Libraries and Linked Blocks”

See Also
find_system

Introduced before R2006a

 linmod

2-291

linmod
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmod('sys');

argout = linmod('sys',x,u);

argout = linmod('sys', x, u, para);

argout = linmod('sys', x, u, 'v5');

argout = linmod('sys', x, u, para, 'v5');

argout = linmod('sys', x, u, para, xpert, upert, 'v5');

Arguments

sys Name of the Simulink system from which the linear model is
extracted.

x and u State (x) and the input (u) vectors. If specified, they set the
operating point at which the linear model is extracted. When
a model has model references using the Model block, you must
use the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

Ts Sample time of the discrete-time linearized model
'v5' An optional argument that invokes the perturbation algorithm

created prior to MATLAB 5.3. Invoking this optional argument is
equivalent to calling linmodv5.

para A three-element vector of optional arguments:

2 Functions — Alphabetical List

2-292

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

xpert and upert The perturbation values used to perform the perturbation of all the
states and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)

upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you
must use the Simulink structure format to specify xpert. To
extract the xpert structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure
by editing xpert.signals.values.

The perturbation input arguments are only available when
invoking the perturbation algorithm created prior to MATLAB 5.3,
either by calling linmodv5 or specifying the 'v5' input argument
to linmod.

 linmod

2-293

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified
state variables x and the input u. If you omit x and u, the
default values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the
linearized model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names,
input and output names, and information about the operating
point.

Description

linmod compute a linear state-space model by linearizing each block in a model
individually.

linmod obtains linear models from systems of ordinary differential equations described
as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using
Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks
which should result in more accurate linearization than numerical perturbation of
block inputs and states. A list of blocks that have preprogrammed analytic Jacobians is
available in the Simulink Control Design documentation along with a discussion of the
block-by-block analytic algorithm for linearization.

The default algorithm also allows for special treatment of problematic blocks such as the
Transport Delay and the Quantizer. See the mask dialog of these blocks for more
information and options.

2 Functions — Alphabetical List

2-294

Notes

By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained.
For Simulink systems, a string variable that contains the block name associated with
each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using
the routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod handle Transport Delay blocks by replacing the
linearization of the blocks with a Pade approximation. For the 'v5' algorithm,
linearization of a model that contains Derivative or Transport Delay blocks can be
troublesome. For more information, see “Linearizing Models”.

See Also
linmod | dlinmod | linmod2 | linmodv5

Introduced in R2007a

 linmod2

2-295

linmod2
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmod2('sys', x, u);

argout = linmod2('sys', x, u, para);

Arguments

sys Name of the Simulink system from which the linear model is
extracted.

x, u State (x) and the input (u) vectors. If specified, they set the
operating point at which the linear model is extracted. When
a model has model references using the Model block, you must
use the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that
gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

2 Functions — Alphabetical List

2-296

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified
state variables x and the input u. If you omit x and u, the
default values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the
linearized model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names,
input and output names, and information about the operating
point.

Description

linmod2 computes a linear state-space model by perturbing the model inputs and model
states, and uses an advanced algorithm to reduce truncation error.

linmod2 obtains linear models from systems of ordinary differential equations described
as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using
Inport and Outport blocks.

Notes

By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

 linmod2

2-297

The ordering of the states from the nonlinear model to the linear model is maintained.
For Simulink systems, a string variable that contains the block name associated with
each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using
the routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks
by replacing the linearization of the blocks with a Pade approximation. For more
information, see “Linearizing Models”.

See Also
linmod | dlinmod | linmodv5

Introduced in R2007a

2 Functions — Alphabetical List

2-298

linmodv5
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmodv5('sys');

argout = linmodv5('sys',x,u);

argout = linmodv5('sys', x, u, para);

argout = linmodv5('sys', x, u, para, xpert, upert);

Arguments

sys Name of the Simulink system from which the linear model is
extracted.

x, u State (x) and the input (u) vectors. If specified, they set the
operating point at which the linear model is extracted. When
a model has model references using the Model block, you must
use the Simulink structure format to specify x. To extract the x
structure from the model, use the following command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this
structure by editing x.signals.values.

If the state contains different data types (for example, 'double'
and 'uint8'), then you cannot use a vector to specify this state.
You must use a structure instead. In addition, you can only specify
the state as a vector if the state data type is 'double'.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of
time, you can set this parameter with a nonnegative value that

 linmodv5

2-299

gives the time (t) at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The default
value is 0.

xpert, upert The perturbation values used to perform the perturbation of all the
states and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)

upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you
must use the Simulink structure format to specify xpert. To
extract the xpert structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure
by editing xpert.signals.values.

The perturbation input arguments are only available when
invoking the perturbation algorithm created prior to MATLAB 5.3,
either by calling linmodv5 or specifying the 'v5' input argument
to linmod.

2 Functions — Alphabetical List

2-300

argout linmod, dlinmod, and linmod2 return state-space
representations if you specify the output (left-hand) side of the
equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified
state variables x and the input u. If you omit x and u, the
default values are zero.

linmod and dlinmod both also return a transfer function and
MATLAB data structure representations of the linearized system,
depending on how you specify the output (left-hand) side of the
equation. Using linmod as an example:

• [num, den] = linmod('sys', x, u) returns the
linearized model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure
that contains the linearized model, including state names,
input and output names, and information about the operating
point.

Description
linmodv5 computes a linear state space model using the full model perturbation
algorithm created prior to MATLAB 5.3.

linmodv5 obtains linear models from systems of ordinary differential equations
described as Simulink models. Inputs and outputs are denoted in Simulink block
diagrams using Inport and Outport blocks.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you
can set the variable para to a two-element vector, where the second element is used to
set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained.
For Simulink systems, a string variable that contains the block name associated with
each state can be obtained using

 linmodv5

2-301

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the
ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using
the routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized
models to LTI objects using ss. This function produces an LTI object in state-space form
that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by
replacing the linearization of the blocks with a Pade approximation. For the 'v5'
algorithm, linearization of a model that contains Derivative or Transport Delay blocks
can be troublesome. For more information, see “Linearizing Models”.

See Also
linmod | dlinmod | linmod2

Introduced in R2011b

2 Functions — Alphabetical List

2-302

load_system
Invisibly load Simulink model

Syntax
load_system('sys')

Description

load_system('sys') loads sys, where sys is the name of a Simulink model, into
memory without making its model window visible.

You cannot use load_system to load MATLAB file models last saved in Simulink
Version 1.3 (for example: load_system mymodel.m). If you have a MATLAB file model,
you must upgrade to Simulink model file format as follows:

1 Execute the model as a function:

mymodel

2 Save the model as a Simulink model file:

save_system mymodel

Examples

The command

load_system('vdp')

loads the vdp sample model into memory.

See Also
close_system | open_system

Introduced before R2006a

 model

2-303

model
Execute particular phase of simulation of model

Syntax
[sys,x0,str,ts] = model([],[],[],'sizes');

[sys,x0,str,ts] = model([],[],[],'compile');

outputs = model(t,x,u,'outputs');

derivs = model(t,x,u,'derivs');

dstates = model(t,x,u,'update');

model([],[],[],'term');

Description

The model command executes a specific phase of the simulation of a Simulink model
whose name is model. The command's last argument (flag) specifies the phase of the
simulation to be executed. See “Simulation Phases in Dynamic Systems” for a description
of the steps that Simulink software uses to simulate a model.

This command ignores the effects of state transitions and conditional execution.
Therefore, it is not suitable for models which have such logic. Use this command for
models which can be represented as simple dynamic systems. Such systems should meet
these requirements.

• All states in the model must be built-in non-bus data types. For a discussion on built-
in data types, see “About Data Types in Simulink”.

• If you are using vector format to specify the state, this command can access only non-
complex states of double data type.

• There is minimal amount of state logic (Stateflow, conditionally executed subsystems
etc.)

• The models are not mixed-domain models. That is, most blocks in the model are built-
in Simulink blocks and do not include user-written S-functions or blocks from other
Sim* products.

For models which do not comply with these requirements, using this command can cause
Simulink to produce results which can only be interpreted by further analyzing and
simplifying the model.

2 Functions — Alphabetical List

2-304

Note: The state variable x can be represented in structure as well as vector formats. The
variable follows the limitations of the format in which it is specified.

This command is also not intended to be used to run a model step-by-step, for example, to
debug a model. Use the Simulink debugger if you need to examine intermediate results to
debug a model.

Arguments

sys Vector of model size data:

• sys(1) = number of continuous states
• sys(2) = number of discrete states
• sys(3) = number of outputs
• sys(4) = number of inputs
• sys(5) = reserved
• sys(6) = direct-feedthrough flag (1 = yes, 0 = no)
• sys(7) = number of sample times (= number of rows

in ts)
x0 Vector containing the initial conditions of the system's

states
str Vector of names of the blocks associated with the model's

states. The state names and initial conditions appear in
the same order in str and x0, respectively.

ts An m-by-2 matrix containing the sample time (period,
offset) information

outputs Outputs of the model at time step t.
derivs Derivatives of the continuous states of the model at time

t.
dstates Discrete states of the model at time t.
t Time step
x State vector. Can be in structure or vector format.

 model

2-305

u Inputs
flag String that indicates the simulation phase to be executed:

• 'sizes' executes the size computation phase of the
simulation. This phase determines the sizes of the
model's inputs, outputs, state vector, etc.

• 'compile' executes the compilation phase of the
simulation. The compilation phase propagates signal
and sample time attributes.

• 'update' computes the next values of the model's
discrete states.

• 'outputs' computes the outputs of the model's
blocks at time t.

• 'derivs'computes the derivatives of the model's
continuous states at time step t.

• 'term' causes Simulink software to terminate
simulation of the model.

Examples

The following command executes the compilation phase of the vdp model that comes with
Simulink software.

vdp([], [], [], 'compile')

The following command terminates the simulation initiated in the previous example.

vdp([], [], [], 'term')

Note You must always terminate simulation of the model by invoking the model
command with the 'term' command. Simulink software does not let you close the model
until you have terminated the simulation.

See Also
sim

2 Functions — Alphabetical List

2-306

Introduced in R2007a

 modeladvisor

2-307

modeladvisor
Open Model Advisor

Syntax

modeladvisor(model)

Description

modeladvisor(model) opens the Model Advisor for the model or subsystem specified
by model. If the specified model or subsystem is not open, this command opens it.

Examples

Open Model Advisor for model

Open the Model Advisor for vdp example model:

modeladvisor('vdp')

Open Model Advisor for subsystem

Open the Model Advisor for the Aircraft Dynamics Model subsystem of the f14 example
model:

modeladvisor('f14/Aircraft Dynamics Model')

Open Model Advisor for currently selected model

Open the Model Advisor on the currently selected model:

modeladvisor(bdroot)

Open Model Advisor for currently selected subsystem

Open the Model Advisor on the currently selected subsystem:

2 Functions — Alphabetical List

2-308

modeladvisor(gcs)

Input Arguments

model — Model or subsystem name
string

Model or subsystem name or handle, specified as a string.
Data Types: char

See Also
“Run Model Checks”

Introduced before R2006a

 new_system

2-309

new_system

Create empty Simulink system

Syntax

new_system(sys)

new_system(sys, 'Model')

new_system(sys, 'Model', subsystem_path)

new_system(sys, 'Model', 'ErrorIfShadowed')

new_system(sys, 'Library')

h = new_system(sys)

Description

new_system(sys) or new_system(sys, 'Model') creates an empty system where
sys is the name of the new system. This command displays an error if sys is a MATLAB
keyword, 'simulink', or more than 63 characters long.

new_system(sys, 'Model', subsystem_path) creates a system from a subsystem
where subsystem_path is the full path of the subsystem. The model that contains the
subsystem must be open when this command is executed.

new_system(sys, 'Model', 'ErrorIfShadowed') creates an empty system having
the specified name. This command generates an error if another model, MATLAB file, or
variable of the same name exists on the MATLAB path or workspace.

new_system(sys, 'Library') creates an empty library.

h = new_system(sys) returns the numeric handle of the system that has
been created. You can pass h to any of the Simulink API functions, for example,
open_system(h).

Note The new_system command does not open the window of the system or library that
it creates.

2 Functions — Alphabetical List

2-310

See “Model Parameters” on page 6-2 and “Block-Specific Parameters” on page
6-96 for a list of the default parameter values for the new system.

Examples

This command creates a new system named 'mysys'.

new_system('mysys')

The command

new_system('mysys','Library')

creates, but does not open, a new library named 'sys'.

The command

new_system('vdp','Model','ErrorIfShadowed')

returns an error because 'vdp' is the name of a model on the MATLAB path.

The commands

load_system('f14')

new_system('mycontroller','Model','f14/Controller')

create a new model named mycontroller that has the same contents as does the
subsystem named Controller in the f14 model.

The commands

 h = new_system('mymodel')

h =

 3.0012

>> get_param(h,'Name')

ans =

 mymodel

 open_system(h)

return the numeric handle of the system that has been created, and use that handle to
get parameters and open the model.

 new_system

2-311

See Also
close_system | open_system | save_system

Introduced before R2006a

2 Functions — Alphabetical List

2-312

num2fixpt
Convert number to nearest value representable by specified fixed-point data type

Syntax
outValue = num2fixpt(OrigValue, FixPtDataType, FixPtScaling,

 RndMeth, DoSatur)

Description

num2fixpt(OrigValue, FixPtDataType, FixPtScaling, RndMeth, DoSatur)

returns the result of converting OrigValue to the nearest value representable by the
fixed-point data type FixPtDataType. Both OrigValue and outValue are of data
type double. As illustrated in the example that follows, you can use num2fixpt to
investigate quantization error that might result from converting a number to a fixed-
point data type. The arguments of num2fixpt include:

OrigValue Value to be converted to a fixed-point representation. Must be
specified using a double data type.

FixPtDataType The fixed-point data type used to convert OrigValue.
FixPtScaling Scaling of the output in either Slope or [Slope Bias] format.

If FixPtDataType does not specify a generalized fixed-point
data type using the sfix or ufix command, FixPtScaling is
ignored.

RndMeth Rounding technique used if the fixed-point data type lacks the
precision to represent OrigValue. If FixPtDataType specifies
a floating-point data type using the float command, RndMeth
is ignored. Valid values are Zero, Nearest, Ceiling, or Floor
(the default).

DoSatur Indicates whether the output should be saturated to the
minimum or maximum representable value upon underflow or
overflow. If FixPtDataType specifies a floating-point data type
using the float command, DoSatur is ignored. Valid values are
on or off (the default).

 num2fixpt

2-313

Examples

Suppose you wish to investigate the quantization effect associated with representing the
real-world value 9.875 as a signed, 8-bit fixed-point number. The command

num2fixpt(9.875, sfix(8), 2^-1)

ans =

 9.50000000000000

reveals that a slope of 2^-1 results in a quantization error of 0.375. The command

num2fixpt(9.875, sfix(8), 2^-2)

ans =

 9.75000000000000

demonstrates that a slope of 2^-2 reduces the quantization error to 0.125. But a slope of
2^-3, as used in the command

num2fixpt(9.875, sfix(8), 2^-3)

ans =

 9.87500000000000

eliminates the quantization error entirely.

See Also
fixptbestexp | fixptbestprec

Introduced before R2006a

2 Functions — Alphabetical List

2-314

open_system

Open Simulink model, library, subsystem, or block dialog box

Syntax

open_system(obj)

open_system(sys,'loadonly')

open_system(sbsys,'window')

open_system(sbsys,'tab')

open_system(blk,'mask')

open_system(blk,'force')

open_system(blk,'parameter')

open_system(blk,'OpenFcn')

Description

open_system(obj) opens the specified model, library, subsystem, or block. This is
equivalent to double-clicking the model or library in the Current Folder Browser, or the
subsystem or block in the Simulink Editor.

A model or library opens in a new window. For a subsystem or block within a model, the
behavior depends on the type of block and its properties.

• Any OpenFcn callback parameter is evaluated.
• If there is no OpenFcn callback, and a mask is defined, the mask parameter dialog

box opens.
• Without an OpenFcn callback or a mask parameter, Simulink opens the object.

• A referenced model opens in a new window.
• A subsystem opens in a new tab in the same window.
• For blocks, the parameters dialog box for the block opens.

 open_system

2-315

To open a specific subsystem or block, you must load the model or library containing it.
Otherwise Simulink returns an error.

You can override the default behavior by supplying a second input argument.

open_system(sys,'loadonly') loads the specified model or library without opening
the Simulink Editor. This is equivalent to using load_system.

open_system(sbsys,'window') opens the subsystem sbsys in a new Simulink
Editor window. Before opening a specific subsystem or block, load the model or library
containing it. Otherwise Simulink returns an error.

open_system(sbsys,'tab') opens the subsystem in a new Simulink Editor tab in the
same window. Before opening a specific subsystem or block, load the model or library
containing it. Otherwise Simulink returns an error.

open_system(blk,'mask') opens the mask dialog box of the block or subsystem
specified by blk. Load the model or library containing blk before opening it.

open_system(blk,'force') looks under the mask of a masked block or subsystem. It
opens the dialog box of the block under the mask or opens a masked subsystems in a new
Simulink Editor tab. This is equivalent to the Look Under Mask menu item. Before
opening a specific subsystem or block, load the model or library containing it. Otherwise
Simulink returns an error.

open_system(blk,'parameter') opens the block parameter dialog box.

open_system(blk,'OpenFcn') runs the block callback OpenFcn.

Examples

Open a Model

Open the f14 model.

open_system('f14')

Load a Model Without Opening it

Load the f14 model.

2 Functions — Alphabetical List

2-316

open_system('f14','loadonly')

Open a Subsystem

Open the Controller subsystem of the f14 model.

load_system('f14')

open_system('f14/Controller')

Open a Subsystem in New Tab in Existing Window

Open the f14 model and open the Controller subsystem in a new tab.

f14

open_system('f14/Controller','tab')

Open a Subsystem in a Separate Window

Open a subsystem in its own Simulink Editor window.

open_system('f14')

open_system('f14/Controller','window')

Open a Referenced Model

Open the model sldemo_mdlref_counter, which is referenced by the CounterA model
block in sldemo_mdlref_basic.

open_system('sldemo_mdlref_basic')

open_system('sldemo_mdlref_basic/CounterA')

The referenced model opens in its own Simulink Editor window.

Open Block Dialog Box

Open the block parameters dialog box for the first Gain block in the Controller
subsystem.

load_system('f14')

open_system('f14/Controller/Gain')

Run Block Open Callback Function

Define an OpenFcn callback for a block and execute the block callback.

 open_system

2-317

f14

set_param('f14/Pilot','OpenFcn','disp(''Hello World!'')')

open_system('f14/Pilot','OpenFcn')

The words Hello World appear on the MATLAB Command Prompt.

Open Masked Subsystem

Open the contents of the masked subsystem Vehicle in the model sf_car.

open_system('sf_car')

open_system('sf_car/Vehicle', 'force')

Open Multiple Systems with One Command

Create a cell array of two model names, f14 and vdp. Open both models using
open_system with the cell array name.

models = {'f14','vdp'}

open_system(models)

Input Arguments

obj — Model, referenced model, library, subsystem, or block path
string

Model, referenced model, library, subsystem, or block path, specified as a string. If the
model is not on the MATLAB path, specify the full path to the model file. Specify the
block or subsystem using its full name, e.g., f14/Controller/Gain, on an opened or
loaded model. On UNIX systems, the fully qualified path name of a model can start with
a tilde (~), signifying your home directory.
Data Types: char

sys — Model or library path
string

The full name or path of a model or library, specified as a string.
Data Types: char

sbsys — Subsystem path
string

2 Functions — Alphabetical List

2-318

The full name or path of a subsystem in an open or loaded model, specified as a string.
Data Types: char

blk — Block or subsystem path
string

The full name or path of a block or subsystem in an open or loaded model, specified as a
string.
Data Types: char

See Also
close_system | load_system | new_system | save_system

Introduced before R2006a

 openDialog

2-319

openDialog
Open configuration parameters dialog

Syntax
openDialog(configObj)

Arguments
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description

openDialog opens a configuration parameters dialog box. If configObj is a
configuration set, the dialog box displays the configuration set. If configObj is a
configuration reference, the dialog box displays the referenced configuration set, or
generates an error if the reference does not specify a valid configuration set. If the dialog
box is already open, its window becomes selected.

Examples

The following example opens a configuration parameters dialog box that shows the
current parameters for the current model. The parameter values derive from the active
configuration set or configuration reference (configuration object). The code is the same in
either case; the only difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);

openDialog(myConfigObj);

More About
• “Manage a Configuration Set”

2 Functions — Alphabetical List

2-320

• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

Introduced in R2006b

 performanceadvisor

2-321

performanceadvisor
Open Performance Advisor

Syntax
performanceadvisor(model)

Description
performanceadvisor(model) opens the Performance Advisor on the model or
subsystem specified by model. If the specified model or subsystem is not open, this
command opens it.

Input Arguments

model

A string specifying the name or handle to the model or subsystem.

Examples

Open Performance Advisor

Open Performance Advisor on the vdp example model.

performanceadvisor('vdp')

Performance Advisor opens the vdp model and opens Performance Advisor on the model.

• “Prepare a Model for Performance Advisor”
• “Run Performance Advisor Checks”

Alternatives
“Start Performance Advisor”

2 Functions — Alphabetical List

2-322

More About
• “Performance Advisor Window”
• “Operate on Performance Advisor Results”

Introduced in R2013a

 reload

2-323

reload
Reload Simulink Project

Syntax
reload(proj)

Description
reload(proj) reloads the project. Use reload when you want to run the project
startup shortcuts.

Examples
Reload Project

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

When you want to run the startup shortcuts again, reload the project.

reload(proj)

Input Arguments
proj — Project
project object

Project, specified as a project object already created with simulinkproject to
manipulate a Simulink Project at the command line.

See Also

Functions
isLoaded | simulinkproject

2 Functions — Alphabetical List

2-324

Introduced in R2013a

 removeCategory

2-325

removeCategory
Remove Simulink Project category of labels

Syntax

removeCategory(proj,categoryName)

Description

removeCategory(proj,categoryName) removes a category of labels, categoryName,
from the Simulink Project specified by proj.

Examples

Remove Category

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Create a new category of labels.

createCategory(proj,'Engineers','char');

Remove the new category of labels.

removeCategory(proj,'Engineers');

A message appears warning you that you cannot undo the operation. Click Continue.
You can configure warnings in the Preferences in the Simulink Project Tool.

Input Arguments

proj — Project
project object

2 Functions — Alphabetical List

2-326

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

categoryName — Name of category
string

Name of the category to remove, which exists in the project, specified as a string.

See Also

Functions
createCategory | findCategory | simulinkproject

Introduced in R2013a

 removeFile

2-327

removeFile
Remove file from Simulink Project

Syntax

removeFile(proj,file)

Description

removeFile(proj,file) removes a file from the project proj.

Examples

Remove File from Project

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Remove a file.

removeFile(proj,'models/AnalogControl.mdl')

Add the file back to the project.

addFile(proj,'models/AnalogControl.mdl')

Input Arguments

proj — Project
project object

Project, specified as a project object. Use simulinkproject to create a project object to
manipulate a Simulink Project at the command line.

2 Functions — Alphabetical List

2-328

file — Path of file
string | file object

Path of the file to remove relative to the project root folder, including the file extension,
specified as a string or a file object returned by findFile. The file must be within the
root folder.
Example: 'models/myModelName.slx'

See Also

Functions
addFile | findFile | simulinkproject

Introduced in R2013a

 removeLabel

2-329

removeLabel
Remove label from Simulink Project

Syntax

removeLabel(category,labelName)

removeLabel(file,categoryName,labelName)

removeLabel(file,labelDefinition)

Description

removeLabel(category,labelName) removes the label from the specified category of
labels in the currently loaded project.

removeLabel(file,categoryName,labelName) removes the specified label in the
category categoryName from the file. Use this syntax to specify category and label by
name.

removeLabel(file,labelDefinition) removes the specified label
labelDefinition from the file. Before you can remove the label, you need to get the
label from the file.Label property or by using findLabel.

Examples

Remove a Label

Open the airframe project and create a project object.

sldemo_slproject_airframe;

proj = simulinkproject;

Examine the first existing category.

cat = proj.Categories(1)

cat =

2 Functions — Alphabetical List

2-330

 Category with properties:

 Name: 'Classification'

 DataType: 'none'

 LabelDefinitions: [1x8 slproject.LabelDefinition]

Define a new label in the category.

createLabel(cat,'Future');

Remove the new label.

removeLabel(cat,'Future');

Input Arguments

category — Category of labels
category object

Category of labels, specified as a category object. Get a category object from the
proj.Categories property or by using findCategory.

labelName — Name of label
string

Name of the label to remove, specified as a string.

file — File to detach label from
file object

File to detach the label from, specified as a file object. You can get the file object by
examining the project’s Files property (proj.Files), or use findFile to find a file by
name. The file must be within the root folder.

categoryName — Name of category that contains label
string

Name of the category that contains the label to remove, specified as a string.

labelDefinition — Label to detach
label definition object

 removeLabel

2-331

Name of the label to detach, specified as a label definition object returned by the
file.Label property or findLabel.

See Also

Functions
addLabel | createLabel | findCategory | findLabel | simulinkproject

Introduced in R2013a

2 Functions — Alphabetical List

2-332

replace_block

Replace blocks in Simulink model

Syntax

replace_block('sys', 'old_blk', 'new_blk')

replace_block('sys', 'parameter', 'value', ..., 'blk')

Description

replace_block('sys', 'old_blk', 'new_blk') replaces all blocks in sys having
the block or mask type old_blk with new_blk.

• If new_blk is a Simulink built-in block, only the block name is necessary.
• If old_blk or new_blk is in another system, its full block pathname is required.
• If noprompt is omitted, Simulink software displays a dialog box that asks you to

select matching blocks before making the replacement. Specifying the noprompt
argument suppresses the dialog box from being displayed.

• If a return variable is specified, the paths of the replaced blocks are stored in that
variable.

replace_block('sys', 'parameter', 'value', ..., 'blk') replaces all
blocks in sys having the specified values for the specified parameters with blk. You can
specify any number of parameter name/value pairs. You can also specify find_system
parameter/value pairs followed by any number of block parameter/value pairs. For
example, to replace blocks inside links, specify 'FollowLinks', 'on' to follow links
into library blocks. For information on block parameters, see “Block-Specific Parameters”
on page 6-96.

Note Because it may be difficult to undo the changes this command makes, it is a good
idea to save your Simulink model first.

 replace_block

2-333

Examples

This command replaces all Gain blocks in the f14 system with Integrator blocks
and stores the paths of the replaced blocks in RepNames. Simulink software lists the
matching blocks in a dialog box before making the replacement.

RepNames = replace_block('f14','Gain','Integrator')

This command replaces all blocks in the Unlocked subsystem in the sldemo_clutch
system having a Gain of 'bv' with the Integrator block. Simulink software displays a
dialog box listing the matching blocks before making the replacement.

replace_block('sldemo_clutch/Unlocked','Gain','bv','Integrator')

This command replaces the Gain blocks in the f14 system with Integrator blocks but
does not display the dialog box.

replace_block('f14','Gain','Integrator','noprompt')

This command replaces the Lockup Detection subsystem in the sldemo_clutch
model with a Gain block.
replace_block('sldemo_clutch','Name','Lockup Detection','built-in/Gain')

This command from the mask initialization of a linked block replaces blocks inside itself:
replace_block(gcb, 'FollowLinks', 'on', 'BlockType', 'Gain', 'Integrator', 'noprompt')

See Also
find_system | set_param

Introduced before R2006a

2 Functions — Alphabetical List

2-334

save_system
Save Simulink system

Syntax
save_system

save_system(sys)

save_system(sys, newsysname)

save_system(sys, newsysname.slx)

save_system(sys, newsysname, Name,Value)

save_system(sys, 'exported_file_name.xml', 'ExportToXML', true)

filename = save_system(sys)

Description
save_system saves the current top-level system. If the system has not previously been
saved, save_system creates a new file in the current folder.

save_system(sys) saves the top-level system that you specify in sys to a file using
the current system name. sys must be a system name with no file extension. The system
must be loaded. sys can be a string, a cell array of strings, a numeric handle, or an array
of numeric handles. If you specify any options they apply to all the systems that you save.

save_system(sys, newsysname) saves the top-level system that you specify to a file
using the new system name newsysname. The system must be loaded. newsysname can
be a system name, or a filename with file extension and optional path, or empty. If you
do not specify a file extension (.slx or .mdl) then save_system uses the file format
specified in your Simulink preferences.

save_system(sys, newsysname.slx) saves the top-level system sys to a new file
newsysname in the SLX file format.

save_system(sys, newsysname, Name,Value) saves the system with additional
options specified by one or more Name,Value pair arguments.

save_system(sys, 'exported_file_name.xml', 'ExportToXML', true)

exports the system to a file in a simple XML format. Do not use ExportToXML with any
other save_system options.

 save_system

2-335

filename = save_system(sys) returns the fully-qualified file name of the file you
saved.

save_system can save only entire systems. To save a subsystem, use the
Simulink.SubSystem.copyContentsToBlockDiagram function to copy the
subsystem contents to a new block diagram and then save it using save_system. See
Simulink.SubSystem.copyContentsToBlockDiagram.

If you set the UpdateHistory property of the model to UpdateHistoryWhenSave, you
see the following behavior:

• When you save interactively, you see a dialog prompting for a comment to include in
the model history.

• When you save using save_system, you do not see a prompt for a comment.
save_system reuses the previous comment, unless you set 'ModifiedComment'
before saving:

set_param(mymodel,'ModifiedComment',mycomment)

Input Arguments

sys

Top-level system to save. 'sys' must be a system name, not a file name, i.e., without a
file extension.

The system must be open. 'sys' can be a string, a cell array of strings, a numeric
handle, or an array of numeric handles.

newsysname

New system name.

'newsysname' can be a system name, or a filename with file extension and optional
path. If you do not specify a file extension (.slx or .mdl) then save_system uses the
file format specified in your Simulink preferences.

'newsysname' can be empty ([]), in which case the current name is used. You must
specify a newsysname argument before any name-value pair arguments even when you
don’t want to name a new sys, and in that case you leave it empty.

2 Functions — Alphabetical List

2-336

If 'sys' refers to more than one block diagram, 'newsysname' must be a cell array of
new names.

This command displays an error if you enter any of the following as the new system
name:

• A MATLAB keyword
• 'simulink'

• More than 63 characters

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: save_system(sys, newsysname, 'SaveModelWorkspace', true,
'BreakUserLinks', true, 'OverwriteIfChangedOnDisk', true)

'AllowPrompt'

Logical value that indicates whether to display any output prompt or message in a dialog
box or only messages at the command line. For example, prompts to make files writable,
or messages about exported versions. If you want to allow prompts, then set to true.
Also accepts on or off.
true

false (default)

Default: false

'BreakAllLinks'

Logical value that indicates whether the function replaces links to library blocks with
copies of the library blocks in the saved file. The 'BreakAllLinks' option affects any
linked block, including user-defined and Simulink library blocks. Also accepts on or off.
true

false (default)

Note The 'BreakAllLinks' option can result in compatibility issues when upgrading to
newer versions of Simulink software. For example:

 save_system

2-337

• Any masks on top of library links to Simulink S-functions will not upgrade to the new
version of the S-function.

• Any library links to masked subsystems in a Simulink library will not upgrade to the
new subsystem behavior.

• Any broken links prevent the automatic library forwarding mechanism from
upgrading the link.

If you have saved a model with broken links to builtin libraries, use the Upgrade Advisor
to scan the model for out-of-date blocks and upgrade the Simulink blocks to their current
versions.

'BreakUserLinks'

Logical value that indicates whether the function replaces links to user-defined library
blocks with copies of the library blocks in the saved file. Also accepts on or off.
true

false (default)

Default: false

'ErrorIfShadowed'

Logical value that indicates whether the function generates an error if the new name
already exists on the MATLAB path or workspace. Also accepts on or off.
true

false (default)

'ExportToXML'

Logical value that indicates whether the function exports the specified block diagram to
a file in a simple XML format. Specify the full name of the file, including an extension.
The block diagram in memory does not change and no callbacks execute. Do not use this
option with any other save_system options. Also accepts on or off.
true

false (default)

'ExportToVersion'

MATLAB release name, which specifies a previous Simulink version. save_system
exports the system to a format that the specified previous Simulink version can load. You
cannot export to your current version.

2 Functions — Alphabetical List

2-338

If the system contains functionality not supported by the specified Simulink software
version, the command removes the functionality and replaces any unsupported blocks
with empty masked subsystem blocks colored yellow. As a result, the converted system
may generate different results.

To export to Release 2012a and later, you can specify model file format as SLX or MDL. If
you do not specify a format, you export your default model file format.

SaveAsVersion is a legacy option for this argument that is also supported.

These version names are not case sensitive:
'R14'

'R14SP1'

'R14SP2'

'R14SP3'

'R2006A'

'R2006B'

'R2007A'

'R2007B'

'R2008A'

'R2008B'

'R2009A'

'R2009B'

'R2010A'

'R2010B'

'R2011A'

'R2011B'

'R2012A'

'R2012A_MDL'

'R2012A_SLX'

'R2012B'

'R2012B_MDL'

'R2012B_SLX'

'R2013A'

'R2013A_MDL'

'R2013A_SLX'

'R2013B'

'R2013B_MDL'

'R2013B_SLX'

'R2014A'

 save_system

2-339

'R2014A_MDL'

'R2014A_SLX'

'R2014B'

'R2014B_MDL'

'R2014B_SLX'

'R2015A'

'R2015A_MDL'

'R2015A_SLX'

If you use the Export to Previous Version dialog box instead of save_system, then the
Save as type list supports 7 years of previous releases.

'OverwriteIfChangedOnDisk'

Logical value that indicates whether to overwrite the file on disk (true) even if it has
been externally modified since the system was loaded. To save the model regardless of
whether the file has been changed on disk, supply the OverwriteIfChangedOnDisk
option with value true.

If the file has changed on disk since the model was loaded, save_system displays
an error to prevent the changes on disk from being overwritten, unless you use the
OverwriteIfChangedOnDisk option set to true. Also accepts on or off.
true

false (default)

You can control whether save_system displays an error if the file has changed on disk
by using the Saving the model option in the Model File Change Notification section
of the Simulink Preferences dialog box. This preference is on by default.

'SaveModelWorkspace'

Logical value that indicates whether the function saves the contents of the model
workspace. The model workspace DataSource must be a MAT-file. If the data source is
not a MAT-file, save_system does not save the workspace. See “Specify Source for Data
in Model Workspace”. Also accepts on or off.
true

false (default)

2 Functions — Alphabetical List

2-340

Output Arguments

filename

save_system returns the full name of the file that you saved, as a string. If you saved
multiple files, the return value is a cell array of strings.

Examples

The following examples assume prerequisites such as: you have loaded a model and the
folder where you want to save is writeable.

Save the current system.

save_system

Save the vdp system with the name vdp.

save_system('vdp')

Save the vdp system to a file with the name 'myvdp'. If you do not specify a file
extension in the second argument (.slx or .mdl), then save_system uses the file
format specified in your Simulink preferences.

save_system('vdp', 'myvdp')

Save the vdp system to another folder.

save_system('vdp', 'C:\TMP\vdp.slx')

Save an existing model mymodel to a different file and specifying the SLX file format:

save_system('mymodel', 'newsysname.slx')

Save the vdp system to a file with the name 'myvdp' and replace links to library blocks
with copies of the library blocks in the saved file.

save_system('vdp','myvdp','BreakAllLinks', true)

Save the current model (with its current name), and break any library links in it:

save_system('mymodel','mymodel','BreakAllLinks',true)

 save_system

2-341

or

save_system('mymodel',[],'BreakAllLinks',true)

Save the current model with a new name, but display an error (instead of saving) if
something with this name already exists on the MATLAB path:

save_system('mymodel','mynewmodel','ErrorIfShadowed',true)

Prevent saving the vdp system with a new name if something with this name already
exists on the MATLAB path. In this case save_system displays an error (instead of
saving) because 'max' is the name of a MATLAB function.

save_system('vdp', 'max', 'ErrorIfShadowed', true)

Export the vdp system to Simulink Version R2008a with the name 'myvdp'. It does not
replace links to library blocks with copies of the library blocks.

save_system('vdp','myvdp','ExportToVersion','R2008a')

Save the current model with a new name, save the model workspace, break any library
links, and overwrite if the file has changed on disk:
save_system('mymodel', 'mynewmodel', 'SaveModelWorkspace',

true, 'BreakAllLinks',true, 'OverwriteIfChangedOnDisk', true)

Return the full path name of the file that you saved, as a string. If you saved multiple
files, the return value is a cell array of strings.

filename = save_system('mymodel')

Return the full path name of a system saved to a new file.

filename = save_system('mymodel', 'newmodelname')

More About
• “Save a Model ”

See Also
close_system | new_system | open_system

Introduced before R2006a

2 Functions — Alphabetical List

2-342

set_param
Set system and block parameter values

Syntax

set_param(Object,ParameterName,Value,...ParameterNameN,ValueN)

Description

set_param(Object,ParameterName,Value,...ParameterNameN,ValueN) sets the
parameter to the specified value on the specified model or block object.

When you set multiple parameters on the same model or block, use a single set_param
command with multiple pairs of ParameterName, Value arguments, rather than
multiple set_param commands. This technique is efficient because using a single call
requires evaluating parameters only once. If any parameter names or values are invalid,
then the function doesn’t set any parameters.

Tips:

• If you make multiple calls to set_param for the same block, then specifying the
block using a numeric handle is more efficient than using the full block path. Use
getSimulinkBlockHandle to get a block handle.

• If you use matlab -nodisplay to start a session, you cannot use set_param to
run your simulation. The -nodisplay mode does not support simulation using
set_param. Use the sim command instead.

• After you set parameters in the MATLAB workspace, to see the changes in a model,
update the diagram.

set_param(model,'SimulationCommand','Update')

For parameter names, see:

• “Model Parameters” on page 6-2
• “Block-Specific Parameters” on page 6-96
• “Common Block Properties” on page 6-85

 set_param

2-343

Examples

Set Model Configuration Parameters for a Model

Open vdp and set the Solver and StopTime parameters.

vdp

set_param('vdp','Solver','ode15s','StopTime','3000')

Set Model Configuration Parameters for Current Model

Open a model and set the Solver and StopTime parameters. Use bdroot to get the
current top-level model.

vdp

set_param(bdroot,'Solver','ode15s','StopTime','3000')

Set a Gain Block Parameter Value

Open vdp and set a Gain parameter value in the Mu block.

vdp

set_param('vdp/Mu','Gain','10')

Set Position of Block

Open vdp and set the position of the Fcn block.

vdp

set_param('vdp/Fcn','Position',[50 100 110 120])

Set Position of Block Using a Handle

Set the position of the Fcn block in the vdp model.

Use getSimulinkBlockHandle to load the vdp model if necessary (by specifying true),
and get a handle to the Fcn block. If you make multiple calls to set_param for the same
block, then using the block handle is more efficient than specifying the full block path as
a string.

fcnblockhandle = getSimulinkBlockHandle('vdp/Fcn',true);

You can use the block handle in subsequent calls to get_param or set_param. If you
examine the handle, you can see that it contains a double. Do not try to use the number

2 Functions — Alphabetical List

2-344

of a handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Instead, assign the handle to a variable and use that variable name
to specify a block.

Use the block handle with set_param to set the position.

set_param(fcnblockhandle,'Position',[50 100 110 120])

• “Associating User Data with Blocks”
• “Use MATLAB Commands to Change Workspace Data”
• “Control Simulation Using the set_param Command”
• “Simulate a Model Interactively”

Input Arguments

Object — Name or handle of a model or block
string | handle

Handle or name of a model or block, specified as a numeric handle or a string. A numeric
handle must be a scalar. You can also set parameters of lines and ports, but you must use
numeric handles to specify them.

Tip If you make multiple calls to set_param for the same block, then specifying a block
using a numeric handle is more efficient than using the full block path with set_param.
Use getSimulinkBlockHandle to get a block handle. Do not try to use the number of
a handle alone (e.g., 5.007) because you usually need to specify many more digits than
MATLAB displays. Assign the handle to a variable and use that variable name to specify
a block.

Example: 'vdp/Fcn'

ParameterName — Model or block parameter name
string

Model or block parameter name, specified as the comma-separated pair consisting of the
parameter name, specified as a string, and the value, specified in the format determined
by the parameter type. Case is ignored for parameter names. Value strings are case
sensitive. Values are often strings, but they can also be numeric, arrays, and other types.

 set_param

2-345

Many block parameter values are specified as strings, but two exceptions are these
parameters: Position, specified as a vector, and UserData, which can be any data type.

Example: 'Solver','ode15s','StopTime','3000'

Example: 'SimulationCommand', 'start'

Example: 'Position',[50 100 110 120]

Data Types: char

More About
• “Model Parameters” on page 6-2
• “Block-Specific Parameters” on page 6-96
• “Common Block Properties” on page 6-85

See Also
bdroot | gcb | gcs | get_param | getSimulinkBlockHandle

Introduced before R2006a

2 Functions — Alphabetical List

2-346

setActiveConfigSet
Specify model's active configuration set or configuration reference

Syntax
setActiveConfigSet(model, configObjName)

Arguments
model

The name of an open model, or gcs to specify the current model
configObjName

The name of a configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description

setActiveConfigSet specifies the active configuration set or configuration
reference (configuration object) of model to be the configuration object specified by
configObjName. If no such configuration object is attached to the model, an error
occurs. The previously active configuration object becomes inactive.

Examples

The following example makes DevConfig the active configuration object of the current
model. The code is the same whether DevConfig is a configuration set or configuration
reference.

setActiveConfigSet(gcs, 'DevConfig');

More About
• “Manage a Configuration Set”

 setActiveConfigSet

2-347

• “Manage a Configuration Reference”

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | openDialog

Introduced before R2006a

2 Functions — Alphabetical List

2-348

sfix
Create Simulink.NumericType object describing signed fixed-point data type

Syntax
a = sfix(WordLength)

Description

sfix(WordLength) returns a Simulink.NumericType object that describes a signed
fixed-point number with the specified word length and unspecified scaling.

Note: sfix is a legacy function. In new code, use fixdt instead. In existing code, replace
sfix(WordLength) with fixdt(1,WordLength).

Examples

Define a 16-bit signed fixed-point data type.

a = sfix(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Signed'

 WordLength: 16

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

See Also
fixdt | Simulink.NumericType | float | sfrac | sint | ufix | ufrac | uint

 sfix

2-349

Introduced before R2006a

2 Functions — Alphabetical List

2-350

sfrac
Create Simulink.NumericType object describing signed fractional data type

Syntax

a = sfrac(WordLength)

a = sfrac(WordLength, GuardBits)

Description

sfrac(WordLength) returns a Simulink.NumericType object that describes the data
type of a signed fractional data type with a word size given by WordLength.

sfrac(WordLength, GuardBits) returns a Simulink.NumericType object that
describes the data type of a signed fractional number. The total word size is given by
WordLength with GuardBits bits located to the left of the binary point.

The most significant (leftmost) bit is the sign bit. The default binary point for this data
type is assumed to lie immediately to the right of the sign bit. If guard bits are specified,
they lie to the left of the binary point and to right of the sign bit. For example, the
structure for an 8-bit signed fractional data type with 4 guard bits is:

b
7

b
6 b

5
b
4

b
3 b

2
b
0

MSB
sign bit

LSB

binary
point

TotalBits=8

GuardBits=4

b
1

Note: sfrac is a legacy function. In new code, use fixdt instead. In existing
code, replace sfrac(WordLength,GuardBits) with fixdt(1,WordLength,
(WordLength-1-GuardBits)) and sfrac(WordLength) with
fixdt(1,WordLength,(WordLength-1)).

 sfrac

2-351

Examples

Define an 8-bit signed fractional data type with 4 guard bits. Note that the range of this
data type is -24 = -16 to (1 - 2(1 - 8)).24 = 15.875.

a = sfrac(8,4)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 8

 FractionLength: 3

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

See Also
fixdt | Simulink.NumericType | float | sfix | sint | ufix | ufrac | uint

Introduced before R2006a

2 Functions — Alphabetical List

2-352

signalbuilder

Create and access Signal Builder blocks

Syntax

[time, data] = signalbuilder(block)

[time, data, signames] = signalbuilder(block)

[time, data, signames, groupnames] = signalbuilder(block)

block = signalbuilder([], 'create', time, data, signames,

groupnames)

block = signalbuilder(path, 'create', time, data, signames,

groupnames)

block = signalbuilder(path,'create', time, data, signames,

groupnames, vis)

block = signalbuilder(path,'create', time, data, signames,

groupnames, vis, pos)

block = signalbuilder(block, 'append', time, data, signames,

groupnames)

block = signalbuilder(block, 'appendgroup', time, data, signames,

groupnames)

signalbuilder(block,'appendsignal', time, data, signames)

signalbuilder(block, 'showsignal', signal, group)

signalbuilder(block, 'hidesignal', signal, group)

[time, data] = signalbuilder(block, 'get', signal, group)

signalbuilder(block, 'set', signal, group, time, data)

index = signalbuilder(block, 'activegroup')

[index, activeGroupLabel]= signalbuilder(block, 'activegroup')

signalbuilder(block, 'activegroup', index)

signalbuilder(block, 'annotategroup', onoff)

signalbuilder(block, 'print', [])

signalbuilder(block, 'print', config, printArgs)

figh = signalbuilder(block, 'print', config, 'figure')

 signalbuilder

2-353

Description

Use the signalbuilder command to interact programmatically with Signal Builder
blocks.

• “Creating and Accessing Signal Builder Blocks” on page 2-353
• “Adding New Groups” on page 2-355
• “Working with Signals” on page 2-355
• “Using Get/Set Methods for Specific Signals and Groups” on page 2-356
• “Querying, Labelling, and Setting the Active Group” on page 2-357
• “Enabling Current Group Display” on page 2-357
• “Printing Signal Groups” on page 2-357
• “Interpolating Missing Data Values” on page 2-358

Note: When you use the signalbuilder command to interact with a Signal Builder
block, the Undo last edit and Redo last edit buttons on the block dialog box are grayed
out. You cannot undo the results of using the signalbuilder command.

Creating and Accessing Signal Builder Blocks

[time, data] = signalbuilder(block) returns the time (x-coordinate) and
amplitude (y-coordinate) data of the Signal Builder block, block.

The output arguments, time and data, take different formats depending on the block
configuration:

Configuration Time/Data Format

1 signal, 1 group Row vector of break points.
>1 signal, 1 group Column cell vector where each element

corresponds to a separate signal and contains a
row vector of points.

1 signal, >1 group Row cell vector where each element corresponds
to a separate group and contains a row vector of
points.

2 Functions — Alphabetical List

2-354

Configuration Time/Data Format

>1 signal, >1 group Cell matrix where each element (i, j) corresponds
to signal i and group j.

[time, data, signames] = signalbuilder(block) returns the signal names,
signames, in a string or a cell array of strings.

[time, data, signames, groupnames] = signalbuilder(block) returns the
group names, groupnames, in a string or a cell array of strings.

block = signalbuilder([], 'create', time, data, signames,

groupnames) creates a Signal Builder block in a new Simulink model using the specified
values. The preceding table describes the allowable formats of time and data. If data
is a cell array and time is a vector, the time values are duplicated for each element of
data. Each vector in time and data must be the same length and have at least two
elements. If time is a cell array, all elements in a column must have the same initial and
final value. Signal names, signames, and group names, groupnames, can be omitted
to use default values. The function returns the path to the new block, block. Always
provide time and data when using the create command. These two parameters are
always required.

block = signalbuilder(path, 'create', time, data, signames,

groupnames) creates a new Signal Builder block at path using the specified values. If
path is empty, the function creates a block in a new model, which has a default name.
If data is a cell array and time is a vector, the time values are duplicated for each
element of data. Each vector within time and data must be the same length and have
at least two elements. If time is a cell array, all elements in a column must have the
same initial and final value. Signal names, signames, and group names, groupnames,
can be omitted to use default values. The function returns the path to the new block,
block. Always provide time and data when using the create command. These two
parameters are always required.

block = signalbuilder(path,'create', time, data, signames,

groupnames, vis) creates a new Signal Builder block and sets the visible signals in
each group based on the values of the matrix vis. This matrix must be the same size as
the cell array, data. Always provide time and data when using the create command.
These two parameters are always required. You cannot create Signal Builder blocks in
which all signals are invisible. For example, if you set the vis parameter for all signals
to 0, the first signal is still visible.

 signalbuilder

2-355

block = signalbuilder(path,'create', time, data, signames,

groupnames, vis, pos) creates a new Signal Builder block and sets the block position
to pos. Always provide time and data when using the create command. These two
parameters are always required. You cannot create Signal Builder blocks in which all
signals are invisible. For example, if you set the vis parameter for all signals to 0, the
first signal is still visible.

If you create signals that are smaller than the display range or do not start from 0, the
Signal Builder block extrapolates the undefined signal data. It does so by holding the
final value.

Adding New Groups

block = signalbuilder(block, 'append', time, data, signames,

groupnames) or block = signalbuilder(block, 'appendgroup', time, data,
signames, groupnames) appends new groups to the Signal Builder block, block. The
time and data arguments must have the same number of signals as the existing block.

Note:

• If you specify a value of ' ' or {} for signames, the function uses existing signal
names for the new groups.

• If you do not specify a value for groupnames, the function creates the new signal
groups with the default group name pattern, GROUP #n.

Working with Signals

signalbuilder(block,'appendsignal', time, data, signames) appends new
signals to all signal groups in the Signal Builder block, block. You can append either the
same signals to all groups, or append different signals to different groups. Regardless of
which signals you append, append the same number of signals to all the groups. Append
signals to all the groups in the block; you cannot append signals to a subset of the groups.
Correspondingly, provide time and data arguments for either one group (append the
same information to all groups) or different time and data arguments for different
groups. To use default signal names, omit the signal names argument, signames.

signalbuilder(block, 'showsignal', signal, group) makes signals that
are hidden from the Signal Builder block visible. By default, signals in the current active

2 Functions — Alphabetical List

2-356

group are visible when created. You control the visibility of a signal at creation with the
vis parameter. signal can be a unique signal name, a signal scalar index, or an array
of signal indices. group is the list of one or more signal groups that contains the affected
signals. group can be a unique group name, a scalar index, or an array of indices.

signalbuilder(block, 'hidesignal', signal, group) makes signals, signal,
hidden from the Signal Builder block. By default, all signals are visible when created.
signal can be a unique signal name, a signal scalar index, or an array of signal indices.
group is the list of one or more signal groups that contains the affected signals. group
can be a unique group name, a scalar index, or an array of indices.

Note: For the showsignal and hidesignal methods, if you do not specify a value
for the group argument, signalbuilder applies the operation to all the signals and
groups.

Using Get/Set Methods for Specific Signals and Groups

[time, data] = signalbuilder(block, 'get', signal, group) gets the time
and data values for the specified signal(s) and group(s). The signal argument can be
the name of a signal, a scalar index of a signal, or an array of signal indices. The group
argument can be a group name, a scalar index, or an array of indices.

signalbuilder(block, 'set', signal, group, time, data) sets the time and
data values for the specified signal(s) and group(s). Use empty values of time and data
to remove groups and signals. To remove a signal group, you must also remove all the
signals in that group in the same command.

Note: For the set method, if you do not specify a value for the group argument,
signalbuilder applies the operation to all signals and groups.

When removing signals, you remove all signals from all groups. You cannot select a
subset of groups from which to remove signals, unless you are also going to also remove
that group.

 signalbuilder

2-357

Note: The signalbuilder function does not allow you to alter and delete data in the
same invocation. It also does not allow you to delete all the signals and groups from the
application.

If you set signals that are smaller than the display range or do not start from 0, the
Signal Builder block extrapolates the undefined signal data by holding the final value.

Querying, Labelling, and Setting the Active Group

index = signalbuilder(block, 'activegroup') gets the index of the active
group.

[index, activeGroupLabel]= signalbuilder(block, 'activegroup') gets the
label value of the active group.

signalbuilder(block, 'activegroup', index) sets the active group index to
index.

Enabling Current Group Display

signalbuilder(block, 'annotategroup', onoff) controls the display of the
current group name on the mask of the Signal Builder block.

onoff Value Description

'on' Default. Displays the current group name on the block mask.
'off' Does not display the current group name on the block mask.

Printing Signal Groups

signalbuilder(block, 'print', []) prints the currently active signal group.

signalbuilder(block, 'print', config, printArgs) prints the currently
active signal group or the signal group that config specifies. The argument config is
a structure that allows you to customize the printed appearance of a signal group. The
config structure may contain any of the following fields:

Field Description Example Value

groupIndex Scalar specifying index of signal group to
print

2

2 Functions — Alphabetical List

2-358

Field Description Example Value

timeRange Two-element vector specifying the time range
to print (must not exceed the block's time
range)

[3 6]

visibleSignals Vector specifying index of signals to print [1 2]

yLimits Cell array specifying limits for each signal's
y-axis

{[-1 1],

 [0 1]}

extent Two-element vector of the form:

[width, height]

specifying the dimensions (in pixels) of the
area in which to print the signals

[500 300]

showTitle Logical value specifying whether to print a
title; true (1) prints the title

false

Set up the structure with one or more of these fields before you print. For example, if you
want to print just group 2 using a configuration structure, configstruct, set up the
structure as follows. You do not need to specify any other fields.

configstruct.groupIndex=2

The optional argument printArgs allows you to configure print options (see print in
the MATLAB Function Reference).

figh = signalbuilder(block, 'print', config, 'figure') prints the
currently active signal group or the signal group that config specifies to a new hidden
figure handle, figh.

Interpolating Missing Data Values

When specifying a periodic signal such as a Sine Wave, the signalbuilder function
uses linear Lagrangian interpolation to compute data values for time steps that occur
between time steps for which the signalbuilder function supplies data. When
specifying periodic signals, specify them as a time vector that is defined as multiples of
sample time, for example:

t = 0.2*[0:50]';

 signalbuilder

2-359

Examples

Example 1

Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

Get signal builder data from this block.
[time, data, signames, groupnames] = signalbuilder('untitled/Signal Builder')

time =

 [1x2 double]

 [1x2 double]

data =

 [1x2 double]

 [1x2 double]

signames =

 'Signal 1' 'Signal 2'

groupnames =

 'Group 1'

The Signal Builder block contains two signals in one group. Alter the second signal in the
group:

signalbuilder(block, 'set', 2, 1, [0 5], [2 0])

To make this same change using the signal name and group name:

signalbuilder(block, 'set', 'Signal 2', 'Group 1', [0 5], [2 0])

Delete the first signal from the group:

signalbuilder(block, 'set', 1, 1, [], [])

Append the group with a new signal:

2 Functions — Alphabetical List

2-360

signalbuilder(block, 'append', [0 2.5 5], [0 2 0], 'Signal 2', 'Group 2');

Append another group with a new signal using appendgroup:
signalbuilder(block, 'appendgroup', [0 2.5 5], [0 2 0], 'Signal 2', 'Group 3');

Example 2

Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 2], {[0 1],[1 0]});

The Signal Builder block has two groups, each of which contains a signal. To delete the
second group, also delete its signal:

signalbuilder(block, 'set', 1, 2, [], [])

Example 3

Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 1], ...

 {[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]});

The Signal Builder block has two groups, each of which contains three signals.

Example 4

Create a Signal Builder block in a new model editor window:
block = signalbuilder([],'create',{[0 10],[0 20]},{[6 -6],...

[2 5]});

The Signal Builder block has two groups. Each group contains one signal.

Append a new signal group to the existing block.

block = signalbuilder(block,'append',[0 30],[10 -10]);

Append a new signal, sig3, to all groups.

signalbuilder(block,'appendsignal',[0 30],[0 10],'sig3');

 signalbuilder

2-361

Example 5

Create a Signal Builder block in a new model editor window:

time = [0 1];

data = {[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]};

block = signalbuilder([], 'create', time, data);

The Signal Builder block has two groups. Each group contains three signals.

Delete the second group. To delete a signal group, also delete all the signals in the group.

signalbuilder(block, 'set',[1,2,3],'Group 2',[]);

Example 6

Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

The Signal Builder block has one group that contains two signals.

Hide the signal, Signal 1.

signalbuilder(block,'hidesignal','Signal 1', 'Group 1')

Signal 1 is no longer visible in the Signal Builder block.

Make Signal 1 visible again.

signalbuilder(block,'showsignal','Signal 1', 'Group 1')

Example 7

Create a Signal Builder block in a new model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2] [0 2]});

The Signal Builder block has two groups, each with one signal.

Create a structure, configstruct, to customize the Signal Builder block that you want
to print.

2 Functions — Alphabetical List

2-362

configstruct.groupIndex = 2;

configstruct.timeRange = [0 2];

configstruct.visibleSignals = 1;

configstruct.yLimits = {[0 1]};

configstruct.extent = [500 300];

configstruct.showTitle = true;

This sequence fills all the fields of the configstruct structure.

Print a view of the Signal Builder block to the default printer. The configstruct
structure defines the view to print.

signalbuilder(block,'print',configstruct)

Print with print options, for example -dps.

signalbuilder(block,'print',configstruct,'-dps')

Print a view of the Signal Builder block as defined by the configstruct structure to a
new hidden figure handle, figH.

figH = signalbuilder(block,'print',configstruct,'figure')

figure(figH)

Introduced in R2007a

 sim

2-363

sim
Simulate dynamic system

Syntax
simOut = sim('model', 'ParameterName1',Value1,'ParameterName2',

Value2...);

simOut = sim('model', ParameterStruct);

simOut = sim('model', ConfigSet);

Description
simOut = sim('model', 'ParameterName1',Value1,'ParameterName2',

Value2...); causes Simulink to simulate the block diagram, model, using parameter
name-value pairs ParameterName1, Value1 and ParameterName2, Value2.

simOut = sim('model', ParameterStruct); causes Simulink to simulate
the block diagram, model, using the parameter values specified in the structure
ParameterStruct.

simOut = sim('model', ConfigSet); causes Simulink to simulate the block
diagram, model, using the configuration settings specified in the model configuration set,
ConfigSet.

When you do not specify an output argument in the sim command, Simulink stores the
simulation output in the variable ans.

Input Arguments

model

Name of model to simulate.

ParameterName

Name of a simulation parameter. Get a list of simulation parameters for the model vdp
by enter the following in the MATLAB Command Window:

2 Functions — Alphabetical List

2-364

configSet = getActiveConfigSet('vdp')

configSetNames = get_param(configSet, 'ObjectParameters')

This command lists several object parameters, including simulation parameters such as
‘StopTime’, ‘SaveTime’, ‘SaveState’, ‘SaveOutput’, and ‘SignalLogging’.

In addition, the sim command accepts the following parameters:

Parameter Description

ConcurrencyResolvingTo-

FileSuffix

(Rapid Accelerator mode only) Appends this suffix string to
the filename of a model (before the file extension) if:

• The model contains a To File block
• You call the sim command from parfor.

Debug 'on' | {'off'} | cmds Starts the simulation in debug mode (see “Debugger
Graphical User Interface” for more information). The value of
this option can be a cell array of commands to be sent to the
debugger after it starts.

Default is 'off'.
RapidAccelerator-

ParameterSets

(Rapid Accelerator mode only) Returns structure that
contains run-time parameters for running Rapid Accelerator
simulations in parfor. See “sim in parfor with Rapid
Accelerator Mode”.

RapidAcceleratorUpTo-

DateCheck {'on'} | 'off'

(Rapid Accelerator mode only) Enables/disables up-to-date
check. If you set this value to 'off', Simulink does not
perform an up-to-date check. It skips the start/stop callbacks
in blocks. If you call the sim command from parfor, set this
value to 'off'.

Default is 'on'.
SrcWorkspace {base} |

current | parent

Specifies the workspace in which to evaluate MATLAB
expressions defined in the model. Setting SrcWorkspace has
no effect on a referenced model that executes in Accelerator
mode. Setting SrcWorkspace to current within a parfor
loop causes a transparency violation. See “Transparency
Violation” for more details.

Default is the base workspace.

 sim

2-365

Parameter Description

TimeOut timeout Specify the time, in seconds, to allow the simulation to run.
If you run your model for a period longer than the value
of TimeOut, the software issues a warning and stops the
simulation.

Trace 'minstep', 'siminfo',

'compile' {''}

Enables simulation tracing facilities (specify one or more as a
comma-separated list):

• 'minstep' specifies that simulation stops when the
solution changes so abruptly that the variable-step solvers
cannot take a step and satisfy the error tolerances.

• 'siminfo' provides a short summary of the simulation
parameters in effect at the start of simulation.

• 'compile' displays the compilation phases of a block
diagram model.

By default, Simulink issues a warning message and continues
the simulation.

Value

Value of the simulation parameter. Get the value of the simulation parameter StopTime
by entering:

configSetParamValue = get_param(configSet, 'StopTime')

ParameterStruct

A structure containing parameter settings

ConfigSet

A configuration set

Output Arguments

simOut

Simulink.SimulationOutput object containing the simulation outputs—logged time,
states, and signals

2 Functions — Alphabetical List

2-366

Definitions
For all three formats of the sim command, the input(s) are parameter specifications that
override those defined on the Configuration Parameters dialog box. The software restores
the original configuration values at the end of simulation.

In the case of a model with a Model block, the parameter specifications are applied to the
top model.

When simulating a model with infinite stop time, to stop the simulation, you must press
Ctrl+C.

For additional details about the sim command, see “Run Simulation Using the sim
Command”.

Examples
Simulate the model, vdp, in Rapid Accelerator mode for an absolute tolerance of 1e-5 and
save the states in xoutNew and the output in youtNew.

Simulate Model with sim Command Line Options

Specify parameter name value-pairs to the sim command:

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...

 'StopTime', '30', ...

 'ZeroCross','on', ...

 'SaveTime','on','TimeSaveName','tout', ...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew',...

 'SignalLogging','on','SignalLoggingName','logsout')

Simulink.SimulationOutput:

 tout: [95x1 double]

 xoutNew: [95x2 double]

 youtNew: [95x2 double]

Simulate Model with sim Command Line Options in Structure

Specify parameter name-value pairs structure paramNameValStruct for the sim
command:

 sim

2-367

paramNameValStruct.SimulationMode = 'rapid';

paramNameValStruct.AbsTol = '1e-5';

paramNameValStruct.SaveState = 'on';

paramNameValStruct.StateSaveName = 'xoutNew';

paramNameValStruct.SaveOutput = 'on';

paramNameValStruct.OutputSaveName = 'youtNew';

simOut = sim('vdp',paramNameValStruct)

Simulink.SimulationOutput:

 xoutNew: [65x2 double]

 youtNew: [65x2 double]

Simulate Model with sim Command Line Options in Configuration Set

Specify parameter name-value pairs in configuration set mdl_cs for the sim command:

mdl = 'vdp';

load_system(mdl)

simMode = get_param(mdl, 'SimulationMode');

set_param(mdl, 'SimulationMode', 'rapid')

cs = getActiveConfigSet(mdl);

mdl_cs = cs.copy;

set_param(mdl_cs,'AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew')

simOut = sim(mdl, mdl_cs);

set_param(mdl, 'SimulationMode', simMode)

See Also
Rapid Accelerator Simulations Using PARFOR | “Backwards Compatible Syntax” |
parfor | “sim in parfor with Rapid Accelerator Mode” | sldebug | “Configuration
Parameters Dialog Box Overview”

Introduced before R2006a

2 Functions — Alphabetical List

2-368

simplot
Redirects to the Simulation Data Inspector

Compatibility

simplot will be removed in a future release. Use the Simulation Data Inspector instead.

Syntax

simplot

Description

simplot redirects to the Simulation Data Inspector and returns empty handles.
This function is no longer supported and has been replaced by the Simulation Data
Inspector. Use the Simulation Data Inspector button in the Simulink Editor to
capture simulation output in the Simulation Data Inspector. Programmatically, use the
function Simulink.sdi.view instead.

See Also
Simulink.sdi.view

 simulink

2-369

simulink
Open Simulink Library Browser

Syntax

simulink

simulink('open')

simulink('close')

Description

simulink or simulink('open') opens the Simulink Library Browser.
simulink('close') closes the Library Browser.

If you want to start Simulink without opening the Library Browser, use the faster
start_simulink instead.

See Also
start_simulink

Introduced before R2006a

2 Functions — Alphabetical List

2-370

simulinkproject

Open Simulink Project and get project object

Syntax

simulinkproject

simulinkproject(projectPath)

proj = simulinkproject

proj = simulinkproject(projectPath)

Description

simulinkproject opens Simulink Project or brings focus to the tool if it is already
open. After you open the tool, you can create new projects or access recent projects using
the Simulink Project tab.

simulinkproject(projectPath) opens the Simulink project specified by the .prj file
or folder in projectPath and gives focus to Simulink Project.

proj = simulinkproject returns a project object proj you can use to manipulate the
project at the command line. You need to get a project object before you can use any of
the other project functions.

If you want to avoid giving focus to Simulink Project in your startup script, specify an
output argument.

proj = simulinkproject(projectPath) opens the Simulink project specified by
projectPath and returns a project object.

To avoid your startup script opening windows that take focus away from the
MATLAB Desktop, use start_simulink instead of the simulink function, and use
simulinkproject with an output argument instead of uiopen.

 simulinkproject

2-371

Examples

Open Simulink Project Tool

Open the Simulink Project Tool.

simulinkproject

Open a Simulink Project

Specify either the .prj file path or the folder that contains your .SimulinkProject
folder and .prj file. The project opens and brings focus to Simulink Project.

simulinkproject('C:/projects/project1/')

Open a Simulink Project and Get a Project Object

Open a specified project and get a project object to manipulate the project at the
command line. To avoid your startup script opening windows that take focus away
from the MATLAB Desktop, use start_simulink instead of the simulink function,
and use simulinkproject with an output argument instead of uiopen. If you use
uiopen(myproject.prj) this calls simulinkproject with no output argument and
gives focus to Simulink Project.

start_simulink

proj = simulinkproject('C:/projects/project1/myproject.prj')

Get Airframe Example Project

Open the Airframe project and create a project object to manipulate and explore the
project at the command line.

sldemo_slproject_airframe

proj = simulinkproject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 Categories: [1x1 slproject.Category]

 Shortcuts: [1x10 slproject.Shortcut]

 ProjectPath: [1x6 slproject.PathFolder]

ProjectReferences: [1x1 slproject.ProjectReference]

2 Functions — Alphabetical List

2-372

 Files: [1x26 slproject.ProjectFile]

 RootFolder: 'C:\Work\temp\slexamples\airframe'

Find Project Commands

Find out what you can do with your project.

methods(proj)

Methods for class slproject.ProjectManager:

addFile export reload

addFolderIncludingChildFiles findCategory

removeCategory

close findFile removeFile

createCategory isLoaded

Examine Project Properties Programmatically

After you get a project object using the simulinkproject function, you can examine
project properties.

Examine the project files.

files = proj.Files

files =

 1x26 ProjectFile array with properties:

 Path

 Labels

Use indexing to access files in this list. The following command gets file number 8. Each
file has two properties describing its path and attached labels.

proj.Files(8)

ans =

 ProjectFile with properties:

 Path: 'C:\Temp\project1\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

Examine the labels of the eighth file.

 simulinkproject

2-373

proj.Files(8).Labels

ans =

 Label with properties:

File: 'C:\Temp\project1\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Design'

 CategoryName: 'Classification'

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\project1\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel

removeLabel

findLabel

• “Create a New Project to Manage Existing Files”
• “Open Recent Projects”
• “Retrieve a Working Copy of a Project from Source Control”
• “Automate Project Management Tasks”

Input Arguments

projectPath — Full path to project file or folder
string

2 Functions — Alphabetical List

2-374

Full path to project .prj file, or the path to the project root folder, specified as a string.

Example: 'C:/projects/project1/myProject.prj'

Example: 'C:/projects/project1/'

Output Arguments

proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently
open Simulink project at the command line.

Properties of proj output argument.

Project Property Description Value

Name Project name String
Categories Categories of project labels Cell array of strings
Shortcuts Shortcut files in project Cell array of strings
ProjectPath Folders that the project puts

on the MATLAB path
Cell array of strings

ProjectReferences Folders that contain
referenced projects

Cell array of strings

Files Paths and names of project
files

Cell array of strings

RootFolder Full path to project root
folder

String

More About

Tips

Alternatively, you can use slproject.loadProject to load a project, and
slproject.getCurrentProject to get a project object. Use simulinkproject to
open projects and explore projects interactively. Use slproject.getCurrentProject
and slproject.loadProject for project automation scripts.

 simulinkproject

2-375

• “What Are Simulink Projects?”

See Also

Functions
addFile | addFolderIncludingChildFiles | addLabel | createCategory
| findFile | findLabel | removeFile | slproject.getCurrentProject |
slproject.loadProject | start_simulink

Introduced in R2012a

2 Functions — Alphabetical List

2-376

Simulink.architecture.add
Add tasks or triggers to selected architecture of model

Syntax

Simulink.architecture.add(Type,Object)

Description

Simulink.architecture.add(Type,Object) adds the new task or trigger Object of
the specified Type to a model.

Examples

Add periodic trigger

Add a periodic trigger, MyTrigger1, to the software node CPU of the selected architecture
of the sldemo_concurrent_execution model.
sldemo_concurrent_execution;

Simulink.architecture.add('PeriodicTrigger','sldemo_concurrent_execution/CPU/MyTrigger1');

Input Arguments

Type — Object type
'PeriodicTrigger' | 'AperiodicTrigger' | 'Task'

Object type that identifies the kind of trigger or task to add, , specified as a
'PeriodicTrigger', 'AperiodicTrigger', or 'Task'.

• 'PeriodicTrigger'

Adds a periodic trigger to the architecture. Set the properties of the trigger with the
Simulink.architecture.set_param function.

• 'AperiodicTrigger'

 Simulink.architecture.add

2-377

Adds an aperiodic trigger to the architecture. Set the properties of the trigger with the
Simulink.architecture.set_param function.

• 'Task'

Adds a task to the architecture. Set the properties of the task with the
Simulink.architecture.set_param function.

Object — Trigger or task object identifier
string

Trigger or task object identifier to add to architecture, specified as a string.
Example: 'sldemo_concurrent_execution/CPU/MyTrigger1'

Data Types: char

See Also
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

2 Functions — Alphabetical List

2-378

Simulink.architecture.config

Create or convert configuration for concurrent execution

Syntax

Simulink.architecture.config(model,'Convert')

Simulink.architecture.config(model,'Add')

Simulink.architecture.config(model,'OpenDialog')

Description

Simulink.architecture.config(model,'Convert') converts the active
configuration set in the specified model to one for concurrent execution.

Simulink.architecture.config(model,'Add') adds and activates a new
configuration set for concurrent execution.

Simulink.architecture.config(model,'OpenDialog') opens the Concurrent
Execution dialog box for a model configuration.

Examples

Convert existing configuration set

Convert existing configuration set for concurrent execution in the model vdp.

vdp;

Simulink.architecture.config('vdp','Convert');

Add new configuration set

Add a new configuration set (copied from the existing configuration set) for concurrent
execution in the model vdp.

vdp;

 Simulink.architecture.config

2-379

Simulink.architecture.config('vdp','Add');

Open Concurrent Execution dialog box

Open the Concurrent Execution dialog box in the model
sldemo_concurrent_execution.

sldemo_concurrent_execution;

Simulink.architecture.config('sldemo_concurrent_execution','OpenDialog');

Input Arguments

model — Model name
string

Model name whose configuration set you want to convert or add to, specified as a string.
Example:
Data Types: char

See Also
Simulink.architecture.add | Simulink.architecture.profile |
Simulink.architecture.set_param

Introduced in R2014a

2 Functions — Alphabetical List

2-380

Simulink.architecture.delete
Delete triggers and tasks from selected architecture of model

Syntax

Simulink.architecture.delete(Object)

Description

Simulink.architecture.delete(Object) deletes the specified object trigger or
task.

Examples

Delete task Plant

Delete the task Plant from the Periodic trigger of the CPU software node of the selected
architecture of the model sldemo_concurrent_execution.

sldemo_concurrent_execution

Simulink.architecture.delete('sldemo_concurrent_execution/CPU/Periodic/Plant')

Input Arguments

Object — Object to delete, specified as a string
string

Object to be deleted. Possible objects are:

• Periodic trigger

Note: You cannot delete the last periodic trigger. The software node must contain at
least one periodic trigger.

 Simulink.architecture.delete

2-381

• Aperiodic trigger
• Task

Example: [bdroot '/CPU/Periodic/ControllerB']

Data Types: char

See Also
Simulink.architecture.add | Simulink.architecture.find_system |
Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.register

Introduced in R2014a

2 Functions — Alphabetical List

2-382

Simulink.architecture.find_system
Find objects under architecture object

Syntax

object = Simulink.architecture.find_system(RootObject)

object = Simulink.architecture.find_system(RootObject,ParamName,

ParamValue)

Description

object = Simulink.architecture.find_system(RootObject) looks for all
objects under RootObject.

object = Simulink.architecture.find_system(RootObject,ParamName,

ParamValue) returns the object in RootObject whose parameter ParamName has the
value ParamValue. Parameter name and value strings are case-sensitive.

Examples

Look for all objects

To find all the objects in sldemo_concurrent_execution:

sldemo_concurrent_execution

t = Simulink.architecture.find_system('sldemo_concurrent_execution')

t =

 'sldemo_concurrent_execution'

 'sldemo_concurrent_execution/CPU'

 'sldemo_concurrent_execution/CPU/Periodic'

 'sldemo_concurrent_execution/CPU/Periodic/ControllerA'

 'sldemo_concurrent_execution/CPU/Periodic/ControllerB'

 'sldemo_concurrent_execution/CPU/Periodic/Plant'

 Simulink.architecture.find_system

2-383

 'sldemo_concurrent_execution/CPU/Interrupt'

Look for all tasks

To find all the tasks in sldemo_concurrent_execution:

sldemo_concurrent_execution

t = Simulink.architecture.find_system('sldemo_concurrent_execution','Type','Task')

t =

 'sldemo_concurrent_execution/CPU/Periodic/ControllerA'

 'sldemo_concurrent_execution/CPU/Periodic/ControllerB'

 'sldemo_concurrent_execution/CPU/Periodic/Plant'

Input Arguments

RootObject — Object to search
string

Object to search for parameter value, specified as a string giving the object full path
name. Possible objects are:

• Model
• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

Example: 'sldemo_concurrent_execution'

ParamName — Name of parameter to find
string | scalar | vector

Name of the parameter to find, specified as a string. Possible string values are:

• 'Name'

• 'Type'

• 'ClockFrequency'

2 Functions — Alphabetical List

2-384

• 'Color'

• 'Period'

• 'EventHandlerType'

• 'SignalNumber'

• 'EventName'

Example: 'EventName'

ParamValue — Parameter value to find
string | scalar | vector

Parameter value to find, specified as a string, a scalar, or a vector.
Example: 'ERTDefaultEvent'

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

 Simulink.architecture.get_param

2-385

Simulink.architecture.get_param
Get configuration parameters of architecture objects

Syntax

ParamValue = Simulink.architecture.get_param(Object,ParamName)

Description

ParamValue = Simulink.architecture.get_param(Object,ParamName) returns
the value of the specified parameter for the object, Object. ParamName is case-sensitive.

Examples

Get period

Get the period of task Plant of trigger Periodic of software node CPU of the selected
architecture for the model sldemo_concurrent_execution.

sldemo_concurrent_execution;

p = Simulink.architecture.get_param('sldemo_concurrent_execution/CPU/Periodic/Plant','Period')

p =

0.1

Input Arguments

Object — Object whose parameter value to return
string

Object whose parameter value to return, specified as a string giving the object full path
name. Possible objects are:

• Software node

2 Functions — Alphabetical List

2-386

• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

ParamName — Parameter whose value to return
string

Name of a parameter for which Simulink.architecture.get_param returns a value.

The following are the possible ParamName strings:

For a model:

• 'ArchitectureName'

• 'Type'

For a software node:

• 'Name'

• 'Type'

For a hardware node

• 'Name'

• 'ClockFrequency'

• 'Color'

• 'Type'

For a periodic trigger:

• 'Name'

• 'Period'

• 'Color'

• 'Type'

For an aperiodic trigger:

• 'Name'

 Simulink.architecture.get_param

2-387

• 'Color'

• 'EventHandlerType'

• 'SignalNumber'

• 'EventName'

• 'Type'

For a task:

• 'Name'

• 'Period'

• 'Color'

• 'Type'

See Also
Simulink.architecture.add | Simulink.architecture.delete
| Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

2 Functions — Alphabetical List

2-388

Simulink.architecture.importAndSelect
Import and select target architecture for concurrent execution environment for model

Syntax

Simulink.architecture.importAndSelect(model,Architecture)

Simulink.architecture.importAndSelect(model,

CustomArchitectureDescriptionFile)

Description

Simulink.architecture.importAndSelect(model,Architecture) imports and
selects the built-in target architecture for the concurrent execution environment for the
model.

Simulink.architecture.importAndSelect(model,

CustomArchitectureDescriptionFile) imports and selects the architecture from an
XML-based architecture description file.

Importing and selecting target architectures requires that the associated support
packages or hardware is installed on your computer.

Examples

Import and select a different architecture

Import and select the sample architecture to the model
sldemo_concurrent_execution.

sldemo_concurrent_execution

Simulink.architecture.importAndSelect('sldemo_concurrent_execution','Sample Architecture')

Import and select a custom architecture

Import and select the custom architecture defined in the XML file custom_arch.xml.
This example requires you to create a custom_arch.xml first.

 Simulink.architecture.importAndSelect

2-389

sldemo_concurrent_execution

Simulink.architecture.importAndSelect('sldemo_concurrent_execution','custom_arch.xml')

Input Arguments

model — Model
string

Model to import architecture to, specified as a string.
Data Types: char

Architecture — Target architecture name
string

Target architecture name to import into the concurrent execution environment for the
model, specified as a string. Possible target names are:

Property Description

'Multicore' Single CPU with multiple cores
'Sample Architecture' Example architecture consisting of single CPU

with multiple cores and two FPGAs. You can
use this architecture to model for concurrent
execution.

'Simulink Real-Time' Simulink Real-Time™ target
'Xilinx Zynq ZC702 evaluation

kit'
Xilinx® Zynq® ZC702 evaluation kit target

'Xilinx Zynq ZC706 evaluation

kit'

Xilinx Zynq ZC706 evaluation kit target

'Xilinx Zynq Zedboard' Xilinx Zynq ZedBoard™ target

Data Types: char

CustomArchitectureDescriptionFile — Custom target architecture file
XML file

Custom target architecture file name, in XML format, that describes a custom target for
the concurrent execution environment for the model, specified as a string giving the XML
file name.

2 Functions — Alphabetical List

2-390

Example: custom_arch.xml

More About
• “Define a Custom Architecture File”

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

 Simulink.architecture.profile

2-391

Simulink.architecture.profile
Generate profile report for model configured for concurrent execution

Syntax

Simulink.architecture.profile(model)

Simulink.architecture.profile(model,numSamples)

Description

Simulink.architecture.profile(model) generates a profile report for a model
configured for concurrent execution. Subsequent calls to the command for the same
model name overwrite the existing profile report.

Simulink.architecture.profile(model,numSamples) specifies the number of
samples to generate a profile report.

Examples

Generate profile report

Generate profile report for the model sldemo_concurrent_execution.

Simulink.architecture.profile('sldemo_concurrent_execution');

The command creates the file
sldemo_concurrent_execution_ProfileReport.html in the current folder and
opens it.

Generate profile report for 120 time steps

Generate profile report for the model sldemo_concurrent_execution with data for
120 time steps.

Simulink.architecture.profile('sldemo_concurrent_execution',120);

2 Functions — Alphabetical List

2-392

The command creates the file
sldemo_concurrent_execution_ProfileReport.html in the current folder.

Input Arguments

model — Model to profile
string

Model to profile, specified as a string. Specify a model that is configured for concurrent
execution.
Data Types: char

numSamples — Number of time steps
100 (default) | real, positive integer

Number of time steps, specified as a real, positive integer. This value determines the
number of steps to collect data for in the profiled model.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

More About
• “Profile and Evaluate”

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.get_param
| Simulink.architecture.importAndSelect |
Simulink.architecture.register | Simulink.architecture.set_param

Introduced in R2014a

 Simulink.architecture.register

2-393

Simulink.architecture.register

Add custom target architecture to concurrent execution target architecture selector

Syntax

Simulink.architecture.register(CustomArchFile)

Description

Simulink.architecture.register(CustomArchFile) adds an XML-format custom
target architecture file CustomArchFile to the concurrent execution target architecture
selector. To access this selector, click the Select button on the Concurrent Execution
pane of the Concurrent Execution dialog box.

Examples

Add custom target architecture

Add custom target architecture defined in the XML file custom_arch.xml to the
concurrent execution target architecture selector. This example requires you to create a
custom_arch.xml first.

sldemo_concurrent_execution;

Simulink.architecture.register('custom_arch.xml')

Input Arguments

CustomArchFile — Custom target architecture file
XML file

Custom target architecture file that describes a custom target for concurrent execution,
specified as an XML file.

2 Functions — Alphabetical List

2-394

See Also
Simulink.architecture.add | Simulink.architecture.delete
| Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.set_param

Introduced in R2014a

 Simulink.architecture.set_param

2-395

Simulink.architecture.set_param
Set architecture object properties

Syntax

Simulink.architecture.set_param(Object,ParamName,ParamValue)

Description

Simulink.architecture.set_param(Object,ParamName,ParamValue) sets the
specified parameter of Object to the specified value. Parameter name and value strings
are case sensitive.

Examples

Set software node name

Set the software node name from CPU to MyCPUNewName.
sldemo_concurrent_execution

Simulink.architecture.set_param([bdroot '/CPU'],'Name','MyCPUNewName');

Change Periodic

Set Periodic trigger period to .02.
sldemo_concurrent_execution

Simulink.architecture.set_param([bdroot '/MyCPUNewName/Periodic'],'Period','.02')

Input Arguments

Object — Object whose parameter value to set
string

Object whose parameter value to set, specified as a string giving the object full path
name. Possible objects are:

2 Functions — Alphabetical List

2-396

• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

ParamName — Name of the parameter to set
string

Name of parameter whose value to set, specified as a string.

These are the possible parameters whose values you can set for each of the object types:

For software node:

• 'Name' — Name of the software node (string).

For hardware node:

• 'Name' — Name of the hardware node (string).
• 'ClockFrequency' — Frequency of the hardware node clock (string).
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).

For a periodic trigger:

• 'Name' — Name of the trigger (string).
• 'Period' — Period of the trigger (string).
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).

For an aperiodic trigger:

• 'Name' — Name of the trigger (string).
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).
• 'EventHandlerType' — Trigger source for the interrupt-driven task (string).

Possible values:

• 'Event (Windows)'

• 'Posix Signal (Linux/VxWorks 6.x)'

 Simulink.architecture.set_param

2-397

• 'SignalNumber' — Signal number for the trigger (string). You can set this value
only if EventHandlerType is set to Event (Windows).

• 'EventName' — Event name for the trigger (string). You can set this value only if
EventHandlerType is set to Posix Signal (Linux/VxWorks 6.x).

For task:

• 'Name' — Name of the task (string).
• 'Period' — Period of the task (string).
• 'Color' — Color of the task icon, specified as an RGB triplet (vector).

Data Types: char

ParamValue — Value to set the parameter to
string | vector

Value to set the parameter to, specified as a string, scalar, or vector. The possible values
depend on the parameter.
Example: 'MyCPUNewName'

See Also
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.get_param |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.register

Introduced in R2014a

2 Functions — Alphabetical List

2-398

Simulink.Block.getSampleTimes
Return sample time information for a block

Syntax

ts = Simulink.Block.getSampleTimes(block)

Input Arguments

block

Full name or handle of a Simulink block

Output Arguments

ts

The command returns ts which is a 1xn array of Simulink.SampleTime objects
associated with the model passed to Simulink.Block.getSampleTimes. Here n is the
number of sample times associated with the block. The format of the returns is:

1xn Simulink.SampleTime

Package: Simulink

value: [1x2 double]

Description: [char string]

ColorRGBValue: [1x3 double]

Annotation: [char string]

OwnerBlock: [char string]

ComponentSampleTimes: [1x2 struct]

Methods

• value — A two-element array of doubles that contains the sample time period and
offset

• Description — A character string that describes the sample time type
• ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue

(RGB) values of the sample time color

 Simulink.Block.getSampleTimes

2-399

• Annotation — A character string that represents the annotation of a specific sample
time (e.g., 'D1')

• OwnerBlock — For asynchronous and variable sample times, a string containing
the full path to the block that controls the sample time. For all other types of sample
times, an empty string.

• ComponentSampleTimes — A structure array of elements of the same type as
Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or
if the sample time is hybrid and the component sample times are available.

Description

ts = Simulink.Block.getSampleTimes(block) performs an update diagram
and then returns the sample times of the block connected to the input argument mdl/
signal. This method performs an update diagram to ensure that the sample time
information returned is up-to-date. If the model is already in the compiled state via a call
to the model API, then an update diagram is not necessary.

Using this method allows you to access all information in the Sample Time Legend
programmatically.

See Also
Simulink.BlockDiagram.getSampleTimes

Introduced in R2009a

2 Functions — Alphabetical List

2-400

Simulink.BlockDiagram.addBusToVector
Add Bus to Vector blocks to convert virtual bus signals into vector signals

Syntax
[DstBlocks, BusToVectorBlocks] =

Simulink.BlockDiagram.addBusToVector('model')

[DstBlocks, BusToVectorBlocks] =

Simulink.BlockDiagram.addBusToVector('model', includeLibs)

[DstBlocks, BusToVectorBlocks] =

Simulink.BlockDiagram.addBusToVector('model', includeLibs,

reportOnly)

Description
[DstBlocks, BusToVectorBlocks] =

Simulink.BlockDiagram.addBusToVector('model') searches a model, excluding
any library blocks, for bus signals used implicitly as vectors, and returns the results of
the search. Before executing this function, you must do the following:

1 Set Simulation > Model Configuration Parameters > Diagnostics
> Connectivity > Buses > Mux blocks used to create bus signals to
error, or equivalently, execute set_param (model, 'StrictBusMsg',
'ErrorLevel1').

2 Ensure that the model compiles without error.
3 Save the model.

[DstBlocks, BusToVectorBlocks] =

Simulink.BlockDiagram.addBusToVector('model',

includeLibs) is equivalent to [DstBlocks, BusToVectorBlocks] =
Simulink.BlockDiagram.addBusToVector(model) if includeLibs is false.

If includeLibs is true, the function searches library blocks rather than excluding
them.

[DstBlocks, BusToVectorBlocks] =

Simulink.BlockDiagram.addBusToVector('model', includeLibs,

 Simulink.BlockDiagram.addBusToVector

2-401

reportOnly) is equivalent to [DstBlocks, BusToVectorBlocks] =
Simulink.BlockDiagram.addBusToVector(model, includeLibs) if reportOnly
is true.

If reportOnly is false, the function inserts a Bus to Vector block into each bus
that is used as a vector in any block that it searches. The search excludes or includes
library blocks as specified by includeLibs. The insertion replaces the implicit use of a
bus as a vector with an explicit conversion of the bus to a vector. The signal's source and
destination blocks are unchanged by this insertion.

If Simulink.BlockDiagram.addBusToVector adds Bus to Vector blocks to the model
or any library, the function permanently changes the saved copy of the diagram. Be sure
to back up the model and any libraries before calling the function with reportOnly
specified as false.

If Simulink.BlockDiagram.addBusToVector changes a library block, the
change affects every instance of that block in every Simulink model that uses
the library. To preview the effects of the change on blocks in all models, call
Simulink.BlockDiagram.addBusToVector with includeLibs = true and
reportOnly = true, then examine the information returned in DstBlocks.

Input Arguments

model

Model name or handle

includeLibs

Boolean specifying whether to search library blocks (true) or only the top-level model
(false).

Default: false

reportOnly

Boolean specifying whether to change the model (false) or just generate a report (true).

Default: true

2 Functions — Alphabetical List

2-402

Output Arguments

DstBlocks

An array of structures that contain information about blocks that are connected to
buses but treat the buses as vectors. If no such blocks exist the array has 0 length. Each
structure in the array contains the following fields:

BlockPath String specifying the path to the block to
which the bus connects

InputPort Integer specifying the input port to which
the bus connects

LibPath If the block is a library block instance, and
includeLibs is true, the path to the
source library block. Otherwise, LibPath is
empty ([]).

BusToVectorBlocks

If reportOnly is false, and model contains any buses used as vectors, a cell array
containing the path to each Bus to Vector block that was added to the model. Otherwise,
BusToVectorBlocks is empty ([]).

Tip

You can eliminate warnings and errors about virtual buses used as muxes by using
Simulink.BlockDiagram.addBustoVector to insert a Bus to Vector block into any
virtual bus signal that is used as a mux. For additional information, see “Prevent Bus
and Mux Mixtures”.

Examples

The following model simulates correctly, but the input to the Gain block is a bus, while
the output is a vector. Thus the Gain block uses a block as a vector.

 Simulink.BlockDiagram.addBusToVector

2-403

If the model shown is open as the current model, you can eliminate the implicit
conversion with the following command:

Simulink.BlockDiagram.addBusToVector(gcs, false, false)

Rebuilding and simulating the model then gives this result:

The Gain block no longer implicitly converts the bus to a vector; the inserted Bus to
Vector block performs the conversion explicitly. Note that the results of simulation are
the same for both models. The Bus to Vector block is virtual, and never affects simulation
results, code generation, or performance.

More About
• “Mux Signals”
• “Composite Signals”
• “Prevent Bus and Mux Mixtures”

See Also
Bus Assignment | Bus Creator | Bus Selector | Bus to Vector |
Simulink.Bus | Simulink.Bus.cellToObject | Simulink.Bus.createObject |
Simulink.BusElement | Simulink.Bus.objectToCell | Simulink.Bus.save

2 Functions — Alphabetical List

2-404

Introduced in R2007a

 Simulink.BlockDiagram.buildRapidAcceleratorTarget

2-405

Simulink.BlockDiagram.buildRapidAcceleratorTarget
Build Rapid Accelerator target for model and return run-time parameter set

Syntax

rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl)

Description

rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl) builds a
Rapid Accelerator target for model, mdl, and returns run-time parameter set, rtp.

Input Arguments

mdl

Name or handle of a Simulink model

Output Arguments

rtp

Run-time parameter set that contains two elements:

Element Description

modelChecksum 1x4 vector that encodes the structure of the model.
A structure of the tunable parameters in the model. This structure contains
the following fields.
Field Description
dataTypeName The data type name, for example, double.

parameters

dataTypeId Internal data type identifier for use by Simulink Coder.

2 Functions — Alphabetical List

2-406

Element Description

complex Complex type or real type specification. Value is 0 if real,
1 if complex.

dtTransIdx Internal data type identifier for use by Simulink Coder.
values All values associated with this entry in the parameters

substructure.
Mapping structure information that correlates the values
to the model tunable parameters. This structure contains
the following fields.
Field Description
Identifier Tunable parameter name.
ValueIndicesStart and end indices into the values

field, [startIdx, endIdx].

map

Dimensions Dimension of this tunable parameter
(matrices are generally stored in column-
major format).

Examples

Build Rapid Accelerator Target for Model

In the MATLAB Command Window, type:
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget('f14')

Building the rapid accelerator target for model: f14

Successfully built the rapid accelerator target for model: f14

rtp =

 modelChecksum: [2.6812e+09 2.7198e+09 589261472 4.0180e+09]

 parameters: [1x1 struct]

More About
• “How Acceleration Modes Work”
• “Choosing a Simulation Mode”

 Simulink.BlockDiagram.buildRapidAcceleratorTarget

2-407

• “Design Your Model for Effective Acceleration”

Introduced in R2012b

2 Functions — Alphabetical List

2-408

Simulink.BlockDiagram.copyContentsToSubSystem

Copy contents of block diagram to empty subsystem

Syntax

Simulink.BlockDiagram.copyContentsToSubSystem(bdiag, subsys)

Description

Simulink.BlockDiagram.copyContentsToSubSystem(bdiag, subsys) copies the
contents of the block diagram bdiag to the subsystem subsys. The block diagram and
subsystem must have already been loaded. The subsystem cannot be part of the block
diagram.

The function affects only blocks, lines, and annotations; it does not affect nongraphical
information such as configuration sets. You can use this function to convert a referenced
model derived from an atomic subsystem into an atomic subsystem that is equivalent to
the original subsystem.

This function cannot be used if the destination subsystem contains any blocks or signals.
Other types of information can exist in the destination subsystem and are not affected by
the function. Use Simulink.SubSystem.deleteContents if necessary to empty the
subsystem before using Simulink.BlockDiagram.copyContentsToSubSystem.

Input Arguments

bdiag

Block diagram name or handle

subsys

Subsystem name or handle

 Simulink.BlockDiagram.copyContentsToSubSystem

2-409

Examples

Copy the contents of vdp to an empty subsystem named vdp_subsystem that is in the
model named new_model_with_vdp:
open_system('vdp');

new_system('new_model_with_vdp')

open_system('new_model_with_vdp');

add_block('built-in/Subsystem', 'new_model_with_vdp/vdp_subsystem')

Simulink.BlockDiagram.copyContentsToSubSystem...

('vdp', 'new_model_with_vdp/vdp_subsystem')

More About
• “Systems and Subsystems”
• “Create a Subsystem”

See Also
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram |
Simulink.SubSystem.deleteContents

Introduced in R2007a

2 Functions — Alphabetical List

2-410

Simulink.BlockDiagram.createSubSystem

Create subsystem containing specified set of blocks

Syntax

Simulink.BlockDiagram.createSubSystem(blocks)

Simulink.BlockDiagram.createSubSystem()

Description

Simulink.BlockDiagram.createSubSystem(blocks) creates a new subsystem and
moves the specified blocks into the subsystem. All of the specified blocks must originally
reside at the top level of the model or in the same existing subsystem within the model.

If any of the blocks have unconnected input ports, the command creates input port blocks
for each unconnected input port in the subsystem and connects the input port block
to the unconnected input port. The command similarly creates and connects output
port blocks for unconnected output ports on the specified blocks. If any of the specified
blocks is an input port, the command creates an input port block in the parent system
and connects it to the corresponding input port of the newly created subsystem. The
command similarly creates and connects output port blocks for each of the specified
blocks that is an output port block.

Simulink.BlockDiagram.createSubSystem() creates a new subsystem in the
currently selected model and moves the currently selected blocks within the current
model to the new subsystem.

Input Arguments

blocks

An array of block handles

Default: []

 Simulink.BlockDiagram.createSubSystem

2-411

Examples

The following function converts the contents of a model or subsystem into a subsystem.

function convert2subsys(sys)

 blocks = find_system(sys, 'SearchDepth', 1);

 bh = [];

 for i = 2:length(blocks)

 bh = [bh get_param(blocks{i}, 'handle')];

 end

 Simulink.BlockDiagram.createSubSystem(bh);

end

For example, suppose you create the following model and save it as
initial_model.slx.

Executing

convert2subsys('initial_model');

converts this model to create a subsystem:

2 Functions — Alphabetical List

2-412

More About
• “Systems and Subsystems”
• “Create a Subsystem”

See Also
Simulink.BlockDiagram.copyContentsToSubSystem

| Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Introduced in R2009a

 Simulink.BlockDiagram.deleteContents

2-413

Simulink.BlockDiagram.deleteContents
Delete contents of block diagram

Syntax
Simulink.BlockDiagram.deleteContents(bdiag)

Description
Simulink.BlockDiagram.deleteContents(bdiag) deletes the contents of the
block diagram bdiag. The function affects only blocks, lines, and annotations. The block
diagram must have already been loaded.

Input Arguments

bdiag

Block diagram name or handle

Examples
Delete the graphical content of an open block diagram named f14, including all
subsystems:

Simulink.BlockDiagram.deleteContents('f14');

More About
• “Modeling”
• “Create a Subsystem”

See Also
Simulink.BlockDiagram.copyContentsToSubSystem

| Simulink.SubSystem.convertToModelReference |

2 Functions — Alphabetical List

2-414

Simulink.SubSystem.copyContentsToBlockDiagram |
Simulink.SubSystem.deleteContents

Introduced in R2007a

 Simulink.BlockDiagram.expandSubsystem

2-415

Simulink.BlockDiagram.expandSubsystem
Expand subsystem contents to containing model level

Syntax

Simulink.BlockDiagram.expandSubsystem(block)

Description

Simulink.BlockDiagram.expandSubsystem(block) expands the contents of the
subsystem for the specified Subsystem block. Subsystem expansion involves moving the
contents of a virtual subsystem into the system that contains that subsystem.

You can expand virtual subsystems that are not masked, linked, or commented. For
details, see “Subsystems That You Can Expand”.

Input Arguments

block

A string that specifies one of the following:

• The path to a subsystem block in a loaded model.
• The block handle of a subsystem block in a loaded model.
• gcb (the currently selected block)

Examples

The following function expands the Combustion subsystem.

open_system('sldemo_enginewc')

Simulink.BlockDiagram.expandSubsystem('sldemo_enginewc/Combustion')

The blocks and signals that were in the Combustion subsystem become part of the top-
level model that contained the Combustion subsystem, replacing that Subsystem block.

2 Functions — Alphabetical List

2-416

More About
• “Expand Subsystem Contents”
• “Systems and Subsystems”

See Also
Simulink.BlockDiagram.copyContentsToSubSystem

| Simulink.BlockDiagram.createSubSystem
| Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Introduced in R2014a

 Simulink.BlockDiagram.getChecksum

2-417

Simulink.BlockDiagram.getChecksum
Return checksum of model

Syntax
[checksum,details] = Simulink.BlockDiagram.getChecksum('model')

Description
[checksum,details] = Simulink.BlockDiagram.getChecksum('model')

returns the checksum of the specified model. Simulink software computes the checksum
based on attributes of the model and the blocks the model contains.

One use of this command is to determine why the Accelerator mode in Simulink software
regenerates code. For an example, see slAccelDemoWhyRebuild.

Note: Simulink.BlockDiagram.getChecksum compiles the specified model, if the
model is not already in a compiled state.

This command accepts the argument model, which is the full name or handle of the
model for which you are returning checksum data.

This command returns the following output:

• checksum — Array of four 32-bit integers that represents the model's 128-bit
checksum.

• details — Structure of the form

ContentsChecksum: [1x1 struct]

InterfaceChecksum: [1x1 struct]

ContentsChecksumItems: [nx1 struct]

InterfaceChecksumItems: [mx1 struct]

• ContentsChecksum — Structure of the following form that represents a
checksum that provides information about all blocks in the model.

Value: [4x1 uint32]

2 Functions — Alphabetical List

2-418

MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the model's 128-bit
checksum.

• MarkedUnique — True if any blocks in the model have a property that
prevents code reuse.

• InterfaceChecksum — Structure of the following form that represents a
checksum that provides information about the model.

Value: [4x1 uint32]

MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the model's 128-bit
checksum.

• MarkedUnique — Always true. Present for consistency with
ContentsChecksum structure.

• ContentsChecksumItems and InterfaceChecksumItems — Structure arrays
of the following form that contain information that Simulink software uses to
compute the checksum for ContentsChecksum and InterfaceChecksum,
respectively:

Handle: [char array]

Identifier: [char array]

Value: [type]

• Handle — Object for which Simulink software added an item to the checksum.
For a block, the handle is a full block path. For a block port, the handle is the
full block path and a string that identifies the port.

• Identifier — Descriptor of the item Simulink software added to the
checksum. If the item is a documented parameter, the identifier is the
parameter name.

• Value — Value of the item Simulink software added to the checksum. If the
item is a parameter, Value is the value returned by

get_param(handle, identifier)

Simulink.BlockDiagram.getChecksum returns a checksum that depends on why
and how you compiled the model. This function also compiles the model if it is not in a
compiled state. The model compiles for:

 Simulink.BlockDiagram.getChecksum

2-419

• Simulation— if the simulation mode is Accelerator or you have not installed Simulink
Coder

• Code generation— in all other cases

To compile the model before calling Simulink.BlockDiagram.getChecksum, use this
command:

modelName([],[],[],'compile')

Note: The checksum that Simulink.BlockDiagram.getChecksum returns can vary
from the checksum returned if you first compile the model at the command line (using
the model command) before running Simulink.BlockDiagram.getChecksum.

Tip

The structural checksum reflects changes to the model that can affect the simulation
results, including:

• Changing the solver type, for example from Variable-step to Fixed-step
• Adding or deleting blocks or connections between blocks
• Changing the values of nontunable block parameters, for example, the Seed

parameter of the Random Number block
• Changing the number of inputs or outputs of blocks, even if the connectivity is

vectorized
• Changing the number of states or the initial states in the model
• Selecting a different function in the Trigonometric Function block
• Changing signs used in a Sum block
• Adding a Target Language Compiler (TLC) file to inline an S-function

Examples of model changes that do not affect the structural checksum include:

• Changing the position of a block
• Changing the position of a line
• Resizing a block
• Adding, removing, or changing a model annotation

2 Functions — Alphabetical List

2-420

See Also
Simulink.SubSystem.getChecksum | Simulink.getFileChecksum

Introduced in R2006b

 Simulink.BlockDiagram.getInitialState

2-421

Simulink.BlockDiagram.getInitialState

Return initial state structure of block diagram

Syntax

x0 = Simulink.BlockDiagram.getInitialState('model')

Description

x0 = Simulink.BlockDiagram.getInitialState('model') returns the initial
state structure of the block diagram specified by the input argument model. This
state structure can be used to specify the initial state vector in the Configuration
Parameters dialog box or to provide an initial state condition to the linearization
commands.

The command returns x0, a structure of the form

time: 0

signals: [1xn struct]

where n is the number of states contained in the model, including any models referenced
by Model blocks. The signals field is a structure of the form

values: [1xm double]

dimensions: [1x1 double]

label: [char array]

blockName: [char array]

inReferencedModel: [bool]

sampleTime: [1x2 double]

• values — Numeric array of length m, where m is the number of states in the signal
• dimensions — Length of the values vector
• label — Indication of whether the state is continuous (CSTATE) or discrete. If the

state is discrete:

The name of the discrete state will be shown for S-function blocks

2 Functions — Alphabetical List

2-422

The name of the discrete state will be shown for those built-in blocks that assign their
own names to discrete states

DSTATE is used in all other cases

• blockName — Full path to block associated with this state
• inReferencedModel — Indication of whether the state originates in a model

referenced by a Model block (1) or in the top model (0)
• sampleTime — Array containing the sample time and offset of the block that owns

the state

Using the state structure simplifies specifying initial state values for models with
multiple states, as each state is associated with the full path to its parent block.

See Also
linmod

Introduced in R2006b

 Simulink.BlockDiagram.getSampleTimes

2-423

Simulink.BlockDiagram.getSampleTimes
Return all sample times associated with model

Syntax
ts = Simulink.BlockDiagram.getSampleTimes('model')

Input Arguments

model

Name or handle of a Simulink model

Output Arguments

ts

The command returns ts which is a 1xn array of Simulink.SampleTime objects
associated with the model passed to Simulink.BlockDiagram.getSampleTimes. Here
n is the number of sample times associated with the block diagram. The format of the
returns is as follows:

1xn Simulink.SampleTime

Package: Simulink

value: [1x2 double]

Description: [char string]

ColorRGBValue: [1x3 double]

Annotation: [char string]

OwnerBlock: [char string]

ComponentSampleTimes: [1x2 struct]

Methods

• value — A two-element array of doubles that contains the sample time period and
offset

• Description — A character string that describes the sample time type
• ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue

(RGB) values of the sample time color

2 Functions — Alphabetical List

2-424

• Annotation — A character string that represents the annotation of a specific sample
time (e.g., 'D1')

• OwnerBlock — For asynchronous and variable sample times, a string containing
the full path to the block that controls the sample time. For all other types of sample
times, an empty string.

• ComponentSampleTimes — A structure array of elements of the same type as
Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or
if the sample time is hybrid and the component sample times are available.

Description

ts = Simulink.BlockDiagram.getSampleTimes('model') performs an update
diagram and then returns the sample times associated with the block diagram specified
by the input argument model. The update diagram ensures that the sample time
information returned is up-to-date. If the model is already in the compiled state via a call
to the model API, then an update diagram is not necessary.

Using this method allows you to access all information in the Sample Time Legend
programmatically.

See Also
Simulink.Block.getSampleTimes

Introduced in R2009a

 Simulink.BlockDiagram.loadActiveConfigSet

2-425

Simulink.BlockDiagram.loadActiveConfigSet

Package: Simulink.BlockDiagram

Load, associate, and activate configuration set with model

Syntax

Simulink.BlockDiagram.loadActiveConfigSet(model, filename)

Description

Simulink.BlockDiagram.loadActiveConfigSet(model, filename) loads a
configuration set, associates it with a model, and makes it the active configuration set.
model is the name or handle of a model. filename is the name of the file (.m or .mat)
that creates or contains a configuration set object to load. If you do not provide a file
extension, it defaults to .m. If the file name is the same as a model name on the MATLAB
path, the software cannot determine which file contains the configuration set object and
displays an error message.

Examples

Save the configuration set from the sldemo_counters model to my_config_set.m.

% Open the sldemo_counters model

sldemo_counters

% Save the active configuration set to my_config_set.m

Simulink.BlockDiagram.saveActiveConfigSet('sldemo_counters', 'my_config_set.m')

Load the configuration set from my_config_set.m, associate it with the vdp model, and
make it the active configuration set.

% Open the vdp model

vdp

% Load the configuration set from my_config_set.m, making it the active

% configuration set for vdp.

Simulink.BlockDiagram.loadActiveConfigSet('vdp', 'my_config_set.m')

2 Functions — Alphabetical List

2-426

More About

Tips

• If you load a configuration set with the same name as the active configuration set, the
software overwrites the active configuration set.

• If you load a configuration set with the same name as an inactive configuration set
associated with the model, the software detaches the inactive configuration from the
model.

• If you load a configuration set object that contains an invalid custom target, the
software sets the “System target file” parameter to ert.tlc.

• “Load a Saved Configuration Set”

See Also
Simulink.BlockDiagram.saveActiveConfigSet | Simulink.ConfigSet
| attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

Introduced in R2010b

 Simulink.BlockDiagram.saveActiveConfigSet

2-427

Simulink.BlockDiagram.saveActiveConfigSet
Package: Simulink.BlockDiagram

Save active configuration set of model

Syntax
Simulink.BlockDiagram.saveActiveConfigSet(model, filename)

Description
Simulink.BlockDiagram.saveActiveConfigSet(model, filename) saves the
active configuration set of a model to a .m or .mat file. model is the name or handle of
the model. filename is the name of the file to save the model configuration set. If you
specify a .m extension, the file contains a function that creates a configuration set object.
If you specify a .mat extension, the file contains a configuration set object. If you do not
provide a file extension, the active configuration set is saved to a file with a .m extension.
Do not specify filename to be the same as a model name; otherwise the software cannot
determine which file contains the configuration set object when loading the file.

Examples
Save the configuration set from the sldemo_counters model to my_config_set.m.
% Open the sldemo_counters model

sldemo_counters

% Save the active configuration set to my_config_set.m

Simulink.BlockDiagram.saveActiveConfigSet('sldemo_counters', 'my_config_set.m')

More About
• “Save a Configuration Set”

See Also
Simulink.BlockDiagram.loadActiveConfigSet | Simulink.ConfigSet
| attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

2 Functions — Alphabetical List

2-428

Introduced in R2010b

 Simulink.Bus.cellToObject

2-429

Simulink.Bus.cellToObject
Convert cell array containing bus information to bus objects

Syntax

Simulink.Bus.cellToObject(busCells)

Description

Simulink.Bus.cellToObject(busCells) creates a set of bus objects in the
MATLAB base workspace from a cell array of bus information. The inverse function is
Simulink.Bus.objectToCell.

Input Arguments

busCells

A cell array of cell arrays in which each subordinate array represents a bus object and
contains the following data:

{BusName, HeaderFile,

Description, DataScope,

 Alignment, Elements}

The Elements field is an array containing the following data for each element:

{ElementName, Dimensions,

 DataType, SampleTime,

Complexity, SamplingMode,

DimensionsMode, Min,

Max, DocUnits,

Description}

More About
• “Composite Signals”

2 Functions — Alphabetical List

2-430

See Also
Bus Assignment | Bus Creator | Bus Selector | Bus to
Vector | Simulink.Bus | Simulink.Bus.createMATLABStruct
| Simulink.Bus.createObject | Simulink.BusElement |
Simulink.Bus.objectToCell | Simulink.Bus.save

Introduced before R2006a

 Simulink.Bus.createMATLABStruct

2-431

Simulink.Bus.createMATLABStruct
Create MATLAB structures using same hierarchy and attributes as bus signals

Syntax

structFromBus = Simulink.Bus.createMATLABStruct(busSource)

structFromBus = Simulink.Bus.createMATLABStruct(busSource,

partialValues)

structFromBus = Simulink.Bus.createMATLABStruct(busSource,

partialValues,dims)

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles)

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles,

partialStructures)

structsForBuses = Simulink.Bus.createMATLABStruct(busObjectNames)

Description

structFromBus = Simulink.Bus.createMATLABStruct(busSource) creates
a MATLAB structure that has the same hierarchy and attributes (such as type and
dimension) as the bus specified in busSource. The resulting structure uses the ground
values of the bus signal.

structFromBus = Simulink.Bus.createMATLABStruct(busSource,

partialValues) creates a structure that uses specified values of partialValues
instead of the corresponding ground values of the bus signal.

structFromBus = Simulink.Bus.createMATLABStruct(busSource,

partialValues,dims) creates a structure that has the specified dimensions. To create
a structure for an array of buses, use dims.

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles) creates
a cell array of structures for bus signal ports, specified with port handles. The resulting
cell array of structures uses ground values. Use this syntax to create initialization
structures for multiple bus ports. This syntax improves performance compared to using
separate Simulink.Bus.createMATLABStruct calls to create the structures.

2 Functions — Alphabetical List

2-432

structsForBuses = Simulink.Bus.createMATLABStruct(portHandles,

partialStructures) creates a cell array of structures that uses the specified values of
partialStructures instead of the ground values.

structsForBuses = Simulink.Bus.createMATLABStruct(busObjectNames)

creates a cell array of structures based on the specified bus objects.

Examples

MATLAB Structure from Bus Object

Open a Simulink model and simulate it.

run([docroot '/toolbox/simulink/ug/examples/signals/busic_example.mdl']);

sim('busic_example')

 Simulink.Bus.createMATLABStruct

2-433

Create a MATLAB structure using the bus object Top, which the busic_example model
loads.

mStruct = Simulink.Bus.createMATLABStruct('Top')

mStruct =

 A: [1x1 struct]

 B: 0

 C: [1x1 struct]

Set a value for the field of the mStruct structure that corresponds to bus element A1 of
bus A.

mStruct.A.A1 = 3;

mStruct.A

ans =

 A1: 3

 A2: [5x1 int8]sim

('busic_example')

Simulink sets the other fields in the structure to the ground values of the corresponding
bus elements.

You can use mStruct as the initial condition structure for the Unit Delay block.

MATLAB Structure from Bus Port and Partial Structure

Create a MATLAB structure based on a port that connects to a bus signal. Use a partial
structure to specify values for a subset of bus elements of the bus signal that connects to
the port.

Open a Simulink model.

run([docroot '/toolbox/simulink/ug/examples/signals/busic_example.mdl']);

sim('busic_example')

2 Functions — Alphabetical List

2-434

Find the port handle for the Bus Creator block port that produces the Top bus signal.
The Outport handle is the handle that you need.

ph = get_param('busic_example/TopBus','PortHandles')

ph =

 Inport: [143.0013 144.0013 145.0013]

 Outport: 34.0013

 Enable: []

 Trigger: []

 State: []

 LConn: []

 RConn: []

 Ifaction: []

Create a partial structure, which is a MATLAB structure that specifies values for a
subset of bus elements for the bus signal created by the TopBus block.

 Simulink.Bus.createMATLABStruct

2-435

PartialstructForK = struct('A',struct('A1',4),'B',3)

PartialstructForK =

 A: [1x1 struct]

 B: 3

Bus elements represented by structure fields Top.B and Top.A are at the same nesting
level in the bus. You can use this partial structure to override the ground values for the B
and A bus signal elements.

You can use a partial structure as an optional argument when creating a MATLAB
structure from a bus object or from a bus port.

Create a MATLAB structure using the port handle (ph) for the TopBus block. Override
the ground values for the A.A1 and B bus elements.

outPort = ph.Outport;

mStruct = Simulink.Bus.createMATLABStruct(outPort,PartialstructForK)

mStruct =

 A: [1x1 struct]

 B: 3

 C: [1x1 struct]

MATLAB Structure Having Specified Dimensions

Open a Simulink model and simulate it.

run([docroot '/toolbox/simulink/ug/examples/signals/busic_example.mdl']);

sim('busic_example')

2 Functions — Alphabetical List

2-436

Create a partial structure, which is a MATLAB structure that specifies values for a
subset of bus elements for the bus signal created by the TopBus block.

PartialStructForK = struct('A',struct('A1',4),'B',3)

PartialStructForK =

 A: [1x1 struct]

 B: 3

Create a MATLAB structure using the bus object Top (which the busic_example model
loads), a partial structure, and dimensions for the resulting structure.

structFromBus = Simulink.Bus.createMATLABStruct...

 ('Top',PartialStructForK,[2 3])

structFromBus =

 Simulink.Bus.createMATLABStruct

2-437

2x3 struct array with fields:

 A

 B

 C

Close the system.

close_system('busic_example')

Cell Array of MATLAB Structures

Open a Simulink model and simulate it.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_two_outports_create_struct')))

sim('ex_two_outports_create_struct')

Find the port handles for the Bus Creator blocks Bus1 and Bus2.

ph_1 = get_param...

 ('ex_two_outports_create_struct/Bus Creator','PortHandles')

ph_2 = get_param...

2 Functions — Alphabetical List

2-438

 ('ex_two_outports_create_struct/Bus Creator1','PortHandles')

Create a MATLAB structure using an array of port handles.

mStruct = Simulink.Bus.createMATLABStruct...

 ([ph_1.Outport ph_2.Outport])

mStruct =

 [1x1 struct]

 [1x1 struct]

Close the system.

close_system('ex_two_outports_create_struct')

Input Arguments

busSource — Source representing a bus signal
a Simulink.Bus object | port handle

Source representing a bus signal to use for creating a MATLAB structure, specified as
the name of a bus object or port handle.

• If you use the dims argument, then for busSource, use a bus object.
• For an array of buses signal, you cannot use a port handle.
• If you use a bus object name, then the bus object must be in the MATLAB base

workspace. The data type for the bus object name is char.
• If you use a port handle, then the model must compile successfully before you use the

createMATLABStruct method. The data type for the port handle is a double.

Example:

structFromBus = Simulink.Bus.createMATLABStruct('myBusObject');

structForPortHandle = Simulink.Bus.createMATLABStruct(port_handle_1);

partialValues — Values for a subset of leaf nodes of the resulting structure
partial structure | []

Values for a subset of leaf nodes of the resulting structure, specified as a partial
structure or empty array. Each field that you specify in a partial structure must match

 Simulink.Bus.createMATLABStruct

2-439

the data attributes of the corresponding bus element exactly. For details, see “Match IC
Structure Values to Corresponding Bus Element Data Characteristics”.

Use an empty matrix [] when you use the dims argument and want to use ground
values for all of the nodes in the resulting structure.
Data Types: struct

dims — Dimensions of the resulting structure
vector

Dimensions of the resulting structure, specified as a vector.

Each dimension element must be an integer that is greater than or equal to 1. If you
specify partialValues, then each dimension element in dims must be greater than or
equal to its corresponding dimension element in the partial structure.

To use ground values, use an empty matrix ([]) for partialValues .

Data Types: double

portHandles — Handles of bus signal ports
array

Handles of bus signal ports, specified as an array. If you use the partialStructures
argument, then the number of port handles that you specify in portHandles must be
the same as the number of partial structures.
Data Types: double

partialStructures — Partial structures
cell array

Partial structures specified as a cell array. The number of port handles that you specify
in portHandles must be the same as the number of partial structures.

Data Types: cell

busObjectNames — Bus object names
cell array

Bus object names, specified as a cell array.
Data Types: cell

2 Functions — Alphabetical List

2-440

Output Arguments

structFromBus — Bus signal hierarchy and attributes
MATLAB structure

Bus signal hierarchy and attributes, returned as a MATLAB structure.

The dimensions of structFromBus depend on the input arguments:

• If you specify only busSource, then the dimension is 1.
• If you also specify partialValues, then the dimensions match the dimensions of

partialValues.
• If you specify the dims argument, then the dimensions match the dimensions of dims.

structsForBuses — Structures having the same hierarchy and attributes as bus signals
cell array

Structures having the same hierarchy and attributes as bus signals, returned as a cell
array of structures of data with same hierarchy and attributes as a bus signals that you
specify with an array of port handles. The cell array of structures uses ground values of
the bus signals.

The dimensions of StructsForBuses depend on the input arguments:

• If you specify only portHandles, then the dimension is 1.
• If you also specify partialStructures, then the dimensions match the dimensions

of partialStructures.

Tips

• If you use the Simulink.Bus.createMATLABStruct function repeatedly for the
same model (for example, in a loop in a script), you can improve performance by
avoiding multiple model compilations. For improved speed, put the model in compile
before using the function multiple times. For example, to put the vdp model in
compile, use this command:

[sys,x0,str,ts] = vdp([],[],[],'compile')

After you create the MATLAB structure, terminate the compile. For example:

 Simulink.Bus.createMATLABStruct

2-441

vdp([],[],[],'term')

• You can use the Bus Editor to invoke the Simulink.Bus.createMATLABStruct
function. Use one of these approaches:

• Select the File > Create a MATLAB structure menu item.
• Select the bus object for which you want to create a full MATLAB structure. Then,

in the toolbar, click the Create a MATLAB structure button ().

You can then edit the MATLAB structure in the MATLAB Editor and evaluate the
code to create or update the values in this structure.

• You can use the Simulink.Bus.createMATLABStruct function to specify the initial
value of the output of a referenced model. For details, see the “Referenced Model:
Setting Initial Value for Bus Output” section of the Detailed Workflow for Managing
Data with Model Reference example.

See Also
“Specify Initial Conditions for Bus Signals” | “Composite Signals” | Bus
to Vector | Bus Assignment | Bus Creator | Simulink.Bus |
Simulink.Bus.cellToObject | Simulink.Bus.createObject |
Simulink.Bus.objectToCell | Simulink.Bus.save | Simulink.BusElement |
Simulink.SimulationData.createStructOfTimeseries |

Introduced in R2010a

2 Functions — Alphabetical List

2-442

Simulink.Bus.createObject
Create bus objects from blocks or MATLAB structures

Syntax

busInfo = Simulink.Bus.createObject(modelName, blks)

busInfo = Simulink.Bus.createObject(modelName,blks,fileName)

busInfo = Simulink.Bus.createObject(modelName,blks,fileName,format)

busInfo =

Simulink.Bus.createObject(structTimeseries,fileName,format)

busInfo = Simulink.Bus.createObject(structNumeric,fileName,format)

Description

busInfo = Simulink.Bus.createObject(modelName, blks) creates bus objects
(instances of Simulink.Bus class in the MATLAB base workspace) for specified blocks,
and returns information about the objects that it created.

busInfo = Simulink.Bus.createObject(modelName,blks,fileName) saves the
bus objects in a MATLAB file that contains a cell array of cell arrays. Each subordinate
array represents a bus object and contains the following data:

{BusName, HeaderFile, Description, DataScope, Alignment, Elements}

The Elements field is an array containing the following data for each element:

{ElementName, Dimensions,

DataType, SampleTime,

Complexity, SamplingMode,

DimensionsMode, Min,

Max,DocUnits,

Description}

busInfo = Simulink.Bus.createObject(modelName,blks,fileName,format)

saves the bus objects in a file that contains either a cell array of bus information, or the
bus objects themselves.

 Simulink.Bus.createObject

2-443

busInfo =

Simulink.Bus.createObject(structTimeseries,fileName,format) creates bus
objects in the MATLAB workspace from a MATLAB structure of timeseries objects and
optionally saves the bus objects in the specified file.

busInfo = Simulink.Bus.createObject(structNumeric,fileName,format)

creates bus objects in the MATLAB workspace from the numeric MATLAB structure and
optionally saves the bus objects in the specified file.

Tips

If you specify a model name, the model must compile successfully before you use the
Simulink.Bus.createObject command.

Input Arguments

modelName

Name or handle of a model

blks

List of subsystem-level Inport blocks, root-level or subsystem-level Outport blocks or
Bus Creator blocks in the specified model. If only one block needs to be specified, this
argument can be the full pathname of the block. Otherwise, this argument can be either
a cell array containing block pathnames or a vector of block handles.

fileName

Name of the file in which to save the bus objects created by this function. The file name
must be unique. If you omit this argument, the function save the created bus objects in a
cell array, not in a file.

format

Format used to store the bus objects. The value can be 'cell' or 'object'. Use cell
array format to save the objects in a compact form.

Default: 'cell'

2 Functions — Alphabetical List

2-444

structTimeseries

MATLAB timeseries structure variable used to create bus objects

structNumeric

Numeric structure variable used to create bus objects

Output Arguments

busInfo

A structure array containing bus information for the specified blocks. Each element of
the structure array corresponds to one block and contains the following fields:

block Handle of the block
busName Name of the bus object associated with the

block

Examples

Use Bus Creator Blocks to Create a Bus Object

Create a bus object from the Bus Creator block called Bus Creator2.

open_system('busdemo')

bus2Info = Simulink.Bus.createObject...

('busdemo', 'busdemo/Bus Creator2')

close_system('busdemo')

Create a bus object from two Bus Creator blocks, using block handles to specify the
blocks. In the Simulink Editor, select the Bus Creator2 block and then the Bus Creator
block and assign their block handles to variables. Use those variables in a vector specify
the blocks to use for creating the bus object. This example also shows how to specify a file
for saving the output (busdemo_busobject).

clear;

open_system('busdemo')

 Simulink.Bus.createObject

2-445

% Select the Bus Creator2 block

bc2 = gcbh;

% Select the Bus Creator block

bc1 = gcbh;

bus3Info = Simulink.Bus.createObject...

('busdemo', [bc2 bc1], 'busdemo_busobject')

 close_system('busdemo')

Use a Structure of Timeseries Objects to Create a Bus Object

Create a bus object from a MATLAB structure of timeseries objects that results from
logged data for the COUNTERBUS bus signal.

model = 'sldemo_mdlref_bus';

open_system(model);

sim(model);

topOut

topOut =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'topOut'

 Total Elements: 3

 Elements:

 1: 'COUNTERBUS'

 2: 'OUTERDATA'

 3: 'INCREMENTBUS'

 -Use get or getElement to access elements by index or name.

 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

bus4Info = Simulink.Bus.createObject(topOut.get('COUNTERBUS').Values);

close_system(model);

Create a bus object from a MATLAB structure, independent of a model.

X = struct('a',1,'b',2)

2 Functions — Alphabetical List

2-446

bus3Info = Simulink.Bus.createObject(X)

More About
• “Composite Signals”

See Also
Bus Assignment | Bus Creator | Bus Selector | Bus to
Vector | Simulink.Bus | Simulink.Bus.cellToObject |
Simulink.Bus.createMATLABStruct | Simulink.BusElement |
Simulink.Bus.objectToCell | Simulink.Bus.save

Introduced before R2006a

 Simulink.Bus.objectToCell

2-447

Simulink.Bus.objectToCell
Convert bus objects to cell array containing bus information

Syntax

busCells = Simulink.Bus.objectToCell(busNames)

Description

busCells = Simulink.Bus.objectToCell(busNames) inputs a cell array of names
of bus objects in the MATLAB base workspace, and returns a cell array of cell arrays
in which each subordinate array contains the bus information defined by one of the bus
objects. The order of the elements in the output array corresponds to the order of the
names in the input array. If busNames is empty, the function converts all bus objects in
the base workspace. The inverse function is Simulink.Bus.cellToObject.

Input Arguments

busNames

A cell array of names of bus objects in the MATLAB base workspace

Output Arguments

busCells

A cell array of cell arrays in which each subordinate array represents a bus object and
contains the following data:

{BusName, HeaderFile,

Description, DataScope,

Alignment, Elements}

The Elements field is an array containing the following data for each element:

2 Functions — Alphabetical List

2-448

{ElementName, Dimensions,

DataType, SampleTime,

Complexity, SamplingMode,

DimensionsMode, Min,

Max, DocUnits,

Description}

More About
• “Composite Signals”

See Also
Bus Assignment | Bus Creator | Bus Selector | Bus to
Vector | Simulink.Bus | Simulink.Bus.cellToObject |
Simulink.Bus.createMATLABStruct | Simulink.Bus.createObject |
Simulink.BusElement | Simulink.Bus.save

Introduced in R2007a

 Simulink.Bus.save

2-449

Simulink.Bus.save
Save bus objects in MATLAB file

Syntax

Simulink.Bus.save(fileName)

Simulink.Bus.save(fileName, format)

Simulink.Bus.save(fileName, format, busNames)

Description

Simulink.Bus.save(fileName) saves all bus objects (instances of Simulink.Bus
class residing in the MATLAB base workspace) in a MATLAB file that contains a cell
array of cell arrays. Each subordinate array represents a bus object and contains the
following data:

{BusName, HeaderFile, Description, DataScope, Alignment, Elements}

The Elements field is an array containing the following data for each element:

{ElementName, Dimensions,

DataType, SampleTime,

Complexity, SamplingMode,

DimensionsMode, Min,

Max, DocUnits,

Description}

Executing a MATLAB file created by Simulink.Bus.save in cell array format calls
Simulink.Bus.cellToObject to recreate the bus objects and returns the new bus
objects in the cell array. To suppress the creation of bus objects, specify the optional
argument 'false' when you execute the MATLAB file.

Simulink.Bus.save(fileName, format) saves the bus objects in a MATLAB file
that contains either a cell array of bus information or the bus objects themselves.

Simulink.Bus.save(fileName, format, busNames) saves only those bus objects
whose names appear in busNames.

2 Functions — Alphabetical List

2-450

Input Arguments

fileName

Name of the file in which to store the bus objects

format

Format used to store the bus objects. The value can be 'cell' or 'object'. Use cell
array format to save the objects in a compact form.

Default: 'cell'

busNames

A cell array containing names of bus objects to be saved. If the cell array is empty or
omitted, this function saves all bus objects in the MATLAB workspace.

Default: { }

More About
• “Composite Signals”

See Also
Bus Assignment | Bus Creator | Bus Selector | Bus to
Vector | Simulink.Bus | Simulink.Bus.cellToObject |
Simulink.Bus.createMATLABStruct | Simulink.Bus.createObject |
Simulink.BusElement | Simulink.Bus.objectToCell

Introduced before R2006a

 Simulink.data.assigninGlobal

2-451

Simulink.data.assigninGlobal
Modify variable values in context of Simulink model

Syntax

Simulink.data.assigninGlobal(modelName,varName,varValue)

Description

Simulink.data.assigninGlobal(modelName,varName,varValue) assigns the
value varValue to the variable or data dictionary entry varName in the context of the
Simulink model modelName. assigninGlobal creates the variable or data dictionary
entry if it does not already exist. The function operates in the Design Data section of the
data dictionary that is linked to the target model or in the MATLAB base workspace if
the target model is not linked to any data dictionary.

If the target model is linked to a data dictionary that references other dictionaries,
assigninGlobal searches for varName in the entire dictionary hierarchy. If
assigninGlobal does not find a matching entry, the function creates an entry in the
dictionary that is linked to the target model.

Examples

Modify Variable in Model With or Without Data Dictionary

Create a variable myNewVariable with value 237 in the context of the Simulink model
vdp.slx, which is not linked to any data dictionary. myNewVariable appears as a
variable in the MATLAB base workspace.

Simulink.data.assigninGlobal('vdp','myNewVariable',237)

Create a variable myNewEntry with value true in the context of the Simulink model
sldemo_fuelsys_dd_controller.slx, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd. The entry myNewEntry appears in the
Design Data section of the dictionary.

2 Functions — Alphabetical List

2-452

Simulink.data.assigninGlobal('sldemo_fuelsys_dd_controller',...

'myNewEntry',true)

Confirm the addition of myNewEntry to the data dictionary
sldemo_fuelsys_dd_controller.sldd by viewing the dictionary in Model Explorer.

myDictionaryObj = Simulink.data.dictionary.open(...

'sldemo_fuelsys_dd_controller.sldd');

show(myDictionaryObj)

• “Store Data in Dictionary Programmatically”

Input Arguments

modelName — Name of target Simulink model
string

Name of target Simulink model, specified as a string.
Example: ‘myTestModel’

Data Types: char

varName — Name of target variable or data dictionary entry
string

Name of target variable or data dictionary entry, specified as a string.
Example: ‘myTargetVariable’

Data Types: char

varValue — Value to assign to variable or data dictionary entry
MATLAB expression

Value to assign to variable or data dictionary entry, specified as a MATLAB expression
that returns any valid data type or data dictionary content.
Example: 27.5

Example: myBaseWorkspaceVariable

Example: Simulink.Parameter

 Simulink.data.assigninGlobal

2-453

More About

Tips

• assigninGlobal helps you transition Simulink models to using data dictionaries.
You can use the function to assign values to model variables before and after linking a
model to a data dictionary.

• “What Is a Data Dictionary?”
• “Considerations before Migrating to Data Dictionary”

See Also
Simulink.data.dictionary.open | Simulink.data.evalinGlobal |
Simulink.data.existsInGlobal

Introduced in R2015a

2 Functions — Alphabetical List

2-454

Simulink.data.dictionary.cleanupWorkerCache
Restore defaults after parallel simulation with data dictionary

Syntax
Simulink.data.dictionary.cleanupWorkerCache

Description
Simulink.data.dictionary.cleanupWorkerCache restores default settings
after you have finished parallel simulation of a model that is linked to a data
dictionary. Use this function in a spmd block, after you finish parallel simulation
using parfor blocks, to restore default settings that were altered by the
Simulink.data.dictionary.setupWorkerCache function.

During parallel simulation of a model that is linked to a data dictionary, you can allow
each worker to access and modify the data in the dictionary independently of other
workers. The function Simulink.data.dictionary.setupWorkerCache grants
each worker a unique dictionary cache to allow independent access to the data, and the
function Simulink.data.dictionary.cleanupWorkerCache restores cache settings
to their default values.

You must have a Parallel Computing Toolbox™ license to perform parallel simulation
using a parfor block.

Examples

Sweep Data Dictionary Parameter Using Parallel Simulation

To use parallel simulation to sweep a model parameter that is defined in a data
dictionary, use this code as a template. Change the names and values of the model, data
dictionary, and swept parameter to match your application.

You cannot use this code for parallel Rapid Accelerator Mode or Accelerator Mode
simulation. For an example of parallel simulation using Rapid Accelerator Mode, see
“Parallel Simulations Using Parfor: Parameter Sweep in Rapid Accelerator Mode”.

 Simulink.data.dictionary.cleanupWorkerCache

2-455

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary

model = 'myParamSweepMdl';

dd = 'myParamSweepDD.sldd';

% Define parameter sweeping values

ParamValues = [20 35 49 78 106 123 148 192 205 225];

% Grant each worker in the parallel pool an independent data dictionary

% so they can use the data without interference

spmd

 Simulink.data.dictionary.setupWorkerCache

end

% Determine the number of times to simulate

numberOfSims = length(ParamValues);

% Prepare a nondistributed array to contain simulation output

simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims

 % Create objects to interact with dictionary data

 % You must create these objects for every iteration of the parfor-loop

 dictObj = Simulink.data.dictionary.open(dd);

 sectObj = getSection(dictObj,'Design Data');

 entryObj = getEntry(sectObj,'SpeedVect');

 % Suppose SpeedVect is a Simulink.Parameter stored in the data dictionary

 % Modify the value of the Simulink.Parameter stored in the data dictionary

 temp = getValue(entryObj);

 temp.Value = ParamValues(index);

 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array

 simOut{index} = sim(model);

 % Each worker must discard all changes to the data dictionary and

 % close the dictionary when finished with an interation of the parfor-loop

 discardChanges(dictObj);

 close(dictObj);

end

% Restore default settings that were changed by the function

2 Functions — Alphabetical List

2-456

% Simulink.data.dictionary.setupWorkerCache

spmd

 Simulink.data.dictionary.cleanupWorkerCache

end

More About
• “What Is a Data Dictionary?”
• “Parallel Pools”

See Also
parfor | Simulink.data.dictionary.setupWorkerCache | spmd

Introduced in R2015a

 Simulink.data.dictionary.create

2-457

Simulink.data.dictionary.create

Create new data dictionary and create Simulink.data.Dictionary object

Syntax

dictionaryObj = Simulink.data.dictionary.create(dictionaryFile)

Description

dictionaryObj = Simulink.data.dictionary.create(dictionaryFile)

creates a data dictionary file in your current working folder or in a file path you can
specify in dictionaryFile. The function returns a Simulink.data.Dictionary object
representing the new data dictionary.

Examples

Create New Data Dictionary and Data Dictionary Object

Create a data dictionary myNewDictionary.sldd in your current working folder and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the
object to the variable myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd')

myDictionaryObj =

 data dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 0

 NumberOfEntries: 0

• “Store Data in Dictionary Programmatically”

2 Functions — Alphabetical List

2-458

Input Arguments

dictionaryFile — Name of new data dictionary
string

Name of new data dictionary, specified as a string containing the file name
and, optionally, path of the dictionary to create. If you do not specify a path,
Simulink.data.dictionary.create creates the new data dictionary file in your
working MATLAB folder. Simulink.data.dictionary.create also supports file
paths specified relative to your working folder.
Example: ‘myDictionary.sldd’

Example: ‘C:\Users\jsmith\myDictionary.sldd’

Example: ‘..\myOtherDictionary.sldd’

Data Types: char

Output Arguments

dictionaryObj — Newly created data dictionary
Simulink.data.Dictionary object

Newly created data dictionary, returned as a Simulink.data.Dictionary object.

Alternatives

You can use the Simulink Editor to create a data dictionary and link it to a model. See
“Migrate Single Model to Use Dictionary” for more information.

More About
• “What Is a Data Dictionary?”

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.open

 Simulink.data.dictionary.create

2-459

Introduced in R2015a

2 Functions — Alphabetical List

2-460

Simulink.data.dictionary.open

Open data dictionary for editing

Syntax

dictionaryObj = Simulink.data.dictionary.open(dictionaryFile)

Description

dictionaryObj = Simulink.data.dictionary.open(dictionaryFile) opens
the specified data dictionary and returns a Simulink.data.Dictionary object representing
an existing data dictionary identified by its file name and, optionally, file path with
dictionaryFile.

Make sure any dictionaries referenced by the target dictionary are on the MATLAB path.

Examples

Open Existing Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}

 HasUnsavedChanges: 0

 NumberOfEntries: 4

• “Store Data in Dictionary Programmatically”

 Simulink.data.dictionary.open

2-461

Input Arguments

dictionaryFile — Target data dictionary
string

Target data dictionary, specified as a string containing the file name and, optionally,
path of the dictionary. If you do not specify a path, Simulink.data.dictionary.open
searches the MATLAB path for the specified file. Simulink.data.dictionary.open
also supports paths specified relative to the MATLAB working folder.
Example: ‘myDictionary_ex_API.sldd’

Example: ‘C:\Users\jsmith\myDictionary_ex_API.sldd’

Example: ‘..\myOtherDictionary.sldd’

Data Types: char

See Also
show | Simulink.data.Dictionary | Simulink.data.dictionary.create

Introduced in R2015a

2 Functions — Alphabetical List

2-462

Simulink.data.dictionary.setupWorkerCache
Enable parallel simulation with data dictionary

Syntax

Simulink.data.dictionary.setupWorkerCache

Description

Simulink.data.dictionary.setupWorkerCache prepares the workers in a parallel
pool for simulating a model that is linked to a data dictionary. Use this function in a
spmd block, prior to starting a parfor block, to provide the workers in a parallel pool a
way to safely interact with a single data dictionary.

During parallel simulation of a model that is linked to a data dictionary, you can allow
each worker to access and modify the data in the dictionary independently of other
workers. Simulink.data.dictionary.setupWorkerCache temporarily provides each
worker in the pool with its own data dictionary cache, allowing the workers to use the
data in the dictionary without permanently changing it.

You must have a Parallel Computing Toolbox license to perform parallel simulation
using a parfor block.

Examples

Sweep Data Dictionary Parameter Using Parallel Simulation

To use parallel simulation to sweep a model parameter that is defined in a data
dictionary, use this code as a template. Change the names and values of the model, data
dictionary, and swept parameter to match your application.

You cannot use this code for parallel Rapid Accelerator Mode or Accelerator Mode
simulation. For an example of parallel simulation using Rapid Accelerator Mode, see
“Parallel Simulations Using Parfor: Parameter Sweep in Rapid Accelerator Mode”.

 Simulink.data.dictionary.setupWorkerCache

2-463

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary

model = 'myParamSweepMdl';

dd = 'myParamSweepDD.sldd';

% Define parameter sweeping values

ParamValues = [20 35 49 78 106 123 148 192 205 225];

% Grant each worker in the parallel pool an independent data dictionary

% so they can use the data without interference

spmd

 Simulink.data.dictionary.setupWorkerCache

end

% Determine the number of times to simulate

numberOfSims = length(ParamValues);

% Prepare a nondistributed array to contain simulation output

simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims

 % Create objects to interact with dictionary data

 % You must create these objects for every iteration of the parfor-loop

 dictObj = Simulink.data.dictionary.open(dd);

 sectObj = getSection(dictObj,'Design Data');

 entryObj = getEntry(sectObj,'SpeedVect');

 % Suppose SpeedVect is a Simulink.Parameter stored in the data dictionary

 % Modify the value of the Simulink.Parameter stored in the data dictionary

 temp = getValue(entryObj);

 temp.Value = ParamValues(index);

 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array

 simOut{index} = sim(model);

 % Each worker must discard all changes to the data dictionary and

 % close the dictionary when finished with an interation of the parfor-loop

 discardChanges(dictObj);

 close(dictObj);

end

% Restore default settings that were changed by the function

2 Functions — Alphabetical List

2-464

% Simulink.data.dictionary.setupWorkerCache

spmd

 Simulink.data.dictionary.cleanupWorkerCache

end

More About
• “What Is a Data Dictionary?”
• “Parallel Pools”

See Also
parfor | Simulink.data.dictionary.cleanupWorkerCache | spmd

Introduced in R2015a

 Simulink.data.evalinGlobal

2-465

Simulink.data.evalinGlobal
Evaluate MATLAB expression in context of Simulink model

Syntax

returnValue = Simulink.data.evalinGlobal(modelName,expression)

Description

returnValue = Simulink.data.evalinGlobal(modelName,expression)

evaluates the MATLAB expression expression in the context of the Simulink model
modelName and returns the values returned by expression. evalinGlobal evaluates
expression in the Design Data section of the data dictionary that is linked to the target
model or in the MATLAB base workspace if the target model is not linked to any data
dictionary.

Examples

Evaluate MATLAB Expression in Model With or Without Data Dictionary

Evaluate the MATLAB expression myNewVariable = 237; in the context of the model
vdp, which is not linked to any data dictionary. myNewVariable appears as a variable in
the MATLAB base workspace.

Simulink.data.evalinGlobal('vdp','myNewVariable = 237;')

Evaluate the MATLAB expression myNewEntry = true; in the context of the
model sldemo_fuelsys_dd_controller, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd. myNewEntry appears as an entry in the
Design Data section of the dictionary.

Simulink.data.evalinGlobal('sldemo_fuelsys_dd_controller',...

'myNewEntry = true;')

Confirm the creation of the entry myNewEntry in the data dictionary
sldemo_fuelsys_dd_controller.sldd by viewing the dictionary in Model Explorer.

2 Functions — Alphabetical List

2-466

myDictionaryObj = Simulink.data.dictionary.open(...

'sldemo_fuelsys_dd_controller.sldd');

show(myDictionaryObj)

• “Store Data in Dictionary Programmatically”

Input Arguments

modelName — Name of target Simulink model
string

Name of target Simulink model, specified as a string.
Example: ‘myTestModel’

Data Types: char

expression — MATLAB expression to evaluate
string

MATLAB expression to evaluate, specified as a string.
Example: ‘a = 5.3’

Example: ‘whos’

Example: 'CurrentSpeed.Value = 290.73'

Data Types: char

Output Arguments

returnValue — Value returned by specified expression
valid entry or variable value

Value returned by the specified MATLAB expression.

 Simulink.data.evalinGlobal

2-467

More About

Tips

• evalinGlobal helps you transition Simulink models to the use of data dictionaries.
You can use the function to manipulate model variables before and after linking a
model to a data dictionary.

See Also
evalin | Simulink.data.assigninGlobal | Simulink.data.existsInGlobal

Introduced in R2015a

2 Functions — Alphabetical List

2-468

Simulink.data.existsInGlobal
Check existence of variable in context of Simulink model

Syntax

varExists = Simulink.data.existsInGlobal(modelName,varName)

Description

varExists = Simulink.data.existsInGlobal(modelName,varName) returns
an indication of the existence of a variable or data dictionary entry varName in the
context of the Simulink model modelName. Simulink.data.existsInGlobal searches
the Design Data section of the data dictionary that is linked to the target model or the
MATLAB base workspace if the target model is not linked to any data dictionary.

Examples

Determine Existence of Variable in Model With or Without Data Dictionary

Determine the existence of a variable PressVect in the context of the Simulink model
vdp.slx, which is not linked to any data dictionary.

Simulink.data.existsInGlobal('vdp','PressVect')

ans =

 0

Because vdp.slx is not linked to any data dictionary, existsInGlobal searches only
in the MATLAB base workspace for PressVect.

Determine the existence of a variable PressVect in the context of the Simulink model
sldemo_fuelsys_dd_controller.slx, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd.

Simulink.data.existsInGlobal('sldemo_fuelsys_dd_controller','PressVect')

ans =

 Simulink.data.existsInGlobal

2-469

 1

Because sldemo_fuelsys_dd_controller.slx is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd , existsInGlobal searches for PressVect
only in the Design Data section of the dictionary.

• “Store Data in Dictionary Programmatically”

Input Arguments

modelName — Name of target Simulink model
string

Name of target Simulink model, specified as a string.
Example: ‘myTestModel’

Data Types: char

varName — Name of target variable or data dictionary entry
string

Name of target variable or data dictionary entry, specified as a string.
Example: ‘myTargetVariable’

Data Types: char

Output Arguments

varExists — Indication of existence of target variable or data dictionary entry
1 | 0

Indication of existence of target variable or data dictionary entry, returned as 1 to
indicate existence or 0 to indicate absence.

Alternatives
You can use Model Explorer to search a data dictionary or any workspace for entries or
variables.

2 Functions — Alphabetical List

2-470

More About

Tips

• existsInGlobal helps you transition Simulink models to the use of data
dictionaries. You can use the function to find model variables before and after linking
a model to a data dictionary.

See Also
exist | Simulink.data.assigninGlobal | Simulink.data.evalinGlobal

Introduced in R2015a

 Simulink.data.getEnumTypeInfo

2-471

Simulink.data.getEnumTypeInfo
Get information about enumerated data type

Syntax

information = Simulink.data.getEnumTypeInfo(enumTypeName,

infoRequest)

Description

information = Simulink.data.getEnumTypeInfo(enumTypeName,

infoRequest) returns information about an enumerated data type enumTypeName.

Use this function only to return information about an enumerated data type. To
customize an enumerated data type, for example, by specifying a default enumeration
member or by controlling the scope of the type definition in generated code, see
“Customize Simulink Enumeration”.

Examples

Return Default Value of Enumerated Data Type

Get the default enumeration member of an enumerated data type LEDcolor. Suppose
LEDcolor defines two enumeration members, GREEN and RED, and uses GREEN as the
default member.

Simulink.data.getEnumTypeInfo('LEDcolor','DefaultValue')

ans =

 GREEN

Get Scope of Enumerated Data Type Definition in Generated Code

For an enumerated data type LEDcolor, find out if generated code exports or imports
the definition of the type to or from a header file.

2 Functions — Alphabetical List

2-472

Simulink.data.getEnumTypeInfo('LEDcolor','DataScope')

Simulink.data.getEnumTypeInfo('LEDcolor','HeaderFile')

ans =

Auto

ans =

 ''

Because DataScope is 'Auto' and HeaderFile is empty, generated code defines the
enumerated data type LEDcolor in the header file model_types.h where model is the
name of the model used to generate code.

• “Customize Simulink Enumeration”

Input Arguments

enumTypeName — Name of target enumerated data type
string

Name of the target enumerated data type, specified as a string.
Example: 'myFirstEnumType'

Data Types: char

infoRequest — Information to return
valid string option

Information to return, specified as one of the string options in the table.

Specified value Information returned Example return value

'DefaultValue' The default enumeration member, returned
as an instance of the enumerated data type.

enumMember1

'Description' The custom description of this data type,
returned as a string. Returns an empty
string if a description was not specified for
the type.

'My first enum

type.'

 Simulink.data.getEnumTypeInfo

2-473

Specified value Information returned Example return value

'HeaderFile' The name of the custom header file that
defines the data type in generated code,
returned as a string. Returns an empty
string if a header file was not specified for
the type.

'myEnumType.h'

'DataScope' Indication whether generated code imports
or exports the definition of the data
type. A return value of 'Auto' indicates
generated code defines the type in the
header file model_types.h or imports the
definition from the header file identified by
HeaderFile. A return value of 'Exported'
or 'Imported' indicates generated code
exports or imports the definition to or from
the header file identified by HeaderFile.

'Exported'

'StorageType' The integer data type used by generated
code to store the numeric values of the
enumeration members, returned as a string.
Returns 'int' if you did not specify a
storage type for the enumerated type, in
which case generated code uses the native
integer type of the hardware target.

'int32'

'AddClassNameToEnumNames' Indication whether generated code prefixes
the names of enumeration members with the
name of the data type. Returned as true or
false.

true

More About
• “Simulink Enumerations”

See Also
Simulink.defineIntEnumType

Introduced in R2014b

2 Functions — Alphabetical List

2-474

Simulink.defineIntEnumType

Define enumerated data type

Syntax

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues)

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'Description', ClassDesc)

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'DefaultValue', DefValue)

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'DataScope', ScopeSelection)

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'HeaderFile', FileName)

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'AddClassNameToEnumNames', Flag)

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'StorageType', DataType)

Description

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues)

defines an enumeration named ClassName with enumeration values specified with
CellOfEnums and underlying numeric values specified by IntValues.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'Description', ClassDesc) defines the enumeration with a description (string).

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'DefaultValue', DefValue) defines a default value for the enumeration, which is
one of the strings you specify for CellOfEnums.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'DataScope', ScopeSelection) specifies whether the data type definition should be
imported from, or exported to, a header file during code generation.

 Simulink.defineIntEnumType

2-475

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'HeaderFile', FileName) specifies the name of a header file containing the
enumeration class definition for use in code generated from a model.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'AddClassNameToEnumNames', Flag) specifies whether the code generator applies
the class name as a prefix to the enumeration values that you specify for CellOfEnums.
For Flag, specify true or false. For example, if you specify true, the code generator
would use BasicColors.Red instead of Red to represent an enumerated value.

Simulink.defineIntEnumType(ClassName, CellOfEnums, IntValues,

'StorageType', DataType) specifies the data type used to store the enumerations’
underlying integer values in code generated from a model.

Input Arguments
ClassName

The name of the enumerated data type.

CellOfEnums

A cell array of strings that defines the enumerations for the data type.

IntValues

An array of numeric values that correspond to enumerations of the data type.

'Description', ClassDesc

Specifies a string that describes the enumeration data type.

'DefaultValue', DefValue

Specifies the default enumeration value.

'HeaderFile', FileName

Specifies a string naming the header file that is to contain the data type definition.

'DataScope', 'Auto' | 'Exported' | 'Imported'

Specifies whether the data type definition should be imported from, or exported to, a
header file during code generation.

2 Functions — Alphabetical List

2-476

Value Action

Auto (default) If no value is specified for Headerfile,
export the type definition to
model_types.h, where model is the
model name.

If a value is specified for Headerfile,
import the data type definition from the
specified header file.

Exported Export the data type definition to a header
file.

If no value is specified for Headerfile, the
header file name defaults to type.h, where
type is the data type name.

Imported Import the data type definition from a
header file.

If no value is specified for Headerfile, the
header file name defaults to type.h, where
type is the data type name.

'AddClassNameToEnumNames', Flag

A logical flag that specifies whether code generator applies the class name as a prefix to
the enumerations.

'StorageType', DataType

Specifies a string that identifies the data type used to store the enumerations’ underlying
integer values in generated code. The following data types are supported: ‘int8’,
‘int16’, ‘int32’, ‘uint8’, or ‘uint16’.

Examples

Assume an external data dictionary includes the following enumeration:

BasicColors.Red(0), BasicColors.Yellow(1), BasicColors.Blue(2)

 Simulink.defineIntEnumType

2-477

Import the enumeration class definition into the MATLAB workspace while specifying
int16 as the underlying integer data type for generated code:

Simulink.defineIntEnumType('BasicColors', ...

 {'Red', 'Yellow', 'Blue'}, ...

 [0;1;2], ...

 'Description', 'Basic colors', ...

 'DefaultValue', 'Blue', ...

 'HeaderFile', 'mybasiccolors.h', ...

 'DataScope', 'Exported', ...

 'AddClassNameToEnumNames', true, ...

 'StorageType', 'int16');

More About
• “Import Enumerations Defined Externally to MATLAB”
• “Define Simulink Enumerations”

See Also
enumeration

Introduced in R2010b

2 Functions — Alphabetical List

2-478

Simulink.findVars
Find variables in models and blocks

Syntax

[variables] = Simulink.findVars(context)

[variables] = Simulink.findVars(context,variablefilter)

[variables] = Simulink.findVars(___ ,Name,Value)

Description

[variables] = Simulink.findVars(context) finds and returns variables that
are used in the blocks and models specified by context, including subsystems and
referenced models. The function returns an empty vector if context does not use any
variables.

[variables] = Simulink.findVars(context,variablefilter) finds only the
variables or enumerated types that are specified by variablefilter.

[variables] = Simulink.findVars(___ ,Name,Value) finds variables with
additional options specified by one or more Name,Value pair arguments. For example,
you can search for enumerated data types that are used in context, in addition to
variables.

Examples

Variables in Use in a Model

Find variables used by MyModel.

variables = Simulink.findVars('MyModel');

Specific Variable in Use in a Model

Find all uses of the base workspace variable k by MyModel. Use the cached results to
avoid compiling MyModel.

 Simulink.findVars

2-479

variables = Simulink.findVars('MyModel','Name','k',

'SearchMethod','cached','SourceType','base workspace');

Regular Expression Matching

Find all uses of a variable whose name matches the regular expression ^trans.

variables = Simulink.findVars('MyModel','Regexp','on',

'Name','^trans');

Variables Common to Two Models

Given two models, find the variables used by the first model, the second, and both

model1Vars = Simulink.findVars('model1');

model2Vars = Simulink.findVars('model2');

commonVars = intersect(model1vars,model2Vars);

Variables Not Used in a Model

Find the variables that are defined in the model workspace of MyModel but that are not
used by the model.

unusedVars = Simulink.findVars('MyModel','FindUsedVars',false,

'SourceType','model workspace');

Specific Variable Not Used in a Model

Determine if the base workspace variable k is not used by MyModel.

varObj = Simulink.VariableUsage('k','base workspace');

unusedVar = Simulink.findVars('MyModel',varObj,

'FindUsedVars',false);

Variables Used by a Block

Find the variables that are used by the block Gain1 in MyModel.

variables = Simulink.findVars('MyModel',

'Users','MyModel/Gain1');

Variables Used in a Model Reference Hierarchy

Find the variables that are used in a model reference hierarchy. Begin the search with
the model MyNestedModel, and search the entire hierarchy below MyNestedModel.

2 Functions — Alphabetical List

2-480

variables = Simulink.findVars('MyNestedModel','SearchReferencedModels','on');

Variables and Enumerated Types Used in a Model

Find variables and enumerated types that are used in MyModel.

varsAndEnumTypes = Simulink.findVars('MyModel','IncludeEnumTypes',true);

• “Search Using Model Explorer”

Input Arguments

context — Models and blocks to search
string | cell array of strings

Models and blocks to search, specified as a string or a cell array of strings. You can
specify context in one of the following ways:

• The name of a model. For example, ('vdp') specifies the model vdp.slx.
• The name or path of a block or masked block. For example, ('vdp/Gain1') specifies a

block named Gain1 at the root level of the model vdp.slx.
• A cell array of model or block names.

Data Types: char | cell

variablefilter — Specific variables to find
array of Simulink.VariableUsage objects

Specific variables to find, specified as an array of Simulink.VariableUsage objects.
Each Simulink.VariableUsage object identifies a variable to find.

Example:

vars = [Simulink.VariableUsage('k','base workspace')

 Simulink.VariableUsage('myParam','base workspace')];

variablefilter = Simulink.findVars('MyModel',vars)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 Simulink.findVars

2-481

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘FindUsedVars’,false

'FindUsedVars' — Find variables that are used or not used
true (default) | false

Flag to find variables that are explicitly used or not used, specified as the comma-
separated pair consisting of 'FindUsedVars' and true or false. If you specify
FindUsedVars as false, the function finds variables that are not used in context but
that are defined in the workspace specified by SourceType.

Example: 'FindUsedVars',false

'IncludeEnumTypes' — Find enumerated types that are used
false (default) | true

Flag to find enumerated data types that are used, specified as the comma-separated pair
consisting of 'IncludeEnumTypes' and true or false. The function finds enumerated
types that are used explicitly in context as well as types that define variables that are
used in context.

If you specify SourceType as ‘base workspace’, ‘model workspace’, or ‘mask
workspace’, the function does not report enumerated types because those sources
cannot define enumerated types.

You cannot find unused enumerated types by specifying FindUsedVars as false.

Example: 'IncludeEnumTypes',true

'RegExp' — Enable regular expression matching
'off' (default) | 'on'

Flag to enable regular expression matching for input arguments, specified as the comma-
separated pair consisting of 'RegExp' and 'on'. You can match only input arguments
that have string values.
Example: 'RegExp','on'

'SearchMethod' — Compile status
'compiled' (default) | 'cached'

Compile status, specified as the comma-separated pair consisting of 'SearchMethod'
and one of these values:

2 Functions — Alphabetical List

2-482

• 'compiled' — Return up-to-date results by compiling every model in the search
context before search.

• 'cached' — Return quicker results by using results cached during the previous
compile.

Example: 'SearchMethod','compiled'

'SearchReferencedModels' — Enable search in referenced models
'off' (default) | 'on'

Flag to enable search in referenced models, specified as the comma-separated pair
consisting of 'SearchReferencedModels' and on.

Example: 'SearchReferencedModels','on'

'Name' — Name of a variable or enumerated type to search for
string

Name of a variable or enumerated data type to search for, specified as the comma-
separated pair consisting of 'Name' and a string.

Example: 'Name','trans'

Data Types: char

'SourceType' — Workspace or source defining the variables or enumerated types
string

Workspace or source defining the variables, specified as the comma-separated pair of
'SourceType' and one of these options:

• 'base workspace'

• 'model workspace'

• 'mask workspace'

• 'data dictionary'

The function filters results for variables that are defined in the specified source.
Example: 'SourceType','base workspace'

If you search for enumerated data types by specifying ‘IncludeEnumTypes’ as true,
'SourceType' represents the way an enumerated type is defined. You can specify one of
these options:

 Simulink.findVars

2-483

• 'MATLAB file'

• 'dynamic class'

• 'data dictionary'

The function filters results for enumerated types that are defined in the specified source.
Example: 'SourceType','MATLAB file'

If you do not specify SourceType, the function does not filter results by source.

'Users' — Name of block to search for variables
string

Name of specific block to search for variables, specified as the comma-separated pair
consisting of 'Users' and a string.

To search a set of specific blocks, enable regular expression matching by specifying
RegExp as 'on' and use regular expressions in the string. For example, you can specify
'Users','MyModel/Gain* to search all blocks in MyModel whose names begin with
Gain.

Example: 'Users','MyModel/Gain1'

Example: 'Users','MyModel/mySubsystem/Gain2'

Example: 'Users','MyModel/Gain*

Limitations

Simulink.findVars does not work with these constructs:

• MATLAB code in scripts and initialization and callback functions
• Libraries and blocks in libraries
• Variables in MATLAB Function blocks, except for input arguments

However, Simulink.findVars can find enumerated types anywhere they are used
in MATLAB Function blocks.

• Calls directly to MATLAB from the Stateflow action language
• S-functions that use data type variables registered using ssRegisterDataType

To make the variables searchable, use ssRegisterTypeFromNamedObject instead.

2 Functions — Alphabetical List

2-484

• Variables used by inactive variant subsystems
• Variables referenced by machine-parented data in Stateflow

More About
• “Model Exploration”
• “Variables”

See Also
Simulink.VariableUsage | find_system | intersect

Introduced in R2010a

 Simulink.getFileChecksum

2-485

Simulink.getFileChecksum
Checksum of file

Syntax

checksum = Simulink.getFileChecksum(filename)

Description

checksum = Simulink.getFileChecksum(filename) returns the checksum of the
specified file, using the MD5 checksum algorithm. Use the checksum to see if the file has
changed compared to a previous checksum. You can use checksums as part of an audit
trail.

Use Simulink.getFileChecksum to get a checksum for any file. If the file
contents do not change from one checksum to the next, the checksum from
Simulink.getFileChecksum stays the same. Otherwise, the checksum is different
with each change to the file contents.

For functional information on a model, use Simulink.BlockDiagram.getChecksum
instead. Simulink.BlockDiagram.getChecksum looks at the functional
aspect of the model. If the functional aspect doesn't change, then
Simulink.BlockDiagram.getChecksum returns the same checksum.

For example, if you moved a block, the file contents are different (measured by
Simulink.getFileChecksum) but the function of the model is unchanged (measured by
Simulink.BlockDiagram.getChecksum).

Examples

Get Checksum of a File

Use fullfile to specify a full path to a file and get the checksum.

filechecksum = Simulink.getFileChecksum(fullfile(matlabroot,'toolbox',...

2 Functions — Alphabetical List

2-486

'matlab','demos','gatlin.mat'));

Input Arguments

filename — File name to get checksum for
file of any type

File name to get checksum for, with file extension and optional full path. Use fullfile
to specify a full path to a file, or use the form 'C:\Work\filename.mat'.

Example: ’lengthofline.m’

Data Types: char

Output Arguments

checksum — Checksum value
string

Checksum value in a 32-character string.

See Also
Simulink.BlockDiagram.getChecksum | Simulink.SubSystem.getChecksum

Introduced in R2014b

 Simulink.ModelDataLogs.convertToDataset

2-487

Simulink.ModelDataLogs.convertToDataset

Convert logging data from Simulink.ModelDataLogs format to
Simulink.SimulationData.Dataset format

Syntax

convertedDataset =

sourceModelDataLogsObject.convertToDataset(convertedDatasetName)

Description

Note: The ModelDataLogs format is supported for backward compatibility. The
ModelDataLogs format will be removed in a future release. For an existing model that
uses the ModelDataLogs format, you should migrate the model to use Dataset format.
For details, see “Migrate from ModelDataLogs to Dataset Format”.

For new models, use the Dataset logging format, which stores logged data in
Simulink.SimulationData.Dataset objects. You can convert signal logging data from
ModelDataLogs to Dataset format. Converting to Dataset format makes it easier
to post-process with other logged data (for example, logged states), which can also use
Dataset format. For more information, see “Convert Logged Data to Dataset Format”.

convertedDataset =

sourceModelDataLogsObject.convertToDataset(convertedDatasetName)

converts the sourceModelDataLogsObject to a
Simulink.SimulationData.Dataset object. The name of the converted object is based
on convertedDatasetName.

The resulting Simulink.SimulationData.Dataset object is a flat list. This list has
one element for each Simulink.Timeseries or Simulink.TsArray object in the
Simulink.ModelDataLogs object.

2 Functions — Alphabetical List

2-488

Limitations

Source of Simulink.ModelDataLogs Logged
Data

Conversion Limitation

Referenced model Loads all ancestors of the referenced model
not previously loaded. If any ancestor
model does not appear on the MATLAB
path, the conversion fails.

If the model has changed, or the model
ancestors have changed, after Simulink
logged the data, the conversion can fail. For
example, adding, deleting, or renaming a
block after logging can cause conversion
failure.

Variant model or subsystem The current active variant must be the
same one that was active when Simulink
logged the data. Otherwise, the conversion
fails.

Frame signal The conversion fails.
Mux block The conversion produces a different

Simulink.SimulationData.Dataset

object as the dataset than Simulink creates
when you simulate the model using the
Dataset format for the logged data.

Stateflow chart Not supported.

Input Arguments

sourceModelDataLogsObject

A Simulink.ModelDataLogs object that you want to convert to a
Simulink.SimulationData.Dataset object.

convertedDatasetName

Name of the dataset that the conversion process creates.

 Simulink.ModelDataLogs.convertToDataset

2-489

Output Arguments

convertedDataset

The Simulink.SimulationDataset object that the
Simulink.ModelDataLogs.convertToDataset function creates.

For details about the converted dataset, see Simulink.SimulationData.Dataset.

Example

If you have signal logging data from a model that has Configuration Parameters >
Data Import/Export > Signal logging format set to ModelDataLogs format, you
should change the logging format to Dataset. However, if you have a MAT-file with
signal logging data that uses the ModelDataLogs format, here is how you can convert
that data to Dataset format. This example assumes that the model that generated the
logging data had theConfiguration Parameters > Data Import/Export > Signal
logging name set to logsout.

1 Load the MAT-file.
2 Convert logsout to a dataset called myModel_dataset. (The elements information

will be different for your data.)

dataset = logsout.convertToDataset('myModel_Dataset')

dataset =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'myModel_Dataset'

 Total Elements: 2

 Elements:

 1: 'x1'

 2: 'x2'

 -Use get or getElement to access elements by index or name.

 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

2 Functions — Alphabetical List

2-490

More About
• “Export Signal Data Using Signal Logging”
• “Specify the Signal Logging Data Format”
• “Convert Logged Data to Dataset Format”

See Also
Simulink.ModelDataLogs | Simulink.SimulationData.Dataset |
Simulink.SimulationData.updateDatasetFormatLogging

Introduced in R2011a

 getBlockSimState

2-491

getBlockSimState

Class: Simulink.SimState.ModelSimState
Package: Simulink.SimState

Access SimState of individual Stateflow Chart, MATLAB Function, or S-function block

Syntax

blockSimState = getBlockSimState(x, 'blockpath')

Description

blockSimState = getBlockSimState(x, 'blockpath') returns the SimState of
the block specified as blockpath. blockpath must be either a Stateflow Chart, MATLAB
Function, or S-function block. For other types of blocks, see the loggedStates
property of the Simulink.SimState.ModelSimState class.

Input Arguments

x

The x argument is a Simulink.SimState.ModelSimState object.

blockpath

The path to the block for which you are requesting the SimState values.

Output Arguments

blockSimState

The SimState of the block specified.

2 Functions — Alphabetical List

2-492

Examples

chartState = getBlockSimState(x, 'mymodel/chart')

See Also
Simulink.SimState.ModelState.setBlockSimState

 setBlockSimState

2-493

setBlockSimState
Class: Simulink.SimState.ModelSimState
Package: Simulink.SimState

Set SimState of individual Stateflow Chart, MATLAB Function, or S-function block

Syntax

setBlockSimState(x,'blockpath', blockSimState)

Description

setBlockSimState(x,'blockpath', blockSimState) sets the SimState of the
block specified as blockpath. blockpath must be either a Stateflow Chart, MATLAB
Function, or S-function block. For other types of blocks, see the loggedStates
property of the Simulink.SimState.ModelSimState class.

Input Arguments

x

The argument x is a Simulink.SimState.ModelSimState object.

blockpath

The path to the block for which you are setting the SimState values

blockSimState

The SimState of the block specified.

Examples

newObj = setBlockSimState(obj, 'mymodel/chart', newChartState);

2 Functions — Alphabetical List

2-494

See Also
Simulink.SimState.ModelState.getBlockSimState

 Simulink.saveVars

2-495

Simulink.saveVars
Save workspace variables and their values in MATLAB code format

Syntax

Note: Simulink.saveVars is not recommended. Use
matlab.io.saveVariablesToScript instead.

Simulink.saveVars(filename)

Simulink.saveVars(filename, VarNames)

Simulink.saveVars(filename, '-regexp', RegExps)

Simulink.saveVars(filename, Specifications, UpdateOption)

Simulink.saveVars(filename, Specifications, Configuration)

Simulink.saveVars(filename, Specifications, MatlabVer)

[r1, r2] = Simulink.saveVars(filename, Specifications)

Description

Simulink.saveVars(filename) saves all variables in the current workspace for
which MATLAB code can be generated to a MATLAB file named filename.m. If
MATLAB code cannot be generated for a variable, the variable is saved into a companion
MAT-file named filename.mat, and a warning is generated. If either file already exists,
it is overwritten. The filename cannot match the name of any variable in the current
workspace, and can optionally include the suffix .m. Using Simulink.saveVars has no
effect on the contents of any workspace.

Executing the MATLAB file restores the variables saved in the file to the current
workspace. If a companion MAT-file exists, code in the MATLAB file loads the MAT-file,
restoring its variables also. When both a MATLAB file and a MAT-file exist, do not load
the MATLAB file unless the MAT file is available, or an error will occur. Do not load a
MAT-file directly, or incomplete data restoration will result. No warning occurs if loading
a file overwrites any existing variables.

You can edit a MATLAB file that Simulink.saveVars creates. You can insert
comments between or within the MATLAB code sections for saved variables. However,

2 Functions — Alphabetical List

2-496

if you later use Simulink.saveVars to update or append to the file, only comments
between MATLAB code sections will be preserved. Internal comments should therefore
be used only in files that you do not expect to change any further.

You must not edit the header section in the MATLAB file, which comprises the first
five comment lines. Simulink does not check that a manually edited MATLAB file is
syntactically correct. MathWorks recommends not editing any MATLAB code in the file.
You cannot edit a MAT-file and should never attempt to do so.

Simulink.saveVars(filename, VarNames) saves only the variables specified in
VarNames, which is a comma-separated list of variable names. You can use the wildcard
character * to save all variables that match a pattern. The * matches one or more
characters, including non-alphanumeric characters.

Simulink.saveVars(filename, '-regexp', RegExps) saves only variables whose
names match one of the regular expressions in RegExps, which is a comma-separated list
of expressions. See “Regular Expressions” for more information. A call to the function can
specify both VarNames and -regexps RegExps, in that order and comma-separated.

Simulink.saveVars(filename, Specifications, UpdateOption) saves the
variables described by Specifications (which represents the variable specifications
in any of the above syntaxes) as directed by UpdateOption, which can be any one of the
following:

• '-create' — Create a new MATLAB file (and MAT-file if needed) as directed by the
Specifications. If either file already exists, it is overwritten. This is the default
behavior.

• '-update' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by changing only variables that match the Specifications and already
exist in any files. The order of the variables in files is preserved. Comments within
MATLAB code sections are not preserved.

• '-append' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by:

• Updating variables that match the Specifications and already exist in the
file or files, preserving the existing order in the file or files. Comments within
MATLAB code sections are not preserved.

• Appending variables that match the Specifications and do not exist in the file
or files by appending the variables to the file or files. These new sections initially
have no comments.

 Simulink.saveVars

2-497

Simulink.saveVars(filename, Specifications, Configuration) saves the
variables described by Specifications (which represents the variable specifications
in any of the above syntaxes) according to the specified Configuration. The
Configuration can contain any or all of the following options, in any order, separated
by commas if more than one appears:

• '-maxnumel' MaxNum — Limits the number of elements saved for an array to
MaxNum, which must be an integer between 1 and 10000. For a character array, the
upper limit is set to twice the value that you specify with MaxNum. If an array is larger
than MaxNum, the whole array appears in the MAT-file rather than the MATLAB file,
generating a warning. Default: 1000

• '-maxlevels' MaxLevels limits the number of levels of hierarchy saved for a
structure or cell array to MaxLevels, which must be an integer between 1 and 200. If
a structure or cell array is deeper than MaxLevels, the whole entity appears in the
MAT-file rather than the MATLAB file, generating a warning. Default: 20

• '-textwidth' TextWidth sets the text wrap width in the MATLAB file to
TextWidth, which must be an integer between 32 and 256. Default: 76

• '-2dslice' — Sets two dimensions for 2-D slices that represent n-D (where n is
greater than 2) char, logic, or numeric array data. Simulink.saveVars uses the first
two dimensions of the n-D array to specify the size of the 2-D slice, unless you supply
two positive integer arguments after the -2dslice option. If you specify two integer
arguments:

• The two integers must be positive.
• The two integers must be less than or equal to the number of dimensions of the n-

D array.
• The second integer must be greater than the first.

Simulink.saveVars(filename, Specifications, MatlabVer) acts as described
by Specifications (which represents the specifications after filename in any of
the above syntaxes) saving any MAT-file that it creates in the format required by the
MATLAB version specified by MatlabVer. Possible values:

• '-v7.3' — 7.3 or later
• '-v7.0' — 7.0 or later
• '-v6' — Version 6 or later
• '-v4' — Any MATLAB version

2 Functions — Alphabetical List

2-498

[r1, r2] = Simulink.saveVars(filename, Specifications) acts as described
by Specifications (which represents the specifications after filename in any of the
above syntaxes) and reports what variables it has saved:

• r1 — A cell array of strings. The strings name all variables (if any) that were saved to
a MATLAB file.

• r2 — A cell array of strings. The strings name all variables (if any) that were saved to
a MAT-file.

Input Arguments

filename

The name of the file or names of the files that the function creates or updates. The
filename cannot match the name of any variable in the current workspace. The
filename can have the suffix .m, but the function ignores it.

VarNames

A variable or sequence of comma-separated variables. The function saves only the
specified variables to the output file. You can use the wildcard character * to save all
variables that match a pattern. The * matches one or more characters, including non-
alphanumeric characters.

'-regexp', RegExps

After the keyword, a regular expression or sequence of comma-separated regular
expressions. The function saves to the output file only those variables whose names
match one of the expressions. See “Regular Expressions” for more information A call
to the function can specify both VarNames and -regexps RegExps, in that order and
comma-separated.

UpdateOption

Any of three keywords that control the action of the function. The possible values are:

• '-create' — Create a new MATLAB file (and MAT-file if needed) as directed by the
Specifications.

• '-update' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by changing only variables that match the Specifications and already
exist in the file or files. The order of the variables in the file or files is preserved.

 Simulink.saveVars

2-499

• '-append' — Update the existing MATLAB file (and MAT-file if needed) specified by
filename by:

• Updating variables that match the Specifications and already exist in the file
or files, preserving the existing order in the file or files.

• Appending variables that match the Specifications and do not exist in the file
or files by appending the variables that match the Specifications to the file or
files.

Default: '-create'

Configuration

Any or all of the following options, in any order, separated by commas if more than one
appears:

• '-maxnumel' MaxNum — Limits the number of elements saved for an array to
MaxNum, which must be an integer between 0 and 10000. If an array is larger than
that, the whole array appears in the MAT-file rather than the MATLAB script file,
generating a warning. Default: 1000

• '-maxlevels' MaxLevels — Limits the number of levels saved for a structure or
cell array to MaxLevels, which must be an integer between 0 and 200. If a structure
or cell array is deeper than that, the whole entity appears in the MAT-file rather than
the MATLAB script file, generating a warning. Default: 20

• '-textwidth' TextWidth — Sets the text wrap width in the MATLAB script file to
TextWidth, which must be an integer between 32 and 256. Default: 76

• '-2dslice' — Sets two dimensions for 2-D slices that represent n-D (where n is
greater than 2) arrays of char, logic, or numeric data. Using the '-2dslice' option
produces more readable generated code that is consistent with how MATLAB displays
n-D array data.

Simulink.saveVars uses the first two dimensions of the n-D array to specify the
size of the 2-D slice, unless you supply two positive integer arguments after the
-2dslice option. If you specify two integer arguments:

• The two integers must be positive.
• The two integers must be less than or equal to the number of dimensions of the n-

D array.
• The second integer must be greater than the first.

2 Functions — Alphabetical List

2-500

Note: You can use the Simulink Preferences pane to change the defaults for the -
maxnumel, -maxlevels, '-2dslice', and -textwidth configuration options. In the
tree view section of the Simulink Preferences pane, select the Variable Export
Defaults pane.

MatlabVer

Specifies the MATLAB version whose syntax will be used by any MAT-file saved by the
function.

• '-v7.3' — 7.3 or later
• '-v7.0' — 7.0 or later
• '-v6' — Version 6 or later
• '-v4' — Any MATLAB version

Default: '-v7.3'

Output Arguments

r1

A list of the names of all variables (if any) that were saved to a MATLAB file.

r2

A list of the names of all variables (if any) that were saved to a MAT-file.

Examples

Define some base workspace variables, then save them all to a new MATLAB file named
MyVars.m using the default values for all input arguments except the filename.

a = 1;

b = 2.5;

c = 'A string';

d = {a, b, c};

Simulink.saveVars('MyVars');

 Simulink.saveVars

2-501

Define additional base workspace variables, then append them to the existing file
MyVars.m without changing the values previously saved in the file:

K = Simulink.Parameter;

MyType = fixdt (1,16,3);

Simulink.saveVars('MyVars', '-append', 'K', 'MyType');

Update the variables V1 and V2 with their values in a MATLAB file, or for any whose
value cannot be converted to MATLAB code, in a MAT-file. The file must already exist.
Any array with more than 10 elements will be saved to a MAT-file that can be loaded on
any version of MATLAB. The return argument r1 lists the names of any variables saved
to a MATLAB file; r2 lists any saved to a MAT-file.

[r1, r2] = Simulink.saveVars('MyFile', 'V1', 'V2', '-update',

'-maxnumel', 10, '-v4');

Specify a 2-D slice for the output of the my3Dtable 3-D array. Specify that the 2-D slice
expands along the first and third dimensions:

my3DTable = zeros(3, 4, 2, 'single');

Simulink.saveVars('mfile.m', 'my3DTable', '-2dslice', 1, 3);

The generated MATLAB code is:

my3DTable = zeros(3, 4, 2, 'single');

my3DTable (:,1,:) = single (...

 [1 13;

 5 17;

 9 21]);

my3DTable (:,2,:) = single(...

 [2 14;

 6 18;

 10 22]);

my3DTable (:,3,:) = single(...

 [3 15;

 7 19;

 11 23]);

my3DTable (:,4,:) = single(...

 [4 16;

 8 20;

 12 24]);

2 Functions — Alphabetical List

2-502

Limitations

The Simulink.saveVars function:

• Does not preserve shared references.
• Ignores dynamic properties of objects.
• Saves the following to the MAT-file although they could appear in the MATLAB file:

• fi objects.
• Simulink.Timeseries and “Convert Logged Data to Dataset Format” objects.
• Simulink.ConfigSet objects with custom target components.

(Use the Simulink.ConfigSet method saveAs instead.)

More About

Tips

• If you do not need to save variables in an easily-understood form, see the save
function.

• If you need to save only bus objects, use the Simulink.Bus.save function.
• If you need to save only a configuration set, use the Simulink.ConfigSet.saveAs

method.

See Also
save | matlab.io.saveVariablesToScript | Simulink.Bus.save |
Simulink.ConfigSet | Simulink.Bus.save

Introduced in R2010a

 Simulink.sdi.addToRun

2-503

Simulink.sdi.addToRun
Add simulation data to existing run

Syntax

signalIDs = Simulink.sdi.addToRun(runID,'base',varName)

signalIDs = Simulink.sdi.addToRun(runID,'model',modelNameOrHandle)

signalIDs = Simulink.sdi.addToRun(runID,'vars',var)

signalIDs = Simulink.sdi.addToRun(runID,'namevalue',dataName,

dataValue)

Description

signalIDs = Simulink.sdi.addToRun(runID,'base',varName) adds data,
varName, from the base workspace to an existing run, specified by runID.

signalIDs = Simulink.sdi.addToRun(runID,'model',modelNameOrHandle)

adds model simulation data, specified on the Data Import/Export pane of the
Configuration Parameters dialog box, to an existing run, specified by runID. Open the
model before you use this syntax.

signalIDs = Simulink.sdi.addToRun(runID,'vars',var) adds data stored as
variables, var, from the calling workspace to an existing run, specified by runID.

signalIDs = Simulink.sdi.addToRun(runID,'namevalue',dataName,

dataValue) adds simulation data dataValue, to an existing run, specified by runID,
and lets you specify a name, dataName, for the data in the run.

Examples

Add Simulation Data from Base Workspace

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on','SaveFormat', ...

 'StructureWithTime','ReturnWorkspaceOutputs','on');

2 Functions — Alphabetical List

2-504

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('My Run')

% Add simulation output from the base workspace

Simulink.sdi.addToRun(runID,'base',{'simOut'});

% See the results in Simulation Data Inspector

Simulink.sdi.view;

Add Simulation Data As Specified in a Model

% Open the model

sldemo_absbrake;

Click Run to simulate the model.

% Create a Data Inspector run

runID = Simulink.sdi.createRun('My Run');

Simulink.sdi.addToRun(runID,'model','sldemo_absbrake');

% See the results in Simulation Data Inspector

Simulink.sdi.view;

Add Simulation Data by Passing Variables Directly to Simulink.sdi.addToRun

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on','SaveFormat', ...

 'StructureWithTime','ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('My Run');

Simulink.sdi.addToRun(runID,'vars',simOut);

% See the results in Simulation Data Inspector

Simulink.sdi.view;

Add Simulation Data and Name the Data

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('My Run');

 Simulink.sdi.addToRun

2-505

% Name simulation output passed to Simulink.sdi.addToRun

Simulink.sdi.addToRun(runID,'namevalue',{'MyData'},{simOut});

% See the results in Simulation Data Inspector

Simulink.sdi.view;

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runID — Unique run identifier
integer

Unique number identifying a run in the Simulation Data Inspector, specified as an
integer.

varName — Base workspace data
cell array

The names of variables in the base workspace, specified as a cell array of strings.
Example: {'simOut'}

modelNameOrHandle — Model name
string

The model name, or a model handle, specified as a string.
Example: 'sldemo_absbrake'

var — Variable data
variable

Data stored as variables. These variables are assumed to be in the calling workspace.
Example: simOut

dataName — Signal data name
call array

Name of the data in the run, specified as a cell array.
Example: {'MyData'}

2 Functions — Alphabetical List

2-506

dataValue — Signal data values
cell array

Values of the signal data, specified as a cell array.
Example: {simOut}

Output Arguments

signalIDs — Unique signal identifier
array

Unique signal identifier, returned as an array of integers where each element is a unique
ID for a signal added to the run.

See Also
Simulink.sdi.createRun | Simulink.sdi.Run | Simulink.sdi.view

Introduced in R2011b

 Simulink.sdi.changeLoggedToStreamed

2-507

Simulink.sdi.changeLoggedToStreamed
Change signals marked for logging to streaming

Syntax

Simulink.sdi.changeLoggedToStreamed(model)

Simulink.sdi.changeLoggedToStreamed(model,Name,Value)

Description

Simulink.sdi.changeLoggedToStreamed(model) changes signals in model marked
for logging to streaming.

Simulink.sdi.changeLoggedToStreamed(model,Name,Value) uses
additional option specified by one or more Name,Value pair arguments
that are inherited from the method createFromModel of the class
Simulink.SimulationData.ModelLoggingInfo.

Examples

Change Logged Signals to Streamed for Top-Level System

% Open the sldemo_absbrake model

sldemo_absbrake;

% Change the logged signal to streamed signals in the model

Simulink.sdi.changeLoggedToStreamed('sldemo_absbrake');

Change Logged Signals to Streamed Excluding Referenced Models

% Open the model

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_bus_logging')));

% Change the logged signal to streamed signals in the model

Simulink.sdi.changeLoggedToStreamed(gcs,'ReferencedModels','off');

2 Functions — Alphabetical List

2-508

The logged signals in the top model are changed to streaming. The signal logged in the
referenced model ex_mdlref_counter_bus is unchanged.

• “Stream Data to the Simulation Data Inspector”
• “Inspect and Compare Signal Data Programmatically”

Input Arguments

model — Model name
string

Model name or handle, specified as a string.
Example: 'vdp'bdroot

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Variants','ActiveVariants'

'FollowLinks' — Library links
'on' (default) | 'off'

Include library links, specified as the comma-separated pair consisting of
'FollowLinks' and one of these values:

• 'on' — Include logged signals inside libraries.
• 'off' — Skip all libraries.

Example: 'FollowLinks','on'

'LookUnderMasks' — Masks
'all' (default) | 'none' | 'graphical' | 'functional'

Include masks, specified as the comma-separated pair consisting of 'LookUnderMasks'
and one of these values:

 Simulink.sdi.changeLoggedToStreamed

2-509

• 'all' — Include logged signals from all masked subsystems.
• 'none' — Skip all masked subsystems.
• 'graphical' — Include logged signals from masked subsystems with no workspace

and no dialog box.
• 'functional' — Include logged signals from masked subsystems with no dialog box.

Example: 'LookUnderMasks','all'

'Variants' — Variants
'ActiveVariants' (default) | 'AllVariants'

Include variants, specified as the comma-separated pair consisting of 'Variants' and
one of these values:

• 'ActiveVariants' — Include logged signals only in active subsystem and model
reference variants.

• 'AllVariants' — Include logged signals all subsystem and model reference
variants.

Example: 'Variants','ActiveVariants'

'IncludeCommented' — Commented blocks
'off' (default) | 'on'

Include commented blocks, specified as the comma-separated pair consisting of
'IncludeCommented' and one of these values:

• 'on' — Include commented blocks.
• 'off' — Skip commented blocks.

Example: 'IncludeCommented','off'

'ReferencedModels' — Referenced models
'on' (default) | 'off'

Include referenced models, specified as the comma-separated pair consisting of
'ReferencedModels' and one of these values:

• 'on' — Include logged signals from reference models.
• 'off' — Skip all reference models.

2 Functions — Alphabetical List

2-510

Example: 'ReferencedModels','on'

See Also
Simulink.sdi.changeStreamedToLogged |
Simulink.sdi.markSignalForStreaming

Introduced in R2015b

 Simulink.sdi.changeStreamedToLogged

2-511

Simulink.sdi.changeStreamedToLogged
Change signals marked for streaming to logging

Syntax

Simulink.sdi.changeStreamedToLogged(model)

Simulink.sdi.changeStreamedToLogged(model,Name,Value)

Description

Simulink.sdi.changeStreamedToLogged(model) changes signals in model marked
for streaming to logging. If you use this function, any connections to Dashboard blocks
are broken.

Simulink.sdi.changeStreamedToLogged(model,Name,Value) uses additional
option specified by one or more Name,Value pair arguments.

Examples

Change Streamed Signals to Logged for Top-Level System

% Open the sldemo_absbrake model

sldemo_absbrake;

% Change the logged signal to streamed signals in the model

Simulink.sdi.changeLoggedToStreamed('sldemo_absbrake');

• “Stream Data to the Simulation Data Inspector”
• “Inspect and Compare Signal Data Programmatically”

Input Arguments

model — Model name
string

2 Functions — Alphabetical List

2-512

Model name or handle, specified as a string.
Example: 'vdp'bdroot

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Variants','ActiveVariants'

'FollowLinks' — Library links
'on' (default) | 'off'

Include library links, specified as the comma-separated pair consisting of
'FollowLinks' and one of these values:

• 'on' — Include logged signals inside libraries.
• 'off' — Skip all libraries.

Example: 'FollowLinks','on'

'LookUnderMasks' — Masks
'all' (default) | 'none' | 'graphical' | 'functional'

Include masks, specified as the comma-separated pair consisting of 'LookUnderMasks'
and one of these values:

• 'all' — Include logged signals from all masked subsystems.
• 'none' — Skip all masked subsystems.
• 'graphical' — Include logged signals from masked subsystems with no workspace

and no dialog box.
• 'functional' — Include logged signals from masked subsystems with no dialog box.

Example: 'LookUnderMasks','all'

'Variants' — Variants
'ActiveVariants' (default) | 'AllVariants'

 Simulink.sdi.changeStreamedToLogged

2-513

Include variants, specified as the comma-separated pair consisting of 'Variants' and
one of these values:

• 'ActiveVariants' — Include logged signals only in active subsystem and model
reference variants.

• 'AllVariants' — Include logged signals all subsystem and model reference
variants.

Example: 'Variants','ActiveVariants'

'IncludeCommented' — Commented blocks
'off' (default) | 'on'

Include commented blocks, specified as the comma-separated pair consisting of
'IncludeCommented' and one of these values:

• 'on' — Include commented blocks.
• 'off' — Skip commented blocks.

Example: 'IncludeCommented','off'

'ReferencedModels' — Referenced models
'on' (default) | 'off'

Include referenced models, specified as the comma-separated pair consisting of
'ReferencedModels' and one of these values:

• 'on' — Include logged signals from reference models.
• 'off' — Skip all reference models.

Example: 'ReferencedModels','on'

See Also
Simulink.sdi.changeLoggedToStreamed |
Simulink.sdi.markSignalForStreaming

Introduced in R2015b

2 Functions — Alphabetical List

2-514

Simulink.sdi.clear
Clear all data from Simulation Data Inspector

Syntax

Simulink.sdi.clear

Description

Simulink.sdi.clear clears all run data from the Simulation Data Inspector.

Examples

Remove All Runs from the Simulation Data Inspector

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('First Run','base',{'simOut'});

Simulink.sdi.clear;

% The number of runs is now zero.

runCount = Simulink.sdi.getRunCount()

• “Inspect and Compare Signal Data Programmatically”

Introduced in R2011b

 Simulink.sdi.close

2-515

Simulink.sdi.close
Close Simulation Data Inspector

Syntax

Simulink.sdi.close

Simulink.sdi.close(filename)

Description

Simulink.sdi.close closes the Simulation Data Inspector. It returns an error if there
is unsaved data.

Simulink.sdi.close(filename) closes the Simulation Data Inspector and saves the
data in the specified filename.

Examples

Close Simulation Data Inspector and Save Data

Log data, simulate a model, view the results, close the Simulation Data Inspector, and
save the data.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Data Inspector run

runID = Simulink.sdi.createRun('My Run');

Simulink.sdi.addToRun(runID, 'base', {'simOut'});

% See the results in Simulation Data Inspector

Simulink.sdi.view;

% Close the Simulation Data Inspector and save the data

Simulink.sdi.close('savedData.mat');

2 Functions — Alphabetical List

2-516

The data file, savedData.mat, is saved in the current working directory.

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

filename — Filename to save data
string (default)

Filename to save data, specified as a string. The string must fully specify the target file
to save.

Introduced in R2013b

 Simulink.sdi.compareRuns

2-517

Simulink.sdi.compareRuns
Compare signal data between two simulation runs

Syntax
diff = Simulink.sdi.compareRuns(runID1,runID2)

diff = Simulink.sdi.compareRuns(runID1,runID2,alignmentMethods)

Description
diff = Simulink.sdi.compareRuns(runID1,runID2) compares the
matched signals between two simulation runs and returns their differences in a
Simulink.sdi.DiffRunResult object.

diff = Simulink.sdi.compareRuns(runID1,runID2,alignmentMethods)

compares the matched signals between two simulation runs using specified alignment
algorithms and returns their differences in a Simulink.sdi.DiffRunResult object.

Examples
Compare Simulation With Code Generation Results

% Load the model 'slexAircraftExample'

load_system('slexAircraftExample');

% Configure model "slexAircraftExample" for logging

set_param('slexAircraftExample','SolverType','Fixed-Step','SaveOutput','on',...

 'SaveFormat','StructureWithTime','ReturnWorkspaceOutputs','on');

% CD to temporary directory and build

cd(tempdir);

rtwbuild('slexAircraftExample');

% Run the executable

if ispc

 system('slexAircraftExample');

elseif unix

 system('./slexAircraftExample');

2 Functions — Alphabetical List

2-518

end

% Create a run using the slexAircraftExample.mat placed in the current directory

[run1ID,~,~] = Simulink.sdi.createRun('My Run','file','slexAircraftExample.mat');

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on',...

 'SolverType','Fixed-Step');

% Create another run from the simulation

[run2ID,~,~] = Simulink.sdi.createRun('My Run','namevalue',...

 {'MyData'},{simOut});

% Compare the two runs

difference = Simulink.sdi.compareRuns(run1ID,run2ID);

% Number of comparisons in result

numComparisons = difference.count;

% Iterate through each result element

for i = 1:numComparisons

 % Get result at index i

 resultAtIdx = difference.getResultByIndex(i);

 % Get signal IDs for each comparison result

 sig1 = resultAtIdx.signalID1;

 sig2 = resultAtIdx.signalID2;

 % Display if signals match or not

 displayStr = 'Signals with IDs %d and %d %s \n';

 if resultAtIdx.match

 fprintf(displayStr,sig1,sig2,'match.');

 else

 fprintf(displayStr,sig1,sig2,'do not match.');

end

% Plot tolerance and difference results in a figure

f1 = figure;

plot(resultAtIdx.tol,'Color','r');

hold on;

plot(resultAtIdx.diff,'Color','g');

legend('Tolerance','Difference');

 Simulink.sdi.compareRuns

2-519

end

Compare Two Runs Using Specified Alignment Algorithms

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a run and get signal IDs

run1ID = Simulink.sdi.createRun('My Run','namevalue',...

 {'simOut'},{simOut});

% Get and change one of the parameters of the model

mws = get_param('slexAircraftExample','modelworkspace');

wsMq = mws.evalin('Mq');

mws.assignin('Mq',3*wsMq);

% Simulate again

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create another run and get signal IDs

run2ID = Simulink.sdi.createRun('New Run','namevalue',...

 {'simOut'},{simOut});

% Define the alignment algorithms for comparison.

% Align the data first by data name, then by block path, then by SID.

algorithms = [Simulink.sdi.AlignType.DataSource

 Simulink.sdi.AlignType.BlockPath

 Simulink.sdi.AlignType.SID];

% Compare the two runs

difference = Simulink.sdi.compareRuns(run1ID,run2ID,algorithms);

% Number of comparisons in result

numComparisons = difference.count;

% Iterate through each result element

for i = 1:numComparisons

 % Get result at index i

 resultAtIdx = difference.getResultByIndex(i);

 % Get signal IDs for each comparison result

2 Functions — Alphabetical List

2-520

 sig1 = resultAtIdx.signalID1;

 sig2 = resultAtIdx.signalID2;

 % Display if signals match or not

 displayStr = 'Signals with IDs %d and %d %s \n';

 if resultAtIdx.match

 fprintf(displayStr,sig1,sig2,'match');

 else

 fprintf(displayStr,sig1,sig2,'do not match');

 end

 % Plot tolerance and difference results in a figure

 f1 = figure;

 plot(resultAtIdx.tol,'Color','r');

 hold on;

 plot(resultAtIdx.diff,'Color','g');

 legend('Tolerance','Difference');

end

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runID1 — Unique run identifier
integer

Run ID, a unique number identifying the first run for comparison, specified as an integer.

runID2 — Unique run identifier
integer

Run ID, a unique number identifying the second run for comparison, specified as an
integer.

alignmentMethods — Signal alignment methods
array

An array specifying three alignment algorithms. Data is aligned by the value of the first
element of the array, then by the second element, and then by the third element. Only
the first three values in the array are considered. The array can use the following values.

 Simulink.sdi.compareRuns

2-521

Value Align By

Simulink.sdi.AlignType.BlockPath Path to the source block for the signal
Simulink.sdi.AlignType.DataSource Data name (for example,

logsout.Stick.Data)
Simulink.sdi.AlignType.SID “Simulink Identifier” on page 7-2
Simulink.sdi.AlignType.SignalName Signal name

For example,
[Simulink.sdi.AlignType.DataSource,Simulink.sdi.AlignType.BlockPath,Simulink.sdi.AlignType.SID]

could be an alignment array.

Output Arguments

diff — Comparison difference data
object

Instance of the Simulink.sdi.DiffRunResult object that contains the differences between
two simulation runs.

See Also
Simulink.sdi.createRun | Simulink.sdi.DiffRunResult

Introduced in R2011b

2 Functions — Alphabetical List

2-522

Simulink.sdi.compareSignals
Compare data from two signals

Syntax

diff = Simulink.sdi.compareSignals(signalID1,signalID2)

Description

diff = Simulink.sdi.compareSignals(signalID1,signalID2) compares two
signals and returns the results in a Simulink.sdi.DiffSignalsResult object.

Examples

Compare Two Signals

Call Simulink.sdi.createRun to get signal IDs for a simulation run in the
Simulation Data Inspector. The function Simulink.sdi.compareSignals returns
a Simulink.sdi.DiffSignalResult object containing the result data of the
comparison. From this object you can determine if the signals are different.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run and get signal IDs

[~,~,signalIDs] = Simulink.sdi.createRun('My Run','namevalue',{'MyData'},{simOut});

sig1 = signalIDs(1);

sig2 = signalIDs(2);

% Compare two signals, which returns results in

% instance of a Simulink.sdi.DiffSignalResult object

diff = Simulink.sdi.compareSignals(sig1,sig2);

% Find if the signal data match

 Simulink.sdi.compareSignals

2-523

match = diff.match;

% Get the tolerance used in Simulink.sdi.compareSignals

tolerance = diff.tol;

Compare Signals From Two Different Runs

% Load the model 'slexAircraftExample'

load_system('slexAircraftExample');

% Configure model "slexAircraftExample" for logging

set_param('slexAircraftExample','SolverType','Fixed-Step','SaveOutput','on',...

 'SaveFormat','StructureWithTime','ReturnWorkspaceOutputs',...

 'on');

% CD to temporary directory and build

cd(tempdir);

rtwbuild('slexAircraftExample');

% Run the executable

if ispc

 system('slexAircraftExample');

elseif unix

 system('./slexAircraftExample');

end

% Create a Data Inspector run using slexAircraftExample.mat created in the current

% directory

[~,~,signalIDs] = Simulink.sdi.createRun('My Run','file','slexAircraftExample.mat');

% Get first signal id to compare

sig1 = signalIDs(1);

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Data Inspector run and get signal IDs

[~,~,signalIDs] = Simulink.sdi.createRun('My Run','namevalue',...

 {'MyData'},{simOut});

% Get second signal id to compare

sig2 = signalIDs(1);

2 Functions — Alphabetical List

2-524

% compare two signals

result = Simulink.sdi.compareSignals(sig1, sig2);

if result.match

 disp('****The signals match****');

else

 disp('****The signals did not match****');

end

% Plot results in a figure

plot(result.tol,'Color','r');

hold on;

plot(result.diff,'Color','g');

legend('Tolerance','Difference');

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

signalID1 — Unique signal identifier
integer

Signal ID, a unique number identifying the first signal for comparison, specified as an
integer.

signalID2 — Unique signal identifier
integer

Signal ID, a unique number identifying the first signal for comparison, specified as an
integer.

Output Arguments

diff — Comparison difference data
object

Simulink.sdi.DiffSignalResult object containing the results of the comparison.

See Also
Simulink.sdi.createRun | Simulink.sdi.DiffSignalResult

 Simulink.sdi.compareSignals

2-525

Introduced in R2011b

2 Functions — Alphabetical List

2-526

Simulink.sdi.copyRun
Create copy of run including simulation output data

Syntax

runIDcopy = Simulink.sdi.copyRun(runID)

[runIDcopy,runIndex] = Simulink.sdi.copyRun(runID)

[runIDcopy,runIndex,signalIDs] = Simulink.sdi.copyRun(runID)

Description

runIDcopy = Simulink.sdi.copyRun(runID) copies the run associated with runID
and returns a run ID, runIDcopy, associated with the new run. The new run contains all
of the simulation output data and metadata from the original run.

[runIDcopy,runIndex] = Simulink.sdi.copyRun(runID) copies the run
associated with runID and returns the run ID, runIDcopy, and the runIndex for the
new run.

[runIDcopy,runIndex,signalIDs] = Simulink.sdi.copyRun(runID) copies the
run associated with runID and returns the run ID, run index, and array of new signal
IDs, signalIDs, for signals in the new run.

Examples

Copy Simulink.sdi.Run Object Representing a Run In the Simulation Data Inspector

% Configure model 'slexAircraftExample' for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('First Run','base',{'simOut'});

[newRunID,runIndex,signalIDs] = Simulink.sdi.copyRun(runID);

 Simulink.sdi.copyRun

2-527

% See the results in Simulation Data Inspector

Simulink.sdi.view;

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runID — Unique run identifier
integer

Run ID, a unique number identifying a run in the Simulation Data Inspector, specified as
a string.

Output Arguments

runIDcopy — Unique run identifier
integer

The unique number identifying the copied run, returned as an integer.

runIndex — Simulation run index
integer

Number representing the new index to the list of runs currently in the Simulation Data
Inspector, returned as an integer.

signalIDs — Unique signal identifiers
array

Vector of numbers, where each element is a unique ID for a signal in this run. The signal
IDs are different in the new run.

See Also
Simulink.sdi.createRun | Simulink.sdi.view

Introduced in R2011b

2 Functions — Alphabetical List

2-528

Simulink.sdi.createRun
Create run in Simulation Data Inspector

Syntax

runID = Simulink.sdi.createRun

runID = Simulink.sdi.createRun(runName)

runID = Simulink.sdi.createRun(runName,'base',varName)

runID = Simulink.sdi.createRun(runName,'model',modelNameOrHandle)

runID = Simulink.sdi.createRun(runName,'vars',var)

runID = Simulink.sdi.createRun(runName,'namevalue',dataName,

dataValue)

runID = Simulink.sdi.createRun(runName,'file',fileName)

[runID,runIndex] = Simulink.sdi.createRun(___)

[runID,runIndex,signalIDs] = Simulink.sdi.createRun(___)

Description

runID = Simulink.sdi.createRun creates an empty unnamed run in the Simulation
Data Inspector and returns the corresponding run ID.

runID = Simulink.sdi.createRun(runName) creates an empty run named
runName in the Simulation Data Inspector and returns the corresponding run ID.

runID = Simulink.sdi.createRun(runName,'base',varName) creates a run in
the Simulation Data Inspector with data, varName, from the base workspace.

runID = Simulink.sdi.createRun(runName,'model',modelNameOrHandle)

creates a run in the Simulation Data Inspector with model simulation output data, as
specified on the Data Import/Export pane of the Configuration Parameters dialog box.
modelNameOrHandle is a string specifying the model name of a model handle. Open the
model before you use this syntax.

runID = Simulink.sdi.createRun(runName,'vars',var) creates a run in the
Simulation Data Inspector with data stored in variables, var. These variables must be in
the calling workspace.

 Simulink.sdi.createRun

2-529

runID = Simulink.sdi.createRun(runName,'namevalue',dataName,

dataValue) creates a run in the Simulation Data Inspector from simulation data
dataValue. dataName specifies a name for the data.

runID = Simulink.sdi.createRun(runName,'file',fileName) creates a run in
the Simulation Data Inspector with data from a MAT-file, fileName.

[runID,runIndex] = Simulink.sdi.createRun(___) creates a run in the
Simulation Data Inspector and returns the run ID and the run index. Use this option
with any of the input argument combinations in the previous syntaxes.

[runID,runIndex,signalIDs] = Simulink.sdi.createRun(___) creates a
run in the Simulation Data Inspector and returns the run ID, the run index, and the
signal IDs. Use this option with any of the input argument combinations in the previous
syntaxes.

Examples

Create Empty Run With No Name

runID = Simulink.sdi.createRun;

Create Empty Run With a Name

runID = Simulink.sdi.createRun('My Run');

Create Run From Simulation Output In the Base Workspace

% Configure the model slexAircraftExample for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run from the simulation

% output data in the base workspace

Simulink.sdi.createRun('My Run','base',{'simOut'});

% Open the Simulation Data Inspector tool to view the data

Simulink.sdi.view;

Create Run Using Simulation Output From a Model

The model must be open to use this function signature.

2 Functions — Alphabetical List

2-530

% Open the model sldemo_absbrake

sldemo_absbrake;

Click Run to simulate the model. The model is already configured for signal logging.

% Create a Simulation Data Inspector run named 'My Run' using

% simulation output data from the model

Simulink.sdi.createRun('My Run','model','sldemo_absbrake');

% Open the Simulation Data Inspector tool to view the data

Simulink.sdi.view;

Create Run Using Passed Variables

% Configure the model slexAircraftExample for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run named 'My Run' using

% simulation output data from the model

Simulink.sdi.createRun('My Run','vars',simOut);

% Open the Simulation Data Inspector tool to view the data

Simulink.sdi.view;

Create Run and Include Name of Simulation Data

% Configure the model slexAircraftExample for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run named 'My Run' using

% simulation output data from the model

Simulink.sdi.createRun('My Run','namevalue',{'MyData'},{simOut});

% Open the Simulation Data Inspector tool to view the data

Simulink.sdi.view;

Create Run Using MAT-File Data

This example includes data from a code generation build and requires Simulink Coder.

% Load the model slexAircraftExample

 Simulink.sdi.createRun

2-531

load_system('slexAircraftExample');

% Configure the model for logging and simulate

set_param('slexAircraftExample','SolverType','Fixed-Step',...

 'SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Build the model to a temporary directory

cd(tempdir);

rtwbuild('slexAircraftExample');

% Run the executable

if ispc

 system('slexAircraftExample');

elseif unix

 system('./slexAircraftExample');

end

% A MAT-file is generated in the current directory

% Create a Simulation Data Inspector run using the data in the MAT-file

Simulink.sdi.createRun('My Run','file','slexAircraftExample.mat');

% Open the Simulation Data Inspector tool to view the data

Simulink.sdi.view;

A run named, My Run, appears in the Simulation Data Inspector.

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runName — Run name
string

Name of the run as it appears in the Simulation Data Inspector, specified as a string.

varName — Base workspace data
cell array

The names of variables in the base workspace, specified as a cell array of strings.

2 Functions — Alphabetical List

2-532

Example: {'simOut'}

modelNameOrHandle — Model name
string

The model name, or a model handle, specified as a string.
Example: 'sldemo_absbrake'

var — Variable data
variable

Data stored as variables. These variables are assumed to be in the calling workspace.
Example: simOut

dataName — Signal data name
call array

Name of the data in the run, specified as a cell array.
Example: {'MyData'}

dataValue — Signal data values
cell array

Values of the signal data, specified as a cell array.
Example: {simOut}

fileName — Simulation data file name
string

The file name and path of a MAT-file containing simulation data, specified as a string.
Example: 'slexAircraftExample.mat'

Output Arguments

runID — Unique run identifier
integer

Unique number identifying a run in the Simulation Data Inspector, returned as an
integer.

 Simulink.sdi.createRun

2-533

runIndex — Simulation run index
integer

Number representing an index to the list of runs currently in the Simulation Data
Inspector, returned as an integer.

signalIDs — Unique signal identifiers
array

Vector of numbers, where each element is a unique ID for a signal in a run.

More About

Tips

• Before calling Simulink.sdi.createRun with either ‘base’ or ‘model’ as an
input argument, you must configure the model for logging and simulate the model.

• When you create and add a run, the Simulation Data Inspector maintains a list of
these runs. The first run in the list is given a runIndex of 1. If you delete a run
from the Simulation Data Inspector, the subsequent runs move up the list and each
runIndex changes. However, the run IDs remain the same.

See Also
Simulink.sdi.deleteRun | Simulink.sdi.getRun | Simulink.sdi.Run

Introduced in R2011b

2 Functions — Alphabetical List

2-534

Simulink.sdi.deleteRun

Delete run from Simulation Data Inspector

Syntax

Simulink.sdi.deleteRun(runID)

Description

Simulink.sdi.deleteRun(runID) deletes a run associated with the run ID in the
Simulation Data Inspector. Deleting the run removes all signal data included in the run.
After deleting a run, the subsequent runs move up the list and the run index for each run
changes. However, the unique run IDs remain the same.

Examples

Remove Run from the Simulation Data Inspector

% Configure model 'slexAircraftExample' for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('First Run','base',{'simOut'});

Simulink.sdi.deleteRun(runID);

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runID — Unique run identifier
integer

 Simulink.sdi.deleteRun

2-535

A unique simulation run identifier, specified as an integer. The
Simulink.sdi.createRun function creates a unique run ID. The run ID can also be
accessed for a particular run using the Simulink.sdi.getRunIDByIndex function.

See Also
Simulink.sdi.clear | Simulink.sdi.copyRun | Simulink.sdi.createRun |
Simulink.sdi.Run

Introduced in R2011b

2 Functions — Alphabetical List

2-536

Simulink.sdi.discardDataFromPriorSessions
Delete data from prior MATLAB session

Syntax

Simulink.sdi.discardDataFromPriorSessions

Description

Simulink.sdi.discardDataFromPriorSessions deletes data from prior MATLAB
sessions. The data is no longer available to the Simulation Data Inspector.

Examples

Delete Data from Prior Session

If you open a new MATLAB session, and there is data from a from a prior session, you
can delete the data from the Simulation Data Inspector repository.

Delete the data from the Simulation Data Inspector repository.

Simulink.sdi.discardDataFromPriorSessions

• “Inspect and Compare Signal Data Programmatically”

See Also
Simulink.sdi.hasDataFromPriorSessions |
Simulink.sdi.importDataFromPriorSessions

Introduced in R2015b

 Simulink.sdi.getRun

2-537

Simulink.sdi.getRun
ReturnSimulink.sdi.Run object containing simulation output data

Syntax

runObj = Simulink.sdi.getRun(runID)

Description

runObj = Simulink.sdi.getRun(runID) returns a handle to the
Simulink.sdi.Run object for the run corresponding to runID in the Simulation Data
Inspector.

Examples

Get Simulink.sdi.Run Object For Run in the Simulation Data Inspector

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

[runID,runIndex,signalIDs] = Simulink.sdi.createRun('My Run','base',{'simOut'});

runObj = Simulink.sdi.getRun(runID);

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runID — Unique run identifier
integer

Run ID, a unique number identifying a run in the Simulation Data Inspector, specified as
an integer.

2 Functions — Alphabetical List

2-538

Output Arguments

runObj — Run object handle
object

Object containing the signal data and metadata, returned as a Simulink.sdi.Run object
handle.

See Also
Simulink.sdi.createRun | Simulink.sdi.Run

Introduced in R2011b

 Simulink.sdi.getRunCount

2-539

Simulink.sdi.getRunCount

Return number of runs in Simulation Data Inspector

Syntax

runCount = Simulink.sdi.getRunCount

Description

runCount = Simulink.sdi.getRunCount returns the number of runs that are in the
Simulation Data Inspector.

Examples

Check Run Count After Simulation

Call Simulink.sdi.getRunCount to get the number of runs currently in the
Simulation Data Inspector after a simulation.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('First Run','base',{'simOut'});

% Get run count in the Simulation Data Inspector

runCount = Simulink.sdi.getRunCount()

runCount =

 1

• “Inspect and Compare Signal Data Programmatically”

2 Functions — Alphabetical List

2-540

Output Arguments

runCount — Number of runs
integer

Number of runs that exist in the Simulation Data Inspector, returned as an integer.

See Also
Simulink.sdi.createRun | Simulink.sdi.Run

Introduced in R2011b

 Simulink.sdi.getRunIDByIndex

2-541

Simulink.sdi.getRunIDByIndex

Return the run ID corresponding to run index

Syntax

runID = Simulink.sdi.getRunIDByIndex(runIndex)

Description

runID = Simulink.sdi.getRunIDByIndex(runIndex) returns the run ID for the
run corresponding to the run index.

Examples

Get Run IDs For All Runs in the Simulation Data Inspector

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

[runID, runIndex, signalIDs] = Simulink.sdi.createRun('Run1','base',{'simOut'});

% Get the ID of the previously created run by index

runID2 = Simulink.sdi.getRunIDByIndex(runIndex);

% Both runID and runID2 reference the same run and should be equal

isequal(runID, runID2)

ans =

 1

• “Inspect and Compare Signal Data Programmatically”

2 Functions — Alphabetical List

2-542

Input Arguments

runIndex — Simulation run index
integer

Number representing an index to the list of runs currently in the Simulation
Data Inspector, specified as an integer. The run index is an output of the
Simulink.sdi.createRun function.

Output Arguments

runID — Unique run identifier
integer

Run ID, a unique number identifying a run in the Simulation Data Inspector, returned
as an integer.

See Also
Simulink.sdi.createRun | Simulink.sdi.getRunCount |
Simulink.sdi.isValidRunID

Introduced in R2011b

 Simulink.sdi.getRunNamingRule

2-543

Simulink.sdi.getRunNamingRule

Return run naming rule for next Simulation Data Inspector run

Syntax

runNamingRule = Simulink.sdi.getRunNamingRule()

Description

runNamingRule = Simulink.sdi.getRunNamingRule() returns the run naming
rule for the next Simulation Data Inspector run.

Examples

Change and Restore the Simulation Run Naming Rule

% Load the model

sldemo_absbrake;

% Save the prior run naming rule and set a new rule

runNamingRule = Simulink.sdi.getRunNamingRule();

Simulink.sdi.setRunNamingRule('My special simulation');

% Record logged signals and send them to the Simulation Data Inspector

set_param('sldemo_absbrake','InspectSignalLogs',1);

% Run the simulation

set_param('sldemo_absbrake','SimulationCommand','Start');

% Restore the previous run naming rule

Simulink.sdi.setRunNamingRule(runNamingRule);

% Open the Simulation Data Inspector to see the new run

2 Functions — Alphabetical List

2-544

Simulink.sdi.view;

Output Arguments

runNamingRule — Current Simulation Data Inspector run naming rule
string

Current Simulation Data Inspector run naming rule, returned as a string containing
any of the run naming rule tokens <run_index>, <model_name>, <time_stamp>,
<sim_mode>, or a custom run naming rule.

See Also
Simulink.sdi.resetRunNamingRule | Simulink.sdi.setRunNamingRule

Introduced in R2015a

 Simulink.sdi.getSignal

2-545

Simulink.sdi.getSignal
Return Simulink.sdi.Signal object for signal in Simulation Data Inspector

Syntax

signal = Simulink.sdi.getSignal(signalID)

Description

signal = Simulink.sdi.getSignal(signalID) returns the
Simulink.sdi.Signal object for the signal corresponding to the signal ID. The
Simulink.sdi.Signal object manages the signal’s time series data and metadata.

Examples

Modify Signal Properties in Simulation Data Inspector

Get the Simulink.sdi.Signal object for a signal in the Simulation Data Inspector.
With the signal object you can modify its comparison and visualization properties.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime');

% Create a Simulation Data Inspector run

[runID,runIndex,signalIDs] = Simulink.sdi.createRun('My Run','base',{'simOut'});

signalObj = Simulink.sdi.getSignal(signalIDs(1));

% Specify the comparison and visualization signal properties

signalObj.absTol = .5;

signalObj.syncMethod = 'intersection';

signalObj.interpMethod = 'linear';

signalObj.lineColor = [1,0.4,0.6];

signalObj.lineDashed = '-';

signalObj.checked = true;

2 Functions — Alphabetical List

2-546

% View the signals in Simulation Data Inspector GUI

Simulink.sdi.view;

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

signalID — Unique signal identifier
integer

Signal ID, a unique number identifying a signal in the Simulation Data Inspector,
specified as an integer.

Output Arguments

signal — Signal time series object
object

A signal properties object, returned as a Simulink.sdi.Signal handle object.

See Also
Simulink.sdi.createRun | Simulink.sdi.getRun | Simulink.sdi.Run |
Simulink.sdi.Signal

Introduced in R2011b

 Simulink.sdi.getSource

2-547

Simulink.sdi.getSource
Return repository location for storing simulation data

Syntax

source = Simulink.sdi.getSource

Description

source = Simulink.sdi.getSource returns the location of the Simulation Data
Inspector repository for storing simulation data.

Call this function before running multiple simulations in a parfor loop.

Examples

Record Data During Parallel Simulations

This example shows how to run parallel simulations using a parfor loop and record each
run in the Simulation Data Inspector.

Open the Simulation Data Inspector.

Simulink.sdi.view;

Load the model.

mdl = 'sldemo_absbrake';

load_system(mdl);

Log signals to the Simulation Data Inspector.

set_param(mdl,'InspectSignalLogs','on');

Start a parallel pool with 4 workers.

myPool = parpool(4);

2 Functions — Alphabetical List

2-548

Run the simulation in a parfor loop.

parfor i=1:4

 % Run the simulation

 simOut = sim(mdl,'SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

 % Create a simulation run in the Simulation Data Inspector

 Simulink.sdi.createRun(['Run' num2str(i)],'namevalue',...

 {'simout'},{simOut});

end

Delete the current parallel pool and close all of the models.

delete(myPool);

bdclose all;

Refresh the Simulation Data Inspector.

Simulink.sdi.refresh();

• “Inspect and Compare Signal Data Programmatically”

Output Arguments

source — Repository location
string

Location of the Simulation Data Inspector repository, returned as a string.

See Also
Simulink.sdi.refresh

Introduced in R2012a

 Simulink.sdi.hasDataFromPriorSessions

2-549

Simulink.sdi.hasDataFromPriorSessions
Indicate if data is available from prior MATLAB session

Syntax

ret = Simulink.sdi.hasDataFromPriorSessions

Description

ret = Simulink.sdi.hasDataFromPriorSessions returns true if there is
Simulation Data Inspector data available from a prior MATLAB session and false
otherwise.

Examples

Check the Repository

If you open a new MATLAB session, then you can check if there is data in the Simulation
Data Inspector repository from a prior session.

Simulink.sdi.hasDataFromPriorSessions

ans =

 1

In this case, the function returns true because there is data from a prior MATLAB
session.

• “Inspect and Compare Signal Data Programmatically”

Output Arguments

ret — Data indicator
logical

2 Functions — Alphabetical List

2-550

Indicator that data is available from a prior MATLAB session, returned as true or
false.

See Also
Simulink.sdi.discardDataFromPriorSessions |
Simulink.sdi.importDataFromPriorSessions

Introduced in R2015b

 Simulink.sdi.importDataFromPriorSessions

2-551

Simulink.sdi.importDataFromPriorSessions
Import data from prior MATLAB session

Syntax

Simulink.sdi.importDataFromPriorSessions

Description

Simulink.sdi.importDataFromPriorSessions imports data from prior MATLAB
sessions into the current session. The signals and runs become visible in the Simulation
Data Inspector and available in the programmatic API.

Examples

Import Data from Prior Session

If you open a new MATLAB session, and there is data from a from a prior session, then
you can import it into the Simulation Data Inspector.

Import the data into the Simulation Data Inspector, and make the data available in the
API.

Simulink.sdi.importDataFromPriorSessions

• “Inspect and Compare Signal Data Programmatically”

See Also
Simulink.sdi.discardDataFromPriorSessions |
Simulink.sdi.hasDataFromPriorSessions

Introduced in R2015b

2 Functions — Alphabetical List

2-552

Simulink.sdi.isValidRunID
Determine if run ID is valid

Syntax

isValid = Simulink.sdi.isValidRunID(runID)

Description

isValid = Simulink.sdi.isValidRunID(runID) returns true if the runID
corresponds to a run currently in the Simulation Data Inspector. Otherwise, it returns
false.

Examples

Verify Run IDs

Before comparing the simulation data of two runs, you can verify that the run IDs are
valid.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Data Inspector run

run1ID = Simulink.sdi.createRun('First Run','base',{'simOut'});

run2ID = Simulink.sdi.createRun('Second Run','base',{'simOut'});

% Check if run IDs are valid in Simulation Data Inspector

run1ID_valid = Simulink.sdi.isValidRunID(run1ID);

run2ID_valid = Simulink.sdi.isValidRunID(run2ID);

if run1ID_valid & run2ID_valid

% Compare two runs

 difference = Simulink.sdi.compareRuns(run1ID,run2ID);

 Simulink.sdi.isValidRunID

2-553

end

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

runID — Unique run identifier
integer

Run ID, a unique number identifying a run in the Simulation Data Inspector, specified as
an integer.

Output Arguments

isValid — Valid run indicator
logical

Indication of whether the run is a valid Simulation Data Inspector run, returned as a
Boolean value: 1, if the run exists; 0, otherwise.

See Also
Simulink.sdi.compareRuns | Simulink.sdi.createRun | Simulink.sdi.Run

Introduced in R2011b

2 Functions — Alphabetical List

2-554

Simulink.sdi.load
Load saved Simulation Data Inspector session

Syntax

isValidSDIMatFile = Simulink.sdi.load(fileName)

Description

isValidSDIMatFile = Simulink.sdi.load(fileName) loads the runs, signals,
tolerances, and signal selections from a MAT-file fileName.

Examples

Load Previous Simulation Data Inspector Session from a MAT-File

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a run in the Simulation Data Inspector

runID = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Save the current Simulation Data Inspector session

Simulink.sdi.save('my_runs.mat');

% Clear all data from the Simulation Data Inspector

Simulink.sdi.clear;

% Import saved MAT-file into the Simulation Data Inspector

Simulink.sdi.load('my_runs.mat');

% See the results in Simulation Data Inspector

Simulink.sdi.view;

• “Inspect and Compare Signal Data Programmatically”

 Simulink.sdi.load

2-555

Input Arguments

fileName — Session file name
string

File name, specified as a string, of the full or partial path of a Simulation Data Inspector
session MAT-file.

Output Arguments

isValidSDIMatFile — Valid file indicator
logical

Indication of whether the MAT-file is a valid Simulation Data Inspector session file,
returned as a Boolean value. Returns 1 if the file is valid and 0 if the file is not valid.

Alternatives

In the Simulation Data Inspector, click Open on the Visualize tab. For more
information, see “Save and Load Simulation Data Inspector Sessions”.

See Also
Simulink.sdi.createRun | Simulink.sdi.save | Simulink.sdi.view

Introduced in R2011b

2 Functions — Alphabetical List

2-556

Simulink.sdi.markSignalForStreaming
Turn streaming on or off for a signal

Syntax

Simulink.sdi.markSignalForStreaming = (block,port_index,state)

Simulink.sdi.markSignalForStreaming = (port_handle,state)

Simulink.sdi.markSignalForStreaming = (line_handle,state)

Description

Simulink.sdi.markSignalForStreaming = (block,port_index,state)

turns streaming on or off for a signal by specifying the block, block, and port index,
port_index.

Simulink.sdi.markSignalForStreaming = (port_handle,state) turns
streaming on or off for a signal by specifying the block output port, port_handle.

Simulink.sdi.markSignalForStreaming = (line_handle,state) turns
streaming on or off for a signal by specifying the signal line handle, line_handle.

Examples

Use Block Path to Mark Signal for Streaming

% Open the model

sldemo_absbrake;

% Turn on streaming for the Weight block signal outport

% in sldemo_absbrake model

Simulink.sdi.markSignalForStreaming('sldemo_absbrake/Weight',1,'on');

Use Port Handle to Mark Signal for Streaming

Open a model, and select a block with a signal outport to steam.

% Get the selected block port handles

 Simulink.sdi.markSignalForStreaming

2-557

phs = get_param(gcb, 'PortHandles')

% Turn streaming on for the block outport

Simulink.sdi.markSignalForStreaming(phs.Outport(1),'on');

Use Line Handle to Turn Signal Streaming Off

Open a model, and select a signal marked for steaming.

% Get the signal line handles for the model

slhs = get_param(gcs, 'Lines');

% Turn streaming off for the first singal in the structure

Simulink.sdi.markSignalForStreaming(slhs(1).Handle,'off');

• “Stream Data to the Simulation Data Inspector”
• “Inspect and Compare Signal Data Programmatically”

Input Arguments

block — Source block path or handle
string | handle

Block path or handle that contains the signal source, specified as a string.
Example: 'sf_car/shift_logic'

port_index — Source block output port index
integer

Source block output index of the associated signal, specified as an integer.
Example: 1

state — Streaming state toggle
'on' | 'off'

Turn streaming for a signal on or off, specified as a logical value.
Example: 'on'

port_handle — Output port handle
handle

2 Functions — Alphabetical List

2-558

Source block output port of the associated signal, specified as a handle.
Example: phs.Outport(1)

line_handle — Signal line handle
handle

Source block signal line, specified as a handle.
Example: sls(1).Handle

See Also
Simulink.sdi.changeLoggedToStreamed | Simulink.sdi.view

Introduced in R2015b

 Simulink.sdi.refresh

2-559

Simulink.sdi.refresh
Refresh Simulation Data Inspector

Syntax

Simulink.sdi.refresh

Description

Simulink.sdi.refresh refresh the Simulation Data Inspector repository and the tool.

Examples

Record Data During Parallel Simulations

This example shows how to run parallel simulations using a parfor loop and record each
run in the Simulation Data Inspector.

Open the Simulation Data Inspector.

Simulink.sdi.view;

Load the model.

mdl = 'sldemo_absbrake';

load_system(mdl);

Log signals to the Simulation Data Inspector.

set_param(mdl,'InspectSignalLogs','on');

Start a parallel pool with 4 workers.

myPool = parpool(4);

Run the simulation in a parfor loop.

parfor i=1:4

2 Functions — Alphabetical List

2-560

 % Run the simulation

 simOut = sim(mdl,'SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

 % Create a simulation run in the Simulation Data Inspector

 Simulink.sdi.createRun(['Run' num2str(i)],'namevalue',...

 {'simout'},{simOut});

end

Delete the current parallel pool and close all of the models.

delete(myPool);

bdclose all;

Refresh the Simulation Data Inspector.

Simulink.sdi.refresh();

• “Inspect and Compare Signal Data Programmatically”

See Also
Simulink.sdi.getSource

Introduced in R2012a

 Simulink.sdi.report

2-561

Simulink.sdi.report

Generate report from Simulation Data Inspector

Syntax

Simulink.sdi.report

Simulink.sdi.report(Name,Value)

Description

Simulink.sdi.report creates a report of the current view and data in the Runs pane
in the Simulation Data Inspector.

Simulink.sdi.report(Name,Value) uses additional option specified by one or more
Name,Value pair arguments.

Examples

Create Report from Runs Pane Plots

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Data Inspector run

[~,~,signalIDs] = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Select signals for plotting

for i = 1:length(signalIDs)

 signal = Simulink.sdi.getSignal(signalIDs(i));

 signal.checked = true;

end

% Create default report, which is the Runs pane view

2 Functions — Alphabetical List

2-562

Simulink.sdi.report;

Create Report from Comparisons Pane Plots

% Configure model "slexAircraftExample" for logging and simulate

set_param('slexAircraftExample/Pilot','WaveForm','square');

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run, Simulink.sdi.Run, from

% simOut in the base workspace

runID1 = Simulink.sdi.createRun('First Run','namevalue',{'simOut'},{simOut});

% Simulate again

set_param('slexAircraftExample/Pilot','WaveForm','sawtooth');

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create another Simulation Data Inspector run

runID2 = Simulink.sdi.createRun('Second Run','namevalue',{'simOut'},{simOut});

% Compare two runs

difference = Simulink.sdi.compareRuns(runID1,runID2);

% Specify columns to include in the report

metaDataOfInterest = [Simulink.sdi.SignalMetaData.Result, ...

 Simulink.sdi.SignalMetaData.BlockPath1, ...

 Simulink.sdi.SignalMetaData.RelTol];

% Report on the run comparison

Simulink.sdi.report('ReportToCreate','Compare Runs', ...

 'ColumnsToReport',metaDataOfInterest, ...

 'SignalsToReport','ReportAllSignals');

• “Inspect and Compare Signal Data Programmatically”

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 Simulink.sdi.report

2-563

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ColumnsToReport','SignalName'

'ReportToCreate' — Simulation Data Inspector pane and plots set
'Inspect Signals' (default) | 'Compare Runs'

Simulation Data Inspector pane and plots to include in the report, specified as the
comma-separated pair consisting of 'ReportToCreate' and one of these values:

• 'Inspect Signals' — Information in the Runs pane.
• 'Compare Runs' — Information in the Comparisons pane.

Example: 'ReportToCreate','Inspect Signals'

'ReportOutputFolder' — File output location
<current working folder>/slprj/sdi (default) | string

Location of the generated report, specified as the comma-separated pair consisting of
'ReportOutputFolder' and a string.

'ReportOutputFile' — Report file name
'SDI_report.html' (default) | string

Report file name, specified as the comma-separated pair consisting of
'ReportOutputFile' and a string.

'PreventOverwritingFile' — Report overwrite prevention
true (default) | false

Report overwrite prevention, specified as the comma-separated pair consisting of
'PreventOverwritingFile' and one of the Boolean true or false values. If the
report file exists and the value is true, then the report generator increments the file
name. If false, the report generator overwrites the report file, if it exists.

'ColumnsToReport' — Metadata column specifier
array

Signal and run metadata column specifier, specified as the comma-separated pair
consisting of 'ColumnsToReport' and an array of column enumerations.

2 Functions — Alphabetical List

2-564

Array specifying values from the enumeration class, Simulink.sdi.SignalMetaData,
which lists all signal metadata available in the Simulation Data Inspector. For example,
to include the Run and Synchronization Method pane columns in a report, create an
array signal_metadata.
signal_metadata = [Simulink.sdi.SignalMetaData.Run, Simulink.sdi.SignalMetaData.SyncMethod];

Specify the array as the value in the comma-separated pair.
Simulink.sdi.report('ColumnsToReport',signal_metadata);

These table columns are available for the Runs pane.

Column Enumeration Element Description

BlockPath (default) Block path
SignalName (default) Signal name
Line (default) Line style
AbsTol (default) Absolute tolerance
RelTol (default) Relative tolerance
SyncMethod Method to align time vector: union,

intersection, uniform
DataSource String signifying the source of data

(logsout.Stick.Data)
TimeSeriesRoot String signifying the name of

the Simulink.Timeseries object
(logsout.Stick.Time)

TimeSource String signifying the array containing the
time data (logsout.Stick.Time)

InterpMethod Method to align data: zoh, linear
Port Index of the signal output port
Dimensions Number of signal dimensions
Channel Channel of matrix data
Run Name of a simulation run
Model Model name

These table columns are available for the Comparisons pane.

 Simulink.sdi.report

2-565

Column Enumeration Element Description

Result (default) Result of the signal comparison between
Baseline and Compare To runs

AbsTol (default) Absolute tolerance
RelTol (default) Relative tolerance
AlignedBy (default) Metadata used to align signal data between

Baseline and Compare To runs
LinkToPlot (default) Link to a plot of each comparison result
BlockPath1 Block path for signal from Baseline run
BlockPath2 Block path for signal from Compare To

run
SignalName Signal name from Baseline run
DataSource1 Name for the data from Baseline run
DataSource2 Name for the data from Compare To run
SyncMethod Synchronization method specified for the

Baseline run
InterpMethod Interpolation method specified for the

Baseline run
Channel1 Channel specified for the Baseline run
Channel2 Channel specified for the Compare To run

'ShortenBlockPath' — Block path name length
true (default) | false

Block path name length, specified as the comma-separated pair consisting of
'ShortenBlockPath' and one of the Boolean true or false values. If the value is
true and the block path name is too long, the Simulation Data Inspector shortens the
name in the report. If the value is false, then the report displays the entire block path
name.

'LaunchReport' — Launch report after creation
true (default) | false

2 Functions — Alphabetical List

2-566

Launch report after creation, specified as the comma-separated pair consisting of
'LaunchReport' and one of the Boolean true or false values. If the value is true
after creation, the generated report opens.

'SignalsToReport' — Comparison signals set
'ReportOnlyMismatchedSignals' (default) | 'ReportAllSignals'

For the Comparisons pane report only. Comparison signals set, specified as the comma-
separated pair consisting of 'SignalsToReport' and one of these values:

• 'ReportOnlyMismatchedSignals' — Include only the mismatched signals from
the comparison between the Baseline and Compare To runs.

• 'ReportAllSignals' — Include all signals from the comparison between the
Baseline and Compare To runs.

Alternatives

In the Simulation Data Inspector, on the Visualize or Compare tab, click Create
Report. For more information, see “Create Simulation Data Inspector Report”.

See Also
Simulink.sdi.compareRuns | Simulink.sdi.createRun

Introduced in R2011b

 Simulink.sdi.resetRunNamingRule

2-567

Simulink.sdi.resetRunNamingRule

Reset default run naming rule for next Simulation Data Inspector run

Syntax

Simulink.sdi.resetRunNamingRule

Description

Simulink.sdi.resetRunNamingRule resets the run naming rule to the default rule
tokens for the next Simulation Data Inspector run.

Examples

Reset the Run Naming Rule to Default

% Load the model

sldemo_absbrake;

% Change the run naming rule

Simulink.sdi.setRunNamingRule('My special simulation');

% Record logged signals and send them to the Simulation Data Inspector

set_param('sldemo_absbrake','InspectSignalLogs',1);

% Run the simulation

set_param('sldemo_absbrake','SimulationCommand','Start');

% Reset the naming rule

Simulink.sdi.resetRunNamingRule;

% Run the simulation again

set_param('sldemo_absbrake','SimulationCommand','Start');

% Open the Simulation Data Inspector

Simulink.sdi.view;

2 Functions — Alphabetical List

2-568

The first run in the Runs pane of the Simulation Data Inspector uses the run naming
rule My special simulation, and the second run uses the default run naming rule
Run <run_index>: <model_name>, which appears as Run 2: sldemo_absbrake.

See Also
Simulink.sdi.getRunNamingRule | Simulink.sdi.setRunNamingRule

Introduced in R2015a

 Simulink.sdi.save

2-569

Simulink.sdi.save

Save current Simulation Data Inspector session

Syntax

Simulink.sdi.save(fileName)

Description

Simulink.sdi.save(fileName) saves all runs, signals, tolerances, and signal
selections to a MAT-file fileName.

Examples

Save Simulation Data Inspector Runs

Save the Simulation Data Inspector simulation runs and specified tolerances to a MAT-
file.

% Configure model "sldemo_fuelsys" for logging and simulate

simOut = sim('sldemo_fuelsys', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a run in the Simulation Data Inspector

runID = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Save the current Simulation Data Inspector session

Simulink.sdi.save('my_runs.mat');

You can also load the information back in to the Simulation Data Inspector using the
Simulink.sdi.load function.

• “Inspect and Compare Signal Data Programmatically”

2 Functions — Alphabetical List

2-570

Input Arguments

fileName — Session file name
String

A string specifying the target file to save.

Alternatives

In the Simulation Data Inspector, click Save on the Visualize tab. For more
information, see “Save and Load Simulation Data Inspector Sessions”.

See Also
Simulink.sdi.createRun | Simulink.sdi.load

Introduced in R2011b

 Simulink.sdi.setRunNamingRule

2-571

Simulink.sdi.setRunNamingRule
Specify a run naming rule

Syntax

Simulink.sdi.setRunNamingRule(rule)

Description

Simulink.sdi.setRunNamingRule(rule) specifies a template for naming a run in
the Simulation Data Inspector.

Examples

Specify Run Naming Rule

Simulink.sdi.setRunNamingRule(...

 'Run <run_index> : <model_name> : <sim_mode>');

After recording a run, in the Signal Browser table of the Simulation Data Inspector, the
run appears with a name similar to the following:

Run 1 : slexAircraftExample : normal

• “Inspect and Compare Signal Data Programmatically”
• “Run Management Configuration”

Input Arguments

rule — Rune naming rule
<run_index> | <model_name> | <time_stamp> | <sim_mode>

A string using predefined tokens and regular characters to create a template for run
names. The available tokens are

2 Functions — Alphabetical List

2-572

• <run_index> — Sequential number of each run
• <model_name> — Name of model
• <time_stamp> — Run creation time
• <sim_mode> — Simulation mode for recorded run

The tokens are contained within a string. For example:

Simulink.sdi.setRunNamingRule('Run <run_index> : <model_name>');

Alternatives

In the Simulation Data Inspector, on the Visualize tab, click Run Options. In the
dialog box, enter a string in the Run naming rule box.

Introduced in R2011b

 Simulink.sdi.setRunOverwrite

2-573

Simulink.sdi.setRunOverwrite
Mark simulation run for overwrite

Syntax

Simulink.sdi.setRunOverwrite(runID,overwrite)

Description

Simulink.sdi.setRunOverwrite(runID,overwrite) marks a run identified by
runID for overwriting in the Simulation Data Inspector with the next simulation run.

Examples

Mark Run for Overwriting

This example shows how to mark a run for overwriting in the Simulation Data Inspector.

Open the sldemo_fuelsys model.

On the Simulink Editor toolbar, click the Simulation Data Inspector button arrow and
select Send Logged Workspace Data to Data Inspector.

Simulate the model.

Open the Simulation Data Inspector.

At the MATLAB Command Window, create a runID variable that uses the value
of the Run ID for a run. You can find the Run ID for a run using the function
Simulink.sdi.getRunIDByIndex.

runID = 1;

Set the overwrite condition to true.

Simulink.sdi.setRunOverwrite(runID,true);

2 Functions — Alphabetical List

2-574

In the Simulation Data Inspector, you can see the run is now marked to overwrite during
the next simulation.

Simulate sldemo_fuelsys.

In the Simulation Data Inspector, the new simulation data replaces the previous run.

• “Inspect and Compare Signal Data Programmatically”
• “Run Management Configuration”

Input Arguments

runID — Unique run identifier
integer

Run ID, a unique number identifying a run in the Simulation Data Inspector, specified as
an integer.

overwrite — Overwrite run setting
true | false

The run overwrite setting, specified as a Boolean value. When set to true, the next
simulation overwrites the run.
Example: Simulink.sdi.setRunOverwrite(1,true);

Alternatives

In the Simulation Data Inspector, select a run in the Runs pane and then click
Overwrite on the Visualize tab.

Introduced in R2011b

 Simulink.sdi.view

2-575

Simulink.sdi.view
Open Simulation Data Inspector

Syntax

Simulink.sdi.view

Description

Simulink.sdi.view opens the Simulation Data Inspector.

Examples

Create and View a Run in the Simulation Data Inspector

Create a run in the Simulation Data Inspector and open the tool to view the simulation
output.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a run in the Simulation Data Inspector

runID = Simulink.sdi.createRun('My Run','base',{'simOut'});

% See the results in Simulation Data Inspector

Simulink.sdi.view;

Compare Two Simulation Runs

Compare two runs and open the tool to view the comparison.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on',...

 'SaveFormat', 'StructureWithTime',...

2 Functions — Alphabetical List

2-576

 'ReturnWorkspaceOutputs', 'on');

% Create a run in the Simulation Data Inspector and get signal IDs

run1ID = Simulink.sdi.createRun('My Run', 'namevalue',...

 {'simOut'}, {simOut});

% Get and change one of the model parameters in the model workspace

mws = get_param('slexAircraftExample','modelworkspace');

wsMq = mws.evalin('Mq');

mws.assignin('Mq',3*wsMq);

% Simulate again

simOut = sim('slexAircraftExample', 'SaveOutput','on',...

 'SaveFormat', 'StructureWithTime',...

 'ReturnWorkspaceOutputs', 'on');

% Create another another run get signal IDs

run2ID = Simulink.sdi.createRun('New Run', 'namevalue',...

 {'simOut'}, {simOut});

% Define alignment algorithms

algorithms = [Simulink.sdi.AlignType.DataSource

 Simulink.sdi.AlignType.BlockPath

 Simulink.sdi.AlignType.SID];

% Compare the two runs

difference = Simulink.sdi.compareRuns(run1ID, run2ID, algorithms);

% See the results in Simulation Data Inspector in the Comparisons pane

Simulink.sdi.view(Simulink.sdi.GUITabType.CompareRuns);

• “Inspect and Compare Signal Data Programmatically”

Alternatives

To open the Simulation Data Inspector from the Simulink Editor toolbar, click the

Simulation Data Inspector button .

See Also
Simulink.sdi.createRun

 Simulink.sdi.view

2-577

Introduced in R2011b

2 Functions — Alphabetical List

2-578

Simulink.SimulationData.createStructOfTimeseries
Create a structure with MATLAB timeseries object leaf nodes

Syntax

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

TsArrayObject)

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

busObj,structOfTimeseries)

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

busObj,cellOfTimeseries)

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

busObj,cellOfTimeseries,dims)

Description

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

TsArrayObject) creates a structure of MATLAB timeseries objects from a
Simulink.TsArray object. Use this syntax for models that use the ModelDataLogs
signal logging format.

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

busObj,structOfTimeseries) creates a structure that matches the attributes of
the bus object busObj and sets the values of structure leaf nodes using a structure of
MATLAB timeseries objects structOfTimeseries. Use this syntax when using a
partial structure as the basis for creating a full structure to load into a model.

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

busObj,cellOfTimeseries) creates a structure that matches the attributes of the bus
object busObj and sets the values of structure leaf nodes using a cell array of MATLAB
timeseries objects cellOfTimeseries.

struct_of_ts = Simulink.SimulationData.createStructOfTimeseries(

busObj,cellOfTimeseries,dims) creates a structure with the dimensions dims. Use
this syntax to create a structure to load into an array of buses.

 Simulink.SimulationData.createStructOfTimeseries

2-579

Examples

Structure Based on Simulink.TsArray

Log signal data to create a Simulink.TsArray object.

open_system(docpath(fullfile(docroot,'toolbox','simulink','examples',...

'ex_log_modeldatalogs_errwarn')))

sim('ex_log_modeldatalogs_errwarn')

The simulated ex_log_modeldatalogs_errwarn model looks like this:

Use the Simulink.TsArray object to create a structure of MATLAB timeseries
objects. The model uses ModelDataLogs format for the signal logging data.

logsout

logsout =

Simulink.ModelDataLogs (ex_log_modeldatalogs_errwarn):

 Name Elements Simulink Class

 bus1 2 TsArray

struct_of_ts = ...

Simulink.SimulationData.createStructOfTimeseries(logsout.bus1)

struct_of_ts =

 const1-sig: [1x1 timeseries]

2 Functions — Alphabetical List

2-580

 const2_sig: [1x1 timeseries]

Structure Based on Bus Object and a Partial Structure of Timeseries Data

Create a structure of MATLAB timeseries objects based on a Simulink.Bus object
and a partial structure of MATLAB timeseriesobjects. Use this structure to load into
another model.

Open a model and simulate it, producing signal logging data.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_log_structTimeSeries')))

sim('ex_log_structTimeSeries')

The simulated ex_log_structTimeseries model looks like this:

View the logged signal data.

ex_log_structTimeSeries_logsout

ex_log_structTimeSeries_logsout =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Simulink.SimulationData.createStructOfTimeseries

2-581

 Characteristics:

 Name: 'ex_log_structTimeSeries_logsout'

 Total Elements: 2

 Elements:

 1: 'bus1'

 2: 'bus2'

Open the model to load the logged signal data into.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_load_structTimeSeries_Bus')))

The ex_load_structTimeSeries_Bus model’s Configuration Parameters > Data
Import/Export > Input parameter lists the ex_load_structTimeSeries_inputBus
variable. However, you have not yet defined that variable in the MATLAB workspace.
Use Simulink.SimulationData.createStructOfTimeseries to define that
variable.

ex_load_structTimeSeries_inputBus = ...

Simulink.SimulationData.createStructOfTimeseries...

('bus', ex_log_structTimeSeries_logsout.get(2).Values)

ex_load_structTimeSeries_inputBus =

 a: [1x1 timeseries]

 b: [1x1 timeseries]

Structure to Use with an Array of Buses

Create a structure of MATLAB timeseries objects to load into an array of buses.
Specify the dimensions of the created structure and a cell array of MATLAB timeseries
objects.

2 Functions — Alphabetical List

2-582

Open a model and simulate it, producing signal logging data.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_log_structTimeSeries')))

sim('ex_log_structTimeSeries')

The simulated ex_log_structTimeseries model looks like this:

View the logged signal data.

ex_log_structTimeSeries_logsout

ex_log_structTimeSeries_logsout =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'ex_log_structTimeSeries_logsout'

 Total Elements: 2

 Elements:

 1: 'bus1'

 2: 'bus2'

 Simulink.SimulationData.createStructOfTimeseries

2-583

Open the model to load the logged signal data into.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_load_structTimeSeries_AoB')))

The ex_load_structTimeSeries_AoB model’s Configuration Parameters > Data
Import/Export > Input parameter lists the ex_load_structTimeSeries_inputAoB
variable. However, you have not yet defined that variable in the MATLAB workspace.
Use Simulink.SimulationData.createStructOfTimeseries to define that
variable.

ex_load_structTimeSeries_inputAoB = ...

Simulink.SimulationData.createStructOfTimeseries...

('bus',{ex_log_structTimeSeries_logsout.get(1).Values.a,...

ex_log_structTimeSeries_logsout.get(1).Values.b,...

ex_log_structTimeSeries_logsout.get(2).Values.c,...

ex_log_structTimeSeries_logsout.get(2).Values.d},[2, 1])

ex_load_structTimeSeries_inputAoB =

2x1 struct array with fields:

 a

 b

Input Arguments

tsArrayObject — Simulink.TsArray object to convert
Simulink.TsArray object

2 Functions — Alphabetical List

2-584

Simulink.TsArray object to convert to a structure of MATLAB timeseries objects

When you log signals using the ModelDataLogs format, the logged data is a collection of
Simulink.TsArray objects.

busObj — Bus object for creating a structure of MATLAB timeseries objects
Simulink.Bus object

Bus object for creating a structure of MATLAB timeseries objects, specified as the
name of a Simulink.Bus object.

Data Types: char

structOfTimeseries — Structure object for values to override ground values, specified as
a structure of MATLAB timeseries objects.
structure of MATLAB timeseries objects

Structure object for values to override ground values, specified as a structure of MATLAB
timeseries objects. The structure must have the same hierarchy as the bus object.
However, the names of the fields in the structure do not have to match the names of the
corresponding bus object nodes.
Data Types: struct

cellOfTimeseries — Cell array objects for values to override ground values, specified as a
cell array of MATLAB timeseries objects.
cell array of MATLAB timeseries objects

Cell array object for values to override ground values, specified as a cell array of
MATLAB timeseries objects. If you specify a cell array of MATLAB timeseries
objects and you specify a dims argument, then the length of the cell array must be equal
to the result of Simulink.BusObject.getNumLeafBusElements times the product of
the specified dimensions.
Data Types: cell

dims — Dimensions of the structure that this function creates.
vector

Dimensions of the structure that this function creates, specified
as a vector. The length of the cell array is equal to the result of
Simulink.BusObject.getNumLeafBusElements times the product of the specified
dimensions.

 Simulink.SimulationData.createStructOfTimeseries

2-585

If you specify a dimension in the form [n], then Simulink interprets the dimension to be
1xn.

Data Types: double

Output Arguments

struct_of_ts — Structure of MATLAB timeseries objects.
MATLAB structure

MATLAB timeseries objects, returned as a structure. The structure has the same
hierarchy and attributes as the Simulink.TsArray object or Simulink.Bus object that
you specify.

The dimensions of structForBus depend on the input arguments:

• If you specify tsArrayObject, then the dimension is 1.
• If you specify the busObject and a structure of MATLAB timeseries, then the

dimension matches the dimensions of the specified structure.
• If you specify only the busObject and a cell array of MATLAB timeseries, then the

dimension is 1.
• If you specify the busObject argument, a cell array of MATLAB timeseries, and

the dims argument, then the dimensions match the dimensions of dims.

Related Links

Simulink.Bus |Simulink.TsArray |Simulink.ModelDataLogs

|Simulink.ModelDataLogs.convertToDataset

Introduced in R2013a

2 Functions — Alphabetical List

2-586

Simulink.SimulationData.signalLoggingSelector
Open Signal Logging Selector

Syntax

Simulink.SimulationData.signalLoggingSelector(modelName)

Description

Simulink.SimulationData.signalLoggingSelector(modelName) opens the
Signal Logging Selector dialog box for the model that you specify with modelName.

Input Arguments

modelName

String that specifies the name of the model for which you want to open the Signal
Logging Selector dialog box.

Example

Open the Signal Logging Selector dialog box for the sldemo_mdlref_bus.mdl.
Simulink.SimulationData.signalLoggingSelector('sldemo_mdlref_bus')

More About
• “Override Signal Logging Settings”

See Also
Simulink.SimulationData.Dataset | Simulink.ModelDataLogs

Introduced in R2011a

 Simulink.SimulationData.updateDatasetFormatLogging

2-587

Simulink.SimulationData.updateDatasetFormatLogging
Convert model and its referenced models to use Dataset format for signal logging

Syntax

Simulink.SimulationData.updateDatasetFormatLogging(top_model)

Simulink.SimulationData.updateDatasetFormatLogging(top_model,

variants)

Description

Simulink.SimulationData.updateDatasetFormatLogging(top_model) converts
the top-level model and all of its referenced models to use the Dataset format for signal
logging instead of the ModelDataLogs format. You can convert signal logging data from
ModelDataLogs to Dataset format. Converting to Dataset format makes it easier
to post-process with other logged data (for example, logged states), which can also use
Dataset format. For more information, see “Convert Logged Data to Dataset Format”.

If a Model block has the Generate preprocessor conditionals option selected, the
function converts all the variants; otherwise, the function converts only the active
variant.

Simulink.SimulationData.updateDatasetFormatLogging(top_model,

variants) specifies which variant models to convert to use the Dataset signal logging
format. For details about the variants argument, see “Input Arguments” on page
2-587

Input Arguments

top_model

String that specifies the name of the top-level model.

variants

String that specifies which variant models to update:

2 Functions — Alphabetical List

2-588

• 'ActivePlusCodeVariants' — (Default) Search all variants if any generate
preprocessor conditionals. Otherwise, search only the active variant.

• 'ActiveVariants' — Convert only the active variant.
• 'AllVariants' — Convert all variants.

More About

Dataset

The Dataset format causes Simulink to use a Simulink.SimulationData.Dataset
object to store the logged signal data. The Dataset format use MATLAB timeseries
objects to formatting the data.

ModelDataLogs

The ModelDataLogs format causes Simulink to use a Simulink.ModelDataLogs
object to store the logged signal data.Simulink.Timeseries and Simulink.TsArray
objects provide the format for the data.

Tips

• Simulink checks signal logging data format consistency for certain model
referencing configurations. For details, see “Model Reference Signal Logging Format
Consistency”. You can use the Upgrade Advisor (with the upgradeadvisor function)
to upgrade a model to use Dataset format.

• An alternative approach for handling reported inconsistencies is to use the
Simulink.SimulationData.updateDatasetFormatLogging function to update
the models to use Dataset format. This approach sets the Model Configuration
Parameters > Data Import/Export > Signal logging format parameter to
Dataset for each referenced model and each variant.

• The conversion function sets the SignalLoggingSaveFormat parameter value to
Dataset for all the updated models.

• If you want to save the format updates that the conversion function makes, then
ensure that the top-level model, referenced models, and variant models are accessible
and writable.

• If a model has no other unsaved changes, the conversion function saves the format
updates to the model. If the model has unsaved changes, the function updates the
format, but does not save those changes.

 Simulink.SimulationData.updateDatasetFormatLogging

2-589

• If you use this function for a model that does not include any referenced models, the
function converts the top-level model use the Dataset format.

• For new models, use the Dataset format for signal logging. The ModelDataLogs
format will be removed in a future release. For an existing model that uses the
ModelDataLogs format, you should migrate the model to use Dataset format. For
details, see “Migrate from ModelDataLogs to Dataset Format”.

After conversion, to reset the format back to ModelDataLogs, you must set the
Signal logging format parameter individually for each model. If you want to use
the ModelDataLogs format for the model in the future, consider using one of these
approaches:

• Save a version of the model that uses the ModelDataLogs format.
• Use the conversion function to convert the model to use Dataset format for

signal logging and run the simulation in Normal mode. However, do not save the
changes.

• “Specify the Signal Logging Data Format”

See Also
Simulink.SimulationData.Dataset | Simulink.ModelDataLogs |
Simulink.ModelDataLogs.convertToDataset

Introduced in R2011a

2 Functions — Alphabetical List

2-590

find
Class: Simulink.SimulationOutput
Package: Simulink

Access and display values of simulation results

Syntax

output = simOut.find('VarName')

Description

output = simOut.find('VarName') accepts one variable name. Specify VarName
inside single quotes.

Input Arguments

VarName

Name of logged variable for which you seek values.

Default:

Output Arguments

Value

Value of the logged variable name specified in input.

Examples

Simulate vdp and store the values of the variable youtNew in yout.

 find

2-591

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew');

yout = simOut.find('youtNew')

Alternatives

Simulink.SimulationOutput.get

See Also
Simulink.SimulationOutput.get | Simulink.SimulationOutput.who

2 Functions — Alphabetical List

2-592

get
Class: Simulink.SimulationOutput
Package: Simulink

Access and display values of simulation results

Syntax

output = simOut.get('VarName')

Description

output = simOut.get('VarName') accepts one variable name. Specify VarName
inside single quotes.

Input Arguments

VarName

Name of logged variable for which you seek values.

Default:

Output Arguments

Value

Value of the logged variable name specified in input.

Examples

Simulate vdp and store the values of the variable youtNew in yout.

 get

2-593

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew');

yout = simOut.get('youtNew')

Alternatives

Simulink.SimulationOutput.find

See Also
Simulink.SimulationOutput.find | Simulink.SimulationOutput.who

2 Functions — Alphabetical List

2-594

getSimulationMetadata
Class: Simulink.SimulationOutput
Package: Simulink

Return SimulationMetadata object for simulation

Syntax
mData = simout.getSimulationMetadata()

Description
mData = simout.getSimulationMetadata() retrieves metadata information in a
SimulationMetadata object from the simout SimulationOutput object.

Input Arguments
simout — Simulation object to get metadata from
object

Simulation object to get metadata from, specified as a SimulationOutput object.

Output Arguments
mData — SimulationMetadata object stored in the simout SimulationOutput object
object

SimulationMetadata object stored in the simout SimulationOutput object, returned
as an object.

Examples
Retrieve Metadata From vdp Simulation

Simulate the vdp model and retrieve metadata information from the simulation.

 getSimulationMetadata

2-595

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object
in simout

 open_system('vdp')

 simout = sim(bdroot,'ReturnWorkspaceOutputs','on');

Retrieve metadata information about this simulation using mData.

 mData=simout.getSimulationMetadata()

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]

 TimingInfo: [1x1 struct]

 UserString: ''

 UserData: []

See Also
Simulink.SimulationMetadata | Simulink.SimulationOutput.setUserData |
Simulink.SimulationOutput.setUserString

2 Functions — Alphabetical List

2-596

setUserData
Class: Simulink.SimulationOutput
Package: Simulink

Store custom data in SimulationMetadata object that SimulationOutput object
contains

Syntax

simoutNew = simout.setUserData(CustomData)

Description

simoutNew = simout.setUserData(CustomData) assigns a copy of the simout
SimulationOutput object to simoutNew. The copy contains CustomData in its
SimulationMetadata object.

Input Arguments

simout — Simulation object to get metadata from
object

Simulation object to get metadata from, specified as a SimulationOutput object.

CustomData — Data to store in a metadata object
data

Any custom data you want to store in the metadata object.

Output Arguments

simoutNew — Simulation object that stores metadata object with custom data
object

 setUserData

2-597

A copy of the simout SimulationOutput object that contains CustomData in its
SimulationMetadata object, returned as an object.

Examples

Store Data in SimulationMetadata Object of vdp Simulation

Simulate the vdp model. Store custom data in the SimulationMetadata object that the
SimulationOutput object contains.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object
in simout.

 open_system('vdp')

 simout=sim(bdroot,'ReturnWorkspaceOutputs','on');

Store custom data about the simulation in the SimulationMetadata object that
simout contains.

simout=simout.setUserData(struct('param1','value1','param2','value2','param3','value3'));

Use SimulationOutput.getSimulationMetadata to retrieve the information you
stored.

mData=simout.getSimulationMetadata();

disp(mData.UserData)

 param1: 'value1'

 param2: 'value2'

 param3: 'value3'

See Also
Simulink.SimulationMetadata | Simulink.SimulationOutput.getSimulationMetadata |
Simulink.SimulationOutput.setUserString

2 Functions — Alphabetical List

2-598

setUserString
Class: Simulink.SimulationOutput
Package: Simulink

Store custom string in SimulationMetadata object that SimulationOutput object
contains

Syntax

simoutNew = simout.setUserString(CustomString)

Description

simoutNew = simout.setUserString(CustomString) assigns a copy of the simout
SimulationOutput object to simoutNew. The copy contains CustomString in its
SimulationMetadata object.

Input Arguments

simout — Simulation object to get metadata from
object

Simulation object to get metadata from, specified as a SimulationOutput object.

CustomString — String to store in a metadata object
string

Any custom string you want to store in the metadata object.

Output Arguments

simoutNew — Simulation object that stores metadata object with custom string
object

 setUserString

2-599

A copy of the simout SimulationOutput object that contains CustomString in its
SimulationMetadata object, returned as an object.

Examples

Store a String in SimulationMetadata Object of vdp Simulation

Simulate the vdp model. Store a custom string in the SimulationMetadata object that
the SimulationOutput object contains.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object
in simout.

 open_system('vdp')

 simout=sim(bdroot,'ReturnWorkspaceOutputs','on');

Store a string to describe the simulation.

simout=simout.setUserString('First Simulation');

Use SimulationOutput.getSimulationMetadata to retrieve the information you
stored.

mData=simout.getSimulationMetadata();

disp(mData.UserString)

 First Simulation

See Also
Simulink.SimulationMetadata | Simulink.SimulationOutput.getSimulationMetadata |
Simulink.SimulationOutput.setUserData

2 Functions — Alphabetical List

2-600

who
Class: Simulink.SimulationOutput
Package: Simulink

Access and display output variable names of simulation

Syntax

simOutVar = simOut.who

Description

simOutVar = simOut.who returns the names of all simulation output variables,
including workspace variables.

Output Arguments

simOutVar

String array of output variable names of simulation.

Examples

Simulate vdp and store the string values of the output variable names.

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew');

simOutVar = simOut.who

See Also
Simulink.SimulationOutput.find | Simulink.SimulationOutput.get

 Simulink.SubSystem.convertToModelReference

2-601

Simulink.SubSystem.convertToModelReference
Convert subsystem to model reference

Syntax

Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true)

[success,mdlRefBlkH] = Simulink.SubSystem.convertToModelReference(

subsys,mdlRef)

[success,mdlRefBlkH] = Simulink.SubSystem.convertToModelReference(

subsys,mdlRef,Name,Value)

Description

Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true)

opens the Model Reference Conversion Advisor for the currently selected subsystem
block.

[success,mdlRefBlkH] = Simulink.SubSystem.convertToModelReference(

subsys,mdlRef) converts the specified subsystem to a referenced model using the
mdlref value.

The function:

• Creates a model
• Copies the contents of the subsystem into the new model
• Updates any root-level Inport, Outport, Trigger, and Enable blocks and the

configuration parameters of the model to match the compiled attributes of the original
subsystem

• Copies the contents of the model workspace of the original model to the new model

Before you use the function, load the model containing the subsystem.

[success,mdlRefBlkH] = Simulink.SubSystem.convertToModelReference(

subsys,mdlRef,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

2 Functions — Alphabetical List

2-602

Examples

Open the Model Reference Conversion Advisor

Open the f14 model.

open_system('f14');

In the f14 model, select the Controller subsystem output signal, click the Simulation

Data Inspector button arrow , and select Log Selected Signals to Workspace.

In the Simulink Editor, select the Controller subsystem. Then open the Model
Reference Conversion Advisor from the command line.

Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true);

Perform the conversion using the advisor. For details, see “Convert a Subsystem to a
Referenced Model”.

Convert Subsystem to Referenced Model

Convert the Bus Counter subsystem to a referenced model named
bus_counter_ref_model.

open_system('sldemo_mdlref_conversion');

[success,mr_handle] = Simulink.SubSystem.convertToModelReference(...

 'sldemo_mdlref_conversion/Bus Counter', ...

 'bus_counter_ref_model', ...

 'AutoFix',true,...

 'ReplaceSubsystem',true,...

 'CheckSimulationResults',true);

success =

 1

>> mr_handle

mr_handle =

 79.0018

• sldemo_mdlref_conversion

 Simulink.SubSystem.convertToModelReference

2-603

• “Convert a Subsystem to a Referenced Model”
• “Model Reference”

Input Arguments

subsys — Subsystem to convert
string | subsystem handle

Subsystem to convert, specified as a string. Specify either the full path to the subsystem
or specify the subsystem handle.

The subsystem must be one of these kinds of subsystem:

• Atomic
• Function-call
• Triggered
• Enabled

The Configuration Parameters > Diagnostics > Data Validity > Signal
resolution parameter must be set to Explicit only. To do set that parameter
programmatically, use this command, substituting your model name for myModelName.

set_param(myModellName,'SignalResolutionControl','UseLocalSettings');

Data Types: double

mdlRef — Referenced model name
string

Referenced model name, specified as a string. The model name must be 59 characters or
less.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
Simulink.SubSystem.convertToModelReference...(engineSubsys,engineModelRef,'ReplaceSubsystem',true)

2 Functions — Alphabetical List

2-604

'DataFileName' — Name of file for storing conversion data
string

Name of file for storing conversion data, specified as a string. You can specify an absolute
or relative path.

You can save the conversion data in a MAT-file (default) or a MATLAB file. If you use a
.m file extension, the function serializes all variables to a MATLAB file.

By default, the function uses a file name consisting of the model name plus
_conversion_data.mat.

'AutoFix' — Fix all conversion issues that can be fixed automatically
false (default) | true

If you set AutoFix to true, the function fixes all conversion issues that it can fix.

For issues that the function cannot fix, the conversion process generates error messages
that you address by modifying the model.

Note: If you set 'Force' to true, then the function does not automatically fix
conversion issues.

Data Types: logical

'ReplaceSubsystem' — Replace Subsystem block with Model block
false (default) | true

Replace Subsystem block with Model block, specified as true or false. The Model block
references the referenced model.

By default, the function displays the referenced model in a separate Simulink Editor
window.

If you set the value to true, consider making a backup of the original model before you
convert the subsystem. If you want to undo the conversion, having a backup makes it
easier to restore the model.
Data Types: logical

'BuildTarget' — Model reference target to generate
'Sim' | 'RTW'

 Simulink.SubSystem.convertToModelReference

2-605

Model reference target to generate, specified as a string.

• 'Sim' — Model reference simulation target
• 'RTW' — Code generation target

'Force' — Complete conversion even with errors
false (default) | true

If you set 'Force' to true, the function returns conversion errors as warnings and
continues with the conversion without fixing the errors. This option allows you to use the
function to do the initial steps of conversion and then complete the conversion process
yourself.

If you set Force to true, then the function does not fix conversion issues, even if you
set 'AutoFix' to true. However, the success output argument is truee, regardless of
whether any conversion errors occurred.

'SimulationModes' — Simulation mode for Model block
'Normal' (default) | 'Accelerator'

Simulation mode for Model block, specified as a 'Normal' or 'Accelerator'. The
simulation mode setting applies to the Model block that references the model that the
conversion creates.

'CheckSimulationResults' — Compare simulation results before and after conversion
false (default) | true

Compare simulation results before and after conversion, specified as true or false.

Before performing the conversion, enable signal logging for the subsystem output signals
of interest in the model.

For the Simulink.SubSystem.convertToModelReference command, set:

• 'CheckSimulationResults' to true
• 'AbsoluteTolerance'

• 'RelativeTolerance'

• 'SimulationModes' to the same as the simulation mode as in the original model

If the difference between simulation results exceeds the tolerance level, the function
displays a message.

2 Functions — Alphabetical List

2-606

'AbsoluteTolerance' — Absolute signal tolerance for comparison
'1e-06' (default) | double

Absolute signal tolerance for comparison, specified as a double. Use the option only if you
set CheckSimulationResults to true.

Data Types: double

'RelativeTolerance' — Relative signal tolerance for comparison
'1e-06' (default) | double

Relative signal tolerance for comparison, specified as a double. Use the option only if you
set CheckSimulationResults to true.

Data Types: double

Output Arguments

success — Conversion status
1 | 0

Conversion status. A value of 1 indicates a successful conversion.

If you set 'Force' to true, the function returns a value of 1 if the conversion completes.
However, the simulation results can differ from the simulation results for the model
before conversion.

mdlRefBlkH — Handle of created Model block
handle of Model block

Handle of created Model block.
Data Types: double

More About

Tips

• Simulink uses the data dictionary to save the bus objects that it creates as part of the
conversion processing when both these conditions exist:

• The top model uses a data dictionary.

 Simulink.SubSystem.convertToModelReference

2-607

• All changes to the top model are saved.
• After you complete the conversion, update the model as necessary to meet your

modeling requirements. For details, see “Integrate the Referenced Model into the
Parent Model”.

• Converting a masked subsystem can require you to perform additional tasks to
maintain the same general behavior that the masked subsystem provided.

If the subsystem that you convert contains a masked block, consider masking
the Model block in your new referenced model (see “Block Masks”). Configure the
referenced model to support the functionality of the masked subsystem.

Note: A referenced model does not support the functionality that you can achieve with
mask initialization code to create masked parameters.

For masked parameters:

1 In the model workspace of the referenced model, create a variable for each
masked parameter.

2 In the Model Explorer, select the Model Workspace node. In the Dialog pane, in
the Model arguments parameter, enter the variables that you want for model
arguments.

3 In the new Model block, for the Model arguments parameter, specify the values
for the model arguments.

For masked callbacks, icons, ports, and documentation:

1 In the backup copy, open the Mask Editor on the masked subsystem and copy the
content you want into the masked Model block.

2 In the Mask Editor for the new Model block, paste the masked subsystem
content.

See Also
Simulink.BlockDiagram.copyContentsToSubSystem | Simulink.Bus.save |
Simulink.SubSystem.copyContentsToBlockDiagram

Introduced in R2006a

2 Functions — Alphabetical List

2-608

Simulink.SubSystem.copyContentsToBlockDiagram
Copy contents of subsystem to empty block diagram

Syntax

Simulink.SubSystem.copyContentsToBlockDiagram(subsys, bdiag)

Description

Simulink.SubSystem.copyContentsToBlockDiagram(subsys, bdiag) copies
the contents of the subsystem subsys to the block diagram bdiag. The subsystem and
block diagram must have already been loaded. The subsystem cannot be part of the
block diagram. The function affects only blocks, lines, and annotations; it does not affect
nongraphical information such as configuration sets.

This function cannot be used if the destination block diagram contains
any blocks or signals. Other types of information can exist in the
destination block diagram and are unaffected by the function. Use
Simulink.BlockDiagram.deleteContents if necessary to empty the block diagram
before using Simulink.SubSystem.copyContentsToBlockDiagram.

Tip To flatten a model hierarchy by expanding the contents of a
subsystem to the system that contains that subsystem, do not use the
Simulink.SubSystem.copyContentsToBlockDiagram function. Instead, expand the
subsystem, as described in “Expand Subsystem Contents”.

Input Arguments

subsys

Subsystem name or handle

bdiag

Block diagram name or handle

 Simulink.SubSystem.copyContentsToBlockDiagram

2-609

Examples

Copy the graphical contents of f14/Controller, including all nested subsystems, to a
new block diagram:
% open f14

open_system('f14');

% create a new model

newbd = new_system;

open_system(newbd);

% copy the subsystem

Simulink.SubSystem.copyContentsToBlockDiagram('f14/Controller', newbd);

% close f14 and the new model

close_system('f14', 0);

close_system(newbd, 0);

More About
• “Modeling Fundamentals”
• “Create a Subsystem”
• “Expand Subsystem Contents”

See Also
Simulink.BlockDiagram.copyContentsToSubSystem

| Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.deleteContents

Introduced in R2007a

2 Functions — Alphabetical List

2-610

Simulink.SubSystem.deleteContents
Delete contents of subsystem

Syntax

Simulink.SubSystem.deleteContents(subsys)

Description

Simulink.SubSystem.deleteContents(subsys) deletes the contents of the
subsystem subsys. The function affects only blocks, lines, and annotations. The
subsystem must have already been loaded.

Note: This function does not delete library blocks in a subsystem.

Input Arguments

subsys

Subsystem name or handle

Examples

Delete the graphical contents of Controller, including all nested subsystems:

Simulink.SubSystem.deleteContents('f14/Controller');

More About
• “Model Hierarchy”
• “Create a Subsystem”

 Simulink.SubSystem.deleteContents

2-611

See Also
Simulink.BlockDiagram.copyContentsToSubSystem

| Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Introduced in R2007a

2 Functions — Alphabetical List

2-612

Simulink.SubSystem.getChecksum
Return checksum of nonvirtual subsystem

Syntax
[checksum,details] = Simulink.SubSystem.getChecksum(subsys)

Description

[checksum,details] = Simulink.SubSystem.getChecksum(subsys) returns the
checksum of the specified nonvirtual subsystem. Simulink computes the checksum based
on the subsystem parameter settings and the blocks the subsystem contains. Virtual
subsystems do not have checksums.

One use of this command is to determine why code generated for a subsystem is not being
reused. For an example, see “Determine Why Subsystem Code Is Not Reused” in the
Simulink Coder documentation.

Note: Simulink.SubSystem.getChecksum compiles the model that contains the
specified subsystem, if the model is not already in a compiled state. If you need to get
the checksum for multiple subsystems and want to avoid multiple compiles, use the
command , model([], [], [], 'compile') to place the model in a compiled state
before using Simulink.SubSystem.getChecksum.

This command accepts the argument subsys, which is the full name or handle of the
nonvirtual subsystem block for which you are returning checksum data.

This command returns the following output:

• checksum — Structure of the form

Value: [4x1 uint32]

MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the subsystem's 128-bit
checksum.

 Simulink.SubSystem.getChecksum

2-613

• MarkedUnique — True if the subsystem or the blocks it contains have properties
that would prevent the code generated for the subsystem from being reused;
otherwise, false.

• details — Structure of the form

ContentsChecksum: [1x1 struct]

InterfaceChecksum: [1x1 struct]

ContentsChecksumItems: [nx1 struct]

InterfaceChecksumItems: [mx1 struct]

• ContentsChecksum — Structure of the same form as checksum, representing a
checksum that provides information about all blocks in the system.

• InterfaceChecksum — Structure of the same form as checksum, representing a
checksum that provides information about the subsystem's block parameters and
connections.

• ContentsChecksumItems and InterfaceChecksumItems — Structure arrays
of the following form that Simulink software uses to compute the checksum for
ContentsChecksum and InterfaceChecksum, respectively:

Handle: [char array]

Identifier: [char array]

Value: [type]

• Handle — Object for which Simulink software added an item to the checksum.
For a block, the handle is a full block path. For a block port, the handle is the
full block path and a string that identifies the port.

• Identifier — Descriptor of the item Simulink software added to the
checksum. If the item is a documented parameter, the identifier is the
parameter name.

• Value — Value of the item Simulink software added to the checksum. If the
item is a parameter, Value is the value returned by

get_param(handle, identifier)

Tip

For information about the kinds of changes that affect the structural checksum, see the
Simulink.BlockDiagram.getChecksum documentation.

2 Functions — Alphabetical List

2-614

See Also
Simulink.BlockDiagram.getChecksum

Introduced in R2006b

 sint

2-615

sint
Create Simulink.NumericType object describing signed integer data type

Syntax
a = sint(WordLength)

Description

sint(WordLength) returns a Simulink.NumericType object that describes the data
type of a signed integer with a word size given by WordLength.

Note: sint is a legacy function. In new code, use fixdt instead. In existing code, replace
sint(WordLength) with fixdt(1,WordLength,0).

Examples

Define a 16-bit signed integer data type.

a = sint(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 16

 FractionLength: 0

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

See Also
fixdt | Simulink.NumericType | float | sfix | sfrac | ufix | ufrac | uint

2 Functions — Alphabetical List

2-616

Introduced before R2006a

 slbuild

2-617

slbuild

Build standalone executable or model reference target for model

Syntax

slbuild(model)

slbuild(model,'StandaloneRTWTarget')

slbuild(model,'StandaloneRTWTarget','ForceTopModelBuild',true)

slbuild(model,'CleanTopModel')

slbuild(model,mdlreftarget)

slbuild(model,mdlreftarget,

'UpdateThisModelReferenceTarget',buildcond)

Description

Note: Except where noted, this function requires a Simulink Coder license.

slbuild(model) builds a standalone Simulink Coder target executable from model,
using the current model configuration settings. If the model has not been loaded,
slbuild loads it before initiating the build process.

slbuild(model,'StandaloneRTWTarget') builds a standalone Simulink Coder
target executable from model (same as previous).

slbuild(model,'StandaloneRTWTarget','ForceTopModelBuild',true) allows
you to additionally force regeneration of code for the top model of a system that includes
referenced models. If ForceTopModelBuild is omitted or set to false, the build process
determines whether to regenerate top model code based on model and model parameter
changes.

slbuild(model,'CleanTopModel') cleans the model build area enough to trigger
regeneration of the top model code at the next build.

2 Functions — Alphabetical List

2-618

Note: The following function calls for building the model reference target:

• Honor the setting of the Rebuild parameter on the Model Referencing pane of the
Configuration Parameters dialog box.

• Require a Simulink Coder license only if you build a model reference Simulink Coder
target, not if you build only a model reference simulation target.

slbuild(model,mdlreftarget) builds a model reference target, of the type specified
by mdlreftarget, from model. The mdlreftarget argument must be one of the
following:

• 'ModelReferenceSimTarget' — Builds a model reference simulation target (does
not require a Simulink Coder license)

• 'ModelReferenceRTWTarget' — Builds a model reference Simulink Coder target
and the corresponding model reference simulation target

• 'ModelReferenceRTWTargetOnly' — Builds only a model reference Simulink
Coder target

slbuild(model,mdlreftarget,

'UpdateThisModelReferenceTarget',buildcond) allows you to specify a
conditional rebuild option for the model reference target build when the Rebuild
parameter on the Model Referencing pane of the Configuration Parameters dialog box
is set to Never.

Note: The 'UpdateThisModelReferenceTarget' setting applies only to model, not to
any models referenced by model.

The buildcond argument must be one of the following:

• 'Force'

Unconditionally rebuilds the model. This option is equivalent to the Always rebuild
option on the Model Referencing pane of the Configuration Parameters dialog box.

• 'IfOutOfDateOrStructuralChange'

 slbuild

2-619

Rebuilds the model if the build process detects any changes. This option is equivalent
to the If any changes detected rebuild option on the Model Referencing pane
of the Configuration Parameters dialog box.

• 'IfOutOfDate'

Rebuilds the model if the build process detects any changes in known dependencies
of this model. This option is equivalent to the If any changes in known
dependencies detected rebuild option on the Model Referencing pane of the
Configuration Parameters dialog box.

Note: You cannot use slbuild to build subsystems.

Input Arguments

model — Model for which to run the build process
handle | name

Model for which to build a standalone executable or model reference target, specified as a
handle or a string representing the model name.
Example: gcs

mdlreftarget — Model reference target
'ModelReferenceSimTarget' | 'ModelReferenceRTWTarget' |
'ModelReferenceRTWTargetOnly'

Model reference target to use for generating model code
Example: 'ModelReferenceSimTarget'

More About
• “Model Reference Simulation Targets”
• “What Is Acceleration?”
• “Perform Acceleration”

2 Functions — Alphabetical List

2-620

See Also
rtwbuild

Introduced before R2006a

 slCharacterEncoding

2-621

slCharacterEncoding
Change MATLAB character set encoding

Syntax

currentCharacterEncoding = slCharacterEncoding()

slCharacterEncoding(encoding)

Description

This command allows you to change the current MATLAB character set encoding to be
compatible with the character encoding of a model that you want to open.

currentCharacterEncoding = slCharacterEncoding() returns the current
MATLAB character set encoding.

slCharacterEncoding(encoding) changes the MATLAB character set encoding to
the specified encoding. You should only specify these values:

• 'US-ASCII'

• 'Windows-1252'

• 'ISO-8859-1'

• 'Shift_JIS'

• 'UTF-8'

If you want to use a different character encoding, you need to start MATLAB with the
appropriate locale settings for your operating system. Consult your operating system
manual to change the locale setting. Simulink can support any character encoding that
uses single-byte or double-byte characters.

If you open a model that uses a particular character set encoding in a MATLAB session
that uses a different encoding, a warning appears. For example, suppose that you
create a model in a MATLAB session configured for Shift_JIS and open it in a session
configured for US_ASCII. The warning message shows the encoding of the current
session and the encoding used to create the model. If you encounter any problems with

2 Functions — Alphabetical List

2-622

corrupted characters, for example when using MATLAB files associated with the model,
then try using the slCharacterEncoding function to change the character encoding

1 Close all open models.
2 Use slCharacterEncoding to change the character encoding of the current

MATLAB session to match the model character encoding.
3 Reopen the model.

Note You must close all open models or libraries before changing the MATLAB character
set encoding except when changing from 'US-ASCII' to another encoding.

More About
• “Open a Model with Different Character Encoding”
• “Save Models with Different Character Encodings”

Introduced before R2006a

 sldebug

2-623

sldebug
Start simulation in debug mode

Syntax
sldebug('sys')

Description

sldebug('sys') starts a simulation in debug mode. See “Debugger Command-Line
Interface” for information about using the debugger.

Examples

The following command:

sldebug('vdp')

loads the Simulink example model vdp into memory and starts the simulation in debug
mode. Alternatively, you can achieve the same result by using the sim command:

sim('vdp', 'debug', 'on')

See Also
sim

Introduced in R2006a

2 Functions — Alphabetical List

2-624

sldiagnostics
Display diagnostic information about Simulink system

Syntax

sldiagnostics('sys')

[txtRpt, sRpt] = sldiagnostics('sys')

[txtRpt, sRpt] = sldiagnostics('sys', options)

[txtRpt, sRpt] = sldiagnostics('sys', 'CompileStats')

[txtRpt, sRpt] = sldiagnostics('sys', 'RTWBuildStats')

Description

sldiagnostics('sys') displays the following diagnostic information associated with
the model or subsystem specified by sys:

• Number of each type of block
• Number of each type of Stateflow object
• Number of states, outputs, inputs, and sample times of the root model.
• Names of libraries referenced and instances of the referenced blocks
• Time and additional memory used for each compilation phase of the root model

If the model specified by sys is not loaded, then sldiagnostics loads the model before
performing the analysis.

The command sldiagnostics('sys', options) displays only the diagnostic
information associated with the specific operations listed as options strings. The table
below summarizes the options available and their corresponding valid input and output.

With sldiagnostics, you can input the name of a model or the path to a subsystem.
For some analysis options, sldiagnostics can analyze only a root model. If you provide
an incompatible input for one of these analyses, then sldiagnostics issues a warning.
Finally, if you input a Simulink Library, then sldiagnostics cannot perform options
that require a model compilation (Update Diagram). Instead, sldiagnostics issues a
warning.

 sldiagnostics

2-625

During the analysis, sldiagnostics will follow library links but will not follow or
analyze Model References. See find_mdlrefs for more information on finding all Model
blocks and referenced models in a specified model.

Option Valid Inputs Output

CountBlocks root model, library, or
subsystem

Lists all unique blocks in the system
and the number of occurrences of each.
This includes blocks that are nested in
masked subsystems or hidden blocks.

CountSF root model, library, or
subsystem

Lists all unique Stateflow objects in the
system and the number of occurrences of
each.

Sizes root model Lists the number of states, outputs,
inputs, and sample times, as well as a
flag indicating direct feedthrough, used
in the root model.

Libs root model, library, or
subsystem

Lists all unique libraries referenced in
the root model, as well as the names and
numbers of the library blocks.

CompileStats root model Lists the time and additional memory
used for each compilation phase of the
root model. This information helps users
troubleshoot model compilation speed
and memory issues.

RTWBuildStats root model Lists the same information as the
CompileStats diagnostic. When issued
with the second output argument sRpt,
it captures the same statistics included
in CompileStats and also the Simulink
Coder build statistics.

You must explicitly specify this option,
because it is not part of the default
analysis.

All not applicable Performs all diagnostics.

2 Functions — Alphabetical List

2-626

Note: Running the CompileStats diagnostic before simulating a model for the first
time will show greater memory usage. However, subsequent runs of the CompileStats
diagnostic on the model will require less memory usage.

[txtRpt, sRpt] = sldiagnostics('sys') returns the diagnostic information as
a textual report txtRpt and a structure array sRpt, which contains the following fields
that correspond to the diagnostic options:

• blocks

• stateflow

• sizes

• links

• compilestats

[txtRpt, sRpt] = sldiagnostics('sys', options) returns only the specified
options. If your chosen options specify just one type of analysis, then sRpt contains the
results of only that analysis.

[txtRpt, sRpt] = sldiagnostics('sys', 'CompileStats') returns information
on time and memory usage in txtRpt and sRpt.

[txtRpt, sRpt] = sldiagnostics('sys', 'RTWBuildStats') includes Simulink
Coder build statistics in addition to the information reported for CompileStats in the
sRpt output.

• txtRpt contains the formatted textual output of time spent in each of the phases in
Simulink and Simulink Coder (if you specified RTWBuildStats), for example:

Compile Statistics For: rtwdemo_counter

 Cstat1: 0.00 seconds Model compilation pre-start

 Cstat2: 0.00 seconds Stateflow compile pre-start notification

 Cstat3: 0.10 seconds Post pre-comp-start engine event

 Cstat4: 10.00 seconds Stateflow compile start notification

 Cstat5: 0.00 seconds Model compilation startup completed

• sRpt is a MATLAB structure containing time and memory usage for each of the
phases, for example:

sRpt =

Model: ‘myModel1’

 sldiagnostics

2-627

Statistics: [1x134 struct]

The size of the sRpt.Statistics array indicates the number of compile and build
phases executed during the operation. Examine the Statistics fields:

sRpt.Statistics(1) =

Description: ‘Phase1’

CPUTime: 7.2490

WallClockTime 4.0092

ProcessMemUsage: 26.2148

ProcessMemUsagePeak: 28.6680

ProcessVMSize: 15.9531

CPUTime and WallClockTime show the elapsed time for the phase in seconds.
ProcessMemUsage, ProcessMemUsagePeak and ProcessVMSize show the memory
consumption during execution of the phase in MB.

Examine these key metrics to understand the performance:

• WallClockTime—The real-time elapsed in each phase in seconds. Sum the
WallClockTime in each phase to get the total time taken to perform the operation:

ElapsedTime = sum([statRpt.Statistics(:).WallClockTime]);

• ProcessMemUsage—The amount of memory consumed in each phase. Sum the
ProcessMemUsage across all the phases to get the memory consumption during the
entire operation:

TotalMemory = sum([statRpt.Statistics(:).ProcessMemUsage]);

• ProcessMemUsagePeak—The maximum amount of allocated memory in each phase.
Get the maximum of this metric across all the phases to find the peak memory
allocation during the operation:

PeakMemory = max([statRpt.Statistics(:).ProcessMemUsagePeak]);

Note: Memory statistics are available only on the Microsoft Windows® platform.

Examples

The following command counts and lists each type of block used in the sldemo_bounce
model that comes with Simulink software.

sldiagnostics('sldemo_bounce', 'CountBlocks')

2 Functions — Alphabetical List

2-628

The following command counts and lists both the unique blocks and Stateflow objects
used in the sf_boiler model that comes with Stateflow software; the textual report
returned is captured as myReport.
myReport = sldiagnostics('sf_boiler', 'CountBlocks', 'CountSF')

The following commands open the f14 model that comes with Simulink software, and
counts the number of blocks used in the Controller subsystem.

sldiagnostics('f14/Controller', 'CountBlocks')

The following command runs the Sizes and CompileStats diagnostics on the f14
model, capturing the results as both a textual report and structure array.
[txtRpt, sRpt] = sldiagnostics('f14', 'Sizes', 'CompileStats')

See Also
find_system | get_param

Introduced in R2006a

 sldiagviewer.diary

2-629

sldiagviewer.diary
Log simulation warnings and errors and build information to file

Syntax

sldiagviewer.diary

sldiagviewer.diary(filename)

sldiagviewer.diary(toggle)

sldiagviewer.diary(filename,'UTF-8')

Description

sldiagviewer.diary intercepts build information, warnings, and errors transmitted to
the Command Window or the Diagnostic Viewer and logs them to a text file diary.txt
in the current folder.

sldiagviewer.diary(filename) toggles the logging state of the text file specified by
filename.

sldiagviewer.diary(toggle) turns logging to the log file on or off. The setting
applies to the last file name you specified for logging or to diary.txt if you did not
specify a file name.

sldiagviewer.diary(filename,'UTF-8') specifies the character encoding for the
log file filename.

Examples

Log Build Information and Simulation Warnings and Errors

Start logging build information and simulation warnings and errors to diary.txt.

sldiagviewer.diary

open_system('vdp')

rtwbuild('vdp')

2 Functions — Alphabetical List

2-630

Open diary.txt to view logs.

Starting build procedure for model: vdp

Build procedure for model: 'vdp' aborted due to an error.

...

Log to Specific File

Set up logging to a file.

sldiagviewer.diary('C:\MyLogs\log1.txt')

Toggle File Logging State

Switch the logging state of a file.

sldiagviewer.diary('C:\MyLogs\log1.txt') % Start logging

open_system('vdp')

rtwbuild('vdp')

sldiagviewer.diary('off') % Switch off logging

open_system('sldemo_fuelsys')

rtwbuild('sldemo_fuelsys')

sldiagviewer.diary('on') % Resume logging

Specify Log File Name and Character Encoding

Set the file name to log to and the character encoding to use.

sldiagviewer.diary('C:\MyLogs\log1.txt','UTF-8')

• “View Diagnostics”
• “Customize Diagnostic Messages”

Input Arguments

toggle — Logging state
'off' | 'on'

Logging state, specified as 'on' or 'off'.

Example: sldiagviewer.diary('on')

 sldiagviewer.diary

2-631

filename — Name of file to log data to
string

Name of file to log data to, specified as a string.
Example: sldiagviewer.diary('C:\Simulations\mySimulationDiary.txt')

Introduced in R2014a

2 Functions — Alphabetical List

2-632

sldiscmdl
Discretize model that contains continuous blocks

Syntax

sldiscmdl('model_name',sample_time)

sldiscmdl('model_name',sample_time,method)

sldiscmdl('model_name',sample_time,options)

sldiscmdl('model_name',sample_time,method,freq)

sldiscmdl('model_name',sample_time,method,options)

sldiscmdl('model_name',sample_time,method,freq,options)

[old_blks,new_blks] =

sldiscmdl('model_name',sample_time,method,freq,options)

Description

sldiscmdl('model_name',sample_time) discretizes the model named
'model_name' using the specified sample_time. The model does not need to be open,
and the units for sample_time are simulation seconds.

sldiscmdl('model_name',sample_time,method) discretizes the model using
sample_time and the transform method specified by method.

sldiscmdl('model_name',sample_time,options) discretizes the model using
sample_time and criteria specified by the options cell array. This array consists of
four elements: {target, replace_with, put_into, prompt}.

sldiscmdl('model_name',sample_time,method,freq) discretizes the model using
sample_time, method, and the critical frequency specified by freq. The units for freq
are Hz. When you specify freq, method must be 'prewarp'.

sldiscmdl('model_name',sample_time,method,options) discretizes the model
using sample_time, method, and options.

sldiscmdl('model_name',sample_time,method,freq,options) discretizes
the model using sample_time, method, freq, and options. When you specify freq,
method must be 'prewarp'.

 sldiscmdl

2-633

[old_blks,new_blks] =

sldiscmdl('model_name',sample_time,method,freq,options) discretizes
the model using sample_time, method, freq, and options. When you specify freq,
method must be 'prewarp'. The function also returns two cell arrays that contain full
path names of the original, continuous blocks and the new, discretized blocks.

Input Arguments

model_name

Name of the model to discretize.

sample_time

Sample-time specification for the model:

Scalar value Sample time with zero offset, such as 1
Two-element vector Sample time with nonzero offset, such as

[1 0.1]

method

Method of converting blocks from continuous to discrete mode:

'zoh' (default) Zero-order hold on the inputs
'foh' First-order hold on the inputs
'tustin' Bilinear (Tustin) approximation
'prewarp' Tustin approximation with frequency

prewarping
'matched' Matched pole-zero method

For single-input, single-output (SISO)
systems only

freq

Critical frequency in Hz. This input applies only when the method input is 'prewarp'.

2 Functions — Alphabetical List

2-634

options

Cell array {target, replace_with, put_into, prompt}, where each element can take
the following values:

'all' (default) Discretize all continuous blocks
'selected' Discretize only selected blocks in the

model

target

'full_blk_path' Discretize specified block
'parammask'

(default)
Create discrete blocks whose
parameters derive from the
corresponding continuous blocks

replace_with

'hardcoded' Create discrete blocks with hard-
coded parameters placed directly into
each block dialog box

'copy' (default) Create discretization in a copy of the
original model

'configurable' Create discretization candidate in a
configurable subsystem

'current' Apply discretization to the current
model

put_into

'untitled' Create discretization in a new
untitled window

'on' (default) Show discretization information at
the command prompt

prompt

'off' Do not show discretization
information at the command prompt

Examples

Discretize all continuous blocks in the slexAircraftExample model using a 1-second
sample time:

sldiscmdl('slexAircraftExample',1);

 sldiscmdl

2-635

Discretize the Aircraft Dynamics Model subsystem in the slexAircraftExample
model using a 1-second sample time, a 0.1-second offset, and a first-order hold transform
method:

sldiscmdl('slexAircraftExample',[1 0.1],'foh',...

{'slexAircraftExample/Aircraft Dynamics Model',...

'parammask','copy','on'});

Discretize the Aircraft Dynamics Model subsystem in the slexAircraftExample
model and retrieve the full path name of the second discretized block:

[old_blks,new_blks] = sldiscmdl('slexAircraftExample',[1 0.1],...

'foh',{'slexAircraftExample/Aircraft Dynamics Model','parammask',...

'copy','on'});

% Get full path name of the second discretized block

new_blks{2}

More About
• “Discretize a Model with the sldiscmdl Function”

See Also
slmdldiscui

Introduced before R2006a

2 Functions — Alphabetical List

2-636

slIsFileChangedOnDisk
Determine whether model has changed since it was loaded

Syntax

Changed = slIsFileChangedOnDisk('sys')

Description

Changed = slIsFileChangedOnDisk('sys') Returns true if the file which contains
block diagram sys was changed on disk since the block diagram was loaded.

Examples

To ensure that code is not generated for a model whose file has changed on disk since it
was loaded, include the following in the 'entry' section of the STF_make_rtw_hook.m
file:

if (slIsFileChangedOnDisk(sys))

 error('File has changed on disk since it was loaded. Aborting code generation.');

end

More About
• “Customize Build Process with STF_make_rtw_hook File”
• “Model File Change Notification”

Introduced in R2007b

 slmdldiscui

2-637

slmdldiscui
Open Model Discretizer GUI

Syntax

slmdldiscui

slmdldiscui('model')

Description

slmdldiscui opens the Model Discretizer. A model does not need to be open.

slmdldiscui('model') opens the Model Discretizer for the model or library called
'name'.

To use the Model Discretizer, you must have a Control System Toolbox license, version
5.2 or later.

Examples

Open the Model Discretizer for the slexAircraftExample model:

slmdldiscui('slexAircraftExample')

Open the Model Discretizer for the discretizing library:

slmdldiscui('discretizing')

More About
• “Discretize a Model with the Model Discretizer”

See Also
sldiscmdl

2 Functions — Alphabetical List

2-638

Introduced before R2006a

 slprofreport

2-639

slprofreport
Regenerate profiler report from data, ProfileData, saved from previous run

Syntax

slprofreport(model_nameProfileData)

Description

When you run a model with the profiler enabled, the simulation generates
the data and saves it in the variable, model_nameProfileData.
slprofreport(model_nameProfileData) generates a profiler report based on the
data in model_nameProfileData, saved from the model run.

Input Arguments

ProfileData

Variable that contains profiler data from a model run. The variable name consists of the
model name and ProfileData, for example, vdpProfileData.

Default: None

Examples

Regenerate Simulink Profiler Results

Regenerate the Profiler report for model vdp

In the MATLAB Command Window, start the vdp model.

In the Simulink editor window, run vdp model with Simulink Profiler enabled.

Simulink stores the data to the variable vdpProfileData.

2 Functions — Alphabetical List

2-640

To review the report, in the MATLAB Command Window

slprofreport(vdpProfileData)

The Simulink Profiler Report window is displayed.

• “Save Profiler Results”

More About
• “How Profiler Captures Performance Data”

Introduced in R2012a

 slproject.getCurrentProject

2-641

slproject.getCurrentProject
Manipulate current Simulink Project at command line

Syntax

proj = slproject.getCurrentProject

Description

proj = slproject.getCurrentProject gets the current project open in the
Simulink Project Tool and returns a project object proj that you can use to manipulate
the project programmatically. Use slproject.getProject for project automation
scripts.

Examples

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProject to get a project
object to manipulate the project at the command line.

sldemo_slproject_airframe

proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 Categories: [1x2 slproject.Category]

 Shortcuts: [1x6 slproject.Shortcut]

 Files: [1x24 slproject.ProjectFile]

 RootFolder: 'C:\Temp\20121107T135235\airframe'

Find Project Commands

Open the airframe project and create a project object.

2 Functions — Alphabetical List

2-642

sldemo_slproject_airframe

proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 Categories: [1x2 slproject.Category]

 Files: [1x24 slproject.ProjectFile]

 RootFolder: [1x61 char]

Find out what you can do with your project.

methods(proj)

Methods for class slproject.ProjectManager:

addFile

export

isLoaded

removeFile

close

findCategory

reload

removeLabel

createCategory

findFile

removeCategory

Examine Project Properties

After you get a project object, you can examine project properties.

Open the airframe project and create a project object.

sldemo_slproject_airframe

proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 Categories: [1x2 slproject.Category]

 slproject.getCurrentProject

2-643

 Files: [1x24 slproject.ProjectFile]

 RootFolder: [1x61 char]

Examine the project files.

files = proj.Files

files =

 1x24 ProjectFile array with properties:

 Path

 Labels

Examine the labels of the eighth file.

proj.Files(8).Labels

ans =

 Label with properties:

File: 'C:\Temp\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Design'

CategoryName: 'Classification'

Get a particular file.

myfile = findFile(proj, 'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel

2 Functions — Alphabetical List

2-644

removeLabel

findLabel

Output Arguments

proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently
open Simulink Project at the command line.

Properties of proj output argument.

Project Property Description Value

Name Project name String
Categories Categories of project labels Cell array of strings
Files Paths and labels of project

files
Cell array of strings

RootFolder Full path to project root
folder

String

Shortcuts Shortcut files in project Cell array of strings

More About

Tips

Alternatively, you can use simulinkproject to get a project object, but
simulinkproject also opens and gives focus to the Simulink Project Tool.
Use simulinkproject to open projects and explore projects interactively. Use
slproject.getProject for project automation scripts.

See Also

Functions
simulinkproject | slproject.loadProject

 slproject.getCurrentProject

2-645

Introduced in R2013a

2 Functions — Alphabetical List

2-646

slproject.loadProject
Load Simulink project

Syntax

slproject.loadProject(projectPath);

proj = slproject.loadProject(projectPath)

Description

slproject.loadProject(projectPath); loads the project specified by the .prj
file or folder projectPath in the Simulink Project Tool, and closes any currently open
project.

proj = slproject.loadProject(projectPath) loads the project and returns a
project object proj for manipulating the project. Use slproject.loadProject for
project automation scripts.

Examples

Load Project

Load a project from a folder called 'C:/projects/project1/'. Replace this path with
the location of your project.

proj = slproject.loadProject('C:/projects/project1/')

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProject to get a project
object to manipulate the project at the command line.

sldemo_slproject_airframe

proj = slproject.getCurrentProject

proj =

 slproject.loadProject

2-647

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 Categories: [1x2 slproject.Category]

 Shortcuts: [1x6 slproject.Shortcut]

 Files: [1x24 slproject.ProjectFile]

 RootFolder: 'C:\Temp\20121107T135235\airframe'

Find Project Commands

Get the Airframe project..

Find project commands.

methods(proj)

Methods for class slproject.ProjectManager:

addFile

export

isLoaded

removeFile

close

findCategory

reload

removeLabel

createCategory

findFile

removeCategory

Examine Project Properties

After you get a project object, you can examine project properties.

Get the airframe project.

Examine the project files.

files = proj.Files

files =

 1x24 ProjectFile array with properties:

2 Functions — Alphabetical List

2-648

 Path

 Labels

Examine the labels of the eighth file.

proj.Files(8).Labels

ans =

 Label with properties:

File: 'C:\Temp\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Design'

CategoryName: 'Classification'

Get a particular file by name.

myfile = findFile(proj, 'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel

removeLabel

findLabel

Input Arguments

projectPath — Full path to project file or folder
string

Full path to project .prj file or the path to the project root folder, specified as a string.

 slproject.loadProject

2-649

Example: 'C:/projects/project1/myProject.prj'

Example: 'C:/projects/project1/'

Output Arguments

proj — Project
project object

Project, returned as a project object. Use the project object to manipulate and explore the
Simulink Project at the command line.

Properties of proj output argument.

Project Property Description Value

Name Project name String
Categories Categories of project labels Cell array of strings
Files Paths and labels of project

files
Cell array of strings

RootFolder Full path to project root
folder

String

Shortcuts Shortcut files in project Cell array of strings

More About
• “What Are Simulink Projects?”

See Also

Functions
simulinkproject | slproject.getCurrentProject

Introduced in R2013a

2 Functions — Alphabetical List

2-650

slreplace_mux

Replace Mux blocks used to create buses with Bus Creator blocks

Syntax

[muxes, uniqueMuxes, uniqueBds] = slreplace_mux('model')

[muxes, uniqueMuxes, uniqueBds] = slreplace_mux('model', reportonly)

Description

[muxes, uniqueMuxes, uniqueBds] = slreplace_mux('model') reports
all Mux blocks that create buses in model and in libraries referenced by model. A
signal created by a Mux block is a bus if the signal meets either or both of the following
conditions:

• A Bus Selector block individually selects one or more of the signal's elements (as
opposed to the entire signal).

• The signal's components have different data types, numeric types (complex or real),
dimensionality, storage classes, or sampling modes.

Before running this command in any form, you should set the Mux blocks used to
create bus signals connectivity diagnostic to warning or none. See “Connectivity
Diagnostics Overview” for more information.

[muxes, uniqueMuxes, uniqueBds] = slreplace_mux('model', reportonly)

is equivalent to [muxes, uniqueMuxes, uniqueBds] = slreplace_mux('model')
if reportonly is true.

If reportonly is false, the function reports all Mux blocks that create buses in model
and in libraries referenced by model, and replaces all such Mux blocks with Bus Creator
blocks. The function saves the model, if changed, and saves and closes any changed
library. You should make a backup copy of your model and libraries before using this
form of the command.

 slreplace_mux

2-651

Input Arguments

model

The model for which slreplace_mux is to report and optionally replace muxes used as
buses.

reportOnly

Whether to just generate a report (true) or also change the model(s) (false).

Default: true

Output Arguments

muxes

All Mux blocks used as Bus Creators in the model and in libraries referenced by the
model

uniqueMuxes

All Mux blocks used as Bus Creators in the model and in libraries referenced by the
model, except blocks in the model that are copies of blocks in libraries

uniqueBds

All models and libraries that use Mux blocks as Bus Creators

More About
• “Connectivity Diagnostics Overview”
• “Prevent Bus and Mux Mixtures”
• “Mux Signals”
• “Composite Signals”

See Also
Bus Creator | Mux

2 Functions — Alphabetical List

2-652

Introduced before R2006a

 start_simulink

2-653

start_simulink
Start Simulink without opening any windows

Syntax

start_simulink

Description

start_simulink starts Simulink without opening any models or the Simulink Library
Browser. Use this in startup scripts to start Simulink without any other window taking
the focus away from the MATLAB Desktop. For example, use start_simulink in the
MATLAB startup.m file, when starting MATLAB with the -r command line option,
or in Simulink project startup scripts. Opening a model for the first time in a MATLAB
session is much quicker after running start_simulink.

If you want to open the Library Browser, use the slower simulink function instead.

Examples

Start Simulink When Starting MATLAB

Use the -r command line option to start Simulink when starting MATLAB, without
opening the Simulink Library Browser.

On Windows, create a desktop shortcut with the following target:

matlabroot\bin\win64\matlab.exe -r start_simulink

On Linux® and Mac, enter:

matlab -r start_simulink

• “Automate Startup Tasks with Shortcuts”

See Also
simulink

2 Functions — Alphabetical List

2-654

Introduced in R2015b

 slupdate

2-655

slupdate
Replace blocks from previous releases with latest versions

Note: slupdate will be removed in a future release. The slupdate command can
only upgrade some parts of your model. Use the Upgrade Advisor instead. See “Model
Upgrades”.

Syntax

slupdate('sys')

slupdate('sys', prompt)

AnalysisResult = slupdate('sys', 'OperatingMode', 'Analyze')

Description

slupdate('sys') replaces blocks in model sys from a previous release of Simulink
software with the latest versions. The slupdate function alone cannot perform all
upgrade checks on your model. Use the Upgrade Advisor to access the slupdate checks
and also advice and fixes for all other upgrade checks. See “Model Upgrades”.

Note Best practice is to first open the model, and press CTRL+D to update the model,
before you call slupdate.

slupdate('sys', prompt) specifies whether to prompt you before replacing a block. If
prompt equals 1, the command prompts you before replacing the block. The prompt asks
whether you want to replace the block. Valid responses are

• y

Replace the block (the default).
• n

2 Functions — Alphabetical List

2-656

Do not replace the block.
• a

Replace this and all subsequent obsolete blocks without further prompting.

If prompt equals 0, the command replaces all obsolete blocks without prompting you.

In addition to replacing obsolete blocks, slupdate

• Reconnects broken links to masked blocks in libraries provided by MathWorks to
ensure that the model reflects changes made to the blocks in this release. This will
overwrite any custom changes you made to the masks of these blocks.

• Updates obsolete configuration settings for the model.

AnalysisResult = slupdate('sys', 'OperatingMode', 'Analyze') performs
only the analysis portion without updating or changing the model. This command
analyzes referenced models, linked libraries, and S-functions, and then returns a data
structure with the following fields:

• Message — string containing a message summarizing the results
• blockList — cell array listing blocks that need to be updated
• blockReasons — cell array listing reasons for updating the corresponding blocks
• modelList — cell array listing referenced models and the parent model
• libraryList — cell array listing non-MathWorks libraries referenced
• configSetList — for internal use
• sfunList — cell array listing S-functions referenced
• sfunOK — logical array representing S-function status, where false indicates that

an S-function needs updating and true indicates otherwise
• sfunType — cell array listing apparent S-function type (e.g., .mex)

More About
• “Model Upgrades”

See Also
upgradeadvisor

 slupdate

2-657

Introduced before R2006a

2 Functions — Alphabetical List

2-658

trim
Find trim point of dynamic system

Syntax

[x,u,y,dx] = trim('sys')

[x,u,y,dx] = trim('sys',x0,u0,y0)

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)

Description

A trim point, also known as an equilibrium point, is a point in the parameter space
of a dynamic system at which the system is in a steady state. For example, a trim
point of an aircraft is a setting of its controls that causes the aircraft to fly straight
and level. Mathematically, a trim point is a point where the system's state derivatives
equal zero. trim starts from an initial point and searches, using a sequential quadratic
programming algorithm, until it finds the nearest trim point. You must supply the
initial point implicitly or explicitly. If trim cannot find a trim point, it returns the point
encountered in its search where the state derivatives are closest to zero in a min-max
sense; that is, it returns the point that minimizes the maximum deviation from zero
of the derivatives. trim can find trim points that meet specific input, output, or state
conditions, and it can find points where a system is changing in a specified manner, that
is, points where the system's state derivatives equal specific nonzero values.

[x,u,y,dx] = trim('sys') finds the equilibrium point of the model 'sys', nearest
to the system's initial state, x0. Specifically, trim finds the equilibrium point that
minimizes the maximum absolute value of [x-x0,u,y]. If trim cannot find an
equilibrium point near the system's initial state, it returns the point at which the
system is nearest to equilibrium. Specifically, it returns the point that minimizes
abs(dx) where dx represents the derivative of the system. You can obtain x0 using this
command.

[sizes,x0,xstr] = sys([],[],[],0)

 trim

2-659

[x,u,y,dx] = trim('sys',x0,u0,y0) finds the trim point nearest to x0, u0, y0,
that is, the point that minimizes the maximum value of

abs([x-x0; u-u0; y-y0])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) finds the trim point closest to x0,
u0, y0 that satisfies a specified set of state, input, and/or output conditions. The integer
vectors ix, iu, and iy select the values in x0, u0, and y0 that must be satisfied. If trim
cannot find an equilibrium point that satisfies the specified set of conditions exactly, it
returns the nearest point that satisfies the conditions, namely,

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) finds specific
nonequilibrium points, that is, points at which the system's state derivatives have some
specified nonzero value. Here, dx0 specifies the state derivative values at the search's
starting point and idx selects the values in dx0 that the search must satisfy exactly.

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)

specifies an array of optimization parameters that trim passes to the optimization
function that it uses to find trim points. The optimization function, in turn, uses this
array to control the optimization process and to return information about the process.
trim returns the options array at the end of the search process. By exposing the
underlying optimization process in this way, trim allows you to monitor and fine-tune
the search for trim points.

The following table describes how each element affects the search for a trim point. Array
elements 1, 2, 3, 4, and 10 are particularly useful for finding trim points.

No. Default Description

1 0 Specifies display options. 0 specifies no display; 1 specifies
tabular output; -1 suppresses warning messages.

2 10–4 Precision the computed trim point must attain to terminate
the search.

3 10–4 Precision the trim search goal function must attain to
terminate the search.

4 10–6 Precision the state derivatives must attain to terminate the
search.

5 N/A Not used.

2 Functions — Alphabetical List

2-660

No. Default Description

6 N/A Not used.
7 N/A Used internally.
8 N/A Returns the value of the trim search goal function (λ in goal

attainment).
9 N/A Not used.
10 N/A Returns the number of iterations used to find a trim point.
11 N/A Returns the number of function gradient evaluations.
12 0 Not used.
13 0 Number of equality constraints.
14 100*(Number

of variables)
Maximum number of function evaluations to use to find a
trim point.

15 N/A Not used.
16 10–8 Used internally.

17 0.1 Used internally.
18 N/A Returns the step length.

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)

sets the time to t if the system is dependent on time.

Note: If you fix any of the state, input or output values, trim uses the unspecified free
variables to derive the solution that satisfies these constraints.

Examples

Consider a linear state-space system modeled using a State-Space block

&x Ax Bu

y Cx Du

= +

= +

The A, B, C, and D matrices to enter at the command line or in the block parameters
dialog are:.

 trim

2-661

A = [-0.09 -0.01; 1 0];

B = [0 -7; 0 -2];

C = [0 2; 1 -5];

D = [-3 0; 1 0];

Example 1

To find an equilibrium point in this model called sys, use:

[x,u,y,dx,options] = trim('sys')

x =

 0

 0

u =

 0

 0

y =

 0

 0

dx =

 0

 0

The number of iterations taken is:

options(10)

ans =

 7

Example 2

To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];

u0 = [1;1];

[x,u,y,dx,options] = trim('sys', x0, u0);

x =

 1.0e-13 *

 -0.5160

 -0.5169

u =

 0.3333

 0.0000

2 Functions — Alphabetical List

2-662

y =

 -1.0000

 0.3333

dx =

 1.0e-12 *

 0.1979

 0.0035

The number of iterations taken is

options(10)

ans =

 25

Example 3

To find an equilibrium point with the outputs fixed to 1, use:

y = [1;1];

iy = [1;2];

[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)

x =

 0.0009

 -0.3075

u =

 -0.5383

 0.0004

y =

 1.0000

 1.0000

dx =

 1.0e-15 *

 -0.0170

 0.1483

Example 4

To find an equilibrium point with the outputs fixed to 1 and the derivatives set to 0 and
1, use

y = [1;1];

iy = [1;2];

dx = [0;1];

 trim

2-663

idx = [1;2];

[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)

x =

 0.9752

 -0.0827

u =

 -0.3884

 -0.0124

y =

 1.0000

 1.0000

dx =

 0.0000

 1.0000

The number of iterations taken is

options(10)

ans =

 13

Limitations

The trim point found by trim starting from any given initial point is only a local value.
Other, more suitable trim points may exist. Thus, if you want to find the most suitable
trim point for a particular application, it is important to try a number of initial guesses
for x, u, and y.

More About

Algorithms

trim uses a sequential quadratic programming algorithm to find trim points. See
“Sequential Quadratic Programming (SQP)” for a description of this algorithm.

Introduced before R2006a

2 Functions — Alphabetical List

2-664

tunablevars2parameterobjects
Create Simulink parameter objects from tunable parameters

Syntax

tunablevars2parameterobjects ('modelName')

tunablevars2parameterobjects ('modelName', class)

Description

tunablevars2parameterobjects ('modelName') creates Simulink.Parameter
objects in the base workspace for the variables listed in the specified model's Tunable
Parameters dialog, then deletes the source information from the dialog. To preserve the
information, save the resulting Simulink parameter objects into a MAT-file.

If a tunable variable is already defined as a numeric variable in the base workspace, the
variable will be replaced by a parameter object and the original variable will be copied to
the object's Value property.

If a tunable variable is already defined as a Simulink parameter object, the object will
not be modified but the information for the variable will still be deleted from the Tunable
Parameters dialog.

If a tunable variable is defined as any other class of variable, the variable will not be
modified and the information for the variable will not be deleted from the Tunable
Parameters dialog.

tunablevars2parameterobjects ('modelName', class) creates objects of the
specified class rather than Simulink.Parameter objects.

Input Arguments

modelName

Model name or handle

 tunablevars2parameterobjects

2-665

class

Parameter class to use for creating objects

Default: Simulink.Parameter

More About
• “Tunable Parameters”

See Also
Simulink.Parameter

Introduced in R2007b

2 Functions — Alphabetical List

2-666

ufix
Create Simulink.NumericType object describing unsigned fixed-point data type

Syntax
a = ufix(WordLength)

Description

ufix(WordLength) returns a Simulink.NumericType object that describes an
unsigned fixed-point data type with the specified word length and unspecified scaling.

Note: ufix is a legacy function. In new code, use fixdt instead. In existing code, replace
ufix(WordLength) with fixdt(0,WordLength).

Examples

Define a 16-bit unsigned fixed-point data type.

a = ufix(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Unsigned'

 WordLength: 16

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

See Also
fixdt | Simulink.NumericType | float | sfix | sfrac | sint | ufrac | uint

 ufix

2-667

Introduced before R2006a

2 Functions — Alphabetical List

2-668

ufrac
Create Simulink.NumericType object describing unsigned fractional data type

Syntax
a = ufrac(WordLength)

a = ufrac(WordLength, GuardBits)

Description

ufrac(WordLength) returns a Simulink.NumericType object that describes the data
type of an unsigned fractional data type with a word size given by WordLength.

ufrac(WordLength, GuardBits) returns a Simulink.NumericType object that
describes the data type of an unsigned fractional data type. The total word size is given
by WordLength with GuardBits bits located to the left of the binary point.

Note: ufrac is a legacy function. In new coder, use fixdt instead. In existing code,
replace ufrac(WordLength) with fixdt(0,WordLength,WordLength) and
ufrac(WordLength,GuardBits) with fixdt(0,WordLength,(WordLength-
GuardBits)).

Examples

Define an 8-bit unsigned fractional data type with 4 guard bits. Note that the range of
this data type is from 0 to (1 - 2-8).24 = 15.9375.

a = ufrac(8,4)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 ufrac

2-669

 WordLength: 8

 FractionLength: 4

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

See Also
fixdt | Simulink.NumericType | float | sfix | sfrac | sint | ufix | uint

Introduced before R2006a

2 Functions — Alphabetical List

2-670

uint
Create Simulink.NumericType object describing unsigned integer data type

Syntax
a = uint(WordLength)

Description

uint(WordLength) returns a Simulink.NumericType object that describes the data
type of an unsigned integer with a word size given by WordLength.

Note: uint is a legacy function. In new code, use fixdt instead. In existing code, replace
uint(WordLength) with fixdt(0,WordLength,0).

Examples

Define a 16-bit unsigned integer.

a = uint(16)

a =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 16

 FractionLength: 0

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

See Also
fixdt | Simulink.NumericType | float | sfix | sfrac | sint | ufix | ufrac

 uint

2-671

Introduced before R2006a

2 Functions — Alphabetical List

2-672

unpack
Extract signal logging objects from signal logs and write them into MATLAB workspace

Syntax
log.unpack

tsarray.unpack

log.unpack('systems')

log.unpack('all')

Description
log.unpack or unpack(log) extracts the top level elements of the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named log (e.g.,
logsout).

log.unpack('systems') or unpack(log, 'systems') extracts
Simulink.Timeseries and Simulink.TsArray objects from the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named
log . This command does not extract Simulink.Timeseries objects from
Simulink.TsArray objects nor does it write intermediate Simulink.ModelDataLogs
or Simulink.SubsysDataLogs objects to the MATLAB workspace.

log.unpack('all') or unpack(log, 'all') extracts all the
Simulink.Timeseries objects contained by the Simulink.ModelDataLogs,
Simulink.TsArray, or Simulink.SubsysDataLogs object named log.

tsarray.unpack extracts the time-series objects of class Simulink.Timeseries from
the Simulink.TsArray object named tsarray.

More About
• “Export Signal Data Using Signal Logging”

See Also
Simulink.ModelDataLogs | Simulink.SubsysDataLogs | Simulink.Timeseries
| Simulink.TsArray | who | whos

 unpack

2-673

Introduced before R2006a

2 Functions — Alphabetical List

2-674

upgradeadvisor
Open Upgrade Advisor

Syntax

upgradeadvisor('modelname')

Description

upgradeadvisor('modelname') opens the Upgrade Advisor for the model specified by
modelname. If the specified model is not open, this command opens it. Use the Upgrade
Advisor to help you upgrade and improve models with the current release.

Input Arguments

modelname

String specifying the name or handle to the model.

Examples

The command

upgradeadvisor('vdp')

opens the Upgrade Advisor on the vdp example model.

The command

upgradeadvisor('f14/Aircraft Dynamics Model')

opens the Upgrade Advisor on the Aircraft Dynamics Model subsystem of the f14
example model.

The command

upgradeadvisor(bdroot)

 upgradeadvisor

2-675

opens the Upgrade Advisor on the currently selected model.

Alternatives

You can also open the Upgrade Advisor from the Simulink Model Editor, by selecting
Analysis > Model Advisor > Upgrade Advisor.

Alternatively, you can open the Upgrade Advisor from the Model Advisor. In the Model
Advisor, under By Task checks, expand the folder Upgrading to the Current
Simulink Version and select the check Open the Upgrade Advisor.

More About

Tips

• You can also open the Upgrade Advisor from the Model Editor, by selecting Analysis
> Model Advisor > Upgrade Advisor.

• The Upgrade Advisor can identify cases where you can benefit by changing your
model to use new features and settings in Simulink. The Advisor provides advice for
transitioning to new technologies, and upgrading a model hierarchy.

The Upgrade Advisor can also identify cases where a model will not work because
changes and improvements in Simulink require changes to a model.

The Upgrade Advisor offers options to perform recommended actions automatically or
instructions for manual fixes.

See Also
modeladvisor

Introduced in R2012b

2 Functions — Alphabetical List

2-676

view_mdlrefs
Display graph of model reference dependencies

Syntax

view_mdlrefs('modelName')

Description

view_mdlrefs('modelName') launches the Model Dependency Viewer, which displays
a graph of model reference dependencies for the model specified by modelName. The
nodes in the graph represent Simulink models. The directed lines indicate model
dependencies.

The default display omits library blocks. You could see this same display by opening
modelName and choosing Analysis > Model Dependencies > Model Dependency
Viewer > Models Only from the model menu. Use Analysis > Model Dependencies >
Model Dependency Viewerto see other dependency displays.

The Model Dependency Viewer is the same tool, and provides the same options,
whether you launch it by typing view_mdlrefs('modelName') or by using the
Simulink GUI. To see an example of using the Model Dependency Viewer, type
sldemo_mdlref_depgraph in the MATLAB Command Window.

More About
• “Model Reference”
• “ Model Dependency Viewer”

See Also
Model | find_mdlrefs

Tutorials
• sldemo_mdlref_depgraph

 view_mdlrefs

2-677

Introduced before R2006a

2 Functions — Alphabetical List

2-678

who
List names of top-level data logging objects in Simulink data log

Syntax
log.who

tsarray.who

log.who('systems')

log.who('all')

Description

log.who or who(log) lists the names of the top-level signal logging objects contained by
log, where log is the handle of a Simulink.ModelDataLogs object name.

tsarray.who or who(tsarray) lists the names of Simulink.TimeSeries objects
contained by the Simulink.TsArray object named tsarray.

log.who('systems') or who(log, 'systems') lists the names of all signal
logging objects contained by log except for Simulink.Timeseries objects stored in
Simulink.TsArray objects contained by log.

log.who('all') or who(log, 'all') lists the names of all the
Simulink.Timeseries objects contained by the Simulink.ModelDataLogs,
Simulink.TsArray, or Simulink.SubsysDataLogs object named log.

For information about other uses of who, execute help who in the MATLAB Command
Window.

More About
• “Signal Logging Object”

See Also
Simulink.ModelDataLogs | Simulink.SubsysDataLogs | Simulink.Timeseries
| Simulink.TsArray | whos | unpack

 who

2-679

Introduced before R2006a

2 Functions — Alphabetical List

2-680

whos
List names and types of top-level data logging objects in Simulink data log

Syntax
log.whos

tsarray.whos

log.whos('systems')

log.whos('all')

Description

log.whos or whos(log) lists the names and types of the top-level signal logging objects
contained by log, where log is the handle of a Simulink.ModelDataLogs object name.

tsarray.whos or whos(tsarray) lists the names and types of Simulink.TimeSeries
objects contained by the Simulink.TsArray object named tsarray.

log.whos('systems') or whos(log, 'systems') lists the names and types of all
signal logging objects contained by log except for Simulink.Timeseries objects stored
in Simulink.TsArray objects contained by log.

log.whos('all') or whos(log, 'all') lists the names and types of all the
Simulink.Timeseries objects contained by the Simulink.ModelDataLogs,
Simulink.TsArray or Simulink.SubsysDataLogs object named log.

For information about other uses of whos, execute help whos in the MATLAB Command
Window.

More About
• “Signal Logging Object”

See Also
Simulink.ModelDataLogs | Simulink.SubsysDataLogs | Simulink.Timeseries
| Simulink.TsArray | who | unpack

 whos

2-681

Introduced before R2006a

3

Mask Icon Drawing Commands

color Change drawing color of subsequent mask
icon drawing commands

disp Display text on masked subsystem icon
dpoly Display transfer function on masked

subsystem icon
droots Display transfer function on masked

subsystem icon
fprintf Display variable text centered on masked

subsystem icon
image Display RGB image on masked subsystem

icon
patch Draw color patch of specified shape on

masked subsystem icon
plot Draw graph connecting series of points on

masked subsystem icon
port_label Draw port label on masked subsystem icon
text Display text at specific location on masked

subsystem icon

3 Mask Icon Drawing Commands

3-2

color
Change drawing color of subsequent mask icon drawing commands

Syntax
color(colorstr)

Description

color(colorstr) sets the drawing color of all subsequent mask drawing commands to
the color specified by the string colorstr.

colorstr must be one of the following supported color strings.

blue

green

red

cyan

magenta

yellow

black

Entering any other string or specifying the color using RGB values results in a warning
at the MATLAB command prompt; Simulink ignores the color change. The specified
drawing color does not influence the color used by the patch or image drawing
commands.

Examples

The following commands

color('cyan');

droots([-1], [-2 -3], 4)

color('magenta')

port_label('input',1,'in')

port_label('output',1,'out')

 color

3-3

draw the following mask icon.

See Also
droots | port_label

Introduced in R2006b

3 Mask Icon Drawing Commands

3-4

disp
Display text on masked subsystem icon

Syntax
disp(text)

disp(text, 'texmode', 'on')

Description

disp(text) displays text centered on the block icon. text is any MATLAB expression
that evaluates to a string.

disp(text, 'texmode', 'on') allows you to use TeX formatting commands in text.
The TeX formatting commands in turn allow you to include symbols and Greek letters in
icon text. See Interpreter for information on the TeX formatting commands supported by
Simulink software.

Examples

The following command
disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2,

\chi, \phi_3 = {\bfcool}', 'texmode','on')

draws the equation that appears on this masked block icon.

See Also
fprintf | text | port_label

 disp

3-5

Introduced in R2007a

3 Mask Icon Drawing Commands

3-6

dpoly
Display transfer function on masked subsystem icon

Syntax
dpoly(num, den)

dpoly(num, den, 'character')

Description
dpoly(num, den) displays the transfer function whose numerator is num and
denominator is den.

dpoly(num, den, 'character') specifies the name of the transfer function
independent variable. The default is s.

When Simulink draws the block icon, the initialization commands execute and the
resulting equation appears on the block icon, as in the following examples:

• To display a continuous transfer function in descending powers of s, enter

dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1] the icon looks like:

• To display a discrete transfer function in descending powers of z, enter

dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like:

 dpoly

3-7

• To display a discrete transfer function in ascending powers of 1/z, enter

dpoly(num, den, 'z-')

For example, for num and den as defined previously, the icon looks like:

If the parameters are not defined or have no values when you create the icon, Simulink
software displays three question marks (? ? ?) in the icon. When you define parameter
values in the Mask Settings dialog box, Simulink software evaluates the transfer
function and displays the resulting equation in the icon.

See Also
disp | port_label | text | droots

3 Mask Icon Drawing Commands

3-8

droots

Display transfer function on masked subsystem icon

Syntax

droots(zero, pole, gain)

droots(zero, pole, gain,'z')

droots(zero, pole, gain,'z-')

Description

droots(zero, pole, gain) displays the transfer function whose zero is zero, pole is
pole, and gain is gain.

droots(zero, pole, gain,'z') and droots(zero, pole, gain,'z-')
expresses the transfer function in terms of z or 1/z.

When Simulink draws the block icon, the initialization commands execute and the
resulting equation appears on the block icon, as in the following examples:

• To display a zero-pole gain transfer function, enter

droots(z, p, k)

For example, the preceding command creates this icon for these values:

z = []; p = [-1 -1]; k = 1;

If the parameters are not defined or have no values when you create the icon, Simulink
software displays three question marks (? ? ?) in the icon. When you define parameter
values in the Mask Settings dialog box, Simulink software evaluates the transfer
function and displays the resulting equation in the icon.

 droots

3-9

See Also
disp | port_label | text | dpoly

Introduced in R2007a

3 Mask Icon Drawing Commands

3-10

fprintf
Display variable text centered on masked subsystem icon

Syntax
fprintf(text)

fprintf(format, var)

Description

The fprintf command displays formatted text centered on the icon and can display
format along with the contents of var.

Note While this fprintf function is identical in name to its corresponding MATLAB
function, it provides only the functionality described on this page.

Examples

The command

fprintf('Hello');

displays the string 'Hello' on the icon.

The command

fprintf('Juhi = %d',17);

uses the decimal notation format (%d) to display the variable 17.

See Also
disp | port_label | text

Introduced before R2006a

 image

3-11

image
Display RGB image on masked subsystem icon

Syntax
image(a)

image(a, position)

image(a, position, rotation)

Description

image(a) displays the image a, where a is an m-by-n-by-3 array of RGB values. If
necessary, use the MATLAB commands imread and ind2rgb to read and convert
bitmap files (such as GIF) to the necessary matrix format.

image(a, position) creates the image at the specified position as follows.

Position Description

[x, y, w, h] Position (x, y) and size (w, h) of the image where the
position is relative to the lower-left corner of the mask. The
image scales to fit the specified size.

'center' Center of the mask
'top-left' Top left corner of the mask, unscaled
'bottom-left' Bottom left corner of the mask, unscaled
'top-right' Top right corner of the mask, unscaled
'bottom-right' Bottom right corner of the mask, unscaled

image(a, position, rotation) allows you to specify whether the image rotates
('on') or remains stationary ('off') as the icon rotates. The default is 'off'.

Examples

The command

3 Mask Icon Drawing Commands

3-12

image(imread('icon.jpg'))

reads the icon image from a JPEG file named icon.jpg in the MATLAB path.

The following commands read and convert a GIF file, label.gif, to the appropriate
matrix format. You can type these commands in the Initialization pane of the Mask
Editor.

[data, map]=imread('label.gif');

pic=ind2rgb(data,map);

Then type the command

image(pic)

in the Icon pane of the Mask Editor to read the converted label image.

See Also
patch | plot

Introduced before R2006a

 patch

3-13

patch
Draw color patch of specified shape on masked subsystem icon

Syntax

patch(x, y)

patch(x, y, [r g b])

Description

patch(x, y) creates a solid patch having the shape specified by the coordinate vectors
x and y. The patch's color is the current foreground color.

patch(x, y, [r g b]) creates a solid patch of the color specified by the vector [r g
b], where r is the red component, g the green, and b the blue. For example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask's icon.

Examples

The command

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask's icon.

3 Mask Icon Drawing Commands

3-14

See Also
image | plot

Introduced before R2006a

 plot

3-15

plot
Draw graph connecting series of points on masked subsystem icon

Syntax
plot(Y)

plot(X1,Y1,X2,Y2,...)

Description

plot(Y) plots, for a vector Y, each element against its index. If Y is a matrix, it plots
each column of the matrix as though it were a vector.

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against X2, and so on.
Vector pairs must be the same length and the list must consist of an even number of
vectors.

Plot commands can include NaN and inf values. When Simulink software encounters
NaNs or infs, it stops drawing, and then begins redrawing at the next numbers that are
not NaN or inf. The appearance of the plot on the icon depends on the units defined by
the Icon units option in the Mask Editor.

Simulink software displays three question marks (? ? ?) in the block icon and issues
warnings in these situations:

• When you have not defined values for the parameters used in the drawing commands
(for example, when you first create the mask, but have not yet entered values in the
Mask Settings dialog box)

• When you enter a masked block parameter or drawing command incorrectly

Examples

The command

plot([0 1 5], [0 0 4])

3 Mask Icon Drawing Commands

3-16

generates the plot that appears on the icon for the Ramp block, in the Sources library.

See Also
image

Introduced before R2006a

 port_label

3-17

port_label
Draw port label on masked subsystem icon

Syntax
port_label('port_type', port_number, 'label')

port_label('port_type', port_number, 'label', 'texmode', 'on')

Description

port_label('port_type', port_number, 'label') draws a label on a port. Valid
values for port_type include the following.

Value Description

input Simulink input port
output Simulink output port
lconn Physical Modeling connection port on the left side of a masked

subsystem
rconn Physical Modeling connection port on the right side of a masked

subsystem
Enable Label for the trigger port in a masked Triggered orEnabled and

Triggered subsystem.
trigger Label for the trigger port in a masked Triggered orEnabled and

Triggered subsystem.
action Label for the action port in a masked Swith Case Action

Subsystem.

The input argument port_number is an integer, and label is a string specifying the
port's label.

Note Physical Modeling port labels are assigned based on the nominal port location. If
the masked subsystem has been rotated or flipped, for example, a port labeled using
'lconn' as the port_type may not appear on the left side of the block.

3 Mask Icon Drawing Commands

3-18

port_label('port_type', port_number, 'label', 'texmode', 'on') lets you
use TeX formatting commands in label. The TeX formatting commands allow you to
include symbols and Greek letters in the port label. See Interpreter for information on
the TeX formatting commands that the Simulink software supports.

Examples

The command

port_label('input', 1, 'a')

defines a as the label of input port 1.

The command

port_label('Enable','En')

defines En as the label of Enable port.

The command

port_label('trigger','Tr')

defines Tr as the label of trigger port.

The command

port_label('action','Switch():')

defines Switch(): as the label of action port.

The command

port_label('trigger','$\sqrt m$','interp','latex')

defines the label of trigger port with latex interpretation.

The commands

disp('Card\nSwapper');

port_label('input',1,'\spadesuit','texmode','on');

port_label('output',1,'\heartsuit','texmode','on');

 port_label

3-19

draw playing card symbols as the labels of the ports on a masked subsystem.

See Also
disp | fprintf | text

Introduced before R2006a

3 Mask Icon Drawing Commands

3-20

text
Display text at specific location on masked subsystem icon

Syntax
text(x, y, 'text')

text(x, y, 'text', 'horizontalAlignment', 'halign',

 'verticalAlignment', 'valign')

text(x, y, 'text', 'texmode', 'on')

Description
The text command places a character string at a location specified by the point (x,y)
whose units are defined by the Icon units option in the Mask Editor.

text(x,y, text, 'texmode', 'on') allows you to use TeX formatting commands
in text. The TeX formatting commands in turn allow you to include symbols and Greek
letters in icon text. See Interpreter for information on the TeX formatting commands
supported by Simulink software.

You can optionally specify the horizontal and/or vertical alignment of the text relative to
the point (x, y) in the text command.

The text command offers the following horizontal alignment options.

Option Aligns

'left' The left end of the text at the specified point
'right' The right end of the text at the specified point
'center' The center of the text at the specified point

The text command offers the following vertical alignment options.

Option Aligns

'base' The baseline of the text at the specified point
'bottom' The bottom line of the text at the specified point
'middle' The midline of the text at the specified point

 text

3-21

Option Aligns

'cap' The capitals line of the text at the specified point
'top' The top of the text at the specified point

Note While this text function is identical in name to its corresponding MATLAB
function, it provides only the functionality described on this page.

Examples

Text Alignment

Center the mask icon text foobar.

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

Equation in Mask Icon

Draw a left-aligned equation as the mask icon.

In the Icons & Ports dialog of the Mask Editor, set Icon units to Normalized.

In the Icon drawing commands text box, enter the following command.

text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +

\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',

'hor','left','texmode','on')

See Also
disp | fprintf | port_label

3 Mask Icon Drawing Commands

3-22

Introduced before R2006a

4

Simulink Debugger Commands

ashow Show algebraic loop
atrace Set algebraic loop trace level
bafter Insert breakpoint after specified method
break Insert breakpoint before specified method
bshow Show specified block
clear Clear breakpoints from model
continue Continue simulation
disp Display block's I/O when simulation stops
ebreak Enable (or disable) breakpoint on solver

errors
elist List simulation methods in order in which

they are executed during simulation
emode Toggle model execution between

accelerated and normal mode
etrace Enable or disable method tracing
help Display help for debugger commands
nanbreak Set or clear nonfinite value break mode
next Advance simulation to start of next method

at current level in model's execution list
probe I/O and state data for blocks
quit Stop simulation debugger
rbreak Break simulation before solver reset
run Run simulation to completion
slist Sorted list of model blocks
states Current state values

4 Simulink Debugger Commands

4-2

status Debugging options in effect
step Advance simulation by one or more

methods
stimes Model sample times
stop Stop simulation
strace Set solver trace level
systems List nonvirtual systems of model
tbreak Set or clear time breakpoint
trace Display block's I/O each time block executes
undisp Remove block from debugger's list of

display points
untrace Remove block from debugger's list of trace

points
where Display current location of simulation in

simulation loop
xbreak Break when debugger encounters step-size-

limiting state
zcbreak Toggle breaking at nonsampled zero-

crossing events
zclist List blocks containing nonsampled zero

crossings

 ashow

4-3

ashow
Show algebraic loop

Syntax
ashow <gcb | s:b | s#n | clear>

as <gcb | s:b | s#n | clear>

Arguments

gcb Current block.
s:b The block whose system index is s and block index is b.
s#n The algebraic loop numbered n in system s.
clear Switch that clears loop coloring.

Description

ashow without any arguments lists all of a model's algebraic loops in the MATLAB
Command Window. ashow gcb or ashow s:b highlights the algebraic loop that
contains the specified block. ashow s#n highlights the nth algebraic loop in system s.
The ashow clear command removes algebraic loop highlights from the model diagram.

See Also
atrace | slist

Introduced before R2006a

4 Simulink Debugger Commands

4-4

atrace
Set algebraic loop trace level

Syntax
atrace level

at level

Arguments

level Trace level (0 = none, 4 = everything).

Description

The atrace command sets the algebraic loop trace level for a simulation.

Command Displays for Each Algebraic Loop

atrace 0 No information
atrace 1 The loop variable solution, the number of iterations required to

solve the loop, and the estimated solution error
atrace 2 Same as level 1
atrace 3 Level 2 plus Jacobian matrix used to solve loop
atrace 4 Level 3 plus intermediate solutions of the loop variable

See Also
states | systems

Introduced before R2006a

 bafter

4-5

bafter
Insert breakpoint after specified method

Syntax
bafter

ba

bafter m:mid

bafter <sysIdx:blkIdx | gcb> [mth] [tid:TID]

bafter <s:sysIdx | gcs> [mth] [tid:TID]

bafter model [mth] [tid:TID]

Arguments

mid Method ID
sysIdx:blkIdxBlock ID
gcb Currently selected block
sysIdx System ID
gcs Currently selected system
model Currently selected model
mth A method name, e.g., Outputs.Major
TID Task ID

Description

bafter inserts a breakpoint after the current method.

Instead of bafter, you can use the short form of ba with any of the syntaxes.

bafter m:mid inserts a breakpoint after the method specified by mid (see “Method ID”).

4 Simulink Debugger Commands

4-6

bafter sysIdx:blkIdx inserts a breakpoint after each invocation of the method of the
block specified by sysIdx:blkIdx (see “Block ID”) in major time steps. bafter gcb
inserts a breakpoint after each invocation of a method of the currently selected block (see
gcb) in major times steps.

bafter s:sysIdx inserts a breakpoint after each method of the root system or
nonvirtual subsystem specified by the system ID: sysIdx.

Note The systems command displays the system IDs for all nonvirtual systems in the
currently selected model.

bafter gcs inserts a breakpoint after each method of the currently selected nonvirtual
system.

bafter model inserts a breakpoint after each method of the currently selected model.

The optional mth parameter allow you to set a breakpoint after a particular block,
system, or model method and task. For example, bafter gcb Outputs sets a
breakpoint after the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint after invocation of a method
by a particular task. For example, suppose that the currently selected nonvirtual
subsystem operates on task 2 and 3. Then bafter gcs Outputs tid:2 sets a
breakpoint after the invocation of the subsystem's Outputs method that occurs when task
2 is active.

See Also
break | ebreak | tbreak | xbreak | nanbreak | zcbreak | rbreak | clear |
where | slist | systems

Introduced before R2006a

 break

4-7

break
Insert breakpoint before specified method

Syntax
break

b

break m:mid

break <sysIdx:blkIdx | gcb> [mth] [tid:TID]

break <s:sysIdx | gcs> [mth] [tid:TID]

break model [mth] [tid:TID]

Arguments

mid Method ID
sysIdx:blkIdxBlock ID
gcb Currently selected block
sysIdx System ID
gcs Currently selected system
model Currently selected model
mth A method name, e.g., Outputs.Major
TID task ID

Description

break inserts a breakpoint before the current method.

Instead of break, you can use the short form of b with any of the syntaxes.

break m:mid inserts a breakpoint before the method specified by mid (see “Method ID”).

4 Simulink Debugger Commands

4-8

break sysIdx:blkIdx inserts a breakpoint before each invocation of the method of
the block specified by sysIdx:blkIdx (see “Block ID”) in major time steps. break gcb
inserts a breakpoint before each invocation of a method of the currently selected block
(see gcb) in major times steps.

break s:sysIdx inserts a breakpoint at each method of the root system or nonvirtual
subsystem specified by the system ID: sysIdx.

Note The systems command displays the system IDs for all nonvirtual systems in the
currently selected model.

break gcs inserts a breakpoint at each method of the currently selected nonvirtual
system.

break model inserts a breakpoint at each method of the currently selected model.

The optional mth parameter allow you to set a breakpoint at a particular block, system,
or model method. For example, break gcb Outputs sets a breakpoint at the Outputs
method of the currently selected block.

The optional TID parameter allows you to set a breakpoint at the invocation of a method
by a particular task. For example, suppose that the currently selected nonvirtual
subsystem operates on task 2 and 3. Then break gcs Outputs tid:2 sets a
breakpoint at the invocation of the subsystem's Outputs method that occurs when task 2
is active.

See Also
bafter | clear | ebreak | nanbreak | rbreak | systems | tbreak | where |
xbreak | zcbreak | slist

Introduced before R2006a

 bshow

4-9

bshow
Show specified block

Syntax
bshow s:b

bs s:b

Arguments

s:b The block whose system index is s and block index is b.

Description

The bshow command opens the model window containing the specified block and selects
the block.

See Also
slist

Introduced before R2006a

4 Simulink Debugger Commands

4-10

clear
Clear breakpoints from model

Syntax
clear

cl

clear m:mid

clear id

clear <sysIdx:blkIdx | gcb>

Arguments

mid Method ID
id Breakpoint ID
sysIdx:blkIdxBlock ID
gcb Currently selected block

Description

clear clears a breakpoint from the current method.

Instead of clear, you can use the short form of cl with any of the syntaxes.

clear m:mid clears a breakpoint from the method specified by mid.

clear id clears the breakpoint specified by the breakpoint ID id.

clear sysIdx:blkIdx clears any breakpoints set on the methods of the block specified
by sysIdx:blkIdx.

clear gcb clears any breakpoints set on the methods of the currently selected block.

 clear

4-11

See Also
break | bafter | slist

Introduced before R2006a

4 Simulink Debugger Commands

4-12

continue
Continue simulation

Syntax
continue

c

Description

The continue command continues the simulation from the current breakpoint. If
animation mode is not enabled, the simulation continues until it reaches another
breakpoint or its final time step. If animation mode is enabled, the simulation continues
in animation mode to the first method of the next major time step, ignoring breakpoints.

See Also
run | stop | quit

Introduced before R2006a

 disp

4-13

disp
Display block's I/O when simulation stops

Syntax
disp

d

disp gcb

disp s:b

Arguments

s:b The block whose system index is s and block index is b.
gcb Current block.

Description

The disp command registers a block as a display point. The debugger displays the
inputs and outputs of all display points in the MATLAB Command Window whenever the
simulation halts. Invoking disp without arguments shows a list of display points. Use
undisp to unregister a block.

Instead of disp, you can use the short form of d with any of the syntaxes.

See Also
undisp | slist | probe | trace

Introduced before R2006a

4 Simulink Debugger Commands

4-14

ebreak
Enable (or disable) breakpoint on solver errors

Syntax
ebreak

eb

Description

This command causes the simulation to stop if the solver detects a recoverable error in
the model. If you do not set or disable this breakpoint, the solver recovers from the error
and proceeds with the simulation without notifying you.

See Also
break | bafter | tbreak | xbreak | nanbreak | zcbreak | rbreak | clear |
where | slist | systems

Introduced before R2006a

 elist

4-15

elist

List simulation methods in order in which they are executed during simulation

Syntax

elist

el

elist m:mid [tid:TID]

elist <gcs | s:sysIdx> [mth] [tid:TID]

elist <gcb | sysIdx:blkIdx> [mth] [tid:TID]

Description

Instead of elist, you can use the short form of el with any of the syntaxes.

elist m:mid lists the methods invoked by the system or nonvirtual subsystem method
corresponding to the method id mid (see the where command for information on method
IDs), e.g.,

The method list specifies the calling method followed by the methods that it calls in the
order in which they are invoked. The entry for the calling method includes

4 Simulink Debugger Commands

4-16

• The name of the method

The name of the method is prefixed by the type of system that defines the method,
e.g., RootSystem.

• The name of the model or subsystem instance on which the method is invoked
• The ID of the task that invokes the method

The entry for each called method includes

• The ID (sysIdx:blkIdx) of the block instance on which the method is invoked

The block ID is prefixed by a number specifying the system that contains the block
(the sysIdx). This allows Simulink software to assign the same block ID to blocks
residing in different subsystems.

• The name of the method

The method name is prefixed with the type of block that defines the method, e.g.,
Integrator.

• The name of the block instance on which the method is invoked
• The task that invokes the method

The optional task ID parameter (tid:TID) allows you to restrict the displayed lists
to methods invoked for a specified task. You can specify this option only for system or
atomic subsystem methods that invoke Outputs or Update methods.

elist <gcs | s:sysIdx> lists the methods executed for the currently selected system
(specified by the gcs command) or the system or nonvirtual subsystem specified by the
system ID sysIdx, e.g.,

 elist

4-17

The system ID of a model's root system is 0. You can use the debugger's systems
command to determine the system IDs of a model's subsystems.

Note The elist and where commands use block IDs to identify subsystems in their
output. The block ID for a subsystem is not the same as the system ID displayed by the
systems command. Use the elist sysIdx:blkIdx form of the elist command to
display the methods of a subsystem whose block ID appears in the output of a previous
invocation of the elist or where command.

elist <gcs | s:sysIdx> mth lists methods of type mth to be executed for the
system specified by the gcs command or the system ID sysIdx, e.g.,

4 Simulink Debugger Commands

4-18

Use elist gcb to list the methods invoked by the nonvirtual subsystem currently
selected in the model.

See Also
where | slist | systems

Introduced before R2006a

 emode

4-19

emode
Toggle model execution between accelerated and normal mode

Syntax
emode

em

Description

Toggles the simulation between accelerated and normal mode when using the Accelerator
mode in Simulink software. For more information, see “Run Accelerator Mode with the
Simulink Debugger”.

Introduced before R2006a

4 Simulink Debugger Commands

4-20

etrace
Enable or disable method tracing

Syntax
etrace level level-number

et level level-number

Description

This command enables or disables method tracing, depending on the value of level:

Level Description

0 Turn tracing off.
1 Trace model methods.
2 Trace model and system methods.
3 Trace model, system, and block methods.

When method tracing is on, the debugger prints a message at the command line every
time a method of the specified level is entered or exited. The message specifies the
current simulation time, whether the simulation is entering or exiting the method, the
method id and name, and the name of the model, system, or block to which the method
belongs.

See Also
elist | where | trace

Introduced before R2006a

 help

4-21

help
Display help for debugger commands

Syntax
help

?

h

Description

The help command displays a list of debugger commands in the command window. The
list includes the syntax and a brief description of each command.

Introduced before R2006a

4 Simulink Debugger Commands

4-22

nanbreak
Set or clear nonfinite value break mode

Syntax
nanbreak

na

Description

The nanbreak command causes the debugger to break whenever the simulation
encounters a nonfinite (NaN or Inf) value. If nonfinite break mode is set, nanbreak
clears it.

More About
• ebreak

See Also
break | bafter | rbreak | tbreak | xbreak | zcbreak

Introduced before R2006a

 next

4-23

next
Advance simulation to start of next method at current level in model's execution list

Syntax
next

n

Description

The next command advances the simulation to the start of the next method at the
current level in the model's method execution list.

Note The next command has the same effect as the step over command. See step for
more information.

See Also
step

Introduced before R2006a

4 Simulink Debugger Commands

4-24

probe
I/O and state data for blocks

Syntax

probe

probe s:b

probe gcb

probe level level-type

p

Description

probe sets the Simulink debugger to interactive probe mode. In this mode, the debugger
displays the I/O of a selected block. To exit interactive probe mode, enter a debugger
command or press the Enter key.

probe s:b displays the I/O of the block whose system index is s and block index is b.

probe gcb displays the I/O of the currently selected block.

probe level level-type sets the verbosity level for probe, trace, and dis. If
level-type is io, the debugger displays block I/O. If level-type is all (default), the
debugger displays all information for the current state of a block, including inputs and
outputs, states, and zero crossings.

p is the short form of the command.

Examples

Display I/O for the currently selected block Out2 in the model vdp using the Simulink
debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

 probe

4-25

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

probe gcb

The MATLAB Command Window displays:

probe: Data of 0:3 Outport block 'vdp/Out2':

U1 = [0]

See Also
disp | trace

Introduced in R2007a

4 Simulink Debugger Commands

4-26

quit
Stop simulation debugger

Syntax

quit

q

Description

quit stops the Simulink debugger and returns to the MATLAB command prompt.

q is the short form of the command.

Examples

Start the Simulink debugger for the model vdp and then stop it.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

quit

See Also
stop

Introduced before R2006a

 rbreak

4-27

rbreak
Break simulation before solver reset

Syntax

rbreak

rb

Description

rbreak enables (or disables) a solver reset breakpoint if the breakpoint is disabled (or
enabled). The breakpoint causes the debugger to halt the simulation whenever an event
requires a solver reset. The halt occurs before the solver resets.

rb is the short form of the command.

Examples

Start Simulink debugger for the model vdp and a set breakpoint before a solver reset.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> is replaced with the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

rbreak

The MATLAB Command Window displays:

Break on solver reset request : enabled

See Also
break | bafter | nanbreak | ebreak | tbreak | xbreak | zcbreak

4 Simulink Debugger Commands

4-28

Introduced before R2006a

 run

4-29

run
Run simulation to completion

Syntax

run

r

Description

run starts the simulation from the current breakpoint to its final time step. It ignores
breakpoints and display points.

r is the short form of the command

Examples

Continue the simulation for the model vdp using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

run

See Also
continue | stop | quit

Introduced before R2006a

4 Simulink Debugger Commands

4-30

slist
Sorted list of model blocks

Syntax

slist

sli

Description

slist displays a list of blocks for the root system and each nonvirtual subsystem sorted
according to data dependencies and other criteria.

For each system (root or nonvirtual), slist displays:

• Title line specifying the name of the system, the number of nonvirtual blocks that the
system contains, and the number of blocks in the system that have direct feedthrough
ports.

• Entry for each block in the order in which the blocks appear in the sorted list.

For each block entry, slist displays the block ID and the name and type of the
block. The block ID consists of a system index and a block index separated by a colon
(sysIdx:blkIdx).

• Block index is the position of the block in the sorted list.
• System index is the order in which the Simulink software generated the system

sorted list. The system index has no special significance. It simply allows blocks that
appear in the same position in different sorted lists to have unique identifiers.

Simulink software uses sorted lists to create block method execution lists (see elist) for
root system and nonvirtual subsystem methods. In general, root system and nonvirtual
subsystem methods invoke the block methods in the same order as the blocks appear in
the sorted list.

Exceptions occur in the execution order of block methods. For example, execution lists for
multicast models group together all blocks operating at the same rate and in the same

 slist

4-31

task. Slower groups appear later than faster groups. The grouping of methods by task
can result in a block method execution order that is different from the block sorted order.
However, within groups, methods execute in the same order as the corresponding blocks
appear in the sorted list.

sli is the short form of the command.

Examples

Display a sorted list of the root system in the vdp model using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

slist

The MATLAB Command Window displays:
---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]

 0:0 'vdp/x1' (Integrator)

 0:1 'vdp/Out1' (Outport)

 0:2 'vdp/x2' (Integrator)

 0:3 'vdp/Out2' (Outport)

 0:4 'vdp/Scope' (Scope)

 0:5 'vdp/Fcn' (Fcn)

 0:6 'vdp/Product' (Product)

 0:7 'vdp/Mu' (Gain)

 0:8 'vdp/Sum' (Sum)

See Also
systems | elist

Introduced before R2006a

4 Simulink Debugger Commands

4-32

states
Current state values

Syntax

states

Description

states displays a list of the current states of the model. The list includes the index,
current value, system:block:element ID, state vector name, and block name for each
state.

Examples

Display information about the states for the vdp model.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

states

The MATLAB Command Window displays:
Continuous States:

Idx Value (system:block:element Name 'BlockName')

 0 0 (0:0:0 CSTATE 'vdp/x1')

 1 0 (0:2:0 CSTATE 'vdp/x2')

Introduced before R2006a

 status

4-33

status
Debugging options in effect

Syntax

status

Description

status displays a list of the debugging options in effect.

Examples

Display status for the model vdp using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

status

The MATLAB Command Window displays:

%--%

Current simulation time : 0 (MajorTimeStep)

Solver needs reset : no

Solver derivatives cache needs reset : no

Zero crossing signals cache needs reset : no

Default command to execute on return/enter : ""

Break at zero crossing events : disabled

Break on solver error : disabled

Break on failed integration step : disabled

Time break point : disabled

4 Simulink Debugger Commands

4-34

Break on non-finite (NaN,Inf) values : disabled

Break on solver reset request : disabled

Display level for disp, trace, probe : 1 (i/o, states)

Solver trace level : 0

Algebraic loop tracing level : 0

Animation Mode : off

Window reuse : not supported

Execution Mode : Normal

Display level for etrace : 0 (disabled)

Break points : none installed

Display points : none installed

Introduced before R2006a

 step

4-35

step
Advance simulation by one or more methods

Syntax

step

step in

step over

step out

step top

step blockmth

s

Description

step or step in advances the simulation to the next method in the current time step.

step over advances the simulation over the next method.

step out advances the simulation the end of the current simulation point hierarchy.

step top advances the simulation to the first method executed in the next time step.

step blockmth advances the simulation to the next method that operates on a block.

s is the short form of the command.

If step advances the simulation to the start of a block method, the debugger points at
the block on which the method operates.

.

Examples

The following diagram illustrates the effect of various forms of the step command for the
model vdp.

4 Simulink Debugger Commands

4-36

See Also
next | where | elist

Introduced in R2007a

 stimes

4-37

stimes
Model sample times

Syntax

stimes

sti

Description

stimes displays information about the model sample times, including the sample time
period, offset, and task ID.

sti is the short form of the command.

Examples

Display sample times for the model vdp using the Simulink debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

stimes

The MATLAB Command Window displays:

--- Sample times for 'vdp' [Number of sample times = 1]

 1. [0 , 0] tid=0 (continuous sample time)

Introduced before R2006a

4 Simulink Debugger Commands

4-38

stop
Stop simulation

Syntax

stop

Description

stop stops the simulation of the model you are debugging.

Examples

Start and stop a simulation for the model vdp using the Simulink debugger.

1 Start a debugger session. In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Start a simulation of the model. Enter:

run

3 Stop the simulation. Enter:

stop

See Also
continue | run | quit

Introduced before R2006a

 strace

4-39

strace
Set solver trace level

Syntax

strace level

i

Description

strace level causes the solver to display diagnostic information in the MATLAB
Command Window, depending on the value of level. Values are 0 (no information) or
1 (maximum information about time steps, integration steps, zero crossings, and solver
resets).

i is the short form of the command.

Examples

Display maximum information about a simulation for the model vdp using the Simulink
debugger.

1 In the MATLAB Command Window, enter:

sldebug 'vdp'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Get information about the notation . Enter:

help time

The MATLAB Command Window displays:
Time is displayed as:

 TM = <time while in MajorTimeStep>

 Tm = <time while in MinorTImeStep>

 Tr = <time while in solver reset>

 Tz = <time at or just after zero crossing>

4 Simulink Debugger Commands

4-40

 TzL = <time while in major step just before (at left post of) zero crossing>

 TzR = <time while in major step at or just after (at right post of) zero crosing>

 Ts = <time of successful integration step>

 Tf = <time of failed integration step>

 Tn = <time while in Newton iteration> (when using implicit solvers)

 Tj = <time during Jacobian evaluation> (when using implicit solvers)

Step size is displayed as:

 Hm = <step size at the start of solver phase>

 Hs = <successful integration step size>

 Hf = <failed integration step size>

 Hn = <step size during Newton iteration> (when using implicit solvers)

 Hz = <value of 'TM - TzL' during zero crossing search>

 Iz= <value of 'Tz - TzL' during zero crossing search>

3 Set trace to display all information. Enter:

strace 1

When diagnostic tracing is on, the debugger displays the sizes of major and minor
time steps.
[TM = 13.21072088374186] Start of Major Time Step

[Tm = 13.21072088374186] Start of Minor Time Step

The debugger displays integration information. This information includes the time
step of the integration method, step size of the integration method, outcome of the
integration step, normalized error, and index of the state.
[Tm = 13.21072088374186] [H = 0.2751116230148764] Begin Integration Step

[Tf = 13.48583250675674] [Hf = 0.2751116230148764] Fail [Er = 1.0404e+000]

 [Ix = 1]

[Tm = 13.21072088374186] [H = 0.2183536061326544] Retry

[Ts = 13.42907448987452] [Hs = 0.2183536061326539] Pass [Er = 2.8856e-001]

 [Ix = 1]

For zero crossings, the debugger displays information about the iterative search
algorithm when the zero crossing occurred. This information includes the time step
of the zero crossing, step size of the zero crossing detection algorithm, length of the
time interval bracketing the zero crossing, and a flag denoting the rising or falling
direction of the zero crossing.
[Tz = 3.615333333333301] Detected 1 Zero Crossing Event 0[F]

 Begin iterative search to bracket zero crossing event

[Tz = 3.621111157580072] [Hz = 0.005777824246771424] [Iz = 4.2222e-003] 0[F]

[Tz = 3.621116982080098] [Hz = 0.005783648746797265] [Iz = 4.2164e-003] 0[F]

[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 4.2163e-003] 0[F]

[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 1.1804e-011] 0[F]

[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.8962e-012] 0[F]

[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.1514e-014] 0[F]

 End iterative search to bracket zero crossing event

When a solver resets occur, the debugger displays the time at which the solver was
reset.

 strace

4-41

[Tr = 6.246905153573676] Process Solver Reset

[Tr = 6.246905153573676] Reset Zero Crossing Cache

[Tr = 6.246905153573676] Reset Derivative Cache

See Also
atrace | etrace | states | trace | zclist

Introduced before R2006a

4 Simulink Debugger Commands

4-42

systems
List nonvirtual systems of model

Syntax

systems

sys

Description

systems displays the nonvirtual subsystems for a model in the MATLAB Command
Window.

sys is the short form of the command.

Examples

Display the nonvirtual systems for the model sldemo_enginewc using the Simulink
debugger.

1 In the MATLAB Command Window, enter:

sldebug 'sldemo_enginewc'

The MATLAB command prompt >> changes to the Simulink debugger prompt
(sldebug @0): >>.

2 Enter:

systems

The MATLAB Command Window displays the nonvirtual subsystems.
 0 'sldemo_enginewc'

 1 'sldemo_enginewc/Compression'

 2 'sldemo_enginewc/Controller/TmpAtomicSubsysAtSwitchInport3'

 3 'sldemo_enginewc/Controller/TmpAtomicSubsysAtSwitchInport1'

 4 'sldemo_enginewc/Controller'

 5 'sldemo_enginewc/Throttle & Manifold/Throttle/TmpAtomicSubsysAtSwitchInport1'

 6 'sldemo_enginewc/valve timing/positive edge to dual edge conversion'

 systems

4-43

See Also
slist

Introduced before R2006a

4 Simulink Debugger Commands

4-44

tbreak
Set or clear time breakpoint

Syntax
tbreak

tb

tbreak t

Description

The tbreak command sets a breakpoint at the specified time step. If a breakpoint
already exists at the specified time, tbreak clears the breakpoint. If you do not specify a
time, tbreak toggles a breakpoint at the current time step.

Instead of tbreak, you can use the short form of tb, with or without t.

More About
• ebreak

See Also
break | bafter | xbreak | nanbreak | zcbreak | rbreak

Introduced before R2006a

 trace

4-45

trace
Display block's I/O each time block executes

Syntax
trace gcb

trace s:b

tr gcb

trace s:b

Arguments

s:b The block whose system index is s and block index is b.
gcb Current block.

Description

The trace command registers a block as a trace point. The debugger displays the I/O of
each registered block each time the block executes.

See Also
disp | probe | untrace | slist | strace

Introduced before R2006a

4 Simulink Debugger Commands

4-46

undisp
Remove block from debugger's list of display points

Syntax
undisp gcb

und gcb

undisp s:b

und s:b

Arguments

s:b The block whose system index is s and block index is b.
gcb Current block.

Description

The undisp command removes the specified block from the debugger's list of display
points.

See Also
disp | slist

Introduced before R2006a

 untrace

4-47

untrace
Remove block from debugger's list of trace points

Syntax
untrace gcb

unt gcb

untrace s:b

unt s:b

Arguments

s:b The block whose system index is s and block index is b.
gcb Current block.

Description

The untrace command removes the specified block from the debugger's list of trace
points.

See Also
trace | slist

Introduced before R2006a

4 Simulink Debugger Commands

4-48

where
Display current location of simulation in simulation loop

Syntax
where [detail]

w [detail]

Description

The where command displays the current location of the simulation in the simulation
loop, for example,

The display consists of a list of simulation nodes with the last entry being the node that
is about to be entered or exited. Each entry contains the following information:

• Method ID

The method ID identifies a specific invocation of a method.
• A symbol specifying its state:

• >> (active)
• >|(about to be entered)
• <|(about to be exited)

• Name of the method invoked (e.g., RootSystem.Start)

 where

4-49

• Name of the block or system on which the method is invoked (e.g., Sum)
• System and block ID (sysIdx:blkIdx) of the block on which the method is invoked

For example, 0:8 indicates that the specified method operates on block 8 of system 0.

where detail, where detail is any nonnegative integer, includes inactive nodes in the
display.

See Also
step

Introduced before R2006a

4 Simulink Debugger Commands

4-50

xbreak
Break when debugger encounters step-size-limiting state

Syntax
xbreak

x

Description

The xbreak command pauses execution of the model when the debugger encounters a
state that limits the size of the steps that the solver takes. If xbreak mode is already on,
xbreak turns the mode off.

More About
• ebreak

See Also
break | bafter | zcbreak | tbreak | nanbreak | rbreak

Introduced before R2006a

 zcbreak

4-51

zcbreak
Toggle breaking at nonsampled zero-crossing events

Syntax
zcbreak

zcb

Description

The zcbreak command causes the debugger to break when a nonsampled zero-crossing
event occurs. If zero-crossing break mode is already on, zcbreak turns the mode off.

See Also
break | bafter | xbreak | tbreak | nanbreak | zclist

Introduced before R2006a

4 Simulink Debugger Commands

4-52

zclist
List blocks containing nonsampled zero crossings

Syntax
zclist

zcl

Description

The zclist command displays a list of blocks in which nonsampled zero crossings can
occur. The command displays the list in the MATLAB Command Window.

See Also
zcbreak

Introduced before R2006a

5

Simulink Classes

eventData Provide information about block method
execution events

ModelAdvisor.Preferences Set Model Advisor preferences
Simulink.AliasType Create alias for signal and parameter data

type
Simulink.Annotation Specify properties of model annotation
Simulink.BlockCompDworkData Provide postcompilation information about

block's DWork vector
Simulink.BlockCompInputPortData

Provide postcompilation information about
block input port

Simulink.BlockCompOutputPortData
Provide postcompilation information about
block output port

Simulink.BlockData Provide run-time information about block-
related data, such as block parameters

Simulink.BlockPath Fully specified Simulink block path
Simulink.BlockPortData Describe block input or output port
Simulink.BlockPreCompInputPortData

Provide precompilation information about
block input port

Simulink.BlockPreCompOutputPortData
Provide precompilation information about
block output port

Simulink.Bus Specify properties of signal bus
Simulink.BusElement Describe element of signal bus

5 Simulink Classes

5-2

Simulink.CoderInfo Specify information needed to generate
code for signal or parameter

Simulink.ConfigSet Access model configuration set
Simulink.ConfigSetRef Link model to configuration set stored

independently of any model
Simulink.GlobalDataTransfer Configure concurrent execution data

transfers
Simulink.MDLInfo Extract model file information without

loading block diagram into memory
getDescription Extract model file description without

loading block diagram into memory
getMetadata Extract model file metadata without

loading block diagram into memory
Simulink.ModelAdvisor Run Model Advisor from MATLAB file
Simulink.ModelDataLogs Container for signal data logs of a model
Simulink.SimState.ModelSimState

Access SimState snapshot data
Simulink.ModelWorkspace Describe model workspace
Simulink.MSFcnRunTimeBlock Get run-time information about Level-2

MATLAB S-function block
Simulink.NumericType Specify floating point, integer, or fixed

point data type
Simulink.Parameter Specify value, value range, data type, and

other properties of block parameter
Simulink.RunTimeBlock Allow Level-2 MATLAB S-function

and other MATLAB programs to get
information about block while simulation is
running

Simulink.SampleTime Object containing sample time information
Simulink.scopes.TimeScopeConfiguration

Configure Scope and Time Scope for
programmatic access

Simulink.sdi.DiffRunResult Results from comparing two simulation
runs

 Simulink Classes

5-3

Simulink.sdi.DiffSignalResult Results from comparing two signals
Simulink.sdi.Run Manages signal data and metadata of

simulation run
Simulink.sdi.Signal Manages signal time series data and

metadata
Simulink.Signal Specify attributes of signal
Simulink.SimulationData.BlockPath

Fully specified Simulink block path
Simulink.SimulationData.DataStoreMemory

Container for data store logging
information

Simulink.SimulationData.LoggingInfo
Signal logging override settings

Simulink.SimulationData.ModelLoggingInfo
Signal logging override settings for a model

Simulink.SimulationData.SignalLoggingInfo
Signal logging override settings for signal

Simulink.SimulationData.Signal Container for signal logging information
Simulink.SimulationData.State State logging element
Simulink.SimulationMetadata Access metadata of simulation runs
Simulink.SimulationOutput Access object values of simulation results
Simulink.SubsysDataLogs Container for subsystem's signal data logs
Simulink.TimeInfo Provide information about time data in

Simulink.Timeseries object
Simulink.Timeseries Store data for any signal except mux or bus

signal
Simulink.TsArray Store data for mux or bus signal
Simulink.Variant Specify conditions that control variant

selection
Simulink.WorkspaceVar Contains information about workspace

variables and blocks that use them

5 Simulink Classes

5-4

Simulink.DualScaledParameter Specify name, value, units, and other
properties of Simulink dual-scaled
parameter

Simulink.Mask Control masks programmatically
Simulink.MaskParameter Control mask parameters

programmatically
Simulink.dialog.Control Create instances of dialog control
Simulink.dialog.Container Create instances of a container dialog

control
Simulink.dialog.Panel Create an instance of a panel dialog control
Simulink.dialog.Group Create an instance of a group dialog control
Simulink.dialog.Tab Create an instance of a tab dialog control
Simulink.dialog.TabContainer Create an instance of a tab container dialog

control
Simulink.dialog.Button Create a button dialog control
Simulink.dialog.Hyperlink Create a hyperlink dialog control
Simulink.dialog.Image Create an image dialog control
Simulink.dialog.Text Create a text dialog control
Simulink.dialog.parameter.Control

Create a parameter dialog control

 eventData

5-5

eventData

Provide information about block method execution events

Description

Simulink software creates an instance of this class when a block method execution event
occurs during simulation and passes it to any listeners registered for the event (see
add_exec_event_listener). The instance specifies the type of event that occurred and
the block whose method execution triggered the event. See “Access Block Data During
Simulation” for more information.

Parent

None

Children

None

Property Summary

Name Description

“Type” on page
5-6

Type of method execution event that occurred.

“Source” on page
5-6

Block that triggered the event.

5 Simulink Classes

5-6

Properties

Type

Description

Type of method execution event that occurred. Possible values are:

event Occurs...

'PreOutputs' Before a block's Outputs method executes.
'PostOutputs' After a block's Outputs method executes.
'PreUpdate' Before a block's Update method executes.
'PostUpdate' After a block's Update method executes.
'PreDerivatives' Before a block's Derivatives method executes.
'PostDerivatives' After a block's Derivatives method executes.

Data Type

string

Access

RO

Source

Description

Block that triggered the event

Data Type

Simulink.RunTimeBlock

Access

RO

 eventData

5-7

Introduced in R2009b

5 Simulink Classes

5-8

matlab.System class

Package: matlab

Base class for System objects

Description

matlab.System is the base class for System objects. In your class definition file, you
must subclass your object from this base class (or from another class that derives from
this base class). Subclassing allows you to use the implementation and service methods
provided by this base class to build your object. Type this syntax as the first line of
your class definition file to directly inherit from the matlab.System base class, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note: You must set Access = protected for each matlab.System method you use in
your code.

Methods

getInputNamesImpl Names of System block input ports
getOutputNamesImpl Names of System block output ports
getPropertyGroupsImpl Property groups for System object display
getSimulateUsingImpl Specify value for Simulate using parameter
infoImpl Information about System object
showSimulateUsingImpl Simulate Using visibility
stepImpl System output and state update equations
setupImpl Initialize System object
resetImpl Reset System object states
releaseImpl Release resources

 matlab.System class

5-9

getNumInputsImpl Number of inputs to step method
getNumOutputsImpl Number of outputs from step method
getDiscreteStateImpl Discrete state property values
supportsMultipleInstanceImpl Support System object in Simulink For

Each subsystem
validateInputsImpl Validate inputs to step method
validatePropertiesImpl Validate property values
processTunedPropertiesImpl Action when tunable properties change
isInputSizeLockedImpl Locked input size status
isInactivePropertyImpl Inactive property status
setProperties Set property values using name-value pairs
loadObjectImpl Load System object from MAT file
saveObjectImpl Save System object in MAT file

Attributes

In addition to the attributes available for MATLAB objects, you can apply the following
attributes to any property of a custom System object.

Nontunable After an object is locked (after step or setup has been
called), use Nontunable to prevent a user from changing
that property value. By default, all properties are tunable.
The Nontunable attribute is useful to lock a property that
has side effects when changed. This attribute is also useful
for locking a property value assumed to be constant during
processing. You should always specify properties that affect
the number of input or output ports as Nontunable.

Logical Use Logical to limit the property value to a logical, scalar
value. Any scalar value that can be converted to a logical is
also valid, such as 0 or 1.

PositiveInteger Use PositiveInteger to limit the property value to a
positive integer value.

DiscreteState Use DiscreteState to mark a property so it will display its
state value when you use the getDiscreteState method.

5 Simulink Classes

5-10

To learn more about attributes, see “Property Attributes” in the MATLAB Object-
Oriented Programming documentation.

Examples

Create a Basic System Object

Create a simple System object, AddOne, which subclasses from matlab.System. You
place this code into a MATLAB file, AddOne.m.

classdef AddOne < matlab.System

% ADDONE Compute an output value that increments the input by one

 methods (Access = protected)

 % stepImpl method is called by the step method.

 function y = stepImpl(~,x)

 y = x + 1;

 end

 end

end

Use this object by creating an instance of AddOne, providing an input, and using the
step method.

hAdder = AddOne;

x = 1;

y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which you define in
your class definition file.

properties (Nontunable)

 InitialValue

end

See Also
matlab.system.StringSet | matlab.system.mixin.FiniteSource

How To
• “Object-Oriented Programming”

 matlab.System class

5-11

• Class Attributes
• Property Attributes
• “Method Attributes”
• “Define Basic System Objects”
• “Define Property Attributes”

5 Simulink Classes

5-12

getInputNamesImpl
Class: matlab.System
Package: matlab

Names of System block input ports

Syntax

[name1,name2,...] = getInputNamesImpl(obj)

Description

[name1,name2,...] = getInputNamesImpl(obj) returns the names of the input
ports to System object, obj implemented in a MATLAB System block. The number of
returned input names matches the number of inputs returned by the getNumInputs
method. If you change a property value that changes the number of inputs, the names of
those inputs also change.

getInputNamesImpl is called by the getInputNames method by the MATLAB System
block.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

Output Arguments

name1,name2,...

Names of the inputs for the specified object, returned as strings

 getInputNamesImpl

5-13

Default: empty string

Examples

Specify Input Port Name

Specify in your class definition file the names of two input ports as 'upper' and
'lower'.

methods (Access = protected)

 function varargout = getInputNamesImpl(obj)

 numInputs = getNumInputs(obj);

 varargout = cell(1,numInputs);

 varargout{1} = 'upper';

 if numInputs > 1

 varargout{2} = 'lower';

 end

 end

end

See Also
getNumInputsImpl | getOutputNamesImpl

How To
• “Validate Property and Input Values”

5 Simulink Classes

5-14

getOutputNamesImpl
Class: matlab.System
Package: matlab

Names of System block output ports

Syntax

[name1,name2,...] = getOutputNamesImpl(obj)

Description

[name1,name2,...] = getOutputNamesImpl(obj) returns the names of the output
ports from System object, obj implemented in a MATLAB System block. The number of
returned output names matches the number of outputs returned by the getNumOutputs
method. If you change a property value that affects the number of outputs, the names of
those outputs also change.

getOutputNamesImpl is called by the getOutputNames method and by the MATLAB
System block.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

Output Arguments

name1,name2,...

Names of the outputs for the specified object, returned as strings.

 getOutputNamesImpl

5-15

Default: empty string

Examples

Specify Output Port Name

Specify the name of an output port as 'count'.

methods (Access = protected)

 function outputName = getOutputNamesImpl(~)

 outputName = 'count';

 end

end

See Also
getNumOutputsImpl | getInputNamesImpl

How To
• “Validate Property and Input Values”

5 Simulink Classes

5-16

getPropertyGroupsImpl
Class: matlab.System
Package: matlab

Property groups for System object display

Syntax

group = getPropertyGroupsImpl

Description

group = getPropertyGroupsImpl returns the groups of properties to display. You
define property sections (matlab.system.display.Section) and section groups
(matlab.system.display.SectionGroup) within this method. Sections arrange
properties into groups. Section groups arrange sections and properties into groups. If
a System object, included through the MATLAB System block, has a section, but that
section is not in a section group, its properties appear above the block dialog tab panels.

If you do not include a getPropertyGroupsImpl method in your code, all
public properties are included in the dialog box by default. If you include a
getPropertyGroupsImpl method but do not list a property, that property does not
appear in the dialog box.

getPropertyGroupsImpl is called by the MATLAB System block and when displaying
the object at the command line.

Note: You must set Access = protected and Static for this method.

Output Arguments

group

Property group or groups

 getPropertyGroupsImpl

5-17

Examples

Define Block Dialog Tabs

Define two block dialog tabs, each containing specific properties. For this example, you
use the getPropertyGroupsImpl, matlab.system.display.SectionGroup, and
matlab.system.display.Section methods in your class definition file.

methods (Static, Access = protected)

 function groups = getPropertyGroupsImpl

 valueGroup = matlab.system.display.Section(...

 'Title','Value parameters',...

 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...

 'Title','Threshold parameters',...

 'PropertyList',{'Threshold','UseThreshold'});

 mainGroup = matlab.system.display.SectionGroup(...

 'Title','Main', ...

 'Sections',[valueGroup,thresholdGroup]);

 initGroup = matlab.system.display.SectionGroup(...

 'Title','Initial conditions', ...

 'PropertyList',{'IC1','IC2','IC3'});

 groups = [mainGroup,initGroup];

 end

end

The resulting dialog box appears as follows.

5 Simulink Classes

5-18

 getPropertyGroupsImpl

5-19

See Also
matlab.system.display.Header | matlab.system.display.Section |
matlab.system.display.SectionGroup

How To
• “Add Property Groups to System Object and Block Dialog”

5 Simulink Classes

5-20

getSimulateUsingImpl

Class: matlab.System
Package: matlab

Specify value for Simulate using parameter

Syntax

simmode = getSimulateUsingImpl

Description

simmode = getSimulateUsingImpl returns a string, simmode, that specifies
the Simulink simulation mode. The simulation mode restricts your System object
to simulation using either code generation or interpreted execution. The associated
showSimulateUsingImpl method controls whether the Simulate using option is
displayed on the MATLAB System block dialog box.

getSimulateUsingImpl is called by the MATLAB System block.

Note: You must set Access = protected and Static for this method.

Output Arguments

simmode

Simulation mode, returned as the string 'Code generation' or 'Interpreted
execution'. If you do not include the getSimulateUsingImpl method in your class
definition file, the simulation mode is unrestricted. Depending on the value returned by
the associated showSimulateUsingImpl method, the simulation mode is displayed as
either a dropdown list on the dialog box or not at all.

 getSimulateUsingImpl

5-21

Examples

Specify the Simulation Mode

In the class definition file of your System object, define the simulation mode to display
in the MATLAB System block. To prevent Simulate using from displaying, see
showSimulateUsingImpl.

 methods (Static, Access = protected)

 function simMode = getSimulateUsingImplj

 simMode = 'Interpreted execution';

 end

 end

See Also
showSimulateUsingImpl

How To
• “Control Simulation Type in System Block Dialog”

5 Simulink Classes

5-22

infoImpl
Class: matlab.System
Package: matlab

Information about System object

Syntax
s = infoImpl(obj,varargin)

Description
s = infoImpl(obj,varargin) lets you set up information to return about the current
configuration of a System object obj. This information is returned in a struct from
the info method. The default infoImpl method, which is used if you do not include
infoImpl in your class definition file, returns an empty struct.

infoImpl is called by the info method.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object

varargin

Optional. Allow variable number of inputs

Examples
Specify System object Information

Define the infoImpl method to return current count information.

 infoImpl

5-23

methods (Access = protected)

 function s = infoImpl(obj)

 s = struct('Count',obj.pCount);

 end

end

How To
• “Define System Object Information”

5 Simulink Classes

5-24

showSimulateUsingImpl
Class: matlab.System
Package: matlab

Simulate Using visibility

Syntax
flag = showSimulateUsingImpl

Description
flag = showSimulateUsingImpl specifies whether the Simulate using parameter
and dropdown list appear on the MATLAB System block dialog box.

showSimulateUsingImpl is called by the MATLAB System block.

Note: You must set Access = protected and Static for this method.

Output Arguments

flag

Flag indicating whether to display the Simulate using parameter and dropdown list
on the MATLAB System block mask, returned as a logical scalar value. A true value
displays the parameter and dropdown list. A false value hides the parameter and
dropdown list.

Default: true

Examples

Hide the Simulate using Parameter

Hide the Simulate using parameter on the MATLAB System block dialog box.

 showSimulateUsingImpl

5-25

methods (Static, Access = protected)

 function flag = showSimulateUsingImpl

 flag = false;

 end

end

If you set the flag to true or omit the showSimulateUsingImpl method, which defaults
to true, the dialog appears as follows when you add the object to Simulink with the
MATLAB System block.

If you also specify a single value for getSimulateUsingImpl, the dialog appears as
follows when you add the object to Simulink with the MATLAB System block.

5 Simulink Classes

5-26

See Also
getSimulateUsingImpl

How To
• “Control Simulation Type in System Block Dialog”

 stepImpl

5-27

stepImpl
Class: matlab.System
Package: matlab

System output and state update equations

Syntax
[output1,output2,...] = stepImpl(obj,input1,input2,...)

Description
[output1,output2,...] = stepImpl(obj,input1,input2,...) defines the
algorithm to execute when you call the step method on the specified object obj. The
step method calculates the outputs and updates the object’s state values using the
inputs, properties, and state update equations.

stepImpl is called by the step method.

Note: You must set Access = protected for this method.

Tips
The number of input arguments and output arguments must match the values returned
by the getNumInputsImpl and getNumOutputsImpl methods, respectively

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the step method

5 Simulink Classes

5-28

Output Arguments

output

Output returned from the step method.

Examples

Specify System Object Algorithm

Use the stepImpl method to increment two numbers.

methods (Access = protected)

 function [y1,y2] = stepImpl(obj,x1,x2)

 y1 = x1 + 1;

 y2 = x2 + 1;

 end

end

See Also
getNumInputsImpl | getNumOutputsImpl | validateInputsImpl

How To
• “Define Basic System Objects”
• “Change Number of Step Inputs or Outputs”

 setupImpl

5-29

setupImpl
Class: matlab.System
Package: matlab

Initialize System object

Syntax

setupImpl(obj)

setupImpl(obj,input1,input2,...)

Description

setupImpl(obj) sets up a System object and implements one-time tasks that do not
depend on any inputs to its stepImpl method. You typically use setupImpl to set
private properties so they do not need to be calculated each time stepImpl method is
called. To acquire resources for a System object, you must use setupImpl instead of a
constructor.

setupImpl executes the first time the step method is called on an object after that
object has been created. It also executes the next time step is called after an object has
been released.

setupImpl(obj,input1,input2,...) sets up a System object using one or more
of the stepImpl input specifications. The number and order of inputs must match
the number and order of inputs defined in the stepImpl method. You pass the inputs
into setupImpl to use the specifications, such as size and data types in the one-time
calculations.

setupImpl is called by the setup method, which is done automatically as the first
subtask of the step method on an unlocked System object.

Note: You can omit this method from your class definition file if your System object does
not require any setup tasks.

You must set Access = protected for this method.

5 Simulink Classes

5-30

Do not use setupImpl to initialize or reset states. For states, use the resetImpl
method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Tips

To validate properties or inputs use the validatePropertiesImpl,
validateInputsImpl, or setProperties methods. Do not include validation in
setupImpl.

Do not use the setupImpl method to set up input values.

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the stepImpl method

Examples

Setup a File for Writing

This example shows how to open a file for writing using the setupImpl method in your
class definition file.

methods (Access = protected)

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 setupImpl

5-31

end

Initialize Properties Based on Step Inputs

This example shows how to use setupImpl to specify that step initialize the properties
of an input. In this case, calls to the object’s step method, which include input u,
initialize the object states in a matrix of size u.

methods (Access = protected)

 function setupImpl(obj, u)

 obj.State = zeros(size(u),’like’, u);

 end

end

See Also
validatePropertiesImpl | validateInputsImpl | setProperties

How To
• “Initialize Properties and Setup One-Time Calculations”
• “Set Property Values at Construction Time”

5 Simulink Classes

5-32

resetImpl

Class: matlab.System
Package: matlab

Reset System object states

Syntax

resetImpl(obj)

Description

resetImpl(obj) defines the state reset equations for a System object. Typically you
reset the states to a set of initial values, which is useful for initialization at the start of
simulation.

resetImpl is called by the reset method only if the object is locked. The object
remains locked after it is reset. resetImpl is also called by the setup method, after the
setupImpl method.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments

obj

System object

 resetImpl

5-33

Examples

Reset Property Value

Use the reset method to reset the state of the counter stored in the pCount property to
zero.

methods (Access = protected)

 function resetImpl(obj)

 obj.pCount = 0;

 end

end

See Also
releaseImpl

How To
• “Reset Algorithm State”

5 Simulink Classes

5-34

releaseImpl
Class: matlab.System
Package: matlab

Release resources

Syntax

releaseImpl(obj)

Description

releaseImpl(obj) releases any resources used by the System object, such as file
handles. This method also performs any necessary cleanup tasks. To release resources for
a System object, you must use releaseImpl instead of a destructor.

releaseImpl is called by the release method. releaseImpl is also called when the
object is deleted or cleared from memory, or when all references to the object have gone
out of scope.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

Examples

Close a File and Release Its Resources

Use the releaseImpl method to close a file opened by the System object.

 releaseImpl

5-35

methods (Access = protected)

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

end

How To
• “Release System Object Resources”

5 Simulink Classes

5-36

getNumInputsImpl

Class: matlab.System
Package: matlab

Number of inputs to step method

Syntax

num = getNumInputsImpl(obj)

Description

num = getNumInputsImpl(obj) returns the number of inputs num expected by
the step method. The System object input argument is not included in the count. For
example, if your step method syntax is step(h_obj,x1,x2,x3), getNumInputs
returns 3.

If your step method has a variable number of inputs (uses varargin), implement the
getNumInputsImpl method in your class definition file.

If the number of inputs expected by the step method is fixed (does not use varargin),
the default getNumInputsImpl determines the required number of inputs directly from
the step method. In this case, you do not need to include getNumInputsImpl in your
class definition file.

getNumInputsImpl is called by the getNumInputs method and by the setup method if
the number of inputs has not been determined already.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

 getNumInputsImpl

5-37

Input Arguments

obj

System object

Output Arguments

num

Number of inputs expected by the step method for the specified object, returned as an
integer.

Default: 1

Examples

Set Number of Inputs

Specify the number of inputs (2, in this case) expected by the step method.

methods (Access = protected)

 function num = getNumInputsImpl(~)

 num = 2;

 end

end

Set Number of Inputs to Zero

Specify that the step method does not accept any inputs.

methods (Access = protected)

 function num = getNumInputsImpl(~)

 num = 0;

 end

end

See Also
setupImpl | stepImpl | getNumOutputsImpl

5 Simulink Classes

5-38

How To
• “Change Number of Step Inputs or Outputs”

 getNumOutputsImpl

5-39

getNumOutputsImpl

Class: matlab.System
Package: matlab

Number of outputs from step method

Syntax

num = getNumOutputsImpl (obj)

Description

num = getNumOutputsImpl (obj) returns the number of outputs from the step
method.

If your step method has a variable number of outputs (uses varargout), implement
the getNumOutputsImpl method in your class definition file to determine the number
of outputs. Use nargout in the stepImpl method to assign the expected number of
outputs.

If the number of outputs expected by the step method is fixed (does not use varargout),
the object determines the required number of outputs from the step method. In this
case, you do not need to implement the getNumOutputsImpl method.

getNumOutputsImpl is called by the getNumOutputs method, if the number of outputs
has not been determined already.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

5 Simulink Classes

5-40

Input Arguments

obj

System object

Output Arguments

num

Number of outputs from the step method for the specified object, returned as an integer.

Examples

Set Number of Outputs

Specify the number of outputs (2, in this case) returned from the step method.

methods (Access = protected)

 function num = getNumOutputsImpl(~)

 num = 2;

 end

end

Set Number of Outputs to Zero

Specify that the step method does not return any outputs.

methods (Access = protected)

 function num = getNumOutputsImpl(~)

 num = 0;

 end

end

Use nargout for Variable Number of Outputs

Use nargout in the stepImpl method when you have a variable number of outputs and
will generate code.

methods (Access = protected)

 getNumOutputsImpl

5-41

 function varargout = stepImpl(~,varargin)

 for i = 1:nargout

 varargout{i} = varargin{i}+1;

 end

 end

end

See Also
stepImpl | getNumInputsImpl | setupImpl

How To
• “Change Number of Step Inputs or Outputs”

5 Simulink Classes

5-42

getDiscreteStateImpl
Class: matlab.System
Package: matlab

Discrete state property values

Syntax
s = getDiscreteStateImpl(obj)

Description
s = getDiscreteStateImpl(obj) returns a struct s of state values. The field
names of the struct are the object’s DiscreteState property names. To restrict or
change the values returned by getDiscreteState method, you can override this
getDiscreteStateImpl method.

getDiscreteStatesImpl is called by the getDiscreteState method, which is called
by the setup method.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments

obj

System object handle

Output Arguments

s

State values, returned as a struct

 getDiscreteStateImpl

5-43

Examples

Get Discrete State Values

Use the getDiscreteStateImpl method in your class definition file to get the discrete
states of the object.

methods (Access = protected)

 function s = getDiscreteStateImpl(obj)

 end

end

See Also
setupImpl

How To
• “Define Property Attributes”

5 Simulink Classes

5-44

supportsMultipleInstanceImpl

Class: matlab.System
Package: matlab

Support System object in Simulink For Each subsystem

Syntax

flag = supportsMultipleInstanceImpl(obj)

Description

flag = supportsMultipleInstanceImpl(obj) indicates whether you can use the
System object in a Simulink For Each subsystem via the MATLAB System block. To
enable For Each support, you must include the supportsMultipleInstanceImpl in
your class definition file and have it return true. Do not enable For Each support if your
System object allocates exclusive resources that may conflict with other System objects,
such as allocating file handles, memory by address, or hardware resources.

During Simulink model compilation and propagation, the MATLAB System
block calls the supportMultipleInstance method, which then calls the
supportsMultipleInstanceImpl method to determine For Each support.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments

obj

System object handle

 supportsMultipleInstanceImpl

5-45

Output Arguments

flag

Boolean value indicating whether the System object can be used in a For Each
subsystem. The default value, if you do not include the supportMultipleInstance
method, is false.

Examples

Enable For-Each Support for System Object

Specify in your class definition file that the System object can be used in a Simulink For
Each subsystem.

methods (Access = protected)

 function flag = supportsMultipleInstanceImpl(obj)

 flag = true;

 end

end

See Also
matlab.System

How To
• “Enable For Each Subsystem Support”

5 Simulink Classes

5-46

validateInputsImpl

Class: matlab.System
Package: matlab

Validate inputs to step method

Syntax

validateInputsImpl(obj,input1,input2,...)

Description

validateInputsImpl(obj,input1,input2,...) validates inputs to the step
method at the beginning of initialization. Validation includes checking data types,
complexity, cross-input validation, and validity of inputs controlled by a property value.

validateInputsImpl is called by the setup method before setupImpl.
validateInputsImpl executes only once.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the setup method

 validateInputsImpl

5-47

Examples

Validate Input Type

Validate that the input is numeric.

methods (Access = protected)

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

end

See Also
validatePropertiesImpl | setupImpl

How To
• “Validate Property and Input Values”

5 Simulink Classes

5-48

validatePropertiesImpl
Class: matlab.System
Package: matlab

Validate property values

Syntax
validatePropertiesImpl(obj)

Description
validatePropertiesImpl(obj) validates interdependent or interrelated property
values at the beginning of object initialization, such as checking that the dependent or
related inputs are the same size.

validatePropertiesImpl is the first method called by the setup method.
validatePropertiesImpl also is called before the processTunedPropertiesImpl
method.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Tips

To check if a property has changed since stepImpl was last called, use
isChangedProperty(obj,property) within validatePropertiesImpl.

Input Arguments

obj

System object handle

 validatePropertiesImpl

5-49

Examples

Validate a Property

Validate that the useIncrement property is true and that the value of the increment
property is greater than zero.

methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.useIncrement && obj.increment < 0

 error('The increment value must be positive');

 end

 end

end

See Also
processTunedPropertiesImpl | setupImpl | validateInputsImpl

How To
• “Validate Property and Input Values”

5 Simulink Classes

5-50

processTunedPropertiesImpl

Class: matlab.System
Package: matlab

Action when tunable properties change

Syntax

processTunedPropertiesImpl(obj)

Description

processTunedPropertiesImpl(obj) specifies the actions to perform when one or
more tunable property values change. This method is called as part of the next call to
the step method after a tunable property value changes. A property is tunable only if its
Nontunable attribute is false, which is the default.

processTunedPropertiesImpl is called by the step method.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Tips

Use this method when a tunable property affects the value of a different property.

To check if a property has changed since stepImpl was last called, use
isChangedProperty within processTunedPropertiesImpl.

 processTunedPropertiesImpl

5-51

Input Arguments

obj

System object

Examples

Specify Action When Tunable Property Changes

Use processTunedPropertiesImpl to recalculate the lookup table if the value of
either the NumNotes or MiddleC property changes before the next call to the step
method. propChange indicates if either property has changed.

methods (Access = protected)

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,obj.NumNotes) ||...

 isChangedProperty(obj,obj.MiddleC)

 if propChange

 obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12));

 end

 end

end

See Also
validatePropertiesImpl | setProperties

How To
• “Validate Property and Input Values”
• “Define Property Attributes”

5 Simulink Classes

5-52

isInputSizeLockedImpl

Class: matlab.System
Package: matlab

Locked input size status

Syntax

flag = isInputSizeLockedImpl(obj,i)

Description

flag = isInputSizeLockedImpl(obj,i) indicates whether the ith input port to
the step method has its size locked. If flag is true, the size is locked and inputs to the
System object cannot change size while the object is locked. If flag is false, the input
is variable size and is not locked, In the unlocked case, the size of inputs to the object can
change while the object is running and locked.

isInputSizeLockedImpl executes once for each input during System object
initialization.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

i

step method input port number

 isInputSizeLockedImpl

5-53

Output Arguments

flag

Flag indicating whether the size of inputs to the specified port is locked, returned as a
logical scalar value. If the value of isInputSizeLockedImpl is true, the size of the
current input to that port is compared to the first input to that port. If the sizes do not
match, an error occurs.

Default: false

Examples

Check If Input Size Is Locked

Specify in your class definition file to check whether the size of the System object input is
locked.

methods (Access = protected)

 function flag = isInputSizeLockedImpl(~,index)

 flag = true;

 end

end

See Also
matlab.System

How To
• “Specify Locked Input Size”

5 Simulink Classes

5-54

isInactivePropertyImpl

Class: matlab.System
Package: matlab

Inactive property status

Syntax

flag = isInactivePropertyImpl(obj,prop)

Description

flag = isInactivePropertyImpl(obj,prop) specifies whether a public, non-state
property is inactive for the current object configuration. An inactive property is a property
that is not relevant to the object, given the values of other properties. Inactive properties
are not shown if you use the disp method to display object properties. If you attempt to
use public access to directly access or use get or set on an inactive property, a warning
occurs.

isInactiveProperty is called by the disp method and by the get and set methods.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object handle

prop

Public, non-state property name

 isInactivePropertyImpl

5-55

Output Arguments

flag

Inactive status Indicator of the input property prop for the current object configuration,
returned as a logical scalar value

Examples

Specify When a Property Is Inactive

Display the InitialValue property only when the UseRandomInitialValue property
value is false.

methods (Access = protected)

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

end

See Also
setProperties

How To
• “Hide Inactive Properties”

5 Simulink Classes

5-56

setProperties
Class: matlab.System
Package: matlab

Set property values using name-value pairs

Syntax

setProperties(obj,numargs,name1,value1,name2,value2,...)

setProperties(obj,numargs,arg1,...,argN,propvalname1,...propvalnameN)

Description

setProperties(obj,numargs,name1,value1,name2,value2,...) provides the
name-value pair inputs to the System object constructor. Use this syntax if every input
must specify both name and value.

setProperties(obj,numargs,arg1,...,argN,propvalname1,...propvalnameN)

provides the value-only inputs, which you can follow with the name-value pair inputs to
the System object during object construction. Use this syntax if you want to allow users
to specify one or more inputs by their values only.

Input Arguments

obj

System object

numargs

Number of inputs passed in by the object constructor

name1,name2,...

Name of property

 setProperties

5-57

value1,value2,...

Value of the property

arg1,...argN

Value of property (for value-only input to the object constructor)

propvalname1,...propvalnameN

Name of the value-only property

Examples

Setup Value-Only Inputs

Set up an object so users can specify value-only inputs for VProp1, VProp2, and other
property values via name-value pairs when constructing the object.

methods

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:},'VProp1','VProp2');

 end

end

How To
• “Set Property Values at Construction Time”

5 Simulink Classes

5-58

loadObjectImpl
Class: matlab.System
Package: matlab

Load System object from MAT file

Syntax

loadObjectImpl(obj)

Description

loadObjectImpl(obj) loads a saved System object, obj, from a MAT file. Your
loadObjectImpl method should correspond to your saveObjectImpl method to ensure
that all saved properties and data are loaded.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

Examples

Load System object

Load a saved System object. In this example, the object contains a child object, protected
and private properties, and a discrete state. It also saves states if the object is locked and
calls the loadObjectImpl method from the matlab.System class.

methods (Access = protected)

 loadObjectImpl

5-59

 function loadObjectImpl(obj,s,wasLocked)

 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 if wasLocked

 obj.state = s.state;

 end

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

end

See Also
saveObjectImpl

How To
• “Load System Object”
• “Save System Object”

5 Simulink Classes

5-60

saveObjectImpl

Class: matlab.System
Package: matlab

Save System object in MAT file

Syntax

saveObjectImpl(obj)

Description

saveObjectImpl(obj) defines the System object obj property and state values to
be saved in a MAT file when a user calls save on that object. save calls saveObject,
which then calls saveObjectImpl.

If you do not define a saveObjectImpl method for your System object class, only public
properties and properties with the DiscreteState attribute are saved.

To save any private or protected properties or state information, you must define a
saveObjectImpl in your class definition file.

End users can use load, which calls loadObjectImpl to load a System object into their
workspace.

Tip Save the state of an object only if the object is locked. When the user loads that saved
object, it loads in that locked state.

To save child object information, use the associated saveObject method within the
saveObjectImpl method.

Note: You must set Access = protected for this method.

 saveObjectImpl

5-61

Input Arguments

obj

System object

Examples

Define Property and State Values to Save

Define what is saved for the System object. Call the base class version of
saveObjectImpl to save public properties. Then, save any child System objects and any
protected and private properties. Finally, save the state if the object is locked.

methods (Access = protected)

 function s = saveObjectImpl(obj)

 s = saveObjectImpl@matlab.System(obj);

 s.child = matlab.System.saveObject(obj.child);

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 if isLocked(obj)

 s.state = obj.state;

 end

 end

end

See Also
loadObjectImpl

How To
• “Save System Object”
• “Load System Object”

5 Simulink Classes

5-62

matlab.system.mixin.FiniteSource class
Package: matlab.system.mixin

Finite source mixin class

Description

matlab.system.mixin.FiniteSource is a class that defines the isDone method,
which reports the state of a finite data source, such as an audio file.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System &...

 matlab.system.mixin.FiniteSource

Methods

isDoneImpl End-of-data flag

See Also
matlab.System

Tutorials
• “Define Finite Source Objects”

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

 isDoneImpl

5-63

isDoneImpl
Class: matlab.system.mixin.FiniteSource
Package: matlab.system.mixin

End-of-data flag

Syntax

status = isDoneImpl(obj)

Description

status = isDoneImpl(obj) indicates if an end-of-data condition has occurred. The
isDone method should return false when data from a finite source has been exhausted,
typically by having read and output all data from the source. You should also define the
result of future reads from an exhausted source in the isDoneImpl method.

isDoneImpl is called by the isDone method.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object handle

Output Arguments

status

Logical value, true or false, that indicates if an end-of-data condition has occurred or
not, respectively.

5 Simulink Classes

5-64

Examples

Check for End-of-Data

Set up the isDoneImpl method in your class definition file so the isDone method checks
whether the object has completed eight iterations.

methods (Access = protected)

 function bdone = isDoneImpl(obj)

 bdone = obj.NumIters==8;

 end

end

See Also
matlab.system.mixin.FiniteSource

How To
• “Define Finite Source Objects”

 matlab.system.StringSet class

5-65

matlab.system.StringSet class
Package: matlab.system

Set of valid string values

Description

matlab.system.StringSet defines a list of valid string values for a property. This
class validates the string in the property and enables tab completion for the property
value. A StringSet allows only predefined or customized strings as values for the
property.

A StringSet uses two linked properties, which you must define in the same class.
One is a public property that contains the current string value. This public property is
displayed to the user. The other property is a hidden property that contains the list of all
possible string values. This hidden property should also have the transient attribute so
its value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

• The string property that holds the current string can have any name.
• The property that holds the StringSet must use the same name as the string

property with the suffix “Set” appended to it. The string set property is an instance of
the matlab.system.StringSet class.

• Valid strings, defined in the StringSet, must be declared using a cell array. The
cell array cannot be empty nor can it have any empty strings. Valid strings must be
unique and are case-sensitive.

• The string property must be set to a valid StringSet value.

Examples

Set String Property Values

Set the string property, Flavor, and the StringSet property, FlavorSet in your class
definition file.

5 Simulink Classes

5-66

properties

 Flavor = 'Chocolate';

end

properties (Hidden,Transient)

 FlavorSet = ...

 matlab.system.StringSet({'Vanilla','Chocolate'});

end

See Also
matlab.System

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Limit Property Values to Finite String Set”

 matlab.system.mixin.CustomIcon class

5-67

matlab.system.mixin.CustomIcon class
Package: matlab.system.mixin

Custom icon mixin class

Description

matlab.system.mixin.CustomIcon is a class that defines the getIcon method. This
method customizes the name of the icon used for the System object implemented through
a MATLAB System block.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.system &...

 matlab.system.mixin.CustomIcon

Methods

getIconImpl Name to display as block icon

See Also
matlab.System

Tutorials
• “Define System Block Icon”

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

5 Simulink Classes

5-68

getIconImpl
Class: matlab.system.mixin.CustomIcon
Package: matlab.system.mixin

Name to display as block icon

Syntax
icon = getIconImpl(obj)

Description
icon = getIconImpl(obj) returns the string or cell array of strings to display on the
block icon of the System object implemented through the MATLAB System block. If you
do not specify the getIconImpl method, the block displays the class name of the System
object as the block icon. For example, if you specify pkg.MyObject in the MATLAB
System block, the default icon is labeled My Object

getIconImpl is called by the getIcon method, which is used by the MATLAB System
block during Simulink model compilation.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments
icon

String or cell array of strings to display as the block icon. Each cell is displayed as a
separate line.

 getIconImpl

5-69

Examples

Add System Block Icon Name

Specify in your class definition file the name of the block icon as 'Enhanced Counter'
using two lines.

methods (Access = protected)

 function icon = getIconImpl(~)

 icon = {'Enhanced','Counter'};

 end

end

See Also
matlab.system.mixin.CustomIcon

How To
• “Define System Block Icon”

5 Simulink Classes

5-70

matlab.system.display.Header class

Package: matlab.system.display

Header for System objects properties

Syntax

matlab.system.display.Header(N1,V1,...Nn,Vn)

matlab.system.display.Header(Obj,...)

Description

matlab.system.display.Header(N1,V1,...Nn,Vn) defines a header for the
System object, with the header properties defined in Name-Value (N,V) pairs. You use
matlab.system.display.Header within the getHeaderImpl method. The available
header properties are

• Title — Header title string. The default value is an empty string.
• Text — Header description text string. The default value is an empty string.
• ShowSourceLink — Show link to source code for the object.

matlab.system.display.Header(Obj,...) creates a header for the specified
System object (Obj) and sets the following property values:

• Title — Set to the Obj class name.
• Text — Set to help summary for Obj.
• ShowSourceLink — Set to true if Obj is MATLAB code. In this case, the Source

Code link is displayed. If Obj is P-coded and the source code is not available, set this
property to false.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the
default settings.

 matlab.system.display.Header class

5-71

Methods

getHeaderImpl Header for System object display

Examples

Define System Block Header

Define a header in your class definition file.

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header(mfilename('class'), ...

 'Title','AlternativeTitle',...

 'Text','An alternative class description');

 end

 end

The resulting output appears as follows. In this case, Source code appears because the
ShowSourceLink property was set to true.

See Also
matlab.system.display.Section | matlab.system.display.SectionGroup

5 Simulink Classes

5-72

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Add Header to System Block Dialog”

 getHeaderImpl

5-73

getHeaderImpl
Class: matlab.system.display.Header
Package: matlab.system.display

Header for System object display

Syntax

header = getHeaderImpl

Description

header = getHeaderImpl returns the header to display for the System object. If you
do not specify the getHeaderImpl method, no title or text appears for the header in the
block dialog box.

getHeaderImpl is called by the MATLAB System block

Note: You must set Access = protected and Static for this method.

Output Arguments

header

Header text

Examples

Define Header for System Block Dialog Box

Define a header in your class definition file for the EnhancedCounter System object.

 methods (Static, Access = protected)

5 Simulink Classes

5-74

 function header = getHeaderImpl

 header = matlab.system.display.Header('EnhancedCounter',...

 'Title','Enhanced Counter');

 end

 end

See Also
getPropertyGroupsImpl

How To
• “Add Header to System Block Dialog”

 matlab.system.display.Section class

5-75

matlab.system.display.Section class

Package: matlab.system.display

Property group section for System objects

Syntax

matlab.system.display.Section(N1,V1,...Nn,Vn)

matlab.system.display.Section(Obj,...)

Description

matlab.system.display.Section(N1,V1,...Nn,Vn) creates a property group
section for displaying System object properties, which you define using property Name-
Value pairs (N,V). You use matlab.system.display.Section to define property
groups using the getPropertyGroupsImpl method. The available Section properties
are

• Title — Section title string. The default value is an empty string.
• TitleSource — Source of section title string. Valid values are 'Property' and

'Auto'. The default value is 'Property', which uses the string from the Title
property. If the Obj name is given, the default value is Auto, which uses the Obj
name.

• Description — Section description string. The default value is an empty string.
• PropertyList — Section property list as a cell array of property names. The default

value is an empty array. If the Obj name is given, the default value is all eligible
display properties.

Note: Certain properties are not eligible for display either in a dialog box or in
the System object summary on the command-line. Property types that cannot be
displayed are: hidden, abstract, private or protected access, discrete state, and
continuous state. Dependent properties do not display in a dialog box, but do display
in the command-line summary.

5 Simulink Classes

5-76

matlab.system.display.Section(Obj,...) creates a property group section for the
specified System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto', which uses the Obj name.
• PropertyList — Set to all publically-available properties in the Obj.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the
default settings.

Methods

Examples

Define Property Groups

Define two property groups in your class definition file by specifying their titles and
property lists.

 methods (Static, Access = protected)

 function groups = getPropertyGroupsImpl

 valueGroup = matlab.system.display.Section(...

 'Title','Value parameters',...

 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...

 'Title','Threshold parameters',...

 'PropertyList',{'Threshold','UseThreshold'});

 groups = [valueGroup,thresholdGroup];

 end

 end

When you specify the System object in the MATLAB System block, the resulting dialog
box appears as follows.

 matlab.system.display.Section class

5-77

See Also
matlab.system.display.Header | matlab.system.display.SectionGroup |
getPropertyGroupsImpl

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Add Property Groups to System Object and Block Dialog”

5 Simulink Classes

5-78

matlab.system.display.Action class
Package: matlab.system.display

Custom button

Syntax

matlab.system.display.Action(action)

matlab.system.display.Action(action,Name,Value)

Description

matlab.system.display.Action(action) defines a button to display on the
MATLAB System block. This button executes a function by launching a System object
method or invoking any MATLAB function or code.

A typical button function launches a figure. The launched figure is decoupled from the
block dialog box. Changes to the block are not synced to the displayed figure.

You define matlab.system.display.Action within the getPropertyGroupsImpl
method in your class definition file. You can define multiple buttons using separate
instances of matlab.system.display.Action in your class definition file.

matlab.system.display.Action(action,Name,Value) includes Name,Value pair
arguments, which you can use to specify any properties.

Input Arguments

action

Action taken when the user presses the specified button on the MATLAB System block
dialog. The action is defined as a function handle or as a MATLAB command string.
If you define the action as a function handle, the function definition must define two
inputs. These inputs are a matlab.system.display.Action object and a System
object method to invoke.

 matlab.system.display.Action class

5-79

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
You specify these properties as part of the input using Name,Value pair arguments.
Optionally, you can define them using object.property syntax.

• ActionCalledFcn — Action to take when the button is pressed. You cannot specify
this property using a Name-Value pair argument.

• Label — Text string to display on the button. The default value is an empty string.
• Description — Text string for the button tooltip. The default value is an empty

string.
• Placement — Text string indicating where on a separate row in the property group

to place the button. Valid values are 'first', 'last', or a property name. If you
specify a property name, the button is placed above that property. The default value is
'last'.

• Alignment — Text string indicating how to align the button. Valid values are
'left' and 'right'. The default value is 'left'.

Examples
Define Button on MATLAB System Block

Define a Visualize button and its associated function to open a figure that plots a ramp
using the parameter values in the block dialog.

methods(Static,Access = protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

end

5 Simulink Classes

5-80

methods

 function obj = PlotRamp(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj)

 figure;

 d = 1:obj.RampLimit;

 plot(d);

 end

end

When you specify the System object in the MATLAB System block, the resulting block
dialog box appears as follows.

See Also
matlab.System.getPropertyGroupsImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

How To
• “Object-Oriented Programming”

 matlab.system.display.Action class

5-81

• Class Attributes
• Property Attributes
• “Add Button to System Block Dialog Box”

5 Simulink Classes

5-82

matlab.system.display.SectionGroup class
Package: matlab.system.display

Section group for System objects

Syntax

matlab.system.display.SectionGroup(N1,V1,...Nn,Vn)

matlab.system.display.SectionGroup(Obj,...)

Description

matlab.system.display.SectionGroup(N1,V1,...Nn,Vn) creates a
group for displaying System object properties and display sections created with
matlab.system.display.Section. You define such sections or properties using
property Name-Value pairs (N,V). A section group can contain both properties and
sections. You use matlab.system.display.SectionGroup to define section groups
using the getPropertyGroupsImpl method. Section groups display as separate tabs in
the MATLAB System block. The available Section properties are

• Title — Group title string. The default value is an empty string.
• TitleSource — Source of group title string. Valid values are 'Property' and

'Auto'. The default value is 'Property', which uses the string from the Title
property. If the Obj name is given, the default value is Auto, which uses the Obj
name.

• Description — Group or tab description that appears above any properties or
panels. The default value is an empty string.

• PropertyList — Group or tab property list as a cell array of property names. The
default value is an empty array. If the Obj name is given, the default value is all
eligible display properties.

• Sections — Group sections as an array of section objects. If the Obj name is given,
the default value is the default section for the Obj.

matlab.system.display.SectionGroup(Obj,...) creates a section group for the
specified System object (Obj) and sets the following property values:

 matlab.system.display.SectionGroup class

5-83

• TitleSource — Set to 'Auto'.
• Sections — Set to matlab.system.display.Section object for Obj.

You can use mfilename('class') from within this method to get the name of the
System object. If you set any Name-Value pairs, those property values override the
default settings.

Examples

Define Block Dialog Tabs

Define in your class definition file two tabs, each containing specific properties.
For this example, you use the matlab.system.display.SectionGroup,
matlab.system.display.Section, and getPropertyGroupsImpl methods.

methods (Static, Access = protected)

 function groups = getPropertyGroupsImpl

 valueGroup = matlab.system.display.Section(...

 'Title','Value parameters',...

 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...

 'Title','Threshold parameters',...

 'PropertyList',{'Threshold','UseThreshold'});

 mainGroup = matlab.system.display.SectionGroup(...

 'Title','Main', ...

 'Sections',[valueGroup,thresholdGroup]);

 initGroup = matlab.system.display.SectionGroup(...

 'Title','Initial conditions', ...

 'PropertyList',{'IC1','IC2','IC3'});

 groups = [mainGroup,initGroup];

 end

end

The resulting dialog appears as follows when you add the object to Simulink with the
MATLAB System block.

5 Simulink Classes

5-84

 matlab.system.display.SectionGroup class

5-85

See Also
matlab.system.display.Header | matlab.system.display.Section |
getPropertyGroupsImpl

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Add Property Groups to System Object and Block Dialog”

5 Simulink Classes

5-86

matlab.system.mixin.Propagates class
Package: matlab.system.mixin

Signal characteristics propagation mixin class

Description

matlab.system.mixin.Propagates defines the output size, data type, and complexity
of a System object. Use this mixin class and its methods when you will include your
System object in Simulink via the MATLAB System block. This mixin is called by the
MATLAB System block during Simulink model compilation.

Implement the methods of this class when Simulink cannot infer the output
specifications directly from the inputs or when you want bus support. If you do not
include this mixin, Simulink cannot propagate the output or bus data type, an error
occurs.

To use this mixin, subclass from this matlab.system.mixin.Propagates in addition
to subclassing from the matlab.System base class. Type the following syntax as the
first line of your class definition file. ObjectName is the name of your System object.

classdef ObjectName < matlab.System &...

 matlab.system.mixin.Propagates

Methods

getDiscreteStateSpecificationImpl
Discrete state size, data type, and
complexity

getOutputDataTypeImpl Data types of output ports
getOutputSizeImpl Sizes of output ports
isOutputComplexImpl Complexity of output ports
isOutputFixedSizeImpl Fixed- or variable-size output ports
propagatedInputComplexity Complexity of input during Simulink

propagation

 matlab.system.mixin.Propagates class

5-87

propagatedInputDataType Data type of input during Simulink
propagation

propagatedInputFixedSize Fixed-size status of input during Simulink
propagation

propagatedInputSize Size of input during Simulink propagation

Note: If your System object has exactly one input and one output and no discrete
property states, or if you do not need bus support, you do not have to implement any of
these methods. The matlab.system.mixin.Propagates provides default values in
these cases.

See Also
matlab.System

Tutorials
• “Set Output Data Type”
• “Set Output Size”
• “Set Output Complexity”
• “Specify Whether Output Is Fixed- or Variable-Size”
• “Specify Discrete State Output Specification”

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

5 Simulink Classes

5-88

getDiscreteStateSpecificationImpl

Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Discrete state size, data type, and complexity

Syntax

[sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)

Description

[sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name) returns the
size, data type, and complexity of the property, name. This property must be a discrete
state property. You must define this method if your System object has discrete state
properties and is used in the MATLAB System block. If you define this method for a
property that is not discrete state, an error occurs during model compilation.

You always set the getDiscreteStateSpecificationImpl method access to
protected because it is an internal method that users do not directly call or run.

getDiscreteStateSpecificationImpl is called by the MATLAB System block
during Simulink model compilation.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments

obj

System object handle

 getDiscreteStateSpecificationImpl

5-89

name

Name of discrete state property of the System object

Output Arguments

sz

Vector containing the length of each dimension of the property.

Default: [1 1]

dt

Data type of the property. For built-in data types, dt is a string. For fixed-point data
types, dt is a numerictype object.

Default: double

cp

Complexity of the property as a scalar, logical value, where true = complex and false =
real.

Default: false

Examples

Specify Discrete State Property Size, Data Type, and Complexity

Specify in your class definition file the size, data type, and complexity of a discrete state
property.

methods (Access = protected)

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 sz = [1 1];

 dt = 'double';

 cp = false;

 end

5 Simulink Classes

5-90

end

See Also
matlab.system.mixin.Propagates

How To
• “Specify Discrete State Output Specification”

 getOutputDataTypeImpl

5-91

getOutputDataTypeImpl

Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Data types of output ports

Syntax

[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj)

Description

[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj) returns the data types
of each output port. The number of outputs must match the value returned from the
getNumOutputs method or the number of output arguments listed in the step method.

For System objects with one input and one output and where you want the input and
output data types to be the same, you do not need to implement this method. In this case
getOutputDataTypeImpl assumes the input and output data types are the same and
returns the data type of the input.

If your System object has more than one input or output or you need the output and
input data types to be different, you must implement the getOutputDataTypeImpl
method to define the output data type. For bus output, you must also specify
the name of the output bus . You use propagatedInputDataType within the
getOutputDataTypeImpl method to obtain the input type, if necessary.

During Simulink model compilation and propagation, the MATLAB System block calls
the getOutputDataType method, which then calls the getOutputDataTypeImpl
method to determine the output data type.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

5 Simulink Classes

5-92

Input Arguments

obj

System object

Output Arguments

dt_1,dt_2,...

Data type of the property. For built-in data types, dt is a string. For fixed-point data
types, dt is a numerictype object.

Examples

Specify Output Data Type

Specify, in your class definition file, the data type of a System object with one output.

methods (Access = protected)

 function dt_1 = getOutputDataTypeImpl(~)

 dt_1 = 'double';

 end

end

Specify Bus Output

Specify, in your class definition file, that the System object data type is a bus. You must
also include a property to specify the bus name.

properties(Nontunable)

 OutputBusName = 'myBus';

end

methods (Access = protected)

 function out = getOutputDataTypeImpl(obj)

 out = obj.OutputBusName;

 end

 getOutputDataTypeImpl

5-93

end

See Also
matlab.system.mixin.Propagates | propagatedInputDataType

5 Simulink Classes

5-94

getOutputSizeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Sizes of output ports

Syntax

[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj)

Description

[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj) returns the sizes of
each output port. The number of outputs must match the value returned from the
getNumOutputs method or the number of output arguments listed in the step method.

For System objects with one input and one output and where you want the input and
output sizes to be the same, you do not need to implement this method. In this case
getOutputSizeImpl assumes the input and output sizes are the same and returns
the size of the input. For variable-size inputs in MATLAB, the size varies each time you
run step on your object. For variable-size inputs in Simulink, the output size is the
maximum input size.

If your System object has more than one input or output or you need the output and
input sizes to be different, you must implement the getOutputSizeImpl method to
define the output size. You also must use the propagatedInputSize method if the
output size differs from the input size.

During Simulink model compilation and propagation, the MATLAB System block calls
the getOutputSize method, which then calls the getOutputSizeImpl method to
determine the output size.

All inputs default to variable-size inputs For these inputs, the output size is the
maximum input size.

Note: You must set Access = protected for this method.

 getOutputSizeImpl

5-95

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

Output Arguments
sz_1,sz_2,...

Vector containing the size of each output port.

Examples
Specify Output Size

Specify in your class definition file the size of a System object output.

methods (Access = protected)

 function sz_1 = getOutputSizeImpl(obj)

 sz_1 = [1 1];

 end

end

Specify Multiple Output Ports

Specify in your class definition file the sizes of multiple System object outputs.

methods (Access = protected)

 function [sz_1,sz_2] = getOutputSizeImpl(obj)

 sz_1 = propagatedInputSize(obj,1);

 sz_2 = [1 1];

 end

 end

Specify Output When Using Propagated Input Size

Specify in your class definition file the size of System object output when it is dependant
on the propagated input size.

5 Simulink Classes

5-96

methods (Access = protected)

 function varargout = getOutputSizeImpl(obj)

 varargout{1} = propagatedInputSize(obj,1);

 if obj.HasSecondOutput

 varargout{2} = [1 1];

 end

 end

end

See Also
matlab.system.mixin.Propagates | propagatedInputSize

How To
• “Set Output Size”

 isOutputComplexImpl

5-97

isOutputComplexImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Complexity of output ports

Syntax

[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj)

Description

[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj) returns whether each
output port has complex data. The number of outputs must match the value returned
from the getNumOutputs method or the number of output arguments listed in the step
method.

For System objects with one input and one output and where you want the input and
output complexities to be the same, you do not need to implement this method. In this
case isOutputComplexImpl assumes the input and output complexities are the same
and returns the complexity of the input.

If your System object has more than one input or output or you need the
output and input complexities to be different, you must implement the
isOutputComplexImpl method to define the output complexity. You also must use the
propagatedInputComplexity method if the output complexity differs from the input
complexity.

During Simulink model compilation and propagation, the MATLAB System block calls
the isOutputComplex method, which then calls the isOutputComplexImpl method to
determine the output complexity.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

5 Simulink Classes

5-98

Input Arguments

obj

System object handle

Output Arguments

cp_1,cp_2,...

Logical, scalar value indicating whether the specific output port is complex (true) or real
(false).

Examples

Specify Output as Real-Valued

Specify in your class definition file that the output from a System object is a real value.

methods (Access = protected)

 function c1 = isOutputComplexImpl(obj)

 c1 = false;

 end

end

See Also
matlab.system.mixin.Propagates | propagatedInputComplexity

How To
• “Set Output Complexity”

 isOutputFixedSizeImpl

5-99

isOutputFixedSizeImpl
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Fixed- or variable-size output ports

Syntax

[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj)

Description

[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj) indicates whether
each output port is fixed size. The number of outputs must match the value returned
from the getNumOutputs method, which is the number of output arguments listed in the
step method.

For System objects with one input and one output and where you want the input and
output fixed sizes to be the same, you do not need to implement this method. In this case
isOutputFixedSizeImpl assumes the input and output fixed sizes are the same and
returns the fixed size of the input.

If your System object has more than one input or output or you need
the output and input fixed sizes to be different, you must implement the
isOutputFixedSizeImpl method to define the output fixed size. You also must use the
propagatedInputFixedSize method if the output fixed size status differs from the
input fixed size status.

During Simulink model compilation and propagation, the MATLAB System block calls
the isOutputFixedSize method, which then calls the isOutputFixedSizeImpl
method to determine the output fixed size.

All inputs default to variable-size inputs For these inputs, the output size is the
maximum input size.

Note: You must set Access = protected for this method.

5 Simulink Classes

5-100

You cannot modify any properties in this method.

Input Arguments

obj

System object handle

Output Arguments

flag_1,flag2,...

Logical, scalar value indicating whether the specific output port is fixed size (true) or
variable size (false).

Examples

Specify Output as Fixed Size

Specify in your class definition file that the output from a System object is of fixed size.

methods (Access = protected)

 function c1 = isOutputFixedSizeImpl(obj)

 c1 = true;

 end

end

See Also
matlab.system.mixin.Propagates | propagatedInputFixedSize

How To
• “Specify Whether Output Is Fixed- or Variable-Size”

 propagatedInputComplexity

5-101

propagatedInputComplexity
Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Complexity of input during Simulink propagation

Syntax

flag = propagatedInputComplexity(obj,index)

Description

flag = propagatedInputComplexity(obj,index) returns true or false to
indicate whether the input argument for the indicated System object is complex. index
specifies the step method input for which to return the complexity flag.

You can use propagatedInputComplexity only from within the
isOutputComplexImpl method in your class definition file. Use
isOutputComplexImpl when:

• Your System object has more than one input or output.
• The input complexity determines the output complexity.
• The output complexity must differ from the input complexity.

Input Arguments

obj

System object

index

Index of the specified step method input. Do not count the obj in the index. The first
step input is always obj.

5 Simulink Classes

5-102

Output Arguments

flag

Complexity of the specified input, returned as true or false

Examples

Match Input and Output Complexity

Get the complexity of the second input to the step method and set the output to
match it. Assume that the first input of the step method has no impact on the output
complexity.

methods (Access = protected)

 function outcomplx = isOutputComplexImpl(obj)

 outcomplx = propagatedInputComplexity(obj,2);

 end

end

See Also
matlab.system.mixin.Propagates | isOutputComplexImpl

How To
• “Set Output Complexity”

 propagatedInputDataType

5-103

propagatedInputDataType

Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Data type of input during Simulink propagation

Syntax

dt = propagatedInputDataType(obj,index)

Description

dt = propagatedInputDataType(obj,index) returns the data type of an input
argument for a System object. index specifies the step method input for which to return
the data type.

You can use propagatedInputDataType only from within getOutputDataTypeImpl.
Use getOutputDataTypeImpl when:

• Your System object has more than one input or output.
• The input data type status determines the output data type.
• The output data type must differ from the input data type.

Input Arguments

obj

System object

index

Index of the specified step method input. Do not count the obj in the index. The first
step input is always obj.

5 Simulink Classes

5-104

Output Arguments

dt

Data type of the specified step method input, returned as a string for floating-point
input or as a numerictype for fixed-point input.

Examples

Match Input and Output Data Type

Get the data type of the second input to the step method. If the second input data type
is double, then the output data type is int32. For all other cases, the output data type
matches the second input data type. Assume that the first input to the step method has
no impact on the output.

methods (Access = protected)

 function dt = getOutputDataTypeImpl(obj)

 if strcmpi(propagatedInputDataType(obj,2),'double')

 dt = 'int32';

 else

 dt = propagatedInputDataType(obj,2);

 end

 end

end

See Also
“Data Type Propagation” | matlab.system.mixin.Propagates | getOutputDataTypeImpl

How To
• “Set Output Data Type”

 propagatedInputFixedSize

5-105

propagatedInputFixedSize

Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Fixed-size status of input during Simulink propagation

Syntax

flag = propagatedInputFixedSize(obj,index)

Description

flag = propagatedInputFixedSize(obj,index) returns true or false to indicate
whether an input argument of a System object is fixed size. index specifies the step
method input for which to return the fixed-size flag.

You can use propagatedInputFixedSize only from within
isOutputFixedSizeImpl. Use isOutputFixedSizeImpl when:

• Your System object has more than one input or output.
• The input fixed-size status determines the output fixed-size status.
• The output fixed-size status must differ from the input fixed-size status.

Input Arguments

obj

System object

index

Index of the specified step method input. Do not count the obj in the index. The first
step input is always obj.

5 Simulink Classes

5-106

Output Arguments

flag

Fixed-size status of the specified step method input, returned as true or false.

Examples

Match Fixed-Size Status of Input and Output

Get the fixed-size status of the third input to the step method and set the output to
match it. Assume that the first and second inputs to the step method have no impact on
the output.

methods (Access = protected)

 function outtype = isOutputFixedSizeImpl(obj)

 outtype = propagatedInputFixedSize(obj,3)

 end

end

See Also
matlab.system.mixin.Propagates | isOutputFixedSizeImpl

How To
• “Specify Whether Output Is Fixed- or Variable-Size”

 propagatedInputSize

5-107

propagatedInputSize

Class: matlab.system.mixin.Propagates
Package: matlab.system.mixin

Size of input during Simulink propagation

Syntax

sz = propagatedInputSize(obj,index)

Description

sz = propagatedInputSize(obj,index) returns, as a vector, the input size of the
specified System object. Theindex specifies the input to the step method for which to
return the size information. (Do not count the obj in the index. The first input is always
obj.)

You can use propagatedInputSize only from within the getOutputSizeImpl method
in your class definition file. Use getOutputSizeImpl when:

• Your System object has more than one input or output.
• The input size determines the output size.
• The output size must differ from the input size.

Note: For variable-size inputs, the propagated input size from
propagatedInputSizeImpl differs depending on the environment.

• MATLAB — When you first run step on an object, it uses the actual sizes of the
inputs.

• Simulink — The maximum of all the input sizes is set before the model runs and does
not change during the run.

5 Simulink Classes

5-108

Input Arguments

obj

System object

index

Index of the specified step method input

Output Arguments

sz

Size of the specified input, returned as a vector

Examples

Match Size of Input and Output

Get the size of the second input to the step method. If the first dimension of the second
input to the step method has a size greater than 1, then set the output size to a 1 x 2
vector. For all other cases, the output is a 2 x 1 matrix. Assume that the first input to the
step method has no impact on the output size.

methods (Access = protected)

 function outsz = getOutputSizeImpl(obj)

 sz = propagatedInputSize(obj,2);

 if sz(1) == 1

 outsz = [1,2];

 else

 outsz = [2,1];

 end

 end

end

See Also
matlab.system.mixin.Propagates | getOutputSizeImpl

 propagatedInputSize

5-109

How To
• “Set Output Size”

5 Simulink Classes

5-110

matlab.system.mixin.Nondirect class

Package: matlab.system.mixin

Nondirect feedthrough mixin class

Description

matlab.system.mixin.Nondirect is a class that uses the output and update
methods to process nondirect feedthrough data through a System object.

For System objects that use direct feedthrough, the object’s input is needed to generate
the output at that time. For these direct feedthrough objects, the step method
calculates the output and updates the state values. For nondirect feedthrough, however,
the object’s output depends only on the internal states at that time. The inputs
are used to update the object states. For these objects, calculating the output with
outputImpl is separated from updating the state values with updateImpl. If you use
the matlab.system.mixin.Nondirect mixin and include the stepImpl method in
your class definition file, an error occurs. In this case, you must include the updateImpl
and outputImpl methods instead.

The following cases describe when System objects in Simulink use direct or nondirect
feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the
System object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default
isInputDirectFeedthrough method returns false, indicating that direct
feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

Use the Nondirect mixin to allow a System object to be used in a Simulink feedback
loop. A delay object is an example of a nondirect feedthrough object.

 matlab.system.mixin.Nondirect class

5-111

To use this mixin, you must subclass from this class in addition to subclassing from
the matlab.System base class. Type the following syntax as the first line of your class
definition file, where ObjectName is the name of your object:

classdef ObjectName < matlab.system &...

 matlab.system.mixin.Nondirect

Methods

isInputDirectFeedthroughImpl Direct feedthrough status of input
outputImpl Output calculation from input or internal

state of System object
updateImpl Update object states based on inputs

See Also
matlab.system

Tutorials
• “Use Update and Output for Nondirect Feedthrough”

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

5 Simulink Classes

5-112

isInputDirectFeedthroughImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Direct feedthrough status of input

Syntax

[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,u1,u2,...,uN)

Description

[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,u1,u2,...,uN)

indicates whether each input is a direct feedthrough input. If direct feedthrough is true,
the output depends on the input at each time instant.

Note: You must set Access = protected for this method.

You cannot modify any properties or implement or access tunable properties in this
method.

If you do not include the isInputDirectFeedthroughImpl method in your System
object class definition file, all inputs are assumed to be direct feedthrough.

The following cases describe when System objects in Simulink code generation use direct
or nondirect feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the
System object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default
isInputDirectFeedthrough method returns false, indicating that direct

 isInputDirectFeedthroughImpl

5-113

feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

isInputDirectFeedthroughImpl is called by the isInputDirectFeedthrough
method.

Input Arguments

obj

System object handle

u1,u2,...,uN

Specifications of the inputs to the algorithm or step method.

Output Arguments

flag1,...,flagN

Logical value or either true or false. This value indicates whether the corresponding
input is direct feedthrough or not, respectively. The number of outputs must match the
number of outputs returned by the getNumOutputs method.

Examples

Specify Input as Nondirect Feedthrough

Use isInputDirectFeedthroughImpl in your class definition file to mark the inputs
as nondirect feedthrough.

methods (Access = protected)

 function flag = isInputDirectFeedthroughImpl(~,~)

 flag = false;

 end

end

See Also
matlab.system.mixin.Nondirect

5 Simulink Classes

5-114

How To
• “Use Update and Output for Nondirect Feedthrough”

 outputImpl

5-115

outputImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Output calculation from input or internal state of System object

Syntax
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN)

Description
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN) implements the output
equations for the System object. The output values are calculated from the states and
property values. Any inputs that you set to nondirect feedthrough are ignored during
output calculation.

outputImpl is called by the output method. It is also called before the updateImpl
method in the step method. For sink objects, calling updateImpl before outputImpl
locks the object. For all other types of objects, calling updateImpl before outputImpl
causes an error.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object handle

u1,u2,...uN

Inputs from the algorithm or step method. The number of inputs must match the
number of inputs returned by the getNumInputs method. Nondirect feedthrough inputs

5 Simulink Classes

5-116

are ignored during normal execution of the System object. However, for code generation,
you must provide these inputs even if they are empty.

Output Arguments

y1,y2,...yN

Outputs calculated from the specified algorithm. The number of outputs must match the
number of outputs returned by the getNumOutputs method.

Examples

Set Up Output that Does Not Depend on Input

Specify in your class definition file that the output does not directly depend on the
current input with the outputImpl method. PreviousInput is a property of the obj.

methods (Access = protected)

 function [y] = outputImpl(obj, ~)

 y = obj.PreviousInput(end);

 end

end

See Also
matlab.system.mixin.Nondirect

How To
• “Use Update and Output for Nondirect Feedthrough”

 updateImpl

5-117

updateImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Update object states based on inputs

Syntax

updateImpl(obj,u1,u2,...,uN)

Description

updateImpl(obj,u1,u2,...,uN) implements the state update equations for the
system. You use this method when your algorithm outputs depend only on the object’s
internal state and internal properties. Do not use this method to update the outputs from
the inputs.

updateImpl is called by the update method and after the outputImpl method in the
step method. For sink objects, calling updateImpl before outputImpl locks the object.
For all other types of objects, calling updateImpl before outputImpl causes an error.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments

obj

System object handle

u1,u2,...uN

Inputs to the algorithm or step method. The number of inputs must match the number
of inputs returned by the getNumInputs method.

5 Simulink Classes

5-118

Examples

Set Up Output that Does Not Depend on Current Input

Update the object with previous inputs. Use updateImpl in your class definition file.
This example saves the u input and shifts the previous inputs.

methods (Access = protected)

 function updateImpl(obj,u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

 end

end

See Also
matlab.system.mixin.Nondirect

How To
• “Use Update and Output for Nondirect Feedthrough”

 ModelAdvisor.Preferences

5-119

ModelAdvisor.Preferences
Set Model Advisor preferences

Description

Use instances of this class to set Model Advisor preferences.

Property Summary

Property Description Values

DeselectByProduct String specifying the selection
of the By Product folder in
the Model Advisor window. The
default value is true.

{true} | false

ShowByProduct String specifying the display of the
By Product folder in the Model
Advisor window. The default value
is true.

{true} | false

ShowByTask String specifying the display of
the By Task folder in the Model
Advisor window. The default value
is true.

{true} | false

ShowSourceTab String specifying the display of
the Source tab in the Model
Advisor window. The default value
is false. When you click the
Source tab, the Model Advisor
window displays the check Title,
TitleID, and location of the
MATLAB source code for the
check.

true | {false}

ShowExclusionTab String specifying the display of
the Exclusions tab in the Model
Advisor window. The default

true | {false}

5 Simulink Classes

5-120

Property Description Values

value is false. When you click
the Exclusions tab, the Model
Advisor window displays checks
that are excluded form the Model
Advisor analysis.

ShowAccordian String specifying the display
of the Code Generation
Advisor, Upgrade Advisor,
and Performance Advisor
in the Model Advisor window.
The default value is false. You
can use these advisors to help
configure your model for code
generation, upgrade your model
for the current release, or improve
performance.

true | {false}

ShowExclusionsInRptString specifying to include
exclusions in the Model Advisor
report. The default value is true.

{true} | false

Methods

Name Description

load Load Model Advisor preferences.
save Save Model Advisor preferences.

Examples

This example shows how to not display the By Product folder in the Model Advisor
window:
mp = ModelAdvisor.Preferences;

mp.load;

mp.ShowByProduct = false;

mp.save

 ModelAdvisor.Preferences

5-121

Alternatives

You can set the Model Advisor preferences by using the Model Advisor Preferences dialog
box:

• On the Model Advisor menu, select Settings > Preferences.
• From the Model Editor, select Analysis > Model Advisor > Preferences.

See Also
“Run Model Checks”

Introduced in R2014b

5 Simulink Classes

5-122

Simulink.AliasType
Create alias for signal and parameter data type

Description
This class allows you to designate MATLAB variables as aliases for signal and parameter
data types. You designate variables as aliases by creating instances of this class and
assigning them to variables in the MATLAB base workspace or a data dictionary (see
“Creating a Data Type Alias” on page 5-122). The MATLAB variable to which a
Simulink.AliasType object is assigned is called a data type alias. The data type to
which an alias refers is called its base type. Simulink software allows you to set the
BaseType property of the object that the variable references, thereby designating the
data type for which it is an alias.

Simulink software lets you use aliases instead of actual type names in dialog boxes
and set_param commands to specify the data types of Simulink block outputs and
parameters. Using aliases to specify signal and parameter data types can greatly
simplify global changes to the signal and parameter data types that a model specifies.
In particular, changing the data type of all signals and parameters whose data type
is specified by an alias requires changing only the base type of the alias. By contrast,
changing the data types of signals and parameters whose data types are specified by
an actual type name requires respecifying the data type of each signal and parameter
individually.

You can use objects of this class to create an alias for Simulink built-in data
types, enumerated data types, Simulink.NumericType objects, and other
Simulink.AliasType objects.

To define and name your own fixed-point data type, use an object of the class
Simulink.NumericType. Objects of the class Simulink.AliasType can create an
alias for a Simulink.NumericType object that defines a fixed-point data type, but
cannot define a fixed-point data type.

Creating a Data Type Alias

You can use either the Model Explorer or MATLAB commands to create a data type
alias. See “MATLAB Commands for Creating Data Type Aliases” on page 5-123.

To use the Model Explorer to create an alias:

 Simulink.AliasType

5-123

1 On the Model Explorer Model Hierarchy pane, select Base Workspace.

You must create data type aliases in the MATLAB workspace or in a data dictionary.
If you attempt to create an alias in a model workspace, Simulink software displays
an error.

2 From the Model Explorer Add menu, select Simulink.AliasType.

Simulink software creates an instance of a Simulink.AliasType object and assigns
it to a variable named Alias in the MATLAB workspace.

3 Rename the variable to a more appropriate name, for example, a name that reflects
its intended usage.

To change the name, edit the name displayed in the Name field on the Model
Explorer Contents pane.

4 On the Model Explorer Dialog pane, in the Base type field, enter the name of the
data type that this alias represents.

You can specify the name of any existing standard or user-defined data type in this
field. Skip this step if the base type is double (the default).

5 Use the MATLAB save command to save the newly created alias in a MAT-file that
can be loaded by the models in which it is used.

MATLAB Commands for Creating Data Type Aliases

Use the following syntax to create a data type alias at the command prompt or in a
MATLAB script.

ALIAS = Simulink.AliasType;

ALIAS is the name of the variable that you want to serve as the alias. For example, the
following line creates an alias named MyFloat.

MyFloat = Simulink.AliasType;

The following notations get and set the properties of a data type alias, respectively:

PROPVALUE = ALIAS.PROPNAME;

ALIAS.PROPNAME = PROPVALUE;

ALIAS is the name of the alias object, PROPNAME is the name of the alias object
properties, and PROPVALUE is the property value. For example, the following code saves
the current value of MyFloat's BaseType property and assigns it a new value.

5 Simulink Classes

5-124

old = MyFloat.BaseType;

MyFloat.BaseType = 'single';

For information on the names, permitted values, and usage of the properties of data type
alias objects, see “Properties” on page 5-128.

Create Alias for Enumerated Data Type

You can use a Simulink.AliasType object to create an alias for an enumerated data
type. For example, you can create an alias for an enumerated type called SlDemoSign.

myEnumAlias = Simulink.AliasType;

myEnumAlias.BaseType = 'Enum: SlDemoSign';

You can use the expression myEnumAlias to specify the data type of signals or
parameters as the enumerated type SlDemoSign.

Data Type Aliases in Generated Code

If you have a Simulink Coder license, you can cause data type aliases to appear in the
code generated for a model using any of the following methods:

• Specifying the signal data type of a block in the model as a Simulink.AliasType via
the Block Parameters dialog box.

• Creating a Simulink.Signal object that uses the Simulink.AliasType as its
data type. Use this signal object as the name of a signal in the model and specify that
the signal name must resolve to an object in the MATLAB workspace. See “Control
Signals and States in Code by Applying Storage Classes” in the Simulink Coder
User's Guide.

• Creating a Simulink.Parameter object that uses the Simulink.AliasType as its
data type. Use this parameter object as a block parameter in the model. See “Control
Parameter Data Types in the Generated Code” in the Simulink Coder User's Guide.

Notes

• If you assign a data type in a block dialog box and if you use a Simulink.Signal
object on the signal feeding into the block, the code is always generated using the data
type in the dialog box.

 Simulink.AliasType

5-125

• The Simulink Coder code generator tries to preserve the names of alias types in
the generated code. However, in some cases, an alias type name can revert to its

underlying equivalent built-in data type. If you have a Embedded Coder license, you
can specify that the code generator use the alias type name in the generated code,
by using replacement types (see “Data Type Replacement” in the Embedded Coder
documentation).

• The Simulink.AliasType class does not support multiword data types for code
generation.

• You can specify the data type of a complex signal using the Simulink.AliasType
class. In this case, if the DataScope property of the Simulink.AliasType class
is set to Imported (or Auto with a header file specified), provide a definition for
the complex type. As shown in the following example, the alias type definition,
IAT_int32, must contain the name of the complex type prefixed by c.
#ifndef myAliasTypes_H_

#define myAliasTypes_H_

#include "rtwtypes.h"

typedef int32_T IAT_int32;

typedef cint32_T cIAT_int32;

#endif

In the preceding example, while you must define IAT_int32 in the base workspace,
you do not need to define cIAT_int32 in the base workspace.

• If you define two nested alias types, Simulink Coder generates an error if the
DataScope property of the alias type is set to Imported or if either of the alias types
specifies a header file.

Parent

None

Children

None

5 Simulink Classes

5-126

Property Dialog Box

Base type
The data type to which this alias refers. The default is double. To specify
another data type, select the data type from the adjacent drop–down list of
standard data types or enter the data type name in the edit field. You can, with
one exception, specify a nonstandard data type, e.g., a data type defined by a
Simulink.NumericType object, by entering the data type name in the edit field.
The exception is a Simulink.NumericType whose Category is Fixed-point:
unspecified scaling.

 Simulink.AliasType

5-127

Note: Fixed-point: unspecified scaling is a partially specified type whose
definition is completed by the block that uses the Simulink.NumericType.
Forbidding its use in alias types avoids creating aliases that have different base types
depending on where they are used.

Data scope
Specifies whether the data type definition is imported from, or exported to, a header
file during code generation. The possible values are:

Value Action

Auto (default) If no value is specified for Header file, export the type
definition to model_types.h, where model is the model
name. If you have an Embedded Coder license, and you
have specified a data type replacement, then export the type
definition to rtwtypes.h.
If a value is specified for Header file, import the data type
definition from the specified header file.

Exported Export the data type definition to a header file, which can be
specified in the Header file field. If no value is specified for
Header file, the header file name defaults to type.h. type
is the data type name.

Imported Import the data type definition from a header file, which can
be specified in the Header file field. If no value is specified
for Header file, the header file name defaults to type.h.
type is the data type name.

Header file
Name of a C header file from which a data type definition is imported, or to which
a data type definition is exported, based on the value of Data scope. If this field
is specified, the specified name is used during code generation for importing or
exporting. If this field is empty, the value defaults to type.h if Data scope equals
Imported or Exported, or defaults to model_types.h if Data scope equals Auto.

Description
Describes the usage of the data type referenced by this alias.

5 Simulink Classes

5-128

Properties

Name Description

BaseType A string specifying the name of a standard or custom data type.
(Base type)

DataScope A string specifying whether the data type definition is imported
from, or exported to, a header file during code generation. (Data
scope)

Description A string that describes the usage of the data type. Can be a null
string. (Description)

HeaderFile A string that specifies the name of a C header file from which a
data type definition is imported, or to which a data type definition is
exported, during code generation. (Header file)

More About
• “About Data Types in Simulink”

See Also
Simulink.NumericType

Related Examples
• “Control Signal Data Types”
• “Create Data Type Alias in Generated Code”
• “Data Type Replacement”

Introduced before R2006a

 Simulink.Annotation

5-129

Simulink.Annotation
Specify properties of model annotation

Description
Instances of this class specify the properties of annotations. You can use
getCallbackAnnotation in an annotation callback function to get the
Simulink.Annotation instance for the annotation associated with the callback
function. You can use find_system and get_param to get the Simulink.Annotation
instance associated with any annotation in a model. For example, the following code gets
the annotation object for the first annotation in the currently selected model and turns on
its drop shadow
ah = find_system(gcs, 'FindAll', 'on', 'type', 'annotation');

ao = get_param(ah(1), 'Object');

ao.DropShadow = 'on';

Children
None.

Property Summary
Property Description Values

Text String specifying text of
annotation. Same as Name.

string

ClickFcn Specifies MATLAB code to be
executed when a user single-
clicks this annotation. Simulink
software stores the code entered
in this field with the model.
See “Associate Click Functions
with Annotations” for more
information.

string

Description String that describes this
annotation.

string

5 Simulink Classes

5-130

Property Description Values

FontAngle String specifying the angle of the
annotation font. The default value,
'auto', specifies use of the model
preference for the font angle.

'normal' | 'italic' |

'oblique' | {'auto'}

FontName String specifying name of
annotation’s font. The default
value, 'auto', specifies use of the
model preference for the font.

string

FontSize Integer specifying size of
annotation’s font in points. The
default value, -1, specifies use of
the model preference for the font
size.

real {'-1'}

FontWeight String specifying the weight of the
annotation font. The default value,
'auto', specifies use of the model
preference for font weight.

'light' | 'normal' | 'demi' |

'bold' | {'auto'}

Handle Annotation handle. real
HiliteAncestors For internal use.
Name String specifying text of

annotation. Same as Text.
string

Selected String specifying whether this
annotation is currently selected
('on') or not selected ('off').

'on' | 'off'

Parent String specifying parent name of
annotation object.

string

Path Path to the annotation. string
Position Array specifying the location of the

annotation
1x4 array [left top right
bottom].

The maximum value for a coordinate is
32767.

 Simulink.Annotation

5-131

Property Description Values

Horizontal-

Alignment

String specifying the horizontal
alignment of this annotation, e.g.,
'center'.

'center' | {'left'}|'right'

VerticalAlignment String specifying the vertical
alignment of this annotation (for
example, 'middle'.

'middle' |

{'top'}|'cap'|'baseline'|'bottom'

ForegroundColor String specifying foreground color
of this annotation.

RGB value array string | [r,g,b,a]
where r, g, b, and a are the red,
green, blue, and alpha values of the
color normalized to the range 0.0 to 1.0,
delineated with commas. The alpha
value is optional and ignored.

Annotation background color
can also be 'black', 'white',
'red', 'green', 'blue', 'cyan',
'magenta', 'yellow', 'gray',
'lightBlue', 'orange',
'darkGreen'.

BackgroundColor String specifying background color
of this annotation.

RGB value array string | [r,g,b,a]
where r, g, b, and a are the red,
green, blue, and alpha values of the
color normalized to the range 0.0 to 1.0,
delineated with commas. The alpha
value is optional and ignored.

Annotation background color
can also be 'black', 'white',
'red', 'green', 'blue', 'cyan',
'magenta', 'yellow', 'gray',
'lightBlue', 'orange',
'darkGreen'.

DropShadow String specifying whether to
display a drop shadow. Options
are 'on' or 'off'.

'on' | {'off'}

5 Simulink Classes

5-132

Property Description Values

TeXMode String specifying whether to
render TeX markup. Options are
'on' or 'off'.

'on' | {'off'}

Type Annotation type. This is always
'annotation'

string

LoadFcn String specifying MATLAB code
to be executed when the model
containing this annotation is
loaded. See “Annotation Callback
Functions”.

string

DeleteFcn String specifying MATLAB code
to be executed before deleting
this annotation. See “Annotation
Callback Functions”.

string

RequirementInfo For internal use. string
Tag User-specified text that is

assigned to the annotation Tag
parameter and saved with the
annotation.

string

 Simulink.Annotation

5-133

Property Description Values

UseDisplayText-

AsClickCallback

String specifying whether to use
the contents of the Text property
as the click function for this
annotation. Options are 'on' or
'off'.

If set to 'on', the text of the
annotation is interpreted as a
valid MATLAB expression and
run. If set to 'off', clicking the
annotation runs the click function,
if there is one. If there is no click
function, clicking the annotation
has no effect.

See “Associate Click Functions
with Annotations” for more
information.

'on' | {'off'}

UserData Any data that you want to
associate with this annotation.

vector

Interpreter Type of annotation 'rich' | 'tex' | {'off'}

IsImage Only 'on' if the annotation is an
image annotation

'on' | {'off'}

InternalMargins Array specifying the space from
the bounding box of text to the
borders of the annotation.

1x4 array [left top right
bottom] . The default is [1 1 1 1].

The maximum value for a coordinate is
32767.

PlainText Read-only display of the text
in the annotation, without
formatting

vector

FixedHeight String specifying whether the
bottom border of the annotation
resizes as you add content

'on' | {'off'}, where 'off' means
that the bottom border resizes as you
add content

5 Simulink Classes

5-134

Property Description Values

FixedWidth String specifying whether or not
to use wordwrap or to have the
width of the annotation expand to
accommodate text

'on' | {'off'}, where 'off' means
to use wordwrap

Method Summary

Method Description

delete Delete this annotation from the Simulink model.
dialog Display the Annotation properties dialog box.
disp Display the property names and their settings for this Annotation object.
fitToView Zoom in on this annotation and highlight it in the model.
get Return the specified property settings for this annotation.
help Display a list of properties for this Annotation object with short descriptions.
insertImage Insert image from clipboard or image file into an annotation.
methods Display all nonglobal methods of this Annotation object.
set Set the specified property of this Annotation object with the specified value.
struct Return and display a MATLAB structure containing the property settings of this

Annotation object.
view Display this annotation in the Simulink Editor with this annotation highlighted.

Introduced before R2006a

 Simulink.BlockCompDworkData

5-135

Simulink.BlockCompDworkData
Provide postcompilation information about block's DWork vector

Description

Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “Dwork” on page 5-304 method of a block's
run-time object after the model containing the block has been compiled.

Parent

Simulink.BlockData

Children

None

Property Summary

Name Description

“Usage” on page 5-135 Usage type of this DWork vector.
“UsedAsDiscState” on page
5-136

True if this DWork vector is being used to store the values
of a block's discrete states.

Properties

Usage

Description

Returns a string indicating how this DWork vector is used. Permissible values are:

5 Simulink Classes

5-136

• DWork
• DState
• Scratch
• Mode

Data Type

string

Access

RW for MATLAB S-function blocks, RO for other blocks.

UsedAsDiscState

Description

True if this DWork vector is being used to store the values of a block's discrete states.

Data Type

Boolean

Access

RW for MATLAB S-Function blocks, RO for other blocks.

Introduced before R2006a

 Simulink.BlockCompInputPortData

5-137

Simulink.BlockCompInputPortData
Provide postcompilation information about block input port

Description

Simulink software returns an instance of this class when a MATLAB program, e.g.,
a Level-2 MATLAB S-function, invokes the “InputPort” on page 5-305 method of a
block's run-time object after the model containing the block has been compiled.

Parent

Simulink.BlockPortData

Children

None

Property Summary

Name Description

“DirectFeedthrough” on page
5-137

True if this port has direct feedthrough.

“Overwritable” on page 5-138 True if this port is overwritable.

Properties

DirectFeedthrough

Description

True if this input port has direct feedthrough.

5 Simulink Classes

5-138

Data Type

Boolean

Access

RW for MATLAB S functions, RO for other blocks.

Overwritable

Description

True if this input port is overwritable.

Data Type

Boolean

Access

RW for MATLAB S functions, RO for other blocks.

Introduced before R2006a

 Simulink.BlockCompOutputPortData

5-139

Simulink.BlockCompOutputPortData
Provide postcompilation information about block output port

Description

Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “OutputPort” on page 5-306 method of a
block's run-time object after the model containing the block has been compiled.

Parent

Simulink.BlockPortData

Children

None

Property Summary

Name Description

“Reusable” on page 5-163 Specifies whether an output port's memory is reusable.

Properties

Reusable

Description

Specifies whether an output port's memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

5 Simulink Classes

5-140

Data Type

string

Access

RW for MATLAB S functions, RO for other blocks.

Introduced before R2006a

 Simulink.BlockData

5-141

Simulink.BlockData

Provide run-time information about block-related data, such as block parameters

Description

This class defines properties that are common to objects that provide run-time
information about a block's ports and work vectors.

Parent

None

Children

Simulink.BlockPortData, Simulink.BlockCompDworkData

Property Summary

Name Description

“AliasedThroughDataType” on page
5-142

Fundamental base data type.

“AliasedThroughDataTypeID” on page
5-143

Fundamental base data type ID.

“Complexity” on page 5-143 Numeric type (real or complex) of the block
data.

“Data” on page 5-143 The block data.
“DataAsDouble” on page 5-144 The block data in double form.
“Datatype” on page 5-144 Data type of the block data.
“DatatypeID” on page 5-144 Index of the data type of the block data.

5 Simulink Classes

5-142

Name Description

“Dimensions” on page 5-145 Dimensions of the block data.
“Name” on page 5-145 Name of the block data.
“Type” on page 5-146 Type of block data (e.g., a parameter).

Properties

AliasedThroughDataType

Description

Data type aliases allow a data type (B) to be recursively aliased to another alias type or
BaseType (A). If alias type A is aliased to another alias type that is aliased to another
alias type and so forth, this property allows the alias type to be iteratively searched
(aliased through) until the type is no longer an alias type and that final result is the
value of the property returned. For example, assume that you have created the Simulink
Alias types A and B as follows:

A=Simulink.AliasType('double')

A =

Simulink.AliasType

 Description: ''

 HeaderFile: ''

 BaseType: 'double'

B=Simulink.AliasType('A')

B =

Simulink.AliasType

 Description: ''

 HeaderFile: ''

 BaseType: 'A'

If the data type of an item of block data is B, this property returns the base type A
instead of B.

Data Type

string

 Simulink.BlockData

5-143

Access

RO

AliasedThroughDataTypeID

Description

Index of the data type alias returned by the AliasedThroughDataType property.

Data Type

integer

Access

RO

Complexity

Description

Numeric type (real or complex) of the block data.

Data Type

string

Access

RW for MATLAB S functions, RO for other blocks.

Data

Description

The block data.

Data Type

The data type specified by the “Datatype” on page 5-144 or “DatatypeID” on page
5-144 properties of this object.

5 Simulink Classes

5-144

Access

RW

DataAsDouble

Description

The block data's in double form.

Data Type

double

Access

RO

Datatype

Description

Data type of the values of the block-related object.

Data Type

string

Access

RO

DatatypeID

Description

Index of the data type of the values of the block-related object. enter the numeric value
for the desired data type, as follows:

Data Type Value

'inherited' -1

 Simulink.BlockData

5-145

Data Type Value

'double' 0

'single' 1

'int8' 2

'uint8' 3

'int16' 4

'uint16' 5

'int32' 6

'uint32' 7

'boolean' or fixed-point data types 8

Data Type

integer

Access

RW for MATLAB S functions, RO for other blocks

Dimensions

Description

Dimensions of the block-related object, e.g., parameter or DWork vector.

Data Type

array

Access

RW for MATLAB S functions, RO for other blocks

Name

Description

Name of block-related object, e.g., a block parameter or DWork vector.

5 Simulink Classes

5-146

Data Type

string

Access

RW for MATLAB S functions, RO for other blocks

Type

Description

Type of block data. Possible values are:

Type Description

'BlockPreCompInputPortData' This object contains data for an input port
before the model is compiled.

'BlockPreCompOutputPortData' This object contains data for an output port
before the model is compiled.

'BlockCompInputPortData' This object contains data for an input port
after the model is compiled.

'BlockCompOutputPortData' This object contains data for an output port
after the model is compiled.

'BlockPreCompDworkData' This object contains data for a DWork
vector before the model is compiled.

'BlockCompDworkData' This object contains data for a DWork
vector after the model is compiled.

'BlockDialogPrmData' This object describes a dialog box
parameter of a Level-2 MATLAB S-
function.

'BlockRuntimePrmData' This object describes a run-time parameter
of a Level-2 MATLAB S-function.

'BlockCompContStatesData' This object describes the continuous states
of the block at the current time step.

'BlockDerivativesData' This object describes the derivatives of the
block's continuous states at the current
time step.

 Simulink.BlockData

5-147

Data Type

string

Access

RO

Introduced before R2006a

5 Simulink Classes

5-148

Simulink.BlockPath
Fully specified Simulink block path

Description

A Simulink.BlockPath object represents a fully specified block path that uniquely
identifies a block within a model hierarchy, including model reference hierarchies that
involve multiple instances of a referenced model. Simulink uses block path objects in a
variety of contexts. For example, when you specify Normal mode visibility, Simulink uses
block path objects to identify the models with Normal mode visibility. For details, see
“Set Normal Mode Visibility”.

The Simulink.BlockPath class is very similar to the
Simulink.SimulationData.BlockPath class.

You must have Simulink installed to use the Simulink.BlockPath
class. However, you do not have to have Simulink installed to use the
Simulink.SimulationData.BlockPath class. If you have Simulink installed, consider
using Simulink.BlockPath instead of Simulink.SimulationData.BlockPath,
because the Simulink.BlockPath class includes a method for checking the validity of
block path objects without you having to update the model diagram.

Property Summary

Name Description

SubPath Individual component within the block specified by
the block path

Method Summary

Name Description

BlockPath Create a block path.
convertToCell Convert a block path to a cell array of strings.

 Simulink.BlockPath

5-149

Name Description

getBlock Get a single block path in the model reference hierarchy.
getLength Get the length of the block path.
validate Determine whether the block path represents a valid block

hierarchy.

Properties

SubPath

Description

Represents an individual component within the block specified by the block path.

For example, if the block path refers to a Stateflow chart, you can use SubPath to
indicate the chart signals. For example:

Block Path:

 'sf_car/shift_logic'

 SubPath:

 'gear_state.first'

Data Type

string

Access

RW

Methods

BlockPath

Purpose

Create block path

5 Simulink Classes

5-150

Syntax

blockpath_object = Simulink.BlockPath()

blockpath_object = Simulink.BlockPath(blockpath)

blockpath_object = Simulink.BlockPath(paths)

blockpath_object = Simulink.BlockPath(paths, subpath)

Input Arguments

blockpath

Block path object that you want to copy.
paths

A string or cell array of strings that Simulink uses to build the block path.

Specify each string in order, from the top model to the specific block for which you are
creating a block path.

Each string must be a path to a block within the Simulink model. The block must be:

• A block in a single model
• A Model block (except for the last string, which may be a block other than a Model

block)
• A block that is in a model that is referenced by a Model block that is specified in

the previous string

When you create a block path for specifying Normal mode visibility:

• The first string must represent a block that is in the top model in the model
reference hierarchy.

• Strings must represent Model blocks that are in Normal mode.
• Strings that represent variant models or variant subsystems must refer to an

active variant.

You can use gcb in the cell array to specify the currently selected block.
subpath

String that represents an individual component within a block.

Output Arguments

blockpath_object

 Simulink.BlockPath

5-151

Block path that you create.

Description

blockpath_object = Simulink.BlockPath() creates an empty block path.

blockpath_object = Simulink.BlockPath(blockpath) creates a copy of the block
path of the block path object that you specify with the source_blockpath argument.

blockpath = Simulink.BlockPath(paths) creates a block path from the cell array
of strings that you specify with the paths argument. Each string represents a path at a
level of model hierarchy. Simulink builds the full block path based on the strings.

blockpath = Simulink.BlockPath(paths, subpath) creates a block path from
the string or cell array of strings that you specify with the paths argument and creates a
path for the individual component (for example, a signal) of the block.

Example

Create a block path object called bp1, using gcb to get the current block.

sldemo_mdlref_depgraph

bp1 = Simulink.BlockPath(gcb)

The resulting block path is the top-level Model block called thermostat (the top-left
Model block.

bp1 =

 Simulink.BlockPath

 Package: Simulink

 Block Path:

 'sldemo_mdlref_depgraph/thermostat'

Create a block path object called bp2, using a cell array of strings representing elements
of the block path.

sldemo_mdlref_depgraph

bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

The resulting block path reflects the model reference hierarchy for the block path

5 Simulink Classes

5-152

bp2 =

 Simulink.BlockPath

 Package: Simulink

 Block Path:

 'sldemo_mdlref_depgraph/thermostat'

 'sldemo_mdlref_heater/Fahrenheit to Celsius'

 'sldemo_mdlref_F2C/Gain1'

convertToCell

Purpose

Convert block path to cell array of strings

Syntax

cellarray = Simulink.BlockPath.convertToCell()

Output Arguments

cellarray

Cell array of strings representing elements of block path.

Description

cellarray = Simulink.BlockPath.convertToCell() converts a block path to a
cell array of strings.

Examples

sldemo_mdlref_depgraph

bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

cellarray_for_bp2 = bp2.convertToCell()

The result is a cell array representing the elements of the block path.

cellarray_for_bp2 =

 'sldemo_mdlref_depgraph/thermostat'

 Simulink.BlockPath

5-153

 'sldemo_mdlref_heater/Fahrenheit to Celsius'

 'sldemo_mdlref_F2C/Gain1'

getBlock

Purpose

Get block path in model reference hierarchy

Syntax

block = Simulink.BlockPath.getBlock(index)

Input Arguments

index

The index of the block for which you want to get the block path. The index reflects
the level in the model reference hierarchy. An index of 1 represents a block in
the top-level model, an index of 2 represents a block in a model referenced by the
block of index 1, and an index of n represents a block that the block with index n-1
references.

Output Arguments

block

The block representing the level in the model reference hierarchy specified by the
index argument.

Description

blockpath = Simulink.BlockPath.getBlock(index) returns the block path of the
block specified by the index argument.

Example

Get the block for the second level in the model reference hierarchy.

sldemo_mdlref_depgraph

bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

blockpath = bp2.getBlock(2)

5 Simulink Classes

5-154

The result is the thermostat block, which is at the second level in the block path
hierarchy.

blockpath =

sldemo_mdlref_heater/Fahrenheit to Celsius

getLength

Purpose

Get length of block path

Syntax

length = Simulink.BlockPath.getLength()

Output Arguments

length

The length of the block path. The length is the number of levels in the model
reference hierarchy.

Description

length = Simulink.BlockPath.getLength() returns a numeric value that
corresponds to the number of levels in the model reference hierarchy for the block path.

Example

Get the length of block path bp2.

sldemo_mdlref_depgraph

bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

length_bp2 = bp2.getLength()

The result reflects that the block path has three elements.

length_bp2 =

 3

 Simulink.BlockPath

5-155

validate

Purpose

Determine whether block path represents valid block hierarchy

Syntax

Simulink.BlockPath.validate()

Simulink.BlockPath.validate(AllowInactiveVariant)

Input Arguments

AllowInactiveVariant

Set to true to include inactive variants in the validity checking. The default is
false.

Description

Simulink.BlockPath.validate() determines whether the block path represents a
valid block hierarchy. If there are any validity issues, messages appear in the MATLAB
command window. The method checks that:

• All elements in the block path represent valid blocks.
• All variant elements are active.
• Each element except for the last element:

• Is a valid Model block
• References the model of the next element

Simulink.BlockPath.validate(AllowInactiveVariant) Specifying true causes
the validity checking to consider inactive variants as being valid, if they meet the other
validity checks described above. Omitting the AllowInactiveVariant argument or
specifying its default value of false causes the method to check only the active variant.

Example

Validate the block paths, checking only the active variant. This
validation fails, because the block path actually references model
sldemo_mrv_nonlinear_controller, while bp specifies that the block references
model sldemo_mdlref_second_order_controller, which is in an inactive variant.

5 Simulink Classes

5-156

sldemo_mdlref_variants

bp = Simulink.BlockPath({'sldemo_mdlref_variants/Controller', ...

'sldemo_mrv_second_order_controller/sensor1'})

bp.validate()

Validate by checking all variants. The block path passes the validation when inactive
variants are also checked.

bp.validate(true)

More About
• “Specify the Instance That Has Normal Mode Visibility”

See Also
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Dataset

 Simulink.BlockPortData

5-157

Simulink.BlockPortData

Describe block input or output port

Description

This class defines properties that are common to objects that provide run-time
information about a block's ports.

Parent

Simulink.BlockData

Children

Simulink.BlockPreCompInputPortData,
Simulink.BlockPreCompOutputPortData, Simulink.BlockCompInputPortData,
Simulink.BlockCompOutputPortData

Property Summary

Name Description

“IsBus” on page 5-158 True if this port is connected to a bus.
“IsSampleHit” on page 5-158 True if this port produces output or accepts input at

the current simulation time step.
“SampleTime” on page 5-158 Sample time of this port.
“SampleTimeIndex” on page
5-159

Sample time index of this port.

“SamplingMode” on page
5-159

Sampling mode of the port.

5 Simulink Classes

5-158

Properties

IsBus

Description

True if this port is connected to a bus.

Data Type

Boolean

Access

RO

IsSampleHit

Description

True if this port produces output or accepts input at the current simulation time step.

Data Type

Boolean

Access

RO

SampleTime

Description

Sample time of this port.

Data Type

[period offset] where period and offset are values of type double. See “ Specify
Sample Time” for more information.

 Simulink.BlockPortData

5-159

Access

RW for MATLAB S functions, RO for other blocks

SampleTimeIndex

Description

Sample time index of this port.

Data Type

integer

Access

RO

SamplingMode

Description

Sampling mode of the port. Valid values are:

Value Description

'frame' Port accepts or outputs frame-based signals. The use
of frame-based signals requires a DSP System Toolbox
license.

'inherited' Sampling mode is inherited from the port to which this
port is connected.

'sample' Port accepts or outputs sampled data.

Data Type

string

Access

RW for MATLAB S functions, RO for other blocks

5 Simulink Classes

5-160

Introduced before R2006a

 Simulink.BlockPreCompInputPortData

5-161

Simulink.BlockPreCompInputPortData
Provide precompilation information about block input port

Description

Simulink software returns an instance of this class when a MATLAB program, e.g.,
a Level-2 MATLAB S-function, invokes the “InputPort” on page 5-305 method of a
block's run-time object before the model containing the block has been compiled.

Parent

Simulink.BlockPortData

Children

None

Property Summary

Name Description

“DirectFeedthrough” on
page 5-161

True if this port has direct feedthrough.

“Overwritable” on page
5-162

True if this port is overwritable.

Properties

DirectFeedthrough

Description

True if this input port has direct feedthrough.

5 Simulink Classes

5-162

Data Type

Boolean

Access

RW for MATLAB S functions, RO for other blocks

Overwritable

Description

True if this input port is overwritable.

Data Type

Boolean

Access

RW for MATLAB S functions, RO for other blocks

Introduced before R2006a

 Simulink.BlockPreCompOutputPortData

5-163

Simulink.BlockPreCompOutputPortData
Provide precompilation information about block output port

Description

Simulink software returns an instance of this class when a MATLAB program, e.g., a
Level-2 MATLAB S-function, invokes the “OutputPort” on page 5-306 method of a
block's run-time object before the model containing the block has been compiled.

Parent

Simulink.BlockPortData

Children

none

Property Summary

Name Description

“Reusable” on page
5-163

Specifies whether an output port's memory is reusable.

Properties

Reusable

Description

Specifies whether an output port's memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

5 Simulink Classes

5-164

Data Type

string

Access

RW for MATLAB S functions, RO for other blocks

Introduced before R2006a

 Simulink.Bus

5-165

Simulink.Bus
Specify properties of signal bus

Description

Objects of this class (in conjunction with objects of the Simulink.BusElement class)
specify the properties of a signal bus. Use bus objects to enable Simulink software to
validate the properties of buses connected to the inputs of blocks in your model. You
do this by entering, in the Data type parameter of a block parameter dialog box, the
name of a bus object that defines a bus. When you update the model diagram or start a
simulation of the model, Simulink checks whether the buses connected to the blocks have
the properties specified by the bus objects. If not, Simulink halts and displays an error
message.

The blocks that support using a bus object as a data type are:

• Bus Creator

• Constant

• Data Store Memory

• Data Store Read

• Data Store Write

• From File

• From Workspace

• Inport

• Outport

• Signal Specification

You can use the Model Explorer Add > Simulink Bus command (see “Create Data
Objects from Built-In Data Class Package Simulink”), the Simulink Bus editor (see
“Manage Bus Objects with the Bus Editor”), or MATLAB commands (see “ Data Objects”)
to create bus objects in the base MATLAB workspace. You must use the Bus editor or the
MATLAB command line to set the properties of a bus object. Simulink also provides a set
of utility functions for creating and saving bus objects.

To view bus object properties:

5 Simulink Classes

5-166

1 Open the Model Explorer.
2 In the Model Hierarchy pane, select the Base Workspace node.
3 In the Contents pane, select the bus object.

In the Property dialog box appears.

Property Dialog Box

Bus elements

 Simulink.Bus

5-167

Table that displays the properties of the bus elements. You cannot edit this table.
You must use either the Simulink Bus editor (see “Bus Objects”) or MATLAB
commands to add or delete bus elements or change the properties of existing bus
elements. To launch the bus editor, click the Launch Bus editor button at the
bottom of this dialog box or in the Simulink Editor, select Edit > Bus EditorBus
editor.

Data scope
Specifies whether the data type definition should be imported from, or exported to, a
header file during code generation. The possible values are:

Value Action

Auto (default) If no value is specified for Header file, export the data type
definition to model_types.h, where model is the model
name.
If a value is specified for Header file, import the data type
definition from the specified header file.

Exported Export the data type definition to a header file, which can
be specified in the Header file field. If no value is specified
for Header file, the header file name defaults to type.h,
wheretype is the data type name.

Imported Import the data type definition from a header file, which can
be specified in the Header file field. If no value is specified
for Header file, the header file name defaults to type.h,
wheretype is the data type name.

Header file
Name of a C header file from which a data type definition is imported, or to which
a data type definition is exported, based on the value of Data scope. This field is
intended for use by Simulink Coder software. Simulink software ignores this field.

Alignment
Data alignment boundary, specified in number of bytes. The starting memory
address for the data allocated for the bus will be a multiple of the Alignment setting.
The default value is -1, which specifies that the code generator should determine
an optimal alignment based on usage. Otherwise, specify a positive integer that is
a power of 2, not exceeding 128. This field is intended for use by Simulink Coder
software. See “Data Alignment for Code Replacement”. Simulink software ignores
this field.

5 Simulink Classes

5-168

Description
Description of this structure. This field is intended for you to use to document this
bus. Simulink software does not use this field.

Properties

Name Access Description

Alignment RW Integer value specifying a data alignment
boundary, in number of bytes. This property is
intended for use by Simulink Coder software.
Simulink software does not use it. (Alignment)

DataScope RW A string specifying whether the data type
definition should be imported from, or exported
to, a header file during code generation. (Data
scope)

Description RW A string that describes this bus. This property is
intended for user use. Simulink software does not
use it. (Description)

Elements RW An array of Simulink.BusElement objects
that define the names, data types, dimensions,
and other properties of the bus's elements.
The elements must have unique names. (Bus
elements)

HeaderFile RW A string that specifies the name of a C header file
from which a data type definition is imported, or
to which a data type definition is exported, during
code generation. (Header file)

See Also

“Composite Signals”, Bus Assignment, Bus Creator, Bus Selector,
Bus to Vector, Constant, Inport, Outport, Signal Specification,
Simulink.Bus.cellToObject, Simulink.Bus.createMATLABStruct,
Simulink.Bus.createObject, Simulink.BusElement,
Simulink.Bus.objectToCell, Simulink.Bus.save

 Simulink.Bus

5-169

Introduced before R2006a

5 Simulink Classes

5-170

Simulink.BusElement

Describe element of signal bus

Description

Objects of this class define elements of buses defined by objects of the Simulink.Bus
class.

 Simulink.BusElement

5-171

Property Dialog Box

5 Simulink Classes

5-172

Name

Name of this element. See “Signal Names and Labels ” for guidelines for signal names.

Data Type: string

Access: RW

DataType

Name of the data type of this element. The value of this field can be a:

• Built-in Simulink data type (for example, double or uint8)
• Simulink.NumericType object, with one exception. The exception is a

Simulink.NumericType whose Category is Fixed-point: unspecified
scaling.

Note: Fixed-point: unspecified scaling is a partially specified type whose
definition is completed by the block that uses the Simulink.NumericType.
Forbidding its use for bus elements avoids creating bus elements that have different
data types depending on where they are used.

• Simulink.Bus object, using the Bus: <object name> option. This allows you to
create bus objects that specify hierarchical buses (that is, buses that contain other
buses).

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Data type parameter. (See “Specify Data Types
Using Data Type Assistant”.)

Data Type: string

Access: RW

Dimensions

A vector specifying the dimensions of this element.

Data Type: array.

 Simulink.BusElement

5-173

Access: RW

Complexity

Numeric type (real or complex) of this element. Must be real if this bus element is
itself a bus.

Data Type: string

Access: RW

SampleTime

Size of the interval between times when this signal value must be recomputed. Must
be -1 (inherited) if this bus element is itself a bus or if the bus that includes this
element passes through a block that changes the bus's sample time, such as a Rate
Transition block. See “ Specify Sample Time” for more information.

Data Type: double

Access: RW

Min

The minimum value of this element. This value must be a finite real double scalar. This
value must be empty [] if this element is itself a bus.

Data Type: double

Access: RW

Max

The maximum value of this element. This value must be a finite real double scalar. This
value must be empty [] if this element is itself a bus.

Data Type: double

Access: RW

5 Simulink Classes

5-174

SamplingMode

Sampling mode of this element. Must be sample-based if this element is itself a bus. This
field is intended to be used by applications based on Simulink models.

Data Type: string

Access: RW

DimensionsMode

A field that specifies if the size (the number of elements in a dimension) of this element
may vary or remain fixed during simulation. This field can have the following values:

• Fixed: The size of the element may not change during simulation.
• Variable: The size of the element may change during simulation.

See “Variable-Size Signal Basics” for more information.

Data Type: string

Access: RW

Units

Measurement units in which this value is expressed (for example, inches). This field is
intended for use in documenting this parameter. Simulink ignores it.

Data Type: string

Access: RW

Description

Description of the bus element. This field is intended for use in documenting this
parameter. Simulink ignores it.

Data Type: string

Access: RW

 Simulink.BusElement

5-175

See Also

“Composite Signals”, Bus Assignment, Bus Creator, Bus Selector,
Bus to Vector, Simulink.Bus, Simulink.Bus.cellToObject,
Simulink.Bus.createObject, Simulink.Bus.objectToCell,
Simulink.Bus.save

5 Simulink Classes

5-176

Simulink.CoderInfo
Specify information needed to generate code for signal or parameter

Description

Simulink software creates an instance of this class for each instance of a
Simulink.Signal object or Simulink.Parameter object that it creates. Simulink
software uses the Simulink.CoderInfo object to store information needed to
generate code for the signal or parameter specified by the Simulink.Signal object or
Simulink.Parameter object.

You can set the properties of an instance of this class via the CoderInfo property or the
property dialog box of the Simulink.Signal object or Simulink.Parameter object
that uses it. For example, the following MATLAB expression sets the StorageClass
property of a Simulink.CoderInfo object used by a signal object named mysignal.

mysignal.CoderInfo.StorageClass = 'ExportedGlobal';

Property Dialog Box

Use the Code Generation Options section of the Simulink.Signal or
Simulink.Parameter property dialog box to set the StorageClass, Alias, and
Alignment properties of objects of this class.

Properties

Name Description

Alias Alternate name for this signal or parameter.
Alignment Data alignment boundary for this signal or parameter. See

“Data Alignment for Code Replacement” in the Embedded
Coder documentation for more information.

CustomAttributes Custom storage class attributes of this signal or
parameter. You must set the property StorageClass
to 'Custom' to enable this property. See “Introduction

 Simulink.CoderInfo

5-177

Name Description

to Custom Storage Classes” in the Embedded Coder
documentation for more information.

CustomStorageClass Custom storage class of this signal or parameter. You
must set the property StorageClass to 'Custom' to
enable this property.

StorageClass Storage class of this signal or parameter. For more
information, see “Control Signals and States in Code
by Applying Storage Classes” or “Control Parameter
Representation and Declare Tunable Parameters in the
Generated Code” in the Simulink Coder documentation.

More About
• “ Data Objects”
• “Introduction to Custom Storage Classes”

See Also
Simulink.Parameter | Simulink.Signal

Related Examples
• “Control Signals and States in Code by Applying Storage Classes”
• “Control Parameter Representation and Declare Tunable Parameters in the

Generated Code”

Introduced in R2015a

5 Simulink Classes

5-178

Simulink.ConfigSet
Access model configuration set

Description

Instances of this handle class allow you to write programs to create, modify, and attach
configuration sets to models. See “Manage a Configuration Set” and “Overview” for more
information.

Property Summary

Name Description

“Components” on page 5-179 Components of the configuration set.
“Description” on page 5-180 Description of the configuration set.
“Name” on page 5-180 Name of the configuration set.

Note: You can use the Model Configuration dialog box to set the Name and
Description properties of a configuration set. See “Model Configuration Pane” for more
information.

Method Summary

Name Description

“attachComponent” on
page 5-180

Attach a component to a configuration set.

“copy” on page 5-181 Create a copy of a configuration set.
“getComponent” on page
5-182

Get a component of a configuration set.

“getFullName” on page
5-182

Get the full path of a configuration set.

 Simulink.ConfigSet

5-179

Name Description

“getModel” on page
5-183

Get the handle of the model that owns a configuration set.

“get_param” on page
5-183

Get the value of a configuration set parameter.

“isActive” on page 5-184 Determine whether a configuration set is the active set of
the model that owns it.

“isValidParam” on page
5-184

Determine whether a specified parameter is a valid
parameter of a configuration set.

“saveAs” on page 5-185 Save a configuration set to a MATLAB file.
“setPropEnabled” on page
5-187

Prevent or allow a user to change a parameter.

“set_param” on page
5-188

Set the value of a configuration set parameter.

Properties

Components

Description

Array of Simulink.ConfigComponent objects representing the components of the
configuration set. For example, solver parameters and data import/export parameters.

Data Type

array

Access

RW

5 Simulink Classes

5-180

Description

Description

Description of the configuration set. You can use this property to provide additional
information about a configuration set, such as its purpose. This field can remain blank.

Data Type

string

Access

RW

Name

Description

Name of the configuration set. This name represents the configuration set in the Model
explorer.

Data Type

string

Access

RW

Methods

attachComponent

Purpose

Attach a component to this configuration set.

 Simulink.ConfigSet

5-181

Syntax

attachComponent(component)

Arguments

component

Instance of Simulink.ConfigComponent class.

Description

This method replaces a component in this configuration set with a component having the
same name.

example

The following example replaces the solver component of the active configuration set of
model A with the solver component of the active configuration set of model B.

hCs = getActiveConfigSet('B');

hSolverConfig = hCs.getComponent('Solver');

hSolverConfig = hSolverConfig.copy;

hCs = getActiveConfigSet('A');

hCs.attachComponent(hSolverConfig);

copy

Purpose

Create a copy of this configuration set.

Syntax

copy

Description

This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration sets because
Simulink.ConfigSet is a handle class. See “Handle Versus Value Classes” for more
information.

5 Simulink Classes

5-182

getComponent

Purpose

Get a component of this configuration set.

Syntax

getComponent(componentName)

Arguments

componentName

String specifying the name of the component to be returned.

Description

Returns the specified component. Omit the argument to get a list of the names of the
components that this configuration set contains.

Example

The following code gets the solver component of the active configuration set of the
currently selected model.

hCs = getActiveConfigSet(gcs);

hSolverConfig = hCs.getComponent('Solver');

The following code displays the names of the components of the currently selected active
configuration set of the model at the MATLAB command line.

hCs = getActiveConfigSet(gcs);

hCs.getComponent

getFullName

Purpose

Get the full path of a configuration set.

Syntax

getFullName

 Simulink.ConfigSet

5-183

Description

This method returns a string specifying the full path of a configuration set, for example,
'vdp/Configuration'.

getModel

Purpose

Get the model that owns this configuration set.

Syntax

getModel

Description

Returns a handle to the model that owns this configuration set.

Example

The following command opens the block diagram of the model that owns the
configuration set referenced by the MATLAB workspace variable hCs.

open_system(hCs.getModel);

get_param

Purpose

Get the value of a configuration set parameter.

Syntax

get_param(paramName)

Arguments

paramName

String specifying the name of the parameter whose value is to be returned.

5 Simulink Classes

5-184

Description

This method returns the value of the specified parameter. Specifying paramName as
'ObjectParameters' returns the names of the valid parameters in the configuration
set.

Example

The following command gets the name of the solver used by the selected active
configuration of the model.

hAcs = getActiveConfigSet(bdroot);

hAcs.get_param('SolverName');

Note You can also use the get_param model construction command to get the values of
parameters of an active configuration set of a model. For example, get_param(bdroot,
'SolverName') gets the solver name of the currently selected model.

isActive

Purpose

Determine whether configuration set is the active configuration set for the model.

Syntax

isActive

Description

Returns true if this configuration set is the active configuration set of the model that
owns this configuration set.

isValidParam

Purpose

Determine whether a specified parameter is a valid parameter of this configuration set. A
parameter is valid if it is compatible with other parameters in the configuration set. For
example, if SolverType is 'variable-step', FixedStep is an invalid parameter.

 Simulink.ConfigSet

5-185

Syntax

isValidParam(paramName)

Arguments

paramName

String specifying the name of the parameter whose validity is to be determined.

Description

This method returns true if the specified parameter is a valid parameter of this
configuration set; otherwise, it returns false.

Example

The following code sets the parameter StopTime only if it is a valid parameter of the
currently selected active configuration set.

hAcs = getActiveConfigSet(gcs);

if hAcs.isValidParam('StopTime')

 set_param('StopTime', '20');

end

saveAs

Purpose

Save configuration set to MATLAB file

Syntax

saveAs(fileName)

saveAs(fileName, 'paramName', paramValue)

Arguments

fileName

String specifying the name of the MATLAB file that the method creates.
paramName, paramValue

5 Simulink Classes

5-186

Parameter name and value pairs that you optionally use to format the MATLAB file.

Name Value

'-format' • 'MATLAB function' (default) —
Creates a MATLAB function.

• 'MATLAB script' — Creates a
MATLAB script.

'-comments' • 'on' (default) — The MATLAB file:

• Includes the GUI name of the
parameter as a comment to help
identify the parameters.

• Groups the parameters by
the pane in the Configuration
Parameters dialog box on which
they are displayed.

• 'off' — Does not include comments
in the MATLAB file, so that the file
generates faster.

'-varname' 'variable' — Any valid variable name.
If you do not specify this parameter, the
MATLAB script uses cs for the variable.

When you specify '-format',
'MATLAB script', use '-varname',
'variable' to specify the variable that
the script uses for the configuration set
object. When you run the script, the
script creates the variable in the base
workspace.

Description

saveAs(fileName) saves a configuration set to a MATLAB file. Before saving, you
must get a handle to the configuration set. Use fileName to specify the file name.

saveAs(fileName, 'paramName', paramValue) accepts one or more comma-
separated parameter name and value pairs. For the valid parameter name and value
pairs, see the previous arguments section.

 Simulink.ConfigSet

5-187

Example

The following code gets the configuration set for sldemo_counters and creates a
function called ConfiguredDataFunction.
% Get the active configuration set from sldemo_counters.

hCs = getActiveConfigSet('sldemo_counters');

% Save the configuration set as a function.

hCs.saveAs('ConfiguredDataFunction');

The following code gets the configuration set for sldemo_counters and creates a script
called ConfiguredDataScript. The script uses config_set for the variable name.
% Get the active configuration set from sldemo_counters.

hCs = getActiveConfigSet('sldemo_counters');

% Save the configuration set as a script.

hCs.saveAs('ConfiguredDataScript', '-format', 'MATLAB script', '-varname', 'config_set');

See Also

getActiveConfigSet, getConfigSet

setPropEnabled

Purpose

Enable a configuration set parameter to be changed.

Syntax

setPropEnabled(paramName, isenabled)

Arguments

paramName

Name of the parameter whose value is to be set.
isenabled

Specify as true to enable parameter; as false, to disable the parameter.

Description

This method sets the enabled status the parameter specified by paramName to the value
specified by isenabled. Disabling a parameter prevents the user from changing it.

5 Simulink Classes

5-188

Example

The following code prevents the user from setting the simulation stop time of the
currently selected model.

hAcs = getActiveConfigSet(gcs);

hAcs.setPropEnabled('StopTime', false);

set_param

Purpose

Set the value of a configuration set parameter.

Syntax

set_param(paramName, paramValue)

Arguments

paramName

Name of the parameter whose value is to be set.
paramValue

Value to assign to the parameter.

Description

This method sets the configuration set parameter specified by paramName to the value
specified by paramValue.

Example

The following command sets the simulation stop time of the selected active configuration
set.

hAcs = getActiveConfigSet(gcs);

hAcs.set_param('StopTime', '20');

Note You can also use the set_param model construction command to set the
parameters of the active configuration set. For example, set_param(gcs,
'StopTime', '20') sets the simulation stop time of the currently selected model.

 Simulink.ConfigSet

5-189

See Also

“About Configuration Sets”

Introduced before R2006a

5 Simulink Classes

5-190

Simulink.ConfigSetRef
Link model to configuration set stored independently of any model

Description

Instances of this handle class allow a model to reference configuration sets that exist
outside any model. See “Manage a Configuration Set”, “Overview”, and “Manage a
Configuration Reference” for more information.

Property Summary

Name Description

“Description” on page 5-191 Description of the configuration reference.
“Name” on page 5-191 Name of the configuration reference.
“SourceName” on page 5-192 Name of the variable in the workspace or the data

dictionary that contains the referenced configuration
set.

Note: You can use the Configuration Reference dialog box to set the Name,
Description, and SourceName properties of a configuration reference. See “Create and
Attach a Configuration Reference” for details.

Method Summary

Name Description

“copy” on page 5-192 Create a copy of a configuration reference.
“getFullName” on page
5-193

Get the full pathname of a configuration reference.

“getModel” on page
5-193

Get the handle of the model that owns a configuration
reference.

 Simulink.ConfigSetRef

5-191

Name Description

“get_param” on page
5-193

Get the value of a configuration set parameter indirectly
through a configuration reference.

“getRefConfigSet” on page
5-194

Get the configuration set specified by a configuration
reference.

“isActive” on page 5-195 Determine whether a configuration reference is the active
configuration object of the model.

“refresh” on page 5-195 Update configuration reference after any change to
properties or configuration set availability.

Properties

Description

Description

Description of the configuration reference. You can use this property to provide
additional information about a configuration reference, such as its purpose. This field can
remain blank.

Data Type

string

Access

RW

Name

Description

Name of the configuration reference. This name represents the configuration reference in
the GUI.

Data Type

string

5 Simulink Classes

5-192

Access

RW

SourceName

Description

Name of the variable in the workspace or the data dictionary that contains the referenced
configuration set.

Data Type

string

Access

RW

Methods

copy

Purpose

Create a copy of this configuration reference.

Syntax

copy

Description

This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration references. This is
because Simulink.ConfigSetRef is a handle class. See “Handle Versus Value Classes”
for more information.

 Simulink.ConfigSetRef

5-193

getFullName

Purpose

Get the full pathname of a configuration reference.

Syntax

getFullName

Description

This method returns a string specifying the full pathname of a configuration reference,
e.g., 'vdp/Configuration'.

getModel

Purpose

Get the model that owns this configuration reference.

Syntax

getModel

Description

Returns a handle to the model that owns this configuration reference.

example

The following command opens the block diagram of the model that owns the
configuration set referenced by the MATLAB workspace variable hCr.

open_system(hCr.getModel);

get_param

Purpose

Get the value of a configuration set parameter indirectly through a configuration
reference.

5 Simulink Classes

5-194

Syntax

get_param(paramName)

Arguments

paramName

String specifying the name of the parameter whose value is to be returned.

Description

This method returns the value of the specified parameter from the configuration set to
which the configuration reference points. To obtain this value, the method uses the value
of SourceName to retrieve the configuration set, then retrieves the value of paramName
from that configuration set. Specifying paramName as 'ObjectParameters' returns
the names of all valid parameters in the configuration set. If a valid configuration set is
not attached to the configuration reference, the method returns unreliable values.

The inverse method, set_param, is not defined for configuration references. To
obtain a parameter value through a configuration reference, you must first use the
getRefConfigSet method to retrieve the configuration set from the reference, then use
set_param directly on the configuration set itself.

You can also use the get_param model construction command to get the values
of parameters of a model's active configuration set, e.g., get_param(bdroot,
'SolverName') gets the solver name of the currently selected model.

example

The following command gets the name of the solver used by the selected model's active
configuration.

hAcs = getActiveConfigSet(bdroot);

hAcs.get_param('SolverName');

getRefConfigSet

Purpose

Get the configuration set specified by a configuration reference

 Simulink.ConfigSetRef

5-195

Syntax

getRefConfigSet

Description

Returns a handle to the configuration set specified by the SourceName property of a
configuration reference.

isActive

Purpose

Determine whether this configuration set is its model's active configuration set.

Syntax

isActive

Description

Returns true if this configuration set is the active configuration set of the model that
owns this configuration set.

refresh

Purpose

Update configuration reference after any change to properties or configuration set
availability

Syntax

refresh

Description

Updates a configuration reference after using the API to change any property of the
reference, or after providing a configuration set that did not exist at the time the set
was originally specified in SourceName. If you omit executing refresh after any such
change, the configuration reference handle will be stale, and using it will give incorrect
results.

5 Simulink Classes

5-196

Introduced in R2007a

 Simulink.GlobalDataTransfer class

5-197

Simulink.GlobalDataTransfer class
Package: Simulink

Configure concurrent execution data transfers

Description

The Simulink.GlobalDataTransfer object contains the data transfer information
for the concurrent execution of a model. To access the properties of this class, use the
get_param function to get the handle for this class, and then use dot notation to access
the properties. For example:

dt=get_param(gcs,'DataTransfer');

dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

Properties

DefaultTransitionBetweenSyncTasks

Global setting for data transfer handling option when the source and destination of a
signal are in two different and periodic tasks.

Data Type: Enumeration. Can be one of:

• 'Ensure data integrity only'

• 'Ensure deterministic transfer (maximum delay)'

• 'Ensure deterministic transfer (minimum delay)'

Access: Read/write

DefaultTransitionBetweenContTasks

Global setting for the data transfer handling option for signals that have a continuous
sample time.

5 Simulink Classes

5-198

Data Type: Enumeration. Can be one of:

• 'Ensure data integrity only'

• 'Ensure deterministic transfer (maximum delay)'

• 'Ensure deterministic transfer (minimum delay)'

Access: Read/write

DefaultExtrapolationMethodBetweenContTasks

Global setting for the data transfer extrapolation method for signals that have a
continuous sample time.

Data Type: Enumeration. Can be one of:

• 'None'

• 'Zero Order Hold'

• 'Linear'

• 'Quadratic'

Access: Read/write

AutoInsertRateTranBlk

Setting for whether or not Simulink software automatically inserts hidden Rate
Transition blocks between blocks that have different sample rates to ensure the
integrity of data transfers between tasks; and optional determinism of data transfers for
periodic tasks.

Data Type: Boolean. Can be one of:

• 0

• 1

Access: Read/write

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

 Simulink.GlobalDataTransfer class

5-199

Examples

Access the properties of this class.

dt=get_param(gcs,'DataTransfer');

dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

Alternatives

“Customize Concurrent Execution Settings”

See Also
Simulink.architecture.get_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile
| Simulink.architecture.register | Simulink.architecture.set_param

How To
• “Configuring Data Transfer Communications”

5 Simulink Classes

5-200

Simulink.MDLInfo class
Package: Simulink

Extract model file information without loading block diagram into memory

Description

The class Simulink.MDLInfo extracts information from a model file without loading the
block diagram into memory.

You can create an MdlInfo object containing all the model information properties, or you
can use the static methods for convenient access to individual properties without creating
the class first. For example, to get the description only:

description = Simulink.MDLInfo.getDescription('mymodel')

To get the metadata only:

metadata = Simulink.MDLInfo.getMetadata('mymodel')

All model information properties are read only.

Construction

info = Simulink.MDLInfo('mymodel') creates an instance of the MdlInfo class
info and populates the properties with the information from the model file 'mymodel'.

mymodel can be:

• A block diagram name (for example, vdp)
• The file name for a file on the MATLAB path (for example, mymodel.slx)
• A file name relative to the current folder (for example, mydir/mymodel.slx)
• A fully qualified file name (for example, C:\mydir\mymodel.slx)

Simulink.MDLInfo resolves the supplied name by looking at files on the MATLAB
path, and ignores any block diagrams in memory. This may cause unexpected results
if you supply the name of a loaded model, but its file is shadowed by another file on the

 Simulink.MDLInfo class

5-201

MATLAB path. If a file is shadowed, you see a warning in the command window. To
avoid any confusion, supply a fully-qualified file name to Simulink.MDLInfo.

Properties

BlockDiagramName

Name of block diagram.

Description

Description of model.

FileName

Name of model file.

Interface

Names and attributes of the block diagram's root inports, outports, model references, etc.,
describing the graphical interface if you created a Model Reference block from this model.

Structure.

IsLibrary

Whether the block diagram is a library.

Metadata

Names and attributes of arbitrary data associated with the model.

Structure. The structure fields can be strings, numeric matrices of type "double", or more
structures. Use the method getMetadata to extract this metadata structure without
loading the model.

ModelVersion

Model version number.

SimulinkVersion

Version number of Simulink software that was used to save the model file.

5 Simulink Classes

5-202

Methods

getDescription Extract model file description without
loading block diagram into memory

getMetadata Extract model file metadata without
loading block diagram into memory

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples

Construct and view a model information object:

info = Simulink.MDLInfo('mymodel')

% Get the Version when the model was saved

simulink_version = info.SimulinkVersion;

% Get model metadata

metadata = info.metadata

To add metadata to a model, create a metadata structure containing the information you
require and use set_param to attach it to the model. For example:

 metadata.TestStatus = 'untested';

 metadata.ExpectedCompletionDate

 = '01/01/2011';

 load_system(mymodelname);

 set_param(mymodelname,'Metadata',...

 metadata) % must be a struct

 save_system(mymodelname);

 close_system(mymodelname);

Construct a model information object for a model named mpowertrain, in order to find
the names of referenced models without loading the model into memory:

info = Simulink.MDLInfo('mpowertrain')

% Get the Interface property

 Simulink.MDLInfo class

5-203

info.Interface

Output:

ans =

 Inports: [0x1 struct]

 Outports: [0x1 struct]

 Trigports: [0x1 struct]

 Connports: [0x1 struct]

 ModelVersion: '1.122'

 ModelReferences: {2x1 cell}

 ParameterArgumentNames: ''

 TestPointedSignals: [0x1 struct]

Get the referenced models:

 info.Interface.ModelReferences

Output is in the form model name / block path | referenced model name:

ans =

 'mpowertrain/Model Variants|manual_transmission'

 'mpowertrain/engine model|menginemodel'

See Also

Simulink.MDLInfo.getDescription; Simulink.MDLInfo.getMetadata

5 Simulink Classes

5-204

Simulink.MDLInfo.getDescription
Class: Simulink.MDLInfo
Package: Simulink

Extract model file description without loading block diagram into memory

Syntax

description = Simulink.MDLInfo.getDescription('mymodel')

description = info.getDescription

Description

description = Simulink.MDLInfo.getDescription('mymodel') returns the
description associated with the file mymodel, without loading the model.

mymodel can be:

• A block diagram name (for example, vdp)
• The file name for a file on the MATLAB path (for example, mymodel.slx)
• A file name relative to the current folder (for example, mydir/mymodel.slx)
• A fully qualified file name (for example, C:\mydir\mymodel.slx)

description = info.getDescription returns the description property of the
Simulink.MDLInfo object info.

Examples

Get the description without loading the model or creating a Simulink.MDLInfo object:

description = Simulink.MDLInfo.getDescription('mymodel')

Create a Simulink.MDLInfo object containing all the model information properties, and
get the description property:

 Simulink.MDLInfo.getDescription

5-205

info = Simulink.MDLInfo('mymodel')

description = info.getDescription

See Also

Simulink.MDLInfo; Simulink.MDLInfo.getMetadata

5 Simulink Classes

5-206

Simulink.MDLInfo.getMetadata

Class: Simulink.MDLInfo
Package: Simulink

Extract model file metadata without loading block diagram into memory

Syntax

metadata = Simulink.MDLInfo.getMetadata('mymodel')

metadata = info.getMetadata

Description

metadata = Simulink.MDLInfo.getMetadata('mymodel') extracts the structure
metadata associated with the file mymodel, without loading the model.

mymodel can be:

• A block diagram name (for example, vdp)
• The file name for a file on the MATLAB path (for example, mymodel.slx)
• A file name relative to the current folder (for example, mydir/mymodel.slx)
• A fully qualified file name (for example, C:\mydir\mymodel.slx)

metadata = info.getMetadata returns the metadata property of the
Simulink.MDLInfo object info.

metadata is a structure containing the names and attributes of arbitrary data
associated with the model. The structure fields can be strings, numeric matrices of type
"double", or more structures.

To add metadata to a model, create a metadata structure containing the information you
require and use set_param to attach it to the model. If it is important to extract the
information without loading the model, use metadata instead of adding custom user data
with add_param.

 Simulink.MDLInfo.getMetadata

5-207

Examples

Create a metadata structure and use set_param to attach it to the model:

 metadata.TestStatus = 'untested';

 metadata.ExpectedCompletionDate = '01/01/2011';

 load_system('mymodel');

 set_param('mymodel','Metadata',metadata) % must be a struct

 save_system('mymodel');

 close_system('mymodel');

Get the metadata without loading the model or creating a Simulink.MDLInfo object:

metadata = Simulink.MDLInfo.getMetadata('mymodel')

Create a Simulink.MDLInfo object containing all the model information properties, and
get the metadata property:

info = Simulink.MDLInfo('mymodel')

metadata = info.getMetadata

See Also

Simulink.MDLInfo; Simulink.MDLInfo.getDescription

5 Simulink Classes

5-208

Simulink.ModelAdvisor
Run Model Advisor from MATLAB file

Description
Use instances of this class in MATLAB programs to run the Model Advisor, for example,
to perform a standard set of checks. MATLAB software creates an instance of this object
for each model that you open in the current MATLAB session. To get a handle to a
model's Model Advisor object, execute the following command

ma = Simulink.ModelAdvisor.getModelAdvisor(model);

where model is the name of the model or subsystem that you want to check. Your
program can then use the Model Advisor object's methods to initialize and run the Model
Advisor's checks.

About IDs

Many Simulink.ModelAdvisor object methods require or return IDs. An ID is a
unique string identifier for a Model Advisor check, task, or group. ID must remain
constant. A Simulink.ModelAdvisor object includes methods that enable you to
retrieve the ID or IDs for all checks, tasks, and groups, checks belonging to groups and
tasks, the active check, and selected checks, tasks and groups.

You find check IDs in the Model Advisor, using check context menus.

To Find Do This

Check Title, ID, or location
of the MATLAB source
code

1 On the model window toolbar, select Settings > Preferences.
2 In the Model Advisor Preferences dialog box, select Show Source

Tab.
3 In the right pane of the Model Advisor window, click the Source

tab. The Model Advisor window displays the check Title, TitleId,
and location of the MATLAB source code for the check.

Check ID 1 In the left pane of the Model Advisor, select the check.
2 Right-click the check name and select Send Check ID to

Workspace. The ID is displayed in the Command Window and
sent to the base workspace.

 Simulink.ModelAdvisor

5-209

To Find Do This

Check IDs for selected
checks in a folder

1 In the left pane of the Model Advisor, select the checks for which
you want IDs. Clear the other checks in the folder.

2 Right-click the folder and select Send Check ID to Workspace.
An array of the selected check IDs are sent to the base workspace.

Syntax

ma = Simulink.ModelAdvisor

Arguments

ma

A variable representing the Simulink.ModelAdvisor object you create.

Properties
EmitInputParametersToReport

The EmitInputParametersToReport property specifies the display of check input
parameters in the Model Advisor report.

Value Description

'true' (default) Display check input parameters in the
Model Advisor report.

'false' Do not display check input parameters in
the Model Advisor report.

Method Summary
Name Description

“closeReport” on page 5-212 Close Model Advisor report.
“deselectCheck” on page 5-212 Clear checks.
“deselectCheckAll” on page 5-213 Clear all checks.
“deselectCheckForGroup” on page 5-214 Clear a group of checks.

5 Simulink Classes

5-210

Name Description

“deselectCheckForTask” on page 5-214 Clear checks that belong to a specified
task or set of tasks.

“deselectTask” on page 5-215 Clear tasks.
“deselectTaskAll” on page 5-215 Clear all tasks.
“displayReport” on page 5-216 Display Model Advisor report.
“exportReport” on page 5-216 Copy report to a specified location.
“filterResultWithExclusion” on page 5-217 Filter objects that have been excluded

by user-defined exclusions.
“getBaselineMode” on page 5-218 Get baseline mode setting for the

Model Advisor.
“getCheckAll” on page 5-219 Get the IDs of the checks performed

by the Model Advisor.
“getCheckForGroup” on page 5-219 Get checks belonging to a check

group.
“getCheckForTask” on page 5-220 Get checks belonging to a task.
“getCheckResult” on page 5-220 Get check results.
“getCheckResultData” on page 5-221 Get check result data.
“getCheckResultStatus” on page 5-222 Get pass/fail status of a check or set of

checks.
“getGroupAll” on page 5-223 Get the IDs of the groups of tasks

performed by the Model Advisor.
“getInputParameters” on page 5-223 Get input parameters of a check.
“getListViewParameters” on page 5-224 Get list view parameters of a check.
“getModelAdvisor” on page 5-225 Get the Model Advisor for a model or

subsystem.
“getSelectedCheck” on page 5-226 Get selected checks.
“getSelectedSystem” on page 5-226 Get path of system currently targeted

by the Model Advisor.
“getSelectedTask” on page 5-227 Get selected tasks.

 Simulink.ModelAdvisor

5-211

Name Description

“getTaskAll” on page 5-227 Get the IDs of the tasks performed by
the Model Advisor.

“Simulink.ModelAdvisor.openConfigUI” on page
5-228

Start the Model Advisor
Configuration editor.

“Simulink.ModelAdvisor.reportexists” on page
5-229

Determine whether a report exists for
a system or subsystem.

“runCheck” on page 5-229 Run selected checks.
“runTask” on page 5-230 Run checks for selected tasks.
“selectCheck” on page 5-231 Select checks.
“selectCheckAll” on page 5-231 Select all checks.
“selectCheckForGroup” on page 5-232 Select a group of checks.
“selectCheckForTask” on page 5-232 Select checks that belong to a

specified task.
“selectTask” on page 5-233 Select tasks.
“selectTaskAll” on page 5-234 Select all tasks.
“setActionEnable” on page 5-234 Set enable/disable status for a check

action.
“setBaselineMode” on page 5-235 Set baseline mode for the Model

Advisor.
“setCheckErrorSeverity” on page 5-236 Set severity of a check failure.
“setCheckResult” on page 5-237 Set result for the currently running

check.
“setCheckResultData” on page 5-237 Set result data for the currently

running check.
“setCheckResultStatus” on page 5-238 Set pass/fail status for the currently

running check.
“setListViewParameters” on page 5-239 Set list view parameters for a check.
“verifyCheckRan” on page 5-240 Verify that checks have run.
“verifyCheckResult” on page 5-241 Generate a baseline set of check

results or compare the current set of
results to the baseline results.

5 Simulink Classes

5-212

Name Description

“verifyCheckResultStatus” on page 5-242 Verify that a model has passed or
failed a set of checks.

“verifyHTML” on page 5-243 Generate a baseline report or compare
the current report to a baseline
report.

Methods

closeReport

Purpose

Close Model Advisor report

Syntax

closeReport

Description

Closes the report associated with this Model Advisor object, which closes the Model
Advisor window.

See Also

“displayReport” on page 5-216

deselectCheck

Purpose

Clear check

Syntax

success = deselectCheck(ID)

 Simulink.ModelAdvisor

5-213

Arguments

ID

String or cell array that specifies the IDs of the checks to be cleared.
success

True (1) if the check is cleared.

Description

This method clears the checks specified by ID.

Note: This method cannot clear disabled checks.

See Also

“getCheckAll” on page 5-219, “deselectCheckForGroup” on page 5-214, “selectCheck”
on page 5-231

deselectCheckAll

Purpose

Clear all checks

Syntax

success = deselectCheckAll

Arguments

success

True (1) if all checks are cleared.

Description

Clears all checks that are not disabled.

See Also

“selectCheckAll” on page 5-231

5 Simulink Classes

5-214

deselectCheckForGroup

Purpose

Clear group of checks

Syntax

success = deselectCheckForGroup(groupName)

Arguments

groupName

String or cell array that specifies the names of the groups to be cleared.
success

True (1) if the method succeeds in clearing the specified group.

Description

Clears a specified group of checks.

See Also

“selectCheckForGroup” on page 5-232

deselectCheckForTask

Purpose

Clear checks that belong to specified task or set of tasks

Syntax

success = deselectCheckForTask(ID)

Arguments

ID

String or cell array of strings that specify the IDs of tasks whose checks are to be
cleared.

success

 Simulink.ModelAdvisor

5-215

True (1) if the specified tasks are cleared.

Description

Clears checks belonging to the tasks specified by the ID argument.

See Also

“getTaskAll” on page 5-227, “selectCheckForTask” on page 5-232

deselectTask

Purpose

Clear task

Syntax

success = deselectTask(ID)

Arguments

ID

String or cell array that specifies the ID of tasks to be cleared
success

True (1) if the method succeeded in clearing the specified tasks.

Description

Clears the tasks specified by ID.

See Also

“selectTask” on page 5-233, “getTaskAll” on page 5-227

deselectTaskAll

Purpose

Clears all tasks

5 Simulink Classes

5-216

Syntax

success = deselectTaskAll

Arguments

success

True (1) if this method succeeds in clearing all tasks.

Description

Clears all tasks.

See Also

“selectTaskAll” on page 5-234

displayReport

Purpose

Display report in Model Advisor window

Syntax

displayReport

Description

Displays the report associated with this Model Advisor object in the Model Advisor
window. The report includes the most recent results of running checks on the system
associated with this Model Advisor object and the current selection status of checks,
groups, and tasks for the system.

See Also

“Simulink.ModelAdvisor.reportexists” on page 5-229

exportReport

Purpose

Create copy of report generated by Model Advisor

 Simulink.ModelAdvisor

5-217

Syntax

[success message] = exportReport(destination)

Arguments

destination

Path name of copy to be made of the report file.
success

True (1) if this method succeeded in creating a copy of the report at the specified
location.

message

Empty if the copy was successful; otherwise, the reason the copy did not succeed.

Description

This method creates a copy of the last report generated by the Model Advisor and stores
the copy at the specified location.

See Also

“Simulink.ModelAdvisor.reportexists” on page 5-229

filterResultWithExclusion

Purpose

Filter objects that have been excluded by user-defined exclusions.

Syntax

filteredResultHandles = obj.filterResultWithExclusion(ResultHandles)

Arguments

filteredResultHandles

An array of objects causing exclusion enabled checks to warn or fail.

obj

A variable representing the Simulink.ModelAdvisor.getModelAdvisor object.

5 Simulink Classes

5-218

ResultHandles

An array of objects causing a check warning or failure.

Description

This method filters objects that cause a check warning or failure with checks that have
exclusions enabled.

Note: This method is intended for excluding objects from custom checks created with the
Model Advisor's customization API, a feature available with Simulink Verification and
Validation™ .

See Also

“getModelAdvisor” on page 5-225

getBaselineMode

Purpose

Determine whether Model Advisor is in baseline data generation mode

Syntax

mode = getBaselineMode

Arguments

mode

Boolean value indicating baseline mode.

Description

The mode output variable returns true if the Model Advisor is in baseline data mode.
Baseline data mode causes the verification methods of the Model Advisor, for example,
“verifyHTML” on page 5-243, to generate baseline data.

See Also

“setBaselineMode” on page 5-235, “verifyHTML” on page 5-243, “verifyCheckResult”
on page 5-241, “verifyCheckResultStatus” on page 5-242

 Simulink.ModelAdvisor

5-219

getCheckAll

Purpose

Get IDs of all checks

Syntax

IDs = getCheckAll

Arguments

IDs

Cell array of strings specifying the IDs of all checks performed by the Model Advisor.

Description

Returns a cell array of strings specifying the IDs of all checks performed by the Model
Advisor.

See Also

“getTaskAll” on page 5-227, “getGroupAll” on page 5-223

getCheckForGroup

Purpose

Get checks that belong to check group

Syntax

IDs = getCheckForGroup(groupName)

Arguments

groupName

String specifying the name of a group.
IDs

Cell array of IDs.

5 Simulink Classes

5-220

Description

Returns a cell array of IDs of the tasks and checks belonging to the group specified by
groupName.

See Also

“getCheckForTask” on page 5-220

getCheckForTask

Purpose

Get checks that belong to task

Syntax

checkIDs = getCheckForTask(taskID)

Arguments

taskID

ID of a task.
checkIDs

Cell array of IDs of checks belonging to the specified task.

Description

Returns a cell array of IDs of the checks belonging to the task specified by taskID.

See Also

“getCheckForGroup” on page 5-219

getCheckResult

Purpose

Get results of running check or set of checks

 Simulink.ModelAdvisor

5-221

Syntax

result = getCheckResult(ID)

Arguments

ID

ID of a check or cell array of check IDs.
result

A check result or cell array of check results.

Description

Gets results for the specified checks. The format of the results depends on the checks that
generated the data.

Note: This method is intended for accessing results generated by custom checks created
with the Model Advisor's customization API, an optional feature available with Simulink
Verification and Validation software. For more information, see “Define Custom Checks”
in the Simulink Verification and Validation documentation.

See Also

“getCheckResultData” on page 5-221, “getCheckResultStatus” on page 5-222

getCheckResultData

Purpose

Get data resulting from running check or set of checks

Syntax

result = getCheckResultData(ID)

Arguments

ID

Check ID or cell array of check IDs.

5 Simulink Classes

5-222

result

Data from a check result or cell array of data from check results.

Description

Gets the check result data for the specified checks. The format of the data depends on the
checks that generated the data.

Note: This method is intended for accessing check result data generated by custom
checks created with the Model Advisor's customization API, an optional feature available
with Simulink Verification and Validation software. For more information, see “Define
Custom Checks” in the Simulink Verification and Validation documentation.

See Also

“getCheckResult” on page 5-220, “getCheckResultStatus” on page 5-222

getCheckResultStatus

Purpose

Get status of check or set of checks

Syntax

result = getCheckResultStatus(ID)

Arguments

ID

Check ID or cell array of check IDs.
result

Boolean or a cell array of Boolean values indication the pass or fail status of a check
or set of checks.

Description

Invoke this method after running a set of checks to determine whether the checks passed
or failed.

 Simulink.ModelAdvisor

5-223

See Also

“getCheckResult” on page 5-220, “getCheckResultData” on page 5-221

getGroupAll

Purpose

Get all groups of checks run by Model Advisor

Syntax

IDs = getGroupAll

Arguments

IDs

Cell array of IDs of all groups of checks run by the Model Advisor.

Description

Returns a cell array of IDs of all groups of checks run by the Model Advisor.

See Also

“getCheckAll” on page 5-219, “getTaskAll” on page 5-227

getInputParameters

Purpose

Get input parameters of check

Syntax

params = obj.getInputParameters(check_ID)

Arguments

params

A cell array of ModelAdvisor.InputParameter objects.

5 Simulink Classes

5-224

obj

A variable representing the Simulink.ModelAdvisor object.

check_ID

A string that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check callback function.

Description

Returns the input parameters associated with a check.

Note: This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

ModelAdvisor.InputParameter

getListViewParameters

Purpose

Get list view parameters of check

Syntax

params = obj.getListViewParameters(check_ID)

Arguments

params

A cell array of ModelAdvisor.ListViewParameter objects.
obj

A variable representing the Simulink.ModelAdvisor object.
check_ID

 Simulink.ModelAdvisor

5-225

A string that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check callback function.

Description

Returns the list view parameters associated with a check.

Note: This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

“setListViewParameters” on page 5-239, ModelAdvisor.ListViewParameter

getModelAdvisor

Purpose

Get Model Advisor object for system or subsystem

Syntax

obj = Simulink.ModelAdvisor.getModelAdvisor(system)

obj = Simulink.ModelAdvisor.getModelAdvisor(system, 'new')

Arguments

system

Name of model or subsystem.
'new'

Required when changing Model Advisor working scope from one system to another
without closing the previous session. Alternatively, you can close the previous session
before invoking getModelAdvisor, in which case 'new' can be omitted.

obj

Model Advisor object.

5 Simulink Classes

5-226

Description

This static method (see “Static Methods”) creates and returns an instance of
Simulink.ModelAdvisor class for the model or subsystem specified by system.

getSelectedCheck

Purpose

Get currently selected checks

Syntax

IDs = getSelectedCheck

Arguments

IDs

Cell array of IDs of currently selected checks.

Description

Returns the IDs of the currently selected checks in the Model Advisor.

See Also

“getSelectedTask” on page 5-227

getSelectedSystem

Purpose

Get system currently targeted by Model Advisor

Syntax

path = getSelectedSystem

Arguments

path

 Simulink.ModelAdvisor

5-227

Path of the selected system.

Description

Gets the path of the system currently targeted by the Model Advisor. That is, the system
or subsystem most recently selected for checking either interactively by the user or
programmatically via Simulink.ModelAdisor.getModelAdvisor.

See Also

“getModelAdvisor” on page 5-225

getSelectedTask

Purpose

Get selected tasks

Syntax

IDs = getSelectedTask

Arguments

IDs

Cell array of IDs of currently selected tasks.

Description

Returns the IDs of the currently selected tasks in the Model Advisor.

See Also

“getSelectedCheck” on page 5-226

getTaskAll

Purpose

Get tasks run by Model Advisor

5 Simulink Classes

5-228

Syntax

IDs = getTaskAll

Arguments

IDs

Cell array of IDs of tasks run by the Model Advisor.

Description

Returns a cell array of IDs of tasks run by the Model Advisor.

See Also

“getCheckAll” on page 5-219, “getGroupAll” on page 5-223

Simulink.ModelAdvisor.openConfigUI

Purpose

Starts Model Advisor Configuration editor

Syntax

Simulink.ModelAdvisor.openConfigUI

Description

This static method starts the Model Advisor Configuration editor. Use the Model Advisor
Configuration editor to create customized configurations for the Model Advisor.

Note: The Model Advisor Configuration editor is an optional feature available with
Simulink Verification and Validation software (see “Organize Checks and Folders Using
the Model Advisor Configuration Editor” for more information).

• Before starting the Model Advisor Configuration editor, ensure that the current folder
is writable. If the folder is not writable, you see an error message when you start the
Model Advisor Configuration editor.

• The Model Advisor Configuration editor uses the Simulink project (slprj) folder (for
more information, see “Model Reference Simulation Targets”) in the current folder to

 Simulink.ModelAdvisor

5-229

store reports and other information. If this folder does not exist in the current folder,
the Model Advisor Configuration editor creates it.

Simulink.ModelAdvisor.reportexists

Purpose

Determine whether report exists for model or subsystem

Syntax

exists = reportexists('system')

Arguments

system

String specifying path of a system or subsystem.
exists

True (1) if a report exists for system.

Description

This method returns true (1) if a report file exists for the model (system) or subsystem
specified by system in the slprj/modeladvisor subfolder of the MATLAB working
folder.

See Also

“exportReport” on page 5-216

runCheck

Purpose

Run currently selected checks

Syntax

success = runCheck(ID)

5 Simulink Classes

5-230

Arguments

ID

ID or cell array of IDs of checks to run.
success

True (1) if the checks were run.

Description

Runs the checks currently selected in the Model Advisor. Invoking this method is
equivalent to selecting the Run Selected Checks button on the Model Advisor window.

See Also

“selectCheck” on page 5-231

runTask

Purpose

Run currently selected tasks

Syntax

success = runTask

Arguments

success

True (1) if the tasks were run.

Description

Runs the tasks currently selected in the Model Advisor. Invoking this method is
equivalent to selecting the Run Selected Checks button on the Model Advisor window.

See Also

“selectTask” on page 5-233

 Simulink.ModelAdvisor

5-231

selectCheck

Purpose

Select check

Syntax

success = selectCheck(ID)

Arguments

ID

ID or cell array of IDs of checks to be selected.
success

True (1) if this method succeeded in selecting the specified checks.

Description

Select the check specified by ID. This method cannot select a check that is disabled.

See Also

“selectCheckAll” on page 5-231, “selectCheckForGroup” on page 5-232,
“deselectCheck” on page 5-212

selectCheckAll

Purpose

Select all checks

Syntax

success = selectCheckAll

Arguments

success

True (1) if this method succeeded in selecting all checks.

5 Simulink Classes

5-232

Description

Selects all checks that are not disabled.

See Also

“selectCheck” on page 5-231, “selectCheckForGroup” on page 5-232, “deselectCheck”
on page 5-212

selectCheckForGroup

Purpose

Select group of checks

Syntax

success = selectCheckForGroup(ID)

Arguments

ID

ID or cell array of group IDs.
success

True (1) if this method succeeded in selecting the specified groups

Description

Selects the groups specified by ID.

See Also

“deselectCheckForGroup” on page 5-214

selectCheckForTask

Purpose

Select checks that belong to specified task or set of tasks

 Simulink.ModelAdvisor

5-233

Syntax

success = selectCheckForTask(ID)

Arguments

ID

ID or cell array of IDs of tasks whose checks are to be selected.
success

True (1) if this method succeeded in selecting the checks for the specified tasks

Description

Selects checks belonging to the tasks specified by the ID argument.

See Also

“deselectCheckForTask” on page 5-214

selectTask

Purpose

Select task

Syntax

success = selectTask(ID)

Arguments

ID

ID or cell array of IDs of the task to be selected.
success

True (1) if this method succeeds in selecting the specified tasks.

Description

Selects a task.

5 Simulink Classes

5-234

See Also

“deselectTask” on page 5-215

selectTaskAll

Purpose

Select all tasks

Syntax

success = selectTaskAll

Arguments

success

True (1) if this method succeeds in selecting all tasks.

Description

Selects all tasks.

See Also

“deselectTaskAll” on page 5-215

setActionEnable

Purpose

Set status for check action

Syntax

obj.setActionEnable(value)

Arguments

obj

A variable representing the Simulink.ModelAdvisor object.
value

 Simulink.ModelAdvisor

5-235

Boolean value indicating whether the Action box is enabled or disabled.

• true — enable the Action box.
• false — Disable the Action box.

Description

The setActionEnable method specifies the enables or disables the Action box. Only a
check callback function can invoke this method.

Note: This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

ModelAdvisor.Action

setBaselineMode

Purpose

Set baseline data generation mode for Model Advisor

Syntax

setBaselineMode(mode)

Arguments

mode

Boolean value indicating setting of Model Advisor's baseline mode, either on (true)
or off (false).

Description

Sets the Model Advisor's baseline mode to mode. Baseline mode causes the Model
Advisor's verify methods to generate baseline comparison data for verifying the results of
a Model Advisor run.

5 Simulink Classes

5-236

See Also

“getBaselineMode” on page 5-218, “verifyCheckResult” on page 5-241, “verifyHTML”
on page 5-243

setCheckErrorSeverity

Purpose

Set severity of check failure

Syntax

obj.setCheckErrorSeverity(value)

Arguments

obj

A variable representing the Simulink.ModelAdvisor object.
value

Integer indicating severity of failure.

• 0 — Check Result = Warning
• 1 — Check Result = Failed

Description

Sets result status for a currently running check that fails to value. Only a check
callback function can invoke this method.

Note: This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

“setCheckResultStatus” on page 5-238

 Simulink.ModelAdvisor

5-237

setCheckResult

Purpose

Set result for currently running check

Syntax

success = setCheckResult(result)

Arguments

result

String or cell array that specifies the result of the currently running task.
success

True (1) if this method succeeds in setting the check result.

Description

Sets the check result for the currently running check. Only the callback function of a
check can invoke this method.

Note: This method is intended for use with custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

“getCheckResult” on page 5-220, “setCheckResultData” on page 5-237,
“setCheckResultStatus” on page 5-238

setCheckResultData

Purpose

Set result data for currently running check

5 Simulink Classes

5-238

Syntax

success = setCheckResultData(data)

Arguments

data

Result data to be set.
success

True (1) if this method succeeds in setting the result data for the current check

Description

Sets the check result data for the currently running check. Only the callback function of a
check can invoke this method.

Note: This method is intended for use with custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

“getCheckResultData” on page 5-221, “setCheckResult” on page 5-237,
“setCheckResultStatus” on page 5-238

setCheckResultStatus

Purpose

Set status for currently running check

Syntax

success = setCheckResultStatus(status)

Arguments

status

 Simulink.ModelAdvisor

5-239

Boolean value that indicates the status of the check that just ran, either pass (true)
or fail (false)

success

True (1) if the status was set.

Description

Sets the pass or fail status for the currently running check to status. Only the callback
function of the check can invoke this method.

Note: This method is intended for use with custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

“getCheckResultStatus” on page 5-222, “setCheckResult” on page 5-237,
“setCheckResultData” on page 5-237, “setCheckErrorSeverity” on page 5-236

setListViewParameters

Purpose

Specify list view parameters for check

Syntax

obj.setListViewParameters(check_ID, params)

Arguments

obj

A variable representing the Simulink.ModelAdvisor object.
check_ID

A string that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check callback function.

5 Simulink Classes

5-240

params

A cell array of ModelAdvisor.ListViewParameter objects.

Description

Set the list view parameters for the check.

Note: This method is intended for accessing custom checks created with the Model
Advisor's customization API, an optional feature available with Simulink Verification
and Validation software. For more information, see “Define Custom Checks” in the
Simulink Verification and Validation documentation.

See Also

“getListViewParameters” on page 5-224, ModelAdvisor.ListViewParameter

verifyCheckRan

Purpose

Verify that Model Advisor has run set of checks

Syntax

[success, missingChecks, additionalChecks] = verifyCheckRan(IDs)

Arguments

IDs

Cell array of IDs of checks to verify.
success

Boolean value specifying whether the checks ran.
missingChecks

Cell array of IDs for specified checks that did not run.
additionalChecks

Cell array of IDs for unspecified checks that ran.

 Simulink.ModelAdvisor

5-241

Description

The output variable success returns true if all the checks specified by IDs have run. If
not, success returns false, missingChecks lists specified checks that did not run.
The additionalChecks argument lists unspecified checks that ran.

See Also

“verifyCheckResultStatus” on page 5-242

verifyCheckResult

Purpose

Generate baseline Model Advisor check results file or compare current check results to
baseline check results

Syntax

[success message] = verifyCheckResult(baseline, checkIDs)

Arguments

baseline

Path of the baseline check results MAT-file.
checkIDs

Cell array of check IDs.
success

Boolean value specifying whether the method succeeded.
message

String specifying an error message.

Description

If the Model Advisor is in baseline mode (see “setBaselineMode” on page 5-235), this
method stores the most recent results of running the checks specified by checkIDs in
a MAT-file at the location specified by baseline. If the method is unable to store the
check results at the specified location, it returns false in the output variable success
and the reason for the failure in the output variable message. If the Model Advisor is not

5 Simulink Classes

5-242

in baseline mode, this method compares the most recent results of running the checks
specified by checkIDs with the report specified by baseline. If the current results
match the baseline results, this method returnstrue as the value of the success output
variable.

Note: You must run the checks specified by checkIDs (see “runCheck” on page 5-229)
before invoking verifyCheckResult.

This method enables you to compare the most recent check results generated by
the Model Advisor with a baseline set of check results. You can use the method to
generate the baseline report as well as perform current-to-baseline result comparisons.
To generate a baseline report, put the Model Advisor in baseline mode, using
“setBaselineMode” on page 5-235. Then invoke this method with the baseline
argument set to the location where you want to store the baseline results. To perform
a current-to-baseline report comparison, first ensure that the Model Advisor is not in
baseline mode (see “getBaselineMode” on page 5-218). Then invoke this method with
the path of the baseline report as the value of the baseline input argument.

See Also

“setBaselineMode” on page 5-235, “getBaselineMode” on page 5-218, “runCheck” on
page 5-229, “verifyCheckResultStatus” on page 5-242

verifyCheckResultStatus

Purpose

Verify that model has passed or failed set of checks

Syntax

[success message] = verifyCheckResultStatus(baseline, checkIDs)

Arguments

baseline

Array of Boolean variables.
checkIDs

Cell array of check IDs.

 Simulink.ModelAdvisor

5-243

success

Boolean value specifying whether the method succeeded.
message

String specifying an error message.

Description

This method compares the passor fail (true or false) statuses from the most recent
running of the checks specified by checkIDs with the Boolean values specified by
baseline. If the statuses match the baseline, this method returns true as the value of
the success output variable.

Note: You must run the checks specified by checkIDs (see “runCheck” on page 5-229)
before invoking verifyCheckResultStatus.

See Also

“runCheck” on page 5-229

verifyHTML

Purpose

Generate baseline Model Advisor report or compare current report to baseline report

Syntax

[success message] = verifyHTML(baseline)

Arguments

baseline

Path of a Model Advisor report.
success

Boolean value specifying whether the method succeeded.
message

String specifying an error message.

5 Simulink Classes

5-244

Description

If the Model Advisor is in baseline mode (see “setBaselineMode” on page 5-235), this
method stores the report most recently generated by the Model Advisor at the location
specified by baseline. If the method is unable to store a copy of the report at the
specified location, it returns false in the output variable success and the reason for
the failure in the output variable message. If the Model Advisor is not in baseline mode,
this method compares the report most recently generated by the Model Advisor with the
report specified by baseline. If the current report has exactly the same content as the
baseline report, this method returns true as the value of the success output variable.

This method enables you to compare a report generated by the Model Advisor with
a baseline report to determine if they differ. You can use the method to generate the
baseline report as well as perform current-to-baseline report comparisons. To generate a
baseline report, put the Model Advisor in baseline mode. Then invoke this method with
the baseline argument set to the location where you want to store the baseline report. To
perform a current-to-baseline report comparison, first ensure that the Model Advisor is
not in baseline mode (see “getBaselineMode” on page 5-218). The invoke this method
with the path of the baseline report as the value of the baseline input argument.

See Also

“setBaselineMode” on page 5-235, “getBaselineMode” on page 5-218,
“verifyCheckResult” on page 5-241

Introduced in R2006a

 Simulink.ModelDataLogs

5-245

Simulink.ModelDataLogs
Container for signal data logs of a model

Description

Note: The ModelDataLogs format is supported for backwards compatibility. The
ModelDataLogs format will be removed in a future release. For an existing model that
uses the ModelDataLogs format, you should migrate the model to use Dataset format.
For details, see “Migrate from ModelDataLogs to Dataset Format”.

For new models, use the Dataset logging format, which stores logged data in
Simulink.SimulationData.Dataset objects. You can convert signal logging data from
ModelDataLogs to Dataset format. Converting to Dataset format makes it easier
to post-process with other logged data (for example, logged states), which can also use
Dataset format. For more information, see “Convert Logged Data to Dataset Format”.

If you set Configuration Parameters > Data Import/Export > Signal
logging format to ModelDataLogs, Simulink software creates instances of the
Simulink.ModelDataLogs class to contain signal logs that it creates while simulating
a model (see “Export Signal Data Using Signal Logging”). Simulink software creates an
instance of this class for a top model and for each model referenced by the top model that
contains signals to be logged. Simulink software assigns the ModelDataLogs object for
the top model to a variable in the base workspace. The name of the variable is the name
specified in the Configuration Parameters > Data Import/export > Signal logging
name parameter. The default value is logsout.

A ModelDataLogs object has a variable number of properties. The first property, named
Name, specifies the name of the model whose signal data the object contains or, if the
model is a referenced model, the name of the Model block that references the model. The
remaining properties reference objects that contain signal data logged during simulation
of the model. The objects may be instances of any of the following types of objects:

• Simulink.ModelDataLogs

Container for the data logs of a model
• Simulink.SubsysDataLogs

5 Simulink Classes

5-246

Container for the data logs of a subsystem
• Simulink.Timeseries

Data log for any signal except a mux or bus signal
• Simulink.TsArray

Data log for a mux or bus signal

The names of the properties identify the data being logged as follows:

• For signal data logs, the name of the signal
• For a subsystem or model log container, the name of the subsystem or model,

respectively
• For a scope viewer data log, the name specified on the parameter dialog box of the

viewer

Consider, for example, the following model.

 Simulink.ModelDataLogs

5-247

As indicated by the testpoint icons, this model specifies that Simulink software should
log the signals named step and scope in the root system and the signal named clk
in the subsystem named Delayed Out. After simulation of this model, the MATLAB
workspace contains the following variable:

>> logsout

logsout =

Simulink.ModelDataLogs (siglgex):

 Name elements Simulink Class

 scope 2 TsArray

 step 1 Timeseries

 ('Delayed Out') 2 SubsysDataLogs

The logsout variable contains the signal data logged during the simulation. You can
use fully qualified object names or the Simulink unpack command to access the signal
data stored in logsout. For example, to access the amplitudes of the clk signal in the
Delayed Out subsystem, enter

>> data = logsout.('Delayed Out').clk.Data;

or

>> logsout.unpack('all');

>> data = clk.Data;

You can use a custom logging name or signal name when logging a signal. If you use the
signal name, and that name occupies more than one line, include an sprintf('\n')
between the lines of the signal name when accessing the logged data. For example, to
access the signal in the following model:

Use the following syntax:

logsout.(['scope' sprintf('\n') '(delayed out)'])

5 Simulink Classes

5-248

Programmatically Access Logged Signal Data Saved in ModelDataLogs
Format

When you use the ModelDataLogs signal logging format, Simulink saves the logging
data in a Simulink.ModelDataLogs object. For information on extracting signal data
from that object, see Simulink.ModelDataLogs. The Simulink.ModelDataLogs
object contains signal data objects to capture signal logging information for specific model
elements.

Model Element Signal Data Object

Top-level or referenced model Simulink.ModelDataLogs

Subsystem in a model Simulink.SubsysDataLogs

Signal other than a bus or Mux signal Simulink.Timeseries

Bus signal or Mux signal Simulink.TsArray

Handling Spaces and Newlines in Logged Names

Signal names in data logs can have spaces or newlines in their names when the signal:
The signal:

• Is named and the name includes a space or newline character.
• Is unnamed and originates in a block whose name includes a space or newline

character.
• Exists in a subsystem or referenced model, and the name of the subsystem, Model

block, or of any superior block includes a space or newline character.

The following model shows a signal whose name contains a space, a signal whose name
contains a newline, and an unnamed signal that originates in a block whose name
contains a newline:

 Simulink.ModelDataLogs

5-249

The following example shows how to handle spaces or new lines in logged names, if a
model uses ModelDataLogs for the signal logging format.

logsout

logsout =

Simulink.ModelDataLogs (model_name):

 Name Elements Simulink Class

 ('x y') 1 Timeseries

 ('a

b') 1 Timeseries

 ('SL_Sine

Wave1') 1 Timeseries

You cannot access any of the Simulink.Timeseries objects in this log using TAB name
completion or by typing the name to MATLAB. This syntax is not recognized because the
space or newline in each name appears to the MATLAB parser as a separator between
identifiers. For example:

logsout.x y

??? logsout.x y

 |

Error: Unexpected MATLAB expression.

5 Simulink Classes

5-250

To reference a Simulink.Timeseries object whose name contains a space, enclose the
element containing the space in single quotes:

logsout.('x y')

 Name: 'x y'

 BlockPath: 'model_name/Sine'

 PortIndex: 1

 SignalName: 'x y'

 ParentName: 'x y'

 TimeInfo: [1x1 Simulink.TimeInfo]

 Time: [51x1 double]

 Data: [51x1 double]

To reference a Simulink.Timeseries object whose name contains a newline,
concatenate to construct the element containing the newline:

cr=sprintf('\n')

logsout.(['a' cr 'b'])

The same techniques work when a space or newline in a data log derives from the name
of:

• An unnamed logged signal's originating block
• A subsystem or Model block that contains any logged signal
• Any block that is superior to such a block in the model hierarchy

This code can reference logged data for the signal:

logsout.(['SL_Sine' cr 'Wave1'])

For names with multiple spaces, newlines, or both, repeat and combine the two
techniques as needed to specify the intended name to MATLAB.

Bus Signals

You can log bus signals. When you use ModelDataLogs signal logging format, Simulink
stores each logged bus signal data in a separate Simulink.TsArray object.

The hierarchy of a bus signal is preserved in the logged signal data. The logged name
of a signal in a virtual bus derives from the name of the source signal. The logged name

 Simulink.ModelDataLogs

5-251

of a signal in a nonvirtual bus derives from the applicable bus object, and can differ
from the name of the source signal. See “Composite Signals” for information about those
capabilities.

See Also

“Create Signal Data to Load”, “Migrate from ModelDataLogs to Dataset Format”,
Simulink.SubsysDataLogs, Simulink.Timeseries, Simulink.TsArray, who,
whos, unpack

Introduced before R2006a

5 Simulink Classes

5-252

Simulink.SimState.ModelSimState class
Package: Simulink.SimState

Access SimState snapshot data

Description

The Simulink.SimState.ModelSimState class contains all of the information
associated with a “snapshot” of a simulation, including the logged states, the time of the
snapshot, and the start time of the simulation. To access these data for a block, use the
getBlockSimState method or the loggedStates property.

Properties

description

Specify a description. By default, Simulink generates a string based on your model name.

loggedStates

The logged states are the continuous and discrete states of the blocks in a model. These
states represent a subset of the complete simulation state (SimState) of the model.

If loggedStates is in Dataset format, you cannot assign a structure or a
Simulink.SimulationData.Dataset object with a different number of elements than
that of the Dataset object used for loggedStates.

If the loggedStates is in Structure format, you cannot assign a Dataset object.

Attributes:

dependent loggedStates is obtained from the
saved states of the block. loggedStates
depends on the full state being saved in
the SimState object, unlike, properties like
description, which are independent of
the save states.

 Simulink.SimState.ModelSimState class

5-253

snapshotTime

Time at which Simulink takes a “snapshot” of the complete simulation states. This data
is read only.

startTime

Time at which the simulation starts. This data is read only.

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

5 Simulink Classes

5-254

Simulink.ModelWorkspace
Describe model workspace

Description

Instances of this class describe model workspaces. Simulink software creates an instance
of this class for each model that you open during a Simulink session. See “Model
Workspaces” for more information.

Property Summary

Name Access Description

DataSource RW Specifies the source used to initialize this workspace.
Valid values are

• 'Model File'

• 'MAT-File'

• 'MATLAB Code'

• 'MATLAB File'

FileName RW Specifies the name of the MAT-file used to initialize
this workspace. Simulink software ignores this
property if DataSource is neither 'MAT-File' nor
'MATLAB Code'.

MATLABCode RW A string specifying MATLAB code used to initialize
this workspace. Simulink software ignores this
property if DataSource is not 'MATLAB Code'.

Method Summary

Name Description

“assignin” on page 5-255 Assign a value to a variable in the model's workspace.

 Simulink.ModelWorkspace

5-255

Name Description

“clear” on page 5-256 Clear the model's workspace.
“evalin” on page 5-256 Evaluate an expression in the model's workspace.
“reload” on page 5-258 Reload the model workspace from the workspace's data

source.
“save” on page 5-258 Save the model's workspace to a specified MAT-file.
“saveToSource” on page
5-259

Save the workspace to the MAT-file that the workspace
designates as its data source.

“whos” on page 5-260 List the variables in the model workspace.
“getVariable” on page 5-257 Get value of variable from workspace.
“hasVariable” on page 5-257 Determine if variable exists in workspace.

Methods

assignin

Purpose

Assign a value to a variable in the model's workspace.

Syntax

assignin('varname', varvalue)

Arguments

varname

Name of the variable to be assigned a value.
varvalue

Value to be assigned the variable.

Description

This method assigns the value specified by varvalue to the variable whose name is
varname.

5 Simulink Classes

5-256

See also

“evalin” on page 5-256

clear

Purpose

Clear the model's workspace.

Syntax

clear

Description

This method empties the workspace of its variables.

evalin

Purpose

Evaluate an expression in the model’s workspace.

Syntax

evalin('expression')

Arguments

expression

A MATLAB expression to be evaluated.

Description

This method evaluates expression in the model workspace.

See also

“assignin” on page 5-255

 Simulink.ModelWorkspace

5-257

getVariable

Purpose

Get value of variable from workspace.

Syntax

variableValue = getVariable(workspaceHandle,variableName)

Arguments

workspaceHandle

Handle to the workspace.
variableName

Name of the variable.

Description

This method gets the value of a variable from a workspace.

hasVariable

Purpose

Determine if variable exists in workspace.

Syntax

variableExists = hasVariable(workspaceHandle,variableName)

Arguments

workspaceHandle

Handle to the workspace.
variableName

Name of the variable.

Description

This method determines whether a variable exists in a workspace.

5 Simulink Classes

5-258

reload

Purpose

Reload the model workspace from the workspace's data source.

Syntax

reload

Description

This method reloads the model workspace from the data source specified by its
DataSource parameter. The data source must be 'MAT-File', 'MATLAB Code', or
'MATLAB File' .

See also

“saveToSource” on page 5-259

save

Purpose

Save the model's workspace to a specified MAT-file.

Syntax

save('filename')

Arguments

filename

Name of a MAT-file.

Description

This method saves the model's workspace to the MAT-file specified by filename.

Note This method allows you to save the workspace to a file other than the file specified
by the workspace's FileName property. If you want to save the model workspace to

 Simulink.ModelWorkspace

5-259

the file specified by the file's FileName property, it is simpler to use the workspace's
saveToSource method.

example

hws = get_param('mymodel','modelworkspace')

hws.DataSource = 'MAT-File';

hws.FileName = 'workspace';

hws.assignin('roll', 30);

hws.saveToSource;

hws.assignin('roll', 40);

hws.save('workspace_test.mat');

See also

“reload” on page 5-258, “saveToSource” on page 5-259

saveToSource

Purpose

Save the workspace to the MAT-file that it designates as its data source.

Syntax

saveToSource

Description

This method saves the model workspace designated by its FileName property.

example

hws = get_param('mymodel','modelworkspace')

hws.DataSource = 'MAT-File';

hws.FileName = 'params';

hws.assignin('roll', 30);

hws.saveToSource;

See also

“save” on page 5-258, “reload” on page 5-258

5 Simulink Classes

5-260

whos

Purpose

List the variables in the model workspace.

Syntax

whos

Description

This method lists the variables in the model's workspace. The listing includes the size
and class of the variables.

example

>> hws = get_param('mymodel','modelworkspace');

>> hws.assignin('k', 2);

>> hws.whos

 Name Size Bytes Class

 k 1x1 8 double array

More About
• “Variables”

Related Examples
• “Model Workspaces”

Introduced before R2006a

 Simulink.MSFcnRunTimeBlock

5-261

Simulink.MSFcnRunTimeBlock
Get run-time information about Level-2 MATLAB S-function block

Description

This class allows a Level-2 MATLAB S-function or other MATLAB program to obtain
information from Simulink software and provide information to Simulink software about
a Level-2 MATLAB S-Function block. Simulink software creates an instance of this
class for each Level-2 MATLAB S-Function block in a model. Simulink software passes
the object to the callback methods of Level-2 MATLAB S-functions when it updates
or simulates a model, allowing the callback methods to get and provide block-related
information to Simulink software. See “Write Level-2 MATLAB S-Functions” for more
information.

You can also use instances of this class in MATLAB programs to obtain information
about Level-2 MATLAB S-Function blocks during a simulation. See “Access Block Data
During Simulation” for more information.

The Level-2 MATLAB S-function template matlabroot/toolbox/simulink/blocks/
msfuntmpl.m shows how to use a number of the following methods.

Parent Class

Simulink.RunTimeBlock

Derived Classes

None

Property Summary

Name Description

“AllowSignalsWithMoreThan2D” on page 5-263 enable Level-2 MATLAB S-function
to use multidimensional signals.

5 Simulink Classes

5-262

Name Description

“DialogPrmsTunable” on page 5-264 Specifies which of the S-function's
dialog parameters are tunable.

“NextTimeHit” on page 5-264 Time of the next sample hit for
variable sample time S-functions.

Method Summary

Name Description

“AutoRegRuntimePrms” on page 5-265 Register this block's dialog
parameters as run-time
parameters.

“AutoUpdateRuntimePrms” on page 5-265 Update this block's run-time
parameters.

“IsDoingConstantOutput” on page 5-265 Determine whether the
current simulation stage is the
constant sample time stage.

“IsMajorTimeStep” on page 5-266 Determine whether the
current simulation time step is
a major time step.

“IsSampleHit” on page 5-267 Determine whether the
current simulation time is one
at which a task handled by
this block is active.

“IsSpecialSampleHit” on page 5-267 Determine whether the
current simulation time is
one at which multiple tasks
handled by this block are
active.

“RegBlockMethod” on page 5-268 Register a callback method for
this block.

“RegisterDataTypeFxpBinaryPoint” on page 5-269 Register fixed-point data type
with binary point-only scaling.

 Simulink.MSFcnRunTimeBlock

5-263

Name Description

“RegisterDataTypeFxpFSlopeFixexpBias” on page
5-270

Register fixed-point data
type with [Slope Bias] scaling
specified in terms of fractional
slope, fixed exponent, and bias.

“RegisterDataTypeFxpSlopeBias” on page 5-271 Register data type with [Slope
Bias] scaling.

“SetAccelRunOnTLC” on page 5-272 Specify whether to use this
block's TLC file to generate the
simulation target for the model
that uses it.

“SetPreCompInpPortInfoToDynamic” on page 5-273 Set precompiled attributes of
this block's input ports to be
inherited.

“SetPreCompOutPortInfoToDynamic” on page 5-273 Set precompiled attributes of
this block's output ports to be
inherited.

“SetPreCompPortInfoToDefaults” on page 5-274 Set precompiled attributes of
this block's ports to the default
values.

“SetSimViewingDevice” on page 5-274 Specify whether block is a
viewer.

“SupportsMultipleExecInstances” on page 5-275
“WriteRTWParam” on page 5-275 Write custom parameter

information to Simulink Coder
file.

Properties

AllowSignalsWithMoreThan2D

Description

Allow Level-2 MATLAB S-functions to use multidimensional signals. You must set the
AllowSignalsWithMoreThan2D property in the setup method.

5 Simulink Classes

5-264

Data Type

Boolean

Access

RW

DialogPrmsTunable

Description

Specifies whether a dialog parameter of the S-function is tunable. Tunable parameters
are registered as run-time parameters when you call the “AutoRegRuntimePrms” on
page 5-265 method. Note that SimOnlyTunable parameters are not registered as run-
time parameters. For example, the following lines initializes three dialog parameters
where the first is tunable, the second in not tunable, and the third is tunable only during
simulation.
block.NumDialogPrms = 3;

block.DialogPrmsTunable = {'Tunable','Nontunable','SimOnlyTunable'};

Data Type

array

Access

RW

NextTimeHit

Description

Time of the next sample hit for variable sample-time S-functions.

Data Type

double

Access

RW

 Simulink.MSFcnRunTimeBlock

5-265

Methods

AutoRegRuntimePrms

Purpose

Register a block's tunable dialog parameters as run-time parameters.

Syntax

AutoRegRuntimePrms;

Description

Use in the PostPropagationSetup method to register this block's tunable dialog
parameters as run-time parameters.

AutoUpdateRuntimePrms

Purpose

Update a block's run-time parameters.

Syntax

AutoUpdateRuntimePrms;

Description

Automatically update the values of the run-time parameters during a call to
ProcessParameters.

See the S-function matlabroot/toolbox/simulink/simdemos/simfeatures/
adapt_lms.m in the Simulink model sldemo_msfcn_lms for an example.

IsDoingConstantOutput

Purpose

Determine whether this is in the constant sample time stage of a simulation.

5 Simulink Classes

5-266

Syntax

bVal = IsDoingConstantOutput;

Description

Returns true if this is the constant sample time stage of a simulation, i.e., the stage at
the beginning of a simulation where Simulink software computes the values of block
outputs that cannot change during the simulation (see “Constant Sample Time”). Use
this method in the Outputs method of an S-function with port-based sample times to
avoid unnecessarily computing the outputs of ports that have constant sample time, i.e.,
[inf, 0].

function Outputs(block)

.

.

 if block.IsDoingConstantOutput

 ts = block.OutputPort(1).SampleTime;

 if ts(1) == Inf

 %% Compute port's output.

 end

 end

.

.

%% end of Outputs

See “Specifying Port-Based Sample Times” for more information.

IsMajorTimeStep

Purpose.

Determine whether current time step is a major or a minor time step.

Syntax

bVal = IsMajorTimeStep;

Description

Returns true if the current time step is a major time step; false, if it is a minor time step.
This method can be called only from the Outputs or Update methods.

 Simulink.MSFcnRunTimeBlock

5-267

IsSampleHit

Purpose

Determine whether the current simulation time is one at which a task handled by this
block is active.

Syntax

bVal = IsSampleHit(stIdx);

Arguments

stIdx

Global index of the sample time to be queried.

Description

Use in Outputs or Update block methods when the MATLAB S-function has multiple
sample times to determine whether a sample hit has occurred at stIdx. The sample time
index stIdx is a global index for the Simulink model. For example, consider a model that
contains three sample rates of 0.1, 0.2, and 0.5, and a MATLAB S-function block that
contains two rates of 0.2 and 0.5. In the MATLAB S-function, block.IsSampleHit(0)
returns true for the rate 0.1, not the rate 0.2.

This block method is similar to ssIsSampleHit for C-MeX S-functions, however
ssIsSampleHit returns values based on only the sample times contained in the S-
function. For example, if the model described above contained a C-MeX S-function with
sample rates of 0.2 and 0.5, ssIsSampleHit(S,0,tid) returns true for the rate of 0.2.

Use port-based sample times to avoid using the global sample time index for multi-rate
systems (see Simulink.BlockPortData).

IsSpecialSampleHit

Purpose

Determine whether the current simulation time is one at which multiple tasks
implemented by this block are active.

Syntax

bVal = IsSpecialSampleHit(stIdx1,stIdx1);

5 Simulink Classes

5-268

Arguments

stIdx1

Index of sample time of first task to be queried.
stIdx2

Index of sample time of second task to be queried.

Description

Use in Outputs or Update block methods to ensure the validity of data shared by
multiple tasks running at different rates. Returns true if a sample hit has occurred at
stIdx1 and a sample hit has also occurred at stIdx2 in the same time step (similar to
ssIsSpecialSampleHit for C-Mex S-functions).

When using the IsSpecialSampleHit macro, the slower sample time must be an
integer multiple of the faster sample time.

RegBlockMethod

Purpose

Register a block callback method.

Syntax

RegBlockMethod(methName, methHandle);

Arguments

methName

Name of method to be registered.
methHandle

MATLAB function handle of the callback method to be registered.

Description

Registers the block callback method specified by methName and methHandle. Use this
method in the setup function of a Level-2 MATLAB S-function to specify the block
callback methods that the S-function implements.

 Simulink.MSFcnRunTimeBlock

5-269

RegisterDataTypeFxpBinaryPoint

Purpose

Register fixed-point data type with binary point-only scaling.

Syntax

dtID = RegisterDataTypeFxpBinaryPoint(isSigned, wordLength,

fractionalLength, obeyDataTypeOverride);

Arguments

isSigned

true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalLength

Number of bits in the data type to the right of the binary point.
obeyDataTypeOverride

true indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type
could be Double, Single, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

false indicates that the Data Type Override setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data
type ID. The data type ID can be used to specify the data types of input and output ports,
run-time parameters, and DWork states. It can also be used with all the standard data
type access methods defined for instances of this class, such as “DatatypeSize” on page
5-303.

Use this function if you want to register a fixed-point data type with binary point-only
scaling. Alternatively, you can use one of the other fixed-point registration functions:

5 Simulink Classes

5-270

• Use “RegisterDataTypeFxpFSlopeFixexpBias” on page 5-270 to register a data
type with [Slope Bias] scaling by specifying the word length, fractional slope, fixed
exponent, and bias.

• Use “RegisterDataTypeFxpSlopeBias” on page 5-271 to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point
Designer license is checked out.

RegisterDataTypeFxpFSlopeFixexpBias

Purpose

Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional
slope, fixed exponent, and bias

Syntax

dtID = RegisterDataTypeFxpFSlopeFixexpBias(isSigned, wordLength,

fractionalSlope, fixedexponent, bias, obeyDataTypeOverride);

Arguments

isSigned

true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalSlope

Fractional slope of the data type.
fixedexponent

exponent of the slope of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

true indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type

 Simulink.MSFcnRunTimeBlock

5-271

could be True Doubles, True Singles, ScaledDouble, or the fixed-point data
type specified by the other arguments of the function.

false indicates that the Data Type Override setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data
type ID. The data type ID can be used to specify the data types of input and output ports,
run-time parameters, and DWork states. It can also be used with all the standard data
type access methods defined for instances of this class, such as “DatatypeSize” on page
5-303.

Use this function if you want to register a fixed-point data type by specifying the word
length, fractional slope, fixed exponent, and bias. Alternatively, you can use one of the
other fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” on page 5-269 to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpSlopeBias” on page 5-271 to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point
Designer license is checked out.

RegisterDataTypeFxpSlopeBias

Purpose

Register data type with [Slope Bias] scaling.

Syntax

dtID = RegisterDataTypeFxpSlopeBias(isSigned, wordLength,

totalSlope, bias, obeyDataTypeOverride);

Arguments

isSigned

true if the data type is signed.

false if the data type is unsigned.

5 Simulink Classes

5-272

wordLength

Total number of bits in the data type, including any sign bit.
totalSlope

Total slope of the scaling of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

true indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type
could be True Doubles, True Singles, ScaledDouble, or the fixed-point data
type specified by the other arguments of the function.

false indicates that the Data Type Override setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data
type ID. The data type ID can be used to specify the data types of input and output ports,
run-time parameters, and DWork states. It can also be used with all the standard data
type access methods defined for instances of this class, such as “DatatypeSize” on page
5-303.

Use this function if you want to register a fixed-point data type with [Slope Bias] scaling.
Alternatively, you can use one of the other fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” on page 5-269 to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpFSlopeFixexpBias” on page 5-270 to register a data type
by specifying the word length, fractional slope, fixed exponent, and bias

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point
Designer license is checked out.

SetAccelRunOnTLC

Purpose

Specify whether to use block's TLC file to generate code for the Accelerator mode of
Simulink software.

 Simulink.MSFcnRunTimeBlock

5-273

Syntax

SetAccelRunOnTLC(bVal);

Arguments

bVal

May be 'true' (use TLC file) or 'false' (run block in interpreted mode).

Description

Specify if the block should use its TLC file to generate code that runs with the
accelerator. If this option is 'false', the block runs in interpreted mode. See the S-
function matlabroot/toolbox/simulink/blocks/msfcn_times_two.m in the
Simulink model msfcndemo_timestwo for an example.

SetPreCompInpPortInfoToDynamic

Purpose

Set precompiled attributes of this block's input ports to be inherited.

Syntax

SetPreCompInpPortInfoToDynamic;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling
mode) of this block's input ports to be inherited. See the S-function matlabroot/
toolbox/simulink/simdemos/simfeatures/adapt_lms.m in the Simulink model
sldemo_msfcn_lms for an example.

SetPreCompOutPortInfoToDynamic

Purpose

Set precompiled attributes of this block's output ports to be inherited.

Syntax

SetPreCompOutPortInfoToDynamic;

5 Simulink Classes

5-274

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling
mode) of the block's output ports to be inherited. See the S-function matlabroot/
toolbox/simulink/simdemos/simfeatures/adapt_lms.m in the Simulink model
sldemo_msfcn_lms for an example.

SetPreCompPortInfoToDefaults

Purpose

Set precompiled attributes of this block's ports to the default values.

Syntax

SetPreCompPortInfoToDefaults;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling
mode) of the block's ports to the default values. By default, a port accepts a real scalar
sampled signal with a data type of double.

SetSimViewingDevice

Purpose

Specify whether this block is a viewer.

Syntax

SetSimViewingDevice(bVal);

Arguments

bVal

May be 'true' (is a viewer) or 'false' (is not a viewer).

Description

Specify if the block is a viewer/scope. If this flag is specified, the block will be used only
during simulation and automatically stubbed out in generated code.

 Simulink.MSFcnRunTimeBlock

5-275

SupportsMultipleExecInstances

Purpose

Specify whether or not a For Each Subsystem supports an S-function inside of it.

Syntax

SupportsMultipleExecInstances(bVal);

Arguments

bVal

May be 'true' (S-function is supported) or 'false' (S-function is not supported).

Description

Specify if an S-function can operate within a For Each Subsystem.

WriteRTWParam

Purpose

Write a custom parameter to the Simulink Coder information file used for code
generation.

Syntax

WriteRTWParam(pType, pName, pVal)

Arguments

pType

Type of the parameter to be written. Valid values are 'string' and 'matrix'.
pName

Name of the parameter to be written.
pVal

Value of the parameter to be written.

5 Simulink Classes

5-276

Description

Use in the WriteRTW method of the MATLAB S-function to write out custom parameters.
These parameters are generally settings used to determine how code should be generated
in the TLC file for the S-function. See the S-function matlabroot/toolbox/simulink/
simdemos/simfeatures/adapt_lms.m in the Simulink model sldemo_msfcn_lms for
an example.

Introduced before R2006a

 Simulink.NumericType

5-277

Simulink.NumericType

Specify floating point, integer, or fixed point data type

Description

This class allows you to specify a numeric data type as follows:

1 Create an instance of this class in the MATLAB base workspace, a model workspace,
or a data dictionary. To create a numeric type in a model workspace, you must
disable the Is alias option.

2 Set the properties of the object to create a custom floating point, integer, or fixed
point data type.

3 Assign the data type to all signals and parameters of your model that you want to
conform to the data type.

Assigning a data type in this way allows you to change the data types of the signals and
parameters in your model by changing the properties of the object that describe them.
You do not have to change the model itself.

You can use objects of this class, instead of the class Simulink.AliasType, to define
and name your own fixed-point data types. Simulink.AliasType objects can create an
alias for a fixed-point data type, but cannot define one.

5 Simulink Classes

5-278

Property Dialog Box

Data type mode
Data type of this numeric type. The options are listed in this table.

Option Description

Double Same as the MATLAB double type.
Single Same as the MATLAB single type.
Boolean Same as the MATLAB boolean type.
Fixed-point:

unspecified scaling

A fixed-point data type with unspecified scaling.

 Simulink.NumericType

5-279

Option Description

Fixed-point: binary

point scaling

A fixed-point data type with binary-point scaling.

Fixed-point: slope

and bias scaling

A fixed-point data type with slope and bias scaling.

Selecting a data type mode causes Simulink software to enable controls on the dialog
box that apply to the mode and to disable other controls that do not apply. Selecting
a fixed-point data type mode can, depending on the other dialog box options that
you select, cause the model to run only on systems that have a Fixed-Point Designer
option installed.

Data type override
Data type override setting for this numeric type. The options are listed in this table.

Option Description

Inherit (default) Data type override setting for the context
in which this numeric type is used (block,
signal, Stateflow chart in Simulink)
applies to this numeric type.

Off Data type override setting does not affect
this numeric type.

Is alias
If you select this option for a workspace object of this type, Simulink software uses
the name of the object as the data type for all objects that specify the object as its
data type. Otherwise, Simulink software uses the data type mode of the data type as
its name, or, if the data type mode is a fixed-point mode, Simulink software generates
a name that encodes the type properties, using the encoding specified by Fixed-Point
Designer.

Data scope
Specifies whether the data type definition is imported from, or exported to, a header
file during code generation. The possible values are listed in this table.

Value Action

Auto (default) If no value is specified for Header file, export the type
definition to model_types.h. model is the model name.

5 Simulink Classes

5-280

Value Action

If a value is specified for Header file, import the data type
definition from the specified header file.

Exported Export the data type definition to a header file, which can be
specified in the Header file field. If no value is specified for
Header file, the header file name defaults to type.h. type
is the data type name.

Imported Import the data type definition from a header file, which can
be specified in the Header file field. If no value is specified
for Header file, the header file name defaults to type.h.
type is the data type name.

Header file
Name of a C header file from which a data type definition is imported, or to which
a data type definition is exported, based on the value of Data scope. If this field
is specified, the specified name is used during code generation for importing or
exporting. If this field is empty, the value defaults to type.h if Data scope equals
Imported or Exported, or defaults to model_types.h if Data scope equals Auto.

Description
Description of this data type. This field is intended for use in documenting this data
type. Simulink software ignores it.

Signedness
Specifies whether the data type is signed or unsigned, or inherits its signedness. Set
the option to Signed, Unsigned, or Auto. This option is enabled only for fixed-point
data type modes as shown.

 Simulink.NumericType

5-281

Word length
Word length in bits of the fixed-point data type. This option is enabled only for fixed-
point data type modes.

Fraction length
Number of bits to the right of the binary point. This option is enabled only if the data
type mode is Fixed-point: binary point scaling.

5 Simulink Classes

5-282

Slope
Slope for slope and bias scaling. This option is enabled only if the data type mode is
Fixed-point: slope and bias scaling.

 Simulink.NumericType

5-283

Bias
Bias for slope and bias scaling. This option is enabled only if the data type mode is
Fixed-point: slope and bias scaling. See the preceding figure.

5 Simulink Classes

5-284

Properties

Name Access Description

Bias RW Bias used for slope and bias scaling of a fixed-
point data type. This field is intended for use by
Fixed-Point Designer. (Bias)

DataScope RW A string specifying whether the data type
definition is imported from, or exported to, a
header file during code generation. (Data scope)

DataTypeMode RW String that specifies the data type mode of
this numeric type. Valid values are 'Double',
'Boolean', 'Single', 'Fixed-point:
unspecified scaling', 'Fixed-point:
binary point scaling', and 'Fixed-
point: slope and bias scaling'. (Data
type mode)

DataTypeOverride RW String that specifies the data type override
mode. Valid values are Inherit and Off.
(Data type override)

Description RW Description of this data type. (Description)
Fixedexponent RW Exponent used for binary point scaling. This

property equals -FractionLength. Setting
this property causes Simulink software to set
the FractionLength and Slope properties
accordingly, and vice versa. This property
applies only if the DataTypeMode is Fixed-
point: binary point scaling or Fixed-
point: slope and bias scaling. It does
not appear in the object Property dialog box,
but can be accessed at the command prompt.

FractionLength RW Integer that specifies the size in bits of the
fractional portion of the fixed-point number.
This property equals -Fixedexponent.
Setting this property causes Simulink
software to set the Fixedexponent property
accordingly, and vice versa. This field is

 Simulink.NumericType

5-285

Name Access Description

intended for use by Fixed-Point Designer.
(Fraction length)

HeaderFile RW A string that specifies the name of a C header
file from which a data type definition is
imported, or to which a data type definition is
exported, during code generation. (Header file)

IsAlias RW Integer that specifies whether to use the name
of this object as the name of the data type that
it specifies. Valid values are 1 (yes) or 0 (no). (Is
alias)

Signedness RW Boolean that specifies whether this data type
is signed, unsigned, or inherits its signedness.
Valid values are 1 (signed), 0 (unsigned), or
Auto (inherit signedness). (Signedness)

Slope RW Slope for slope and bias scaling of
fixed-point numbers. This property
equals SlopeAdjustmentFactor
* 2^Fixedexponent. If
SlopeAdjustmentFactor is 1.0, Simulink
software displays the value of this
field as 2^SlopeAdjustmentFactor.
Otherwise, it displays it as a numeric value.
Setting this property causes Simulink
software to set the Fixedexponent and
SlopeAdjustmentFactor properties
accordingly, and vice versa. This property
appears only if DataTypeMode is Fixed-
point: slope and bias scaling. (Slope)

SlopeAdjustmentFactor RW Slope for slope and bias scaling of fixed-
point numbers. Setting this property causes
Simulink software to adjust the Slope property
accordingly, and vice versa. This property
applies only if DataTypeMode is Fixed-
point: slope and bias scaling. It does
not appear in the object Property dialog box,
but can be accessed at the command prompt.

5 Simulink Classes

5-286

Name Access Description

WordLength RW Integer that specifies the word size of this data
type. This field is intended for use by Fixed-
Point Designer. This property appears only
if DataTypeMode is Fixed-point. (Word
Length)

Methods

Name Description

isboolean Determine whether data type is Boolean.

Returns 1 when the DataTypeMode is
'Boolean', 0 otherwise.

isdouble Determine whether data type is double
precision.

Returns 1 when the DataTypeMode is
'Double', 0 otherwise.

isfixed Determine whether data type is fixed point.

Returns 1 when the DataTypeMode is any of the
fixed-point options, 0 otherwise. The fixed-point
options are:

• 'Fixed-point: unspecified scaling'

• 'Fixed-point: binary point scaling'

• 'Fixed-point: slope and bias

scaling'

isfloat Determine whether data type is floating point.

Returns 1 when the DataTypeMode is
'Double' or 'Single', 0 otherwise.

isscalingbinarypoint Determine whether data type has binary point
scaling.

 Simulink.NumericType

5-287

Name Description

Returns 1 when the data type has binary point
scaling or trivial slope and bias scaling, 0
otherwise. Slope and bias scaling is trivial when
the slope is an integer power of two and the bias
is zero.

isscalingslopebias Determine whether data type has nontrivial
slope and bias scaling.

Returns 1 when the data type has nontrivial
slope and bias scaling, 0 otherwise. Slope and
bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

isscalingunspecified Determine whether data type has unspecified
scaling.

Returns 1 when the data type is fixed point and
its scaling has not been specified, 0 otherwise.

DataTypeMode is 'Fixed-point:
unspecified scaling'

issingle Determine whether data type is single-precision.

Returns 1 when the DataTypeMode is
'Single', 0 otherwise.

More About
• “ Data Types Supported by Simulink”
• “About Data Types in Simulink”

See Also
Simulink.AliasType

Related Examples
• “Validate a Floating-Point Embedded Model”

5 Simulink Classes

5-288

• “Control Signal Data Types”
• “Create a Fixed-Point Data Type”
• “Create and Apply User-Defined Data Types”

Introduced before R2006a

 Simulink.Parameter

5-289

Simulink.Parameter

Specify value, value range, data type, and other properties of block parameter

Description

This class enables you to create workspace objects that you can then use as the values of
block parameters — for example, the value of the Gain parameter of a Gain block. You
can create a Simulink.Parameter object in the base MATLAB workspace or a model
workspace. However, to create the object in a model workspace, you must set the object
storage class to Auto.

Parameter objects let you specify not only the value of a parameter but also other
information about the parameter, such as the parameter's purpose, its dimensions,
or its minimum and maximum values. Some Simulink products use this information.
For example, Simulink and Simulink Coder products use information specified by
Simulink.Parameter objects to determine whether the parameter is tunable (see
“Tunable Block Parameters” in Simulink User's Guide).

Simulink performs range checking of parameter values. The software alerts you when
the parameter object value lies outside a range that corresponds to its specified minimum
and maximum values and data type.

You can use the Simulink.Parameter dialog box to define a Simulink.Parameter
object. To open the dialog box, in the Model Explorer, select the base workspace or a
model workspace and select Add > Simulink Parameter.

5 Simulink Classes

5-290

Property Dialog Box

Value
Ideal real-world value of the parameter. You can use MATLAB expressions to specify
the dimensions and complexity of the parameter. The table shows examples of valid
ways to specify a value.

Expression Description

15.23 Specifies a scalar value

 Simulink.Parameter

5-291

Expression Description

[3 4; 9 8] Specifies a matrix
3+2i Specifies a complex value
struct('A',20,'B',5) Specifies a structure for initialization of a bus with two

signal elements, A and B, with double-precision values 20
and 5.

The shape and attributes of the structure must match
the shape and attributes of the elements in the bus.
For information about specifying an initial condition
structure, see “Specify Initial Conditions for Bus Signals”.

To use a Simulink.Parameter object to represent a parameter of a particular
numeric data type, specify the ideal value using the Value property, and specify the
type using the Data type property.

For example, to use a parameter object to represent the number single(32.5),
specify the Value property as 32.5 and the Data type property as single.

If you set the Value property by using a typed expression such as single(32.5),
the Data type property changes to reflect the new type. A best practice is to use
an expression that is not typed. This best practice helps you to avoid accumulating
numerical error through repeated quantizations or premature data type saturation,
especially for fixed-point data types.

Data type
Data type of the parameter. When you simulate or generate code, Simulink casts the
ideal parameter value to the specified data type.

You can either select a data type from the drop-down list, or specify the name of a
type using a string. If you specify a string, it must evaluate to one of these entities:

• A built-in data type that Simulink supports. For a list of supported data types, see
“ Data Types Supported by Simulink”.

• A Simulink.NumericType object. You can use this technique to specify a fixed-
point data type.

• A Simulink.AliasType object.
• A Simulink.Bus object.

5 Simulink Classes

5-292

You can use the Bus Editor to define or edit a Simulink.Parameter object that
uses a bus object as the data type. In the Bus Editor, use one of these approaches:

• Select File > Create/Edit a Simulink.Parameter object.
• On the toolbar, click Create/Edit a Simulink.Parameter object .

To customize the new object, edit the code in the MATLAB Editor.
• The name of an enumerated data type. Prefix the name with Enum:. For

example, to use an enumerated data type called myEnumType, specify 'Enum:
myEnumType'.

If you select auto, which is the default setting, the target block determines the data
type. For example, if you use the object to specify the Constant value parameter of a
Constant block whose output data type is int8, the block casts the parameter value
to int8 when you simulate or generate code.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Data type parameter. For more information, see
“Specify Data Types Using Data Type Assistant”.

Units
Measurement units in which this value is expressed (for example, inches). This field
is intended for use in documenting this parameter. Simulink ignores it.

Dimensions
Dimensions of the parameter. Simulink determines the dimensions from the entry in
the Value field of this parameter. You cannot set this field yourself.

Complexity
Numeric type (i.e., real or complex) of the parameter. Simulink determines the
numeric type of this parameter from the entry in the Value field of this parameter.
You cannot set this field yourself.

Minimum
Minimum value that the parameter can have. The default value is [] (unspecified).
Specify a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for a parameter, do not set the
minimum value for bus data on the parameter property dialog box. Simulink ignores

 Simulink.Parameter

5-293

this setting. Instead, set the minimum values for bus elements of the bus object
specified as the data type. For information on the Minimum property of a bus
element, see Simulink.BusElement.

Simulink generates a warning if the parameter value is less than the minimum
value or if the minimum value is outside the range of the parameter data type. When
updating the diagram or starting a simulation, Simulink generates an error in these
cases.

Maximum
Maximum value that the parameter can have. The default value is [] (unspecified).
Specify a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for a parameter, do not set the
maximum value for bus data on the parameter property dialog box. Simulink ignores
this setting. Instead, set the maximum values for bus elements of the bus object
specified as the data type. For information on the Maximum property of a bus
element, see Simulink.BusElement.

Simulink generates a warning if the parameter value is greater than the maximum
value or if the maximum value is outside the range of the parameter data type. When
updating the diagram or starting a simulation, Simulink generates an error in these
cases.

Storage class
Storage class of this parameter. Simulink code generation products use this property
to allocate memory for this parameter in generate code. For more information, see
“Tunable Parameter Storage Classes” in the Simulink Coder documentation and
“Simulink Package Custom Storage Classes” in the Embedded Coder documentation.

Alias
Alternate name for this parameter. Simulink ignores this setting.

Alignment
Data alignment boundary, specified in number of bytes. The starting memory
address for the data allocated for the parameter will be a multiple of the Alignment
setting. The default value is -1, which specifies that the code generator should
determine an optimal alignment based on usage. Otherwise, specify a positive integer
that is a power of 2, not exceeding 128. This field is intended for use by Simulink

5 Simulink Classes

5-294

Coder software (see “Data Alignment for Code Replacement”). Simulink software
ignores this setting.

Description
Description of this parameter. This field is intended for use in documenting this
parameter.

If you have an Embedded Coder license, you can add the signal description as a
comment for the variable declaration in generated code.

• Specify a storage class for the signal object other than Auto.
• On the Code Generation > Comments pane of the Model Configuration

Parameters dialog box, select the model configuration parameter Simulink
data object descriptions. For more information, see “Simulink data object
descriptions”.

Properties

Name Access Description

Value RW Value of this parameter. (Value)
CoderInfo R Information used by Simulink Coder software for

generating code for this parameter. The value of this
property is an object of Simulink.CoderInfo class.

Description RW String that describes this parameter. This property is
intended for user use. Simulink itself does not use it.
(Description)

DataType RW String specifying the data type of this parameter.
(Data type)

Min RW Minimum value that this parameter can have.
(Minimum)

Max RW Maximum value that this parameter can have.
(Maximum)

DocUnits RW Measurement units in which this parameter's value is
expressed. (Units)

Complexity RO String specifying the numeric type of this parameter.
Valid values are 'real' or 'complex'. (Complexity)

 Simulink.Parameter

5-295

Name Access Description

Dimensions RO Vector specifying the dimensions of this parameter.
(Dimensions)

More About
• “ Data Objects”
• “ Data Types Supported by Simulink”

See Also
AUTOSAR.Parameter | Simulink.CoderInfo | Simulink.Signal

Related Examples
• “Specify Block Parameter Values”
• “Define Data Classes”
• “Control Parameter Representation and Declare Tunable Parameters in the

Generated Code”

Introduced before R2006a

5 Simulink Classes

5-296

Simulink.RunTimeBlock

Allow Level-2 MATLAB S-function and other MATLAB programs to get information
about block while simulation is running

Description

This class allows a Level-2 MATLAB S-function or other MATLAB program to obtain
information about a block. Simulink software creates an instance of this class or a
derived class for each block in a model. Simulink software passes the object to the
callback methods of Level-2 MATLAB S-functions when it updates or simulates a model,
allowing the callback methods to get block-related information from and provide such
information to Simulink software. See “Write Level-2 MATLAB S-Functions” in Writing
S-Functions for more information. You can also use instances of this class in MATLAB
programs to obtain information about blocks during a simulation. See “Access Block Data
During Simulation” for more information.

Note Simulink.RunTimeBlock objects do not support MATLAB sparse matrices. For
example, the following line of code attempts to assign a sparse identity matrix to the
run-time object's output port data. This line of code in a Level-2 MATLAB S-function
produces an error:

 block.Outport(1).Data = speye(10);

Parent Class

None

Derived Classes

Simulink.MSFcnRunTimeBlock

 Simulink.RunTimeBlock

5-297

Property Summary

Name Description

“BlockHandle” on page
5-298

Block's handle.

“CurrentTime” on page
5-298

Current simulation time.

“NumDworks” on page
5-299

Number of discrete work vectors used by the block.

“NumOutputPorts” on page
5-299

Number of block output ports.

“NumContStates” on page
5-299

Number of block's continuous states.

“NumDworkDiscStates” on
page 5-300

Number of block's discrete states

“NumDialogPrms” on page
5-300

Number of parameters that can be entered on S-function
block's dialog box.

“NumInputPorts” on page
5-300

Number of block's input ports.

“NumRuntimePrms” on page
5-301

Number of run-time parameters used by block.

“SampleTimes” on page
5-301

Sample times at which block produces outputs.

Method Summary

Name Description

“ContStates” on page 5-301 Get a block's continuous states.
“DataTypeIsFixedPoint” on page
5-302

Determine whether a data type is fixed point.

“DatatypeName” on page 5-302 Get name of a data type supported by this
block.

5 Simulink Classes

5-298

Name Description

“DatatypeSize” on page 5-303 Get size of a data type supported by this block.
“Derivatives” on page 5-303 Get a block's continuous state derivatives.
“DialogPrm” on page 5-304 Get a parameter entered on an S-function

block's dialog box.
“Dwork” on page 5-304 Get one of a block's DWork vectors.
“FixedPointNumericType” on page
5-305

Determine the properties of a fixed-point data
type.

“InputPort” on page 5-305 Get one of a block's input ports.
“OutputPort” on page 5-306 Get one of a block's output ports.
“RuntimePrm” on page 5-307 Get one of the run-time parameters used by a

block.

Properties

BlockHandle

Description

Block's handle.

Access

RO

CurrentTime

Description

Current simulation time.

Access

RO

 Simulink.RunTimeBlock

5-299

NumDworks

Description

Number of data work vectors.

Access

RW

See Also

ssGetNumDWork

NumOutputPorts

Description

Number of output ports.

Access

RW

See Also

ssGetNumOutputPorts

NumContStates

Description

Number of continuous states.

Access

RW

See Also

ssGetNumContStates

5 Simulink Classes

5-300

NumDworkDiscStates

Description

Number of discrete states. In a MATLAB S-function, you need to use DWorks to set up
discrete states.

Access

RW

See Also

ssGetNumDiscStates

NumDialogPrms

Description

Number of parameters declared on the block's dialog. In the case of the S-function, it
returns the number of parameters listed as a comma-separated list in the S-function
parameters dialog field.

Access

RW

See Also

ssGetNumSFcnParams

NumInputPorts

Description

Number of input ports.

Access

RW

 Simulink.RunTimeBlock

5-301

See Also

ssGetNumInputPorts

NumRuntimePrms

Description

Number of run-time parameters used by this block. See “Run-Time Parameters” for more
information.

Access

RW

See Also

ssGetNumSFcnParams

SampleTimes

Description

Block's sample times.

Access

RW for MATLAB S-functions, RO for all other blocks.

Methods

ContStates

Purpose

Get a block's continuous states.

Syntax

states = ContStates();

5 Simulink Classes

5-302

Description

Get vector of continuous states.

See Also

ssGetContStates

DataTypeIsFixedPoint

Purpose

Determine whether a data type is fixed point.

Syntax

bVal = DataTypeIsFixedPoint(dtID);

Arguments

dtID

Integer value specifying the ID of a data type.

Description

Returns true if the specified data type is a fixed-point data type.

DatatypeName

Purpose

Get the name of a data type.

Syntax

name = DatatypeName(dtID);

Arguments

dtID

Integer value specifying ID of a data type.

 Simulink.RunTimeBlock

5-303

Description

Returns the name of the data type specified by dtID.

See Also

“DatatypeSize” on page 5-303

DatatypeSize

Purpose

Get the size of a data type.

Syntax

size = DatatypeSize(dtID);

Arguments

dtID

Integer value specifying the ID of a data type.

Description

Returns the size of the data type specified by dtID.

See Also

“DatatypeName” on page 5-302

Derivatives

Purpose

Get derivatives of a block's continuous states.

Syntax

derivs = Derivatives();

Description

Get vector of state derivatives.

5 Simulink Classes

5-304

See Also

ssGetdX

DialogPrm

Purpose

Get an S-function's dialog parameters.

Syntax

param = DialogPrm(pIdx);

Arguments

pIdx

Integer value specifying the index of the parameter to be returned.

Description

Get the specified dialog parameter. In the case of the S-function, each DialogPrm
corresponds to one of the elements in the comma-separated list of parameters in the S-
function parameters dialog field.

See Also

ssGetSFcnParam, “RuntimePrm” on page 5-307

Dwork

Purpose

Get one of a block's DWork vectors.

Syntax

dworkObj = Dwork(dwIdx);

Arguments

dwIdx

 Simulink.RunTimeBlock

5-305

Integer value specifying the index of a work vector.

Description

Get information about the DWork vector specified by dwIdx where dwIdx is
the index number of the work vector. This method returns an object of type
Simulink.BlockCompDworkData.

See Also

ssGetDWork

FixedPointNumericType

Purpose

Get the properties of a fixed-point data type.

Syntax

eno = FixedPointNumericType(dtID);

Arguments

dtID

Integer value specifying the ID of a fixed-point data type.

Description

Returns an object of embedded.Numeric class that contains the attributes of the
specified fixed-point data type.

Note embedded.Numeric is also the class of the numerictype objects created
by Fixed-Point Designer software. For information on the properties defined by
embedded.Numeric class, see numerictype Object Properties.

InputPort

Purpose

Get an input port of a block.

5 Simulink Classes

5-306

Syntax

port = InputPort(pIdx);

Arguments

pIdx

Integer value specifying the index of an input port.

Description

Get the input port specified by pIdx, where pIdx is the index number of the input port.
For example,

port = rto.InputPort(1)

returns the first input port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreCompInputPortData or
Simulink.BlockCompInputPortData, depending on whether the model that contains
the port is uncompiled or compiled. You can use this object to get and set the input port's
uncompiled or compiled properties, respectively.

See Also

ssGetInputPortSignalPtrs, Simulink.BlockPreCompInputPortData,
Simulink.BlockCompInputPortData, “OutputPort” on page 5-306

OutputPort

Purpose

Get an output port of a block.

Syntax

port = OutputPort(pIdx);

Arguments

pIdx

Integer value specifying the index of an output port.

 Simulink.RunTimeBlock

5-307

Description

Get the output port specified by pIdx, where pIdx is the index number of the output
port. For example,

port = rto.OutputPort(1)

returns the first output port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreCompOutputPortData or
Simulink.BlockCompOutputPortData, depending on whether the model that contains
the port is uncompiled or compiled, respectively. You can use this object to get and set
the output port's uncompiled or compiled properties, respectively.

See Also

ssGetInputPortSignalPtrs, Simulink.BlockPreCompOutputPortData,
Simulink.BlockCompOutputPortData

RuntimePrm

Purpose

Get an S-function's run-time parameters.

Syntax

param = RuntimePrm(pIdx);

Arguments

pIdx

Integer value specifying the index of a run-time parameter.

Description

Get the run-time parameter whose index is pIdx. This run-time parameter is a
Simulink.BlockData object of type Simulink.BlockRunTimePrmData.

See Also

ssGetRunTimeParamInfo

5 Simulink Classes

5-308

Introduced before R2006a

 Simulink.SampleTime class

5-309

Simulink.SampleTime class
Package: Simulink

Object containing sample time information

Description

The SampleTime class represents the sample time information associated with an
individual sample time.

Use the methods Simulink.Block.getSampleTimes and
Simulink.BlockDiagram.getSampleTimes to retrieve the values of the SampleTime
properties for a block and for a block diagram, respectively.

Properties

Value

A two-element array of doubles that contains the period and offset of the sample time

Description

A character string that describes the sample time type

ColorRGBValue

A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample
time color

Annotation

A character string that represents the annotation of a specific sample time (for example,
'D1')

OwnerBlock

For asynchronous and variable sample times, OwnerBlock is a string containing the full
path to the block that controls the sample time. For all other types of sample times, it is
an empty string.

5 Simulink Classes

5-310

ComponentSampleTimes

If the sample time is an async union or if the sample time is hybrid and the component
sample times are available, then the array ComponentSampleTimes contains
Simulink.SampleTime objects.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples

Retrieve the sample time information for the 'vdp' model.

ts = Simulink.BlockDiagram.getSampleTimes('vdp')

Simulink returns:

ts =

 1x2 Simulink.SampleTime

 Package: Simulink

 Properties:

 Value

 Description

 ColorRGBValue

 Annotation

 OwnerBlock

 ComponentSampleTimes

 Methods

To examine the values of the properties:

ts(1), ts(2)

ans =

 Simulink.SampleTime

 Simulink.SampleTime class

5-311

 Package: Simulink

 Properties:

 Value: [0 0]

 Description: 'Continuous'

 ColorRGBValue: [0 0 0]

 Annotation: 'Cont'

 OwnerBlock: []

 ComponentSampleTimes: {}

 Methods

ans =

 Simulink.SampleTime

 Package: Simulink

 Properties:

 Value: [Inf 0]

 Description: 'Constant'

 ColorRGBValue: [1 0.2600 0.8200]

 Annotation: 'Inf'

 OwnerBlock: []

 ComponentSampleTimes: {}

 Methods

See Also
Simulink.Block.getSampleTimes | Simulink.BlockDiagram.getSampleTimes

5 Simulink Classes

5-312

Simulink.scopes.TimeScopeConfiguration class
Package: Simulink.scopes

Configure Scope and Time Scope for programmatic access

Description

The Simulink.scopes.TimeScopeConfiguration object contains the scope
configuration information for the Scope and Time Scope block.

Construction

Call the get_param function, specifying a Scope and Time Scope block.

htsc = get_param(gcbh,'ScopeConfiguration') constructs a new Scope
Configuration object.

Properties

ActiveDisplay

Active display for display-specific properties

Specify the active display as an integer to get and set relevant properties. The number
of a display corresponds to its column-wise placement index. Set this property to control
which display has its axes colors, line properties, marker properties, and visibility
changed. Tunable

Setting this property controls which display is used for ShowGrid, ShowLegend, Title,
PlotAsMagnitudePhase, YLabel, and YLimits.

Default: 1

AxesScaling

Specify how axes should be scaled when plotting data

 Simulink.scopes.TimeScopeConfiguration class

5-313

Specify when the scope automatically scales the axes. You can select one of the following
options:

• Manual — When you select this option, the scope does not automatically scale the
axes. You can manually scale the axes in any of the following ways:

• Select Tools > Axes Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl and A simultaneously.

• Auto — When you select this option, the scope scales the axes as needed, both during
and after simulation. Selecting this option shows the Do not allow Y-axis limits to
shrink check box.

• After N Updates — Selecting this option causes the scope to scale the axes after a
specified number of updates. This option is useful and more efficient when your scope
display starts with one axis scale, but quickly reaches a different steady state axis
scale. Selecting this option shows the Number of updates edit box.

By default, this property is set to Auto. This property is Tunable.

AxesScalingNumUpdates — Number of updates before scaling y-axes
'10' (default) | positive integer string

Number of updates before scaling y-axes. Specified as a positive integer string.

Dependency: Activate this property by setting AxesScaling to 'After N Updates'.

Block Configuration Property: Number of updates

BufferLength

Number of data points in buffer

Specify the size of the buffer that the scope holds in its memory cache. Memory is limited
by available memory on your system. If your signal has M rows of data and N data points
in each row, M x N is the number of data points per time step. Multiply this result by the
number of time steps for your model to obtain the required buffer length. For example, if
you have 10 rows of data with each row having 100 data points and your run will be 10
time steps, you should enter 10,000 (which is 10 x 100 x 10) as the buffer length.

Default: 5000

5 Simulink Classes

5-314

DataLogging

Specify whether to log data to the workspace

Set this property to true to log data to the workspace. Data is logged as a dataset object.
See Simulink.SimulationData.Dataset for information. Set this property to false to
prevent the scope from logging data.

This property does not apply to Floating Scopes and Scope Viewers.

Default: false

DataLoggingVariableName

Name of variable for logged data

Specify as a string the name of the variable in the MATLAB workspace to which the
scope logs data. Any existing variable is overwritten.

This property does not apply to Floating Scopes and Scope Viewers.

Default: ScopeData

DataLoggingLimitDataPoints

Specify whether to limit number of logged data points

Set this property to true to limit the number of data points at the end of the simulation
data that the scope logs. Set this property to false to log all data points.

Default: false

DataLoggingMaxPoints

Maximum number of data points to log

Specify the maximum number of data points at the end of the data to log to the
workspace.

Default: 5000

DataLoggingDecimateData

Specify whether to decimate logged data

 Simulink.scopes.TimeScopeConfiguration class

5-315

Set this property to true to decimate logged data. Set this property to false to log all
data points.

This property does not apply to Floating Scopes and Scope Viewers.

Default: false

DataLoggingDecimation

Logged data decimation rate

Specify the rate at which to log decimation data. The scope logs every Nth data point,
where N is the decimation factor you specify.

This property does not apply to Floating Scopes and Scope Viewers.

Default: 2

DataLoggingSaveFormat

Logged data format

Specify the format in which to save logged data. Unless otherwise noted, you can
save logged data for single- and multi-port data, sample-based and frame-based data,
variable-size data, MAT-file logging, and external mode archiving. Valid values are:

• Structure With Time — Save logged data as a structure with associated time
information to the MATLAB workspace. Structure With Time format does not support
multirate data.

• Structure — Save logged data as a structure to the MATLAB workspace. Structure
format does not support multirate data.

• Array — Save logged data as an array with associated time information to the
MATLAB workspace. Array format does not support multiport sample-based data,
single port or multiport frame-based data, variable-size data, or multirate data.

• Dataset — Save logged data as a dataset object to the MATLAB workspace. Dataset
format does not support variable-size data, MAT-file logging, or external mode
archiving. See Simulink.SimulationData.Dataset for information.

This property does not apply to Floating Scopes and Scope Viewers.

Default: Dataset

5 Simulink Classes

5-316

DisplayFullPath — Full path display control
false | true

Display the full block path on the scope title bar, specified as one of these values:

• false — Full path is not displayed.
• true — Full path is displayed.

Block Configuration Property: Display the full path

Default: false

FrameBasedProcessing — Frame-based processing of signals.
false (default for Time Scope block) | true (default for Scope block)

Frame-based processing of signals, specified as one of these values:

• false — Process signal values in a channel at each time interval (sample based).
• true — Process signal values in a channel as a group of values from multiple time

intervals (frame based). Frame-based processing is available only with discrete input
signals.

Block Configuration Property: Input processing

LayoutDimensions

Layout grid dimensions

Specify the layout grid dimensions as a 2-element vector: [numberOfRows,
numberOfColumns]. You can use no more than four rows or four columns. This property
is Tunable.

Default: [1,1]

MaximizeAxes

Maximize axes control

Specify whether to display the scope in maximized axes mode. In this mode, each of the
axes is expanded to fit into the entire display. To conserve space, labels do not appear in
each display. Instead, tick-mark values appear on top of the plotted data. You can select
one of the following options:

 Simulink.scopes.TimeScopeConfiguration class

5-317

• Auto — In this mode, the axes appear maximized in all displays only if the Title
and YLabel properties are empty for every display. If you enter any value in any
display for either of these properties, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any values entered
into the Title and YLabel properties are hidden.

• Off — In this mode, none of the axes appear maximized.

This property is Tunable.

Default: 'Auto'

MinimizeControls

Minimize menus and toolbar

Set this property to true to hide the menus and toolbar. Set this property to false to
display the menus and toolbar. This property is not active if the scope is docked. This
property is Tunable

Default: false

Name

Caption to display on the Scope or Time Scope window

Specify as a string the caption to display on the scope window. This property is Tunable.

Default: ‘Scope’ for Simulink Scope and 'Time Scope'for DSP System Toolbox.

NumInputPorts

Number of input signals

Specify the number of input signals to display on the scope as a positive integer. You
must invoke the step method with the same number of inputs as the value of this
property.

This property does not apply to Floating Scopes and Scope Viewers.

Default: 1

OpenAtSimulationStart

Open the scope when starting the simulation

5 Simulink Classes

5-318

Set this property to true to open the scope when the simulation starts. Set this property
to false to prevent the scope from opening at the start of simulation.

Default: true

PlotAsMagnitudePhase

Plot signal magnitude and phase

When you set this property to true, the scope plots the magnitude and phase of the
input signal on two separate axes within the same active display. When you set this
property to false, the scope plots the real and imaginary parts of the input signal on
two separate axes within the same active display. This property is particularly useful for
complex-valued input signals. Selecting this check box affects the phase for real-valued
input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.
This property is Tunable.

When set, ActiveDisplay controls which displays are updated. The active display
shows the magnitude of the input signal on the top axes and its phase, in degrees, on the
bottom axes.

Default: false

Position

Scope or Time Scope window position in pixels

Specify, in pixels, the size and location of the scope window as a 4-element double vector
of the form [left bottom width height]. You can place the scope window in a specific
position on your screen by modifying the values to this property. This property is
Tunable.

Default: The default depends on your screen resolution. By default, a scope window
appears in the center of your screen with a width of 410 pixels and height of 300 pixels.

ReduceUpdates

Specify how often a Scope window updates signal data. Reducing updates can improve
simulation performance.

• 0 (false) — Update displays at each time step.

 Simulink.scopes.TimeScopeConfiguration class

5-319

• 1 (true) — Record data at each time step, but update displays periodically at a rate
not exceeding 20 hertz.

You can also set this property from the Scope window menu. Select Simulation >
Reduce Updates to Improve Performance.

Default: 1 (true)

ShowGrid

Option to enable or disable grid display

When you set this property to true, the grid appears. When you set this property to
false, the grid is hidden. This property is Tunable.

When set, ActiveDisplay controls which display is updated.

Default: false

SampleTime

Specify the sampling time in seconds. To use the sample time of the input signal, enter
-1.

This property does not apply to Floating Scopes and Scope Viewers.

Default: -1

ShowLegend

When you set this property to true, the scope displays a legend with the input channels
string labels specified in the ChannelNames property. When you set this property to
false, the scope does not display a legend. This property applies only when you set the
SpectrumType property to 'Power' or 'Power density'. This property is Tunable.

See FrameBasedProcessing for information on input channels.

When set, ActiveDisplay controls which display is updated.

Default: false

ShowTimeAxisLabel

When you set this property to true, the scope displays the time-axis label. When you set
this property to false, the scope does not display the time-axis label, but still displays

5 Simulink Classes

5-320

tick marks and other time-axis items. This property applies only if the TimeAxisLabels
property is All or Bottom. This property is Tunable

TimeAxisLabels

Time-axis labels

Specify how time-axis labels should appear in the scope displays as one of 'All',
'Bottom, or 'None'.

• When you set this property to 'All', time-axis labels appear in all displays.
• When you set this property to 'Bottom', time-axis labels appear in the bottom

display of each column.
• When you set this property to 'None', there are no labels in any displays.

This property is Tunable.

Default: 'All'

TimeDisplayOffset

Time display offset

Specify the offset, in seconds, to apply to the time-axis. This property can be either a
numeric scalar or a vector of length equal to the number of input channels. If you specify
this property as a scalar, then that value is the time display offset for all channels. If you
specify a vector, each vector element is the time offset for the corresponding channel. For
vectors with length less than the number of input channels, the time display offsets for
the remaining channels are set to 0. If a vector has a length greater than the number of
input channels, the extra vector elements are ignored. This property is Tunable.

See FrameBasedProcessing for information on input channels. See TimeSpan and
TimeSpanSource for information on the x-axis limits and time span settings.

Default: 0

TimeSpan

Time span

Specify the time span, in seconds, as a positive, numeric scalar value. This property
applies when FrameBasedProcessing is false. This property also applies when

 Simulink.scopes.TimeScopeConfiguration class

5-321

FrameBasedProcessing is true and TimeSpanSource is Property. The time-axis
limits are calculated as follows.

• Minimum time-axis limit = min(TimeDisplayOffset)
• Maximum time-axis limit = max(TimeDisplayOffset) + TimeSpan

where TimeDisplayOffset and TimeSpan are the values of their respective properties.
This property is Tunable.

Default: 10

TimeSpanOverrunAction

Wrap or scroll when the TimeSpan value is overrun

Specify how the scope displays new data beyond the visible time span. You can select one
of the following options:

• Wrap — In this mode, the scope displays new data until the data reaches the
maximum time-axis limit. When the data reaches the maximum time-axis limit of the
scope window, the scope clears the display. The scope then updates the time offset
value and begins displaying subsequent data points starting from the minimum time-
axis limit.

• Scroll — In this mode, the scope scrolls old data to the left to make room for new
data on the right side of the scope display. This mode is graphically intensive and can
affect run-time performance. However, it is beneficial for debugging and monitoring
time-varying signals.

This property is Tunable.

Default: 'Wrap'

TimeUnits

Units of the time-axis

Specify the units used to describe the time-axis. You can select one of the following
options:

• Metric — In this mode, the scope converts the times on the time-axis to the most
appropriate measurement units. These units include milliseconds, microseconds,
nanoseconds, minutes, days, etc. The scope chooses the appropriate measurement

5 Simulink Classes

5-322

units based on the minimum time-axis limit and the maximum time-axis limit of the
scope window.

• Seconds — In this mode, the scope always displays the units on the time-axis as
seconds.

• None — In this mode, the scope does not display any units on the time-axis. The scope
only shows the word Time on the time-axis.

This property is Tunable.

Default: 'Metric'

Title

Display title

Specify the display title as a string. Enter %<SignalLabel> to use the signal labels in
the Simulink Model as the axes titles. This property is Tunable.

When set, ActiveDisplay controls which display is updated.

Default: ''

Visible

Specify whether the scope is visible

When you set this property to true, the scope is visible. When you set this property to
false or 0, the scope is hidden. This property is Tunable.

Default: 1for Simulink Scope and 0 for DSP System Toolbox Time Scope.

YLabel

The label for the y-axis

Specify as a string the text for the scope to display to the left of the y-axis. Tunable

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values. The y-axis
labels are set to 'Magnitude' and 'Phase' for the magnitude plot and the phase plot,
respectively. When set, ActiveDisplay controls which display is updated.

Default: 'Amplitude' if PlotAsMagnitudePhase is false

 Simulink.scopes.TimeScopeConfiguration class

5-323

YLimits

The limits for the y-axis

Specify the y-axis limits as a 2-element numeric vector, [ymin ymax]. This property is
Tunable.

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits of only
the magnitude plot. The y-axis limits of the phase plot are always [-180, 180]. When
set, ActiveDisplay controls which display is updated.

Default: [-10, 10], if PlotAsMagnitudePhase is false, or [0, 10], if
PlotAsMagnitudePhase is true.

Examples

Example: Construct a Scope Configuration Object

Create a new Simulink model.

mdl='scopemdl';

new_system(mdl);

Add a new Scope block to the model.

add_block('Simulink/Sinks/Scope', [mdl '/myScope']);)

Call the get_param function to retrieve the default Scope block properties.

htsc = get_param([mdl '/myScope'],'ScopeConfiguration')

htsc =

 Scope configuration with properties:

 Name: 'myScope

 Position: [680 390 560 420]

 Visible: 0

 ReduceUpdates: 1

 OpenAtSimulationStart: 0

 DisplayFullPath: 0

 NumInputPorts: '1'

 LayoutDimensions: [1 1]

5 Simulink Classes

5-324

 SampleTime: '-1'

 FrameBasedProcessing: 0

 MaximizeAxes: 'Off'

 MinimizeControls: 0

 AxesScaling: 'Manual'

 AxesScalingNumUpdates: '10'

 TimeSpan: 'Auto'

 TimeSpanOverrunAction: 'Wrap'

 TimeUnits: 'none'

 TimeDisplayOffset: '0'

 TimeAxisLabels: 'Bottom'

 ShowTimeAxisLabel: 0

 ActiveDisplay: 1

 Title: ''

 ShowLegend: 0

 ShowGrid: 1

 PlotAsMagnitudePhase: 0

 YLimits: [-10 10]

 YLabel: ''

 DataLogging: 0

 DataLoggingVariableName: 'ScopeData'

 DataLoggingLimitDataPoints: 0

 DataLoggingMaxPoints: '5000'

 DataLoggingDecimateData: 0

 DataLoggingDecimation: '2'

 DataLoggingSaveFormat: 'Dataset'

• “Control Scopes Programmatically ”

 Simulink.sdi.DiffRunResult class

5-325

Simulink.sdi.DiffRunResult class
Package: Simulink.sdi

Results from comparing two simulation runs

Description

The Simulink.sdi.DiffRunResult class manages the results from comparing
two simulation runs. A Simulink.sdi.DiffRunResult object contains a
Simulink.sdi.DiffSignalResult object for each signal compared.

Construction

The function Simulink.sdi.compareRuns returns a handle to a
Simulink.sdi.DiffRunResult object.

Properties

runID1

Run ID, a unique number identifying the first run compared.

runID2

Run ID, a unique number identifying the second run compared.

count

Number of compared signal results.

matlabVersion

Version of MATLAB used to create an instance of Simulink.sdi.DiffRunResult.

dateCreated

Date of object creation, stored in serial date number format.

5 Simulink Classes

5-326

Methods

getResultByIndex Return signal comparison result,
Simulink.sdi.DiffSignalResult

object

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

The function Simulink.sdi.compareRuns returns a Simulink.sdi.DiffRunResult
object containing the results of the comparison. The Simulink.sdi.DiffRunResult
object contains a Simulink.sdi.DiffSignalResult object for each signal comparison
between the two simulation runs.
% Configure model "slexAircraftExample" for logging and simulate

set_param('slexAircraftExample/Pilot','WaveForm','square');

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run, Simulink.sdi.Run, from

% simOut in the base workspace

runID1 = Simulink.sdi.createRun('First Run','namevalue',{'simOut'},{simOut});

% Simulate again

set_param('slexAircraftExample/Pilot','WaveForm','sawtooth');

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create another Simulation Data Inspector run

runID2 = Simulink.sdi.createRun('Second Run','namevalue',{'simOut'},{simOut});

% Compare two runs and get an instance of Simulink.sdi.DiffRunResult

diff = Simulink.sdi.compareRuns(runID1, runID2);

% Get the number of signal comparison results

count = diff.count;

% Iterate over results and find out if signals match

for i=1:count

 Simulink.sdi.DiffRunResult class

5-327

 % Get the Simulink.sdi.DiffSignalResult, diffSignal

 diffSignal = diff.getResultByIndex(i);

 signalID1 = diffSignal.signalID1;

 signalID2 = diffSignal.signalID2;

 match = diffSignal.match;

 if match

 disp([num2str(signalID1) ' and ' num2str(signalID2)...

 ' match']);

 else

 disp([num2str(signalID1) ' and ' num2str(signalID2)...

 ' don''t match']);

 end

end

See Also
Simulink.sdi.createRun | Simulink.sdi.compareRuns |
Simulink.sdi.DiffSignalResult

How To
• “Inspect and Compare Signal Data Programmatically”

5 Simulink Classes

5-328

Simulink.sdi.DiffRunResult.getResultByIndex

Class: Simulink.sdi.DiffRunResult
Package: Simulink.sdi

Return signal comparison result, Simulink.sdi.DiffSignalResult object

Syntax

diffSignalObj = diffRunObj.getResultByIndex(index)

Description

diffSignalObj = diffRunObj.getResultByIndex(index) returns
the Simulink.sdi.DiffSignalResult object, diffSignalObj, which
contains the comparison results for a signal. diffRunObj is an instance of a
Simulink.sdi.DiffRunResult class, which contains an array of signal comparison
results, where each element is an instance of a Simulink.sdi.DiffSignalResult
class.

Input Arguments

index

An index to the array of Simulink.sdi.DiffSignalResult objects contained in a
Simulink.sdi.DiffRunResult object.

Output Arguments

diffSignalObj

Handle to a Simulink.sdi.DiffSignalResult object representing the results of
comparing two signals between simulation runs.

 Simulink.sdi.DiffRunResult.getResultByIndex

5-329

Examples

The function Simulink.sdi.compareRuns returns a Simulink.sdi.DiffRunResult
object containing the results of the comparison. The Simulink.sdi.DiffRunResult
object contains a Simulink.sdi.DiffSignalResult object for each signal
comparison between the two simulation runs. diff.getResultByIndex returns the
Simulink.sdi.DiffSignalResult object for each signal comparison.

% Configure model "slexAircraftExample" for logging and simulate

set_param('slexAircraftExample/Pilot','WaveForm','square');

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run, Simulink.sdi.Run,

% from simOut in the base workspace

runID1 = Simulink.sdi.createRun('First Run','namevalue',{'simOut'},{simOut});

% Simulate again

set_param('slexAircraftExample/Pilot','WaveForm','sawtooth');

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create another Data Inspector run and get signal IDs

runID2 = Simulink.sdi.createRun('Second Run','namevalue',{'simOut'},{simOut});

% Compare two runs and get an instance of Simulink.sdi.DiffRunResult

diff = Simulink.sdi.compareRuns(runID1, runID2);

% Get the number of signal comparison results

count = diff.count;

% Iterate over results and display the comparison results

for i=1:count

 diffSignal = diff.getResultByIndex(i);

 signalID1 = diffSignal.signalID1;

 signalID2 = diffSignal.signalID2;

 match = diffSignal.match;

 if match

 disp([num2str(signalID1) ' and ' num2str(signalID2)...

 ' match']);

5 Simulink Classes

5-330

 else

 disp([num2str(signalID1) ' and ' num2str(signalID2)...

 ' don''t match']);

 end

end

See Also
Simulink.sdi.Signal | Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult |
Simulink.sdi.Run | Simulink.sdi.compareRuns

How To
• “Inspect and Compare Signal Data Programmatically”

 Simulink.sdi.DiffSignalResult class

5-331

Simulink.sdi.DiffSignalResult class
Package: Simulink.sdi

Results from comparing two signals

Description

The Simulink.sdi.DiffSignalResult object manages the results from comparing
two signals. A Simulink.sdi.DiffSignalResult object contains the value differences
of the signals, the tolerance data, and the data after any specified synchronization
methods are performed.

Construction

The function Simulink.sdi.compareSignals returns a handle to a
Simulink.sdi.DiffSignalResult object, which contains the comparison results.

A Simulink.sdi.DiffSignalResult object is also created when the function
Simulink.sdi.compareRuns creates a Simulink.sdi.DiffRunResult object, which
in turn creates Simulink.sdi.DiffSignalResult objects.

Properties

signalID1

Signal ID, a unique number identifying the first signal compared.

signalID2

Signal ID, a unique number identifying the second signal compared.

match

A boolean indicating if the two timeseries objects match according to the specified
tolerance and time synchronization options.

5 Simulink Classes

5-332

diff

A MATLAB timeseries object specifying the value differences after synchronizing the
two time series data.

tol

A MATLAB timeseries object specifying the actual absolute tolerance value at each
synchronized time point.

sync1

A MATLAB timeseries object specifying time series 1 after synchronization has been
applied.

sync2

A MATLAB timeseries object specifying time series 2 after synchronization has been
applied.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

In this example, a Simulink.sdi.DiffSignalResult object is created after comparing
two signals in the Simulation Data Inspector.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run and get signal IDs

[~,~,signalIDs] = Simulink.sdi.createRun('My Run','namevalue',{'MyData'},{simOut});

sig1 = signalIDs(1);

sig2 = signalIDs(2);

 Simulink.sdi.DiffSignalResult class

5-333

% Compare two signals, which returns the results in an

% instance of Simulink.sdi.DiffSignalResult

diff = Simulink.sdi.compareSignals(sig1,sig2);

% Find if the signals match

match = diff.match;

% Get the tolerance used in Simulink.sdi.compareSignals

tolerance = diff.tol;

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.createRun |
Simulink.sdi.compareRuns

How To
• “Inspect and Compare Signal Data Programmatically”

5 Simulink Classes

5-334

Simulink.sdi.Run class
Package: Simulink.sdi

Manages signal data and metadata of simulation run

Description

The Simulink.sdi.Run object contains the signal logging information for one
simulation run, which includes the logged signal data, a run ID, and the total number of
signals in the run.

Construction

The function Simulink.sdi.createRun creates a Simulink.sdi.Run object.

Properties

dateCreated

Date and time of the run, stored as a double.

description

User-specified description of the run. The default value is an empty string.

id

Read-only unique number to identify a run.

name

User-specified name of the run. The default value is an empty string.

signalCount

Number of signals in the run.

 Simulink.sdi.Run class

5-335

tag

User-specified string for categorization, identification, or attaching other information to
this run. The default value is an empty string.

Methods

getSignal Return Simulink.sdi.Signal object by
signal ID

getSignalByIndex Return Simulink.sdi.Signal object by
index

getSignalIDByIndex Return signal ID at array index
isValidSignalID Determine if signal ID is valid within run

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

The Simulink.sdi.Run object contains a Simulink.sdi.Signal object for each
logged signal. This example creates a run from simulation data in the base workspace.
It demonstrates how to access the Simulink.sdi.Run object from the Simulation Data
Inspector . You can select which signals to view and then open the Simulation Data
Inspector tool to inspect those signals.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run, Simulink.sdi.Run,

% from simOut in the base workspace

runID = Simulink.sdi.createRun('My Run', 'base', {'simOut'});

5 Simulink Classes

5-336

% Get the handle to the run object, Simulink.sdi.Run,

% corresponding to the new run ID

runObj = Simulink.sdi.getRun(runID);

% Get the name of the run

runName = runObj.name;

% Get number of signals

numSignals = runObj.signalCount;

% To view the all of the signals in the run, select each signal

% in the run by setting the checked property to 'true'

for i=1:numSignals

 signalObj = runObj.getSignalByIndex(i);

 signalObj.checked = true;

end

% Open the Simulation Data Inspector to inspect the selected signals.

Simulink.sdi.view;

See Also
Simulink.sdi.createRun | Simulink.sdi.getRun | Simulink.sdi.view

How To
• “Inspect and Compare Signal Data Programmatically”

 getSignal

5-337

getSignal
Class: Simulink.sdi.Run
Package: Simulink.sdi

Return Simulink.sdi.Signal object by signal ID

Syntax

signalObj = runObj.getSignal(signalID)

Description

signalObj = runObj.getSignal(signalID) returns the Simulink.sdi.Signal
object, signalObj, corresponding to the signal ID, signalID, stored in the
Simulink.sdi.Run object, runObj.

Input Arguments

signalID

Signal ID, a unique number identifying a signal in a run in the Simulation Data
Inspector.

Output Arguments

signalObj

Handle to a Simulink.sdi.Signal object representing a signal in a run object,
Simulink.sdi.Run.

Examples

The Simulink.sdi.Run method, getSignal, returns a signal object representing
the signal data and metadata in a run. You can modify the signal object properties to

5 Simulink Classes

5-338

configure the signal for plotting or comparing to other signals in the Simulation Data
Inspector.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run

[runID,runIndex,signalIDs] = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Get the Simulink.sdi.Run object corresponding to the new run ID

runObj = Simulink.sdi.getRun(runID);

% Get the number of signals in the run

numSignals = runObj.signalCount;

% Get the Simulink.sdi.Signal objects for each signal

% in the run and select for plotting

for i = 1:numSignals

 signalObjs(i) = runObj.getSignal(signalIDs(i));

 signalObjs(i).checked = true;

end

See Also
Simulink.sdi.Signal | Simulink.sdi.Run | Simulink.sdi.createRun

How To
• “Inspect and Compare Signal Data Programmatically”

 getSignalByIndex

5-339

getSignalByIndex
Class: Simulink.sdi.Run
Package: Simulink.sdi

Return Simulink.sdi.Signal object by index

Syntax

signalObj = runObj(index)

Description

signalObj = runObj(index) returns the Simulink.sdi.Signal object,
signalObj, at the index into the array of signals contained in the Simulink.sdi.Run
object, runObj.

Input Arguments

index

Number specifying an index to the array of signals contained in a Simulink.sdi.Run
object. The first index in the array is 1.

Output Arguments

signalObj

Handle to a Simulink.sdi.Signal object representing a signal in a run object,
Simulink.sdi.Run.

Examples

The Simulink.sdi.Run method, getSignalByIndex, returns a signal object
representing the signal data and information in a run. You can modify the signal object

5 Simulink Classes

5-340

properties to configure the signal for plotting or comparing to other signals in the
Simulation Data Inspector.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on',...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Get the Simulink.sdi.Run object corresponding to the new run ID

runObj = Simulink.sdi.getRun(runID);

% Get the number of signals in the run

numSignals = runObj.signalCount;

% Get the Simulink.sdi.Signal object for the first signal in the run

if numSignals > 0

 signalObj = runObj.getSignalByIndex(1);

end

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.createRun |
Simulink.sdi.getRun

How To
• “Inspect and Compare Signal Data Programmatically”

 getSignalIDByIndex

5-341

getSignalIDByIndex
Class: Simulink.sdi.Run
Package: Simulink.sdi

Return signal ID at array index

Syntax

signalID = runObj.getSignalIDByIndex(index)

Description

signalID = runObj.getSignalIDByIndex(index) returns the signal ID for the
signal at the specified index to the array of signals contained in the Simulink.sdi.Run
object, runObj.

Input Arguments

index

Number specifying the index to the array of signals contained in a Simulink.sdi.Run
object. The first index in the array is 1.

Output Arguments

signalID

Signal ID, a unique number identifying a signal in a run.

Examples

The Simulink.sdi.Run method, getSignalIDByIndex, returns the signal ID
corresponding to a signal in a run. With the signal ID you can get the signal object

5 Simulink Classes

5-342

representing the signal data and metadata. You can compare two signals by passing their
signal IDs to Simulink.sdi.compareSignals.

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Get the Simulink.sdi.Run object corresponding to the new run ID

runObj = Simulink.sdi.getRun(runID);

% Get the number of signals in the run

numSignals = runObj.signalCount;

% Get the signal ID for the first signal in the run

if numSignals > 0

 signalID = runObj.getSignalIDByIndex(1);

end

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.createRun |
Simulink.sdi.getRun | Simulink.sdi.compareSignals

How To
• “Inspect and Compare Signal Data Programmatically”

 isValidSignalID

5-343

isValidSignalID
Class: Simulink.sdi.Run
Package: Simulink.sdi

Determine if signal ID is valid within run

Syntax

isValid = runObj.isValidSignalID(signalID)

Description

isValid = runObj.isValidSignalID(signalID) returns true if the signal ID,
signalID, corresponds to a signal in the run object, runObj. Otherwise, it returns
false.

Input Arguments

signalID

Signal ID, a unique number identifying a signal stored in the run object.

Output Arguments

isValid

A Boolean value: true, if the signal exists; false, otherwise.

Examples

Before calling a function that takes a signal ID as input, verify that the signal ID is valid.

5 Simulink Classes

5-344

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample','SaveOutput','on', ...

 'SaveFormat','StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run

runID = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Get the Simulink.sdi.Run object corresponding to the new run ID

runObj = Simulink.sdi.getRun(runID);

% Get the number of signals in the run

numSignals = runObj.signalCount;

% Get the signal ID for the first signal in the run

if numSignals > 0

 signalID = runObj.getSignalIDByIndex(1);

end

% Before calling getSignal, check that the signalID is valid

if runObj.isValidSignalID(signalID)

 signalObj = runObj.getSignal(signalID)

end

See Also
Simulink.sdi.Run | Simulink.sdi.Signal | Simulink.sdi.createRun
| Simulink.sdi.getRun | Simulink.sdi.Run.getSignalByIndex |
Simulink.sdi.Run.isValidSignalID | Simulink.sdi.Run.getSignal

How To
• “Inspect and Compare Signal Data Programmatically”

 Simulink.sdi.Signal class

5-345

Simulink.sdi.Signal class
Package: Simulink.sdi

Manages signal time series data and metadata

Description

The Simulink.sdi.Signal object contains the signal logging information for one
simulation run. It also contains properties for visualizing and comparing signals.

Construction

The function Simulink.sdi.createRun creates a Simulink.sdi.Run object, which
creates a Simulink.sdi.Signal object for each signal in the simulation output.

Properties

Signal Properties (read only)

id

Signal ID, a unique number identifying the signal.

runID

Run ID, a unique number identifying the signal’s parent run.

rootSource

String to access the high-level logging structure this signal was derived from.

timeSource

String to access the logged signal’s time vector.

dataSource

String to access the logged signal’s data values.

5 Simulink Classes

5-346

dataValues

Time series data for this signal.

blockSource

String specifying the path to the block that defines the signal.

modelSource

String specifying the name of the model that defines the signal.

signalLabel

String specifying the name of the signal.

timeDim

For any given data sample, the time dimension.

sampleDims

Dimensions of a data sample.

portIndex

Index of the port that defines the signal.

channel

Channel index. This property applies to matrix data only. Matrix data is flattened into a
scalar time series by using channels.

SID

“Simulink Identifier” on page 7-2 of the block that defines the signal.

Comparison Properties (read and write)

Each signal has properties that the Simulation Data Inspector uses for comparing two
signals. The Simulation Data Inspector uses the comparison properties from the first
signal passed in, also called the reference signal.

absTol

Absolute tolerance of the signal. Must be a positive number.

 Simulink.sdi.Signal class

5-347

relTol

Relative tolerance of the signal. Must be a positive number.

syncMethod

Time synchronization method to align time vector when comparing signals. Possible
values are: 'intersection', 'uniform', and 'union'.

interpMethod

Interpolation method to align data. Possible values are: 'zoh' and 'linear'.

Visualization Properties (read and write)

lineColor

Signal line color in the plot in the form of a vector [r g b]. r is the red component, g
the green component, and b the blue component.

lineDashed

Signal line format in the plot

checked

Boolean specifying if the signal is selected for plotting: true for selected and false for
cleared.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a run and call the Simulink.sdi.getSignal function to get a
Simulink.sdi.Signal object.

% Configure model "slexAircraftExample" for logging and simulate

5 Simulink Classes

5-348

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run which returns a list of

% signal IDs for signals contained in the run

[~,~,signalIDs] = Simulink.sdi.createRun('My Run','base',{'simOut'});

% Get the signal object corresponding to the first signal ID

signalObj = Simulink.sdi.getSignal(signalIDs(1));

% signalObj is an instance of Simulink.sdi.Signal. Get the run ID for this signal

runID = signalObj.runID;

% Modify or define comparison and visualization properties for this signal

signalObj.syncMethod = 'intersection';

signalObj.lineColor = [1,0.4,0.6];

signalObj.lineDashed = '-';

signalObj.checked = true;

% View signals in the Simulation Data Inspector tool

Simulink.sdi.view;

See Also
Simulink.sdi.Run | Simulink.sdi.createRun | Simulink.sdi.getSignal

How To
• “Inspect and Compare Signal Data Programmatically”

 Simulink.Signal

5-349

Simulink.Signal
Specify attributes of signal

Description

This class enables you to create workspace objects that you can use to assign or
validate the attributes of a signal or discrete state, such as its data type, numeric type,
dimensions, and so on. You can use a signal object to:

• Assign values to signal attributes that are left unassigned (have a value of -1 or
auto) by the signal source.

• Validate signal attributes whose values are explicitly assigned by the signal source.
Such attributes have values other than -1 or auto. Successful validation guarantees
that the signal has the attributes that you intended it to have.

You can create a Simulink.Signal object in the MATLAB workspace or in a model
workspace.

Use signal objects to assign or validate signal or discrete state attributes by giving the
signal or discrete state the same name as the workspace variable that references the
Simulink.Signal object.

Signal Specification Block: An Alternative to Simulink.Signal

You can use a Signal Specification block rather than a Simulink.Signal object to
assign properties left unspecified by a signal source. Each technique has advantages and
disadvantages:

• Using a signal object simplifies the model and allows you to change signal property
values without editing the model, but does not show signal property values directly in
the block diagram.

• Using a Signal Specification block displays signal property values directly in the block
diagram, but complicates the model and requires editing it to change signal property
values.

• You can use a Signal Specification block with virtual and nonvirtual buses; you can
use only nonvirtual buses with a Simulink.Signal object.

5 Simulink Classes

5-350

The following two models illustrate the respective advantages of the two ways of
assigning attributes to a signal.

In the first example, the signal object named Sig1 specifies the sample time and data
type of the signal emitted by input port In1.

To determine the properties of the Sig1 signal, you can view the signal object in the
Model Explorer. In this model, the sample time is -1 and the data type is auto.

Using a signal object to specify the sample time and data type properties of signal Sig1
allows you to change the sample time or data type without having to edit the model. For
example, you could use the Model Explorer, the MATLAB command line, or a MATLAB
program to change these properties.

The second example uses a Signal Specification block specifies the sample time and data
type of the signal emitted by input port In2. The Signal Specification block displays the
data type and signal sample time properties right in the diagram, which in this case are
uint8 and 4, respectively.

 Simulink.Signal

5-351

Using Signal Objects to Assign or Validate Signal Attributes

This section describes how you can use signal objects to assign or validate signal
attributes. The same techniques work with discrete states also. To use a signal object to
assign or validate signal attribute values:

1 Create a Simulink.Signal object that has the same name as the signal to which
you want to assign attributes or whose attributes you want to validate.

a Open the Model Explorer.
b In the Model Hierarchy pane, select either the Base workspace or Model

workspace node, depending on the context you want for the signal object. If you
create the signal object in a model workspace, you must set the Storage class
parameter to Auto.

c Select Add > Simulink Signal.
2 Set the properties of the object that correspond to the attributes left unspecified

by the signal source, or that correspond to the attributes you want to validate. See
“Property Dialog Box” on page 5-353 for details.

3 Enable explicit or implicit signal resolution:

• Explicit resolution: In the Signal Properties dialog box for the signal, enable
Signal name must resolve to Simulink signal object. This is the preferred
technique. See “Explicit and Implicit Symbol Resolution” for more information.

• Implicit resolution: Set the Configuration Parameters > Diagnostics
> Data Validity > Signal resolution option for the model to Explicit and
implicit or Explicit and warn implicit. Explicit resolution is the
preferred technique.

4 Assign the signal object to a workspace variable.
5 Associate the signal object with the source signal.

• Give the signal the same name as the workspace variable that references the
signal object.

• You can use a variety of techniques to associate a signal object with a signal.
For examples, see “Use Signal Objects to Initialize Signals and Discrete States”,
“Using Signal Objects to Tune Initial Values”, and “Control Data Representation
by Applying Custom Storage Classes”.

5 Simulink Classes

5-352

Validation

The result when a signal does not match a signal object can depend on several factors.
Simulink software can validate a signal property when you update the diagram, while
you run a simulation, or both. When and how validation occurs can depend on internal
rules that are subject to change, and sometimes on configuration parameter settings.

Not all signal validation compares signal source attributes with signal object properties.
For example, if you specify Minimum and Maximum signal values using a signal object,
the signal source must specify the same values as the signal object (or inherit the values
from the object) but such validation relates only to agreement between the source and the
object, not to enforcement of the minimum and maximum values during simulation.

If the value of Configuration Parameters > Diagnostics > Data Validity >
Simulation range checking is none (the default), Simulink does not enforce any
minimum and maximum signal values during simulation, even though a signal object
provided or validated them. To enforce minimum and maximum signal values during
simulation, set Simulation range checking to warning or error. See “Signal Ranges”
and “ Diagnostics Pane: Data Validity” for more information.

Multiple Signal Objects

You can associate a given signal object with more than one signal if the storage class of
the signal object is Auto. If the storage class of the object is other than Auto, you can
associate the signal object with no more than one signal.

You can associate a given signal with no more than one signal object. The signal can
refer to the signal object more than once, but every reference must resolve to exactly the
same signal object. Referencing two different signal objects that have exactly the same
properties causes a compile-time error.

A compile-time error occurs if a model associates more than one signal object with any
signal. To prevent the error, decide which object you want the signal to use, then delete
or reconfigure all references to any other signal objects, so that all remaining references
resolve to the chosen signal object. See “Display Signal Sources and Destinations” for a
description of techniques that you can use to trace the full extent of a signal.

 Simulink.Signal

5-353

Property Dialog Box

Data type
Data type of the signal. The default entry, auto, specifies that Simulink should
determine the data type. Use the adjacent pulldown list to specify built-in data types
(for example, uint8). To specify a custom data type, enter a MATLAB expression
that specifies the type, (for example, a base workspace variable that references a
Simulink.NumericType object).

To specify a bus object as the data type for the signal object, use the Bus:
<object_name> option. See “Bus Support” on page 5-357 for details about what
you need to do if you specify a bus object as the data type.

5 Simulink Classes

5-354

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Data type parameter. (See “Specify Data Types
Using Data Type Assistant” in Simulink User's Guide.)

Complexity
Numeric type of the signal. Valid values are auto (determined by Simulink), real,
or complex.

Dimensions
Dimensions of this signal. Valid values are -1 (the default) specifying any
dimensions, N specifying a vector signal of size N, or [M N] specifying an MxN matrix
signal.

Dimensions mode
Dimensions mode of this signal. From the drop-down list, select

• Auto — Allows variable-size and fixed-size signals.
• Fixed — Allows only fixed-size signals. Does not allow variable-size signals.
• Variable — Allows only variable-size signals.

Sample time
Rate at which the value of this signal should be computed. See “ Specify Sample
Time” for details.

Minimum
Minimum value that the signal should have. The default value is [] (unspecified).
Specify a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for a signal, do not set the
minimum value for bus data on the signal property dialog box. Simulink ignores this
setting. Instead, set the minimum values for bus elements of the bus object specified
as the data type. For information on the Minimum property of a bus element, see
Simulink.BusElement.

Simulink uses this value in the following ways:

• When updating the diagram or starting a simulation, Simulink generates an error
if the signal's initial value is less than the minimum value or if the minimum
value is outside the range for the data type of the signal.

 Simulink.Signal

5-355

• When you enable the Simulation range checking diagnostic, Simulink alerts
you during simulation if the signal value is less than the minimum value (see
“Simulation range checking”).

Maximum
Maximum value that the signal should have. The default value is [] (unspecified).
Specify a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for a signal, do not set the
maximum value for bus data on the signal property dialog box. Simulink ignores this
setting. Instead, set the maximum values for bus elements of the bus object specified
as the data type. For information on the Maximum property of a bus element, see
Simulink.BusElement.

Simulink uses this value in the following ways:

• When updating the diagram or starting a simulation, Simulink generates an
error if the initial value of the signal is greater than the maximum value or if the
maximum value is outside the range of the data type of the signal.

• When you enable the Simulation range checking diagnostic, Simulink alerts
you during simulation if the signal value is greater than the maximum value (see
“Simulation range checking”).

Initial value
Signal or state value before a simulation takes its first time step. You can specify any
MATLAB expression, including the name of a workspace variable, that evaluates to a
numeric scalar value or array.

You can use the MATLAB command prompt to provide an initial value for a signal.
Even if you use a number, specify the initial value as a string.

mySigObject.InitialValue='5.3';

mySigObject.InitialValue = 'myNumericVariable';

To specify an initial value for a signal that uses a numeric data type other than
double, cast the initial value to the signal data type. For example, you can specify
single(73.3) to use 73.3 as the initial value for a signal of data type single.

5 Simulink Classes

5-356

If you use a bus object as the data type for the signal object, set Initial value to a
string containing either 0 or a MATLAB structure that matches the bus object. See
“Bus Support” on page 5-357 for details.

If the initial value evaluates to a MATLAB structure, then in the Configuration
Parameters > Diagnostics > Data Validity pane, set “Underspecified
initialization detection” to simplified.

If necessary, Simulink converts the initial value to ensure type, complexity, and
dimension consistency with the corresponding block parameter value. If you specify
an invalid value or expression, an error message appears when you update the model.
Also, Simulink performs range checking of the initial value. The software alerts
you when the initial value of the signal lies outside a range that corresponds to its
specified minimum and maximum values and data type.

Classic initialization mode: In this mode, initial value settings for signal objects
that represent the following signals and states override the corresponding block
parameter initial values if undefined (specified as []):

• Output signals of conditionally executed subsystems and Merge blocks
• Block states

Simplified initialization mode: In this mode, initial values of signal objects
associated with the following blocks are ignored. The initial values of the
corresponding blocks are used instead.

• Outport blocks of conditionally executed subsystems
• Merge blocks

Units
Measurement units in which the value of this signal is expressed, (for example,
inches). You can use this parameter to document this signal. Simulink ignores it
during simulation.

Storage class
Storage class of this signal. For more information, see “Storage Classes for Signals
and States” in the Simulink Coder documentation and “Simulink Package Custom
Storage Classes” in the Embedded Coder documentation.

If you create the signal object in a model workspace, you must set the object storage
class to Auto.

 Simulink.Signal

5-357

Alias
Alternate name for this signal. Simulink ignores this setting. This property is used
for code generation.

Alignment
Data alignment boundary, specified in number of bytes. The starting memory
address for the data allocated for the signal will be a multiple of the Alignment
setting. The default value is -1, which specifies that the code generator should
determine an optimal alignment based on usage. Otherwise, specify a positive integer
that is a power of 2, not exceeding 128. This field is intended for use by Simulink
Coder software. See “Data Alignment for Code Replacement”. Simulink software
ignores this setting.

Description
Description of this signal. This field is intended for use in documenting this signal.
This property is used by the Simulink Report Generator and for code generation.

If you have an Embedded Coder license, you can add the signal description as a
comment for the variable declaration in generated code.

• Specify a storage class for the signal object other than Auto.
• On the Code Generation > Comments pane of the Model Configuration

Parameters dialog box, select the model configuration parameter Simulink
data object descriptions. For more information, see “Simulink data object
descriptions”.

Bus Support

Using Bus Objects as the Data Type

Simulink.Signal supports nonvirtual buses as the output data type.

If you set the Data type of the signal object to be a bus object, then you cannot associate
the signal object with a non-bus signal.

Using Structures for the Initial Value

If you use a bus object as the data type, set Initial value to 0 or a MATLAB structure
that matches the bus object.

5 Simulink Classes

5-358

The structure you specify must contain a value for every element of the bus represented
by the bus object.

You can use the Simulink.Bus.createMATLABStruct to create a full structure that
corresponds to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB
structure.

Setting Configuration Parameters to Support Using a Bus Object Data
Type

To enable the use of a bus object as the signal object data type, before you start a
simulation, in the Configuration Parameters > Diagnostics > Connectivity pane,
set “Mux blocks used to create bus signals” to error. The documentation for that
diagnostic explains how convert your model to handle error messages the diagnostic
generates.

Properties

Name Access Description

CoderInfo RW Information used by Simulink Coder for generating
code for this signal. The value of this property is an
object of Simulink.CoderInfo class.

Description RW Description of this signal. This field is intended for
use in documenting this signal. (Description)

DataType RW String specifying the data type of this signal. (Data
type)

Min RW Minimum value that this signal can have.
(Minimum)

Max RW Maximum value that this signal can have.
(Maximum)

DocUnits RW Measurement units used for expressing this signal
value. (Units)

Dimensions RW Scalar or vector specifying the dimensions of this
signal. (Dimensions)

 Simulink.Signal

5-359

Name Access Description

Complexity RW String specifying the numeric type of this signal.
Valid values are 'auto', 'real', or 'complex'.
(Complexity)

SampleTime RW Rate at which this signal should be updated.
(Sample time)

InitialValue RW Signal or state value before a simulation takes its
first time step. (Initial Value)

More About
• “Signal Basics”
• “ Data Objects”
• “ Data Types Supported by Simulink”

See Also
AUTOSAR.Signal | Simulink.CoderInfo | Simulink.Parameter

Related Examples
• “Control Signal Data Types”
• “Control Signals and States in Code by Applying Storage Classes”
• “Define Data Classes”

Introduced before R2006a

5 Simulink Classes

5-360

Simulink.SimulationData.BlockPath
Fully specified Simulink block path

Description
Simulink creates block path objects when creating dataset objects for signal
logging and data store logging. Simulink.SimulationData.Signal and
Simulink.SimulationData.DataStoreMemory objects include block path objects.

You can create a block path that you can use with the
Simulink.SimulationData.Dataset.getElement method to access a specific
dataset element. If you want to create a dataset in MATLAB to use as a baseline to
compare against a signal logging or data store logging dataset, then you need to create
the block paths as part of that dataset.

The Simulink.SimulationData.BlockPath class is very similar to the
Simulink.BlockPath class.

You do not have to have Simulink installed to use the
Simulink.SimulationData.BlockPath class. However, you must
have Simulink installed to use the Simulink.BlockPath class. If you
have Simulink installed, consider using Simulink.BlockPath instead of
Simulink.SimulationData.BlockPath, because the Simulink.BlockPath class
includes a method for checking the validity of block path objects without you having to
update the model diagram.

Property Summary
Name Description

SubPath Individual component within the block specified by
the block path

Method Summary
Name Description

BlockPath Create a block path.

 Simulink.SimulationData.BlockPath

5-361

Name Description

convertToCell Convert a block path to a cell array of strings.
getBlock Get a single block path in the model reference hierarchy.
getLength Get the length of the block path.

Properties

SubPath

Description

Represents an individual component within the block specified by the block path.

For example, if the block path refers to a Stateflow chart, you can use SubPath to
indicate the chart signals. For example:

Block Path:

 'sf_car/shift_logic'

 SubPath:

 'gear_state.first'

Data Type

string

Access

RW

Methods

BlockPath

Purpose

Create block path

5 Simulink Classes

5-362

Syntax

blockpath_object = Simulink.SimulationData.BlockPath()

blockpath_object = Simulink.SimulationData.BlockPath(blockpath)

blockpath_object = Simulink.SimulationData.BlockPath(paths)

blockpath_object = Simulink.SimulationData.BlockPath(paths, subpath)

Input Arguments

blockpath

The block path object that you want to copy.
paths

A string or cell array of strings that Simulink uses to build the block path.

Specify each string in order, from the top model to the specific block for which you are
creating a block path.

Each string must be a path to a block within the Simulink model. The block must be:

• A block in a single model
• A Model block (except for the last string, which may be a block other than a Model

block)
• A block that is in a model that is referenced by a Model block that is specified in

the previous string

subpath

A string that represents an individual component within a block.

Output Arguments

blockpath_object

The block path that you create.

Description

blockpath_object = Simulink.SimulationData.BlockPath() creates an empty
block path.

blockpath_object = Simulink.SimulationData.BlockPath(blockpath)

creates a copy of the block path of the block path object that you specify with the
source_blockpath argument.

 Simulink.SimulationData.BlockPath

5-363

blockpath = Simulink.SimulationData.BlockPath(paths) creates a block path
from the string or cell array of strings that you specify with the paths argument. Each
string represents a path at a level of model hierarchy.

blockpath = Simulink.SimulationData.BlockPath(paths, subpath) creates
a block path from the string or cell array of strings that you specify with the paths
argument and creates a path for the individual component (for example, a signal) of the
block.

Example

Create a block path object called bp1, using a cell array of strings representing elements
of the block path.

bp1 = Simulink.SimulationData.BlockPath(...

{'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

The resulting block path reflects the model reference hierarchy for the block path.

bp1 =

 Simulink.BlockPath

 Package: Simulink

 Block Path:

 'sldemo_mdlref_depgraph/thermostat'

 'sldemo_mdlref_heater/Fahrenheit to Celsius'

 'sldemo_mdlref_F2C/Gain1

convertToCell

Purpose

Convert block path to cell array of strings

Syntax

cellarray = Simulink.SimulationData.BlockPath.convertToCell()

Output Arguments

cellarray

5 Simulink Classes

5-364

The cell array of strings representing the elements of the block path.

Description

cellarray = Simulink.SimulationData.BlockPath.convertToCell() converts
a block path to a cell array of strings.

Examples

bp1 = Simulink.SimulationData.BlockPath(...

{'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

cellarray_for_bp1 = bp1.convertToCell()

The result is a cell array representing the elements of the block path.

cellarray_for_bp1 =

 'sldemo_mdlref_depgraph/thermostat'

 'sldemo_mdlref_heater/Fahrenheit to Celsius'

 'sldemo_mdlref_F2C/Gain1'

getBlock

Purpose

Get single block path in model reference hierarchy

Syntax

block = Simulink.SimulationData.BlockPath.getBlock(index)

Input Arguments

index

The index of the block for which you want to get the block path. The index reflects
the level in the model reference hierarchy. An index of 1 represents a block in
the top-level model, an index of 2 represents a block in a model referenced by the
block of index 1, and an index of n represents a block that the block with index n-1
references.

 Simulink.SimulationData.BlockPath

5-365

Output Arguments

block

The block representing the level in the model reference hierarchy specified by the
index argument.

Description

blockpath = Simulink.SimulationData.BlockPath.getBlock(index) returns
the block path of the block specified by the index argument.

Example

Get the block for the second level in the model reference hierarchy.

bp1 = Simulink.SimulationData.BlockPath(...

{'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

'sldemo_mdlref_F2C/Gain1'})

blockpath = bp1.getBlock(2)

The result is the thermostat block, which is at the second level in the block path
hierarchy.

blockpath =

sldemo_mdlref_heater/Fahrenheit to Celsius

getLength

Purpose

Get length of block path

Syntax

length = Simulink.SimulationData.BlockPath.getLength()

Output Arguments

length

The length of the block path. The length is the number of levels in the model
reference hierarchy.

5 Simulink Classes

5-366

Description

length = Simulink.SimulationData.BlockPath.getLength() returns a numeric
value that corresponds to the number of levels in the model reference hierarchy for the
block path.

Example

Get the length of block path bp1.

bp1 = Simulink.SimulationData.BlockPath(...

{'sldemo_mdlref_depgraph/thermostat', ...

'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

 'sldemo_mdlref_F2C/Gain1'})

length_bp1 = bp1.getLength()

The result reflects that the block path has three elements.

length_bp1 =

 3

More About
• “Specify the Instance That Has Normal Mode Visibility”

See Also
Simulink.BlockPath | Simulink.SimulationData.Dataset

Introduced in R2012b

 Simulink.SimulationData.Dataset class

5-367

Simulink.SimulationData.Dataset class

Package: Simulink.SimulationData

Create Simulink.SimulationData.Dataset object

Description

Simulink creates Simulink.SimulationData.Dataset objects to store data elements
when:

• Performing signal logging, if you use the default signal logging format of Dataset
• Logging states or outputs, if you set the format to Dataset.
• Logging a data store

Using the Dataset format for signal logging offers several advantages compared
to the ModelDataLogs format. For a discussion of those advantages, see
“Signal logging format”. Unlike the handle-based ModelDataLogs class,
Simulink.SimulationData.Dataset is a value class. For details, see “Handle Versus
Value Classes”.

Using the Dataset format for state and output logging offers several advantages
compared to Array, Structure, or Structure with time. For details, see “Format for
State Information Saved Without SimState”.

Simulink.SimulationData.Dataset provides a getElement method for accessing
individual elements in the data set. You can specify an element by index, name, or block
path.

Construction

convertedDataset = Simulink.SimulationData.Dataset(

loggedDataToConvert) converts the loggedDataToConvert to a
Simulink.SimulationData.Dataset object. You can then use the
Simulink.SimulationData.DataSet.concat method to combine elements of two Dataset
objects.

5 Simulink Classes

5-368

constructedDataset = Simulink.SimulationData.Dataset(

variableName,'DatasetName','dsname') constructs a
Simulink.SimulationData.Dataset object, adds variable variableName, and
names the data set dsname.

Input Arguments

loggedDataToConvert — Data element to convert
string

Data element to convert to a data set, specified as a string. You can convert elements
such as:

• Array
• Structure
• Structure with time
• MATLAB time series
• Structure of MATLAB time-series elements
• ModelDataLogs

variableName — Variable to add to data set
string

Variable to add to data set, specified as a string.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DatasetName','dsname'

'DatasetName' — Data set name
string

Data set name, specified as a string.

 Simulink.SimulationData.Dataset class

5-369

Output Arguments

convertedDataset — Converted data set
Simulink.SimulationData.Dataset object

Converted data set, returned as a Simulink.SimulationData.Dataset object.

constructedDataset — Constructed data set
Simulink.SimulationData.Dataset object

Constructed data set, returned as a Simulink.SimulationData.Dataset object.

Properties

Name — Name of the data set
same as the logging variable (default) | string

Name of the data set, specified as a string or logging variable (for example, logsout for
signal logging). Specify a name when you want to distinguish easily one data set from
another. For example, you could reset the name when comparing multiple simulations.
This property is read/write.

ds = Simulink.SimulationData.Dataset

ds.Name = 'Dataset1'

Total Elements — Total number of elements
double

Total number of elements in data set, specified as a double. This property is read only. To
get this value, use the Simulink.SimulationData.DataSet.numElements method.

Methods

addElement Add element to end of data set
concat Concatenate dataset to another dataset
get Get element or collection of elements from

dataset
getElementNames Return names of all elements in dataset

5 Simulink Classes

5-370

find Get element or collection of elements from
dataset

numElements Get number of elements in data set
setElement Change element stored at specified index

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Concatenate Dataset ds1 to Dataset ds

Convert data from two To Workspace blocks, convert to Dataset format, and
concatenate them. myvdp is the vdp model with two To Workspace blocks with variables
named simout and simout1. These blocks log data in time-series format.

mdl = 'myvdp';

open_system(mdl);

sim(mdl)

ds = Simulink.SimulationData.Dataset(simout);

ds1 = Simulink.SimulationData.Dataset(simout1);

dsfinal = concat(ds,ds1)

• “Convert Logged Data to Dataset Format”
• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.DataSet.concat |
Simulink.SimulationData.DataSet.addElement | Simulink.SimulationData.DataSet.get
| Simulink.SimulationData.DataSet.getElementNames

 Simulink.SimulationData.Dataset class

5-371

| Simulink.SimulationData.DataSet.numElements
| Simulink.SimulationData.DataSet.setElement |
Simulink.ModelDataLogs | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2011a

5 Simulink Classes

5-372

Simulink.SimulationData.DataStoreMemory
Container for data store logging information

Description

Simulink uses Simulink.SimulationData.DataStoreMemory objects to store logging
information from Data Store Memory blocks during simulation. The objects contain
information about the blocks that write to the data store.

Property Summary

Name Description

BlockPath Location of Data Store Memory block for the logged
data store

DSMWriterBlockPaths Location of Data Store Write blocks that write to the
data store

DSMWriters Data Store Write blocks for each signal value
Name Name of the data store dataset
Scope Scope of the data store: 'local' or 'global'
Values Time and data that were logged

Properties

BlockPath

Description

Location of Data Store Memory block for the logged data store.

Data Type

string

 Simulink.SimulationData.DataStoreMemory

5-373

Access

RW

DSMWriterBlockPaths

Description

Location of blocks that write to the data store. Each element of the array contains the full
block path of one writer block.

Data Type

Vector of Simulink.SimulationData.BlockPath objects

Access

RO

DSMWriters

Description

The number of writes in the data store.

The nth element of DSMWriters contains the index of the element in
DSMWriterBLockPaths that contains the block path of the writer that performed the
nth write to Values.

Data Type

Integer vector

Access

RO

Name

Description

Name of the data store dataset

5 Simulink Classes

5-374

Data Type

string

Access

RO

Scope

Description

Scope of the data store: 'local' or 'global'

Data Type

string

Access

RW

Values

Description

Time and data that were logged

Data Type

MATLAB timeseries

Access

RW

More About
• “Log Data Stores”

 Simulink.SimulationData.DataStoreMemory

5-375

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath | Data
Store Memory | Data Store Write

5 Simulink Classes

5-376

Simulink.SimulationData.LoggingInfo

Signal logging override settings

Description

This object specifies a set of signal logging override settings.

Use a Simulink.SimulationData.LoggingInfo object to specify the signal logging
override settings for a signal. You can use this object for the LoggingInfo property of a
Simulink.SimulationData.SignalLoggingInfo object.

Property Summary

Name Description

DataLogging Signal logging mode.
NameMode Source of signal logging name.
LoggingName Custom signal logging name.
DecimateData Use subset of sample points.
Decimation Decimation value (n): Simulink logs every nth data

point.
LimitDataPoints Limit number of data points to log.
MaxPoints Maximum number of data points to log (N). The set of

logged data points is the last N data points generated
by the simulation.

Method Summary

Name Description

LoggingInfo Create a set of signal logging override settings for a signal.

 Simulink.SimulationData.LoggingInfo

5-377

Properties

DataLogging

Description

Signal logging mode.

Indicates whether logging is enabled for this signal.

Data Type

logical value — {true} | false

Access

RW

NameMode

Description

Source of signal logging name.

Indicates whether the signal logging name is a custom name ('true') or whether the
signal logging name is the same as the signal name ('false').

Data Type

logical value — true | {false}

Access

RW

LoggingName

Description

Custom signal logging name

The custom signal logging name to use for this signal, if the NameMode property is true.

5 Simulink Classes

5-378

Data Type

string

Access

RW

DecimateData

Description

Log a subset of sample points, selecting data points at a specified interval. The first
sample point is always logged.

Data Type

logical value — true | {false}

Access

RW

Decimation

Description

Decimation value (n). If the DecimateData property is true, then Simulink logs every
nth data point.

Data Type

positive integer

Access

RW

LimitDataPoints

Description

Limit the number of data points to log.

 Simulink.SimulationData.LoggingInfo

5-379

Data Type

logical value — true | {false}

Access

RW

MaxPoints

Description

Maximum number of data points to log (N). If the LimitDataPoints property is true,
then the set of logged data points includes the last N data points generated by the
simulation.

Data Type

positive integer

Access

RW

Methods

LoggingInfo

Purpose

Create a Simulink.SimulationData.LoggingInfo object.

Syntax

logging_info_object = Simulink.SimulationData.LoggingInfo()

logging_info_object = Simulink.SimulationData.LoggingInfo(object)

Input Arguments

object

5 Simulink Classes

5-380

A signal logging override settings object whose property values the constructor uses
for the new Simulink.SimlationData.LoggingInfo object. The signal logging
override object that you specify must be one of the following types of objects:

• Simulink.SimulationData.LoggingInfo object
• Simulink.LoggingInfo object

Output Arguments

logging_info_object

A Simulink.SimulationData.LoggingInfo object.

Description

logging_info_object = Simulink.SimulationData.LoggingInfo() creates a
Simulink.SimulationData.LoggingInfo object that has default property values.

logging_info_object = Simulink.SimulationData.LoggingInfo(object)

creates a Simulink.SimulationData.LoggingInfo object that copies the property
values from the signal logging override object that you specify with the object
argument.

Examples

The following example creates a Simulink.SimulationData.LoggingInfo
object with default settings, changes the DecimateData and Decimation
properties, and uses the object for the LoggingInfo property of a
Simulink.SimulationData.SignalLoggingInfo object mi.

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', 'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', 'examples', 'ex_bus_logging')));

log_info = Simulink.SimulationData.LoggingInfo();

log_info.DecimateData = true;

log_info.Decimation = 2;

mi = Simulink.SimulationData.SignalLoggingInfo('ex_bus_logging');

mi.LoggingInfo = log_info

Simulink.SimulationData.SignalLoggingInfo

 Package: Simulink.SimulationData

 BlockPath:

 'ex_bus_logging'

 Simulink.SimulationData.LoggingInfo

5-381

 OutputPortIndex: 1

 LoggingInfo:

 DataLogging: 1

 NameMode: 0

 LoggingName: ''

 DecimateData: 1

 Decimation: 2

 LimitDataPoints: 0

 MaxPoints: 5000

More About
• “Override Signal Logging Settings from MATLAB”
• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”

See Also
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo |
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.ModelDataLogs

Introduced in R2012b

5 Simulink Classes

5-382

Simulink.SimulationData.ModelLoggingInfo

Signal logging override settings for a model

Description

This class is a collection of Simulink.SimulationData.SignalLoggingInfo objects
that specify all signal logging override settings for a model.

Use methods and properties of this class to:

• Turn off logging for a signal or a Model block.
• Change logging settings for any signals that are already marked for logging within a

model.

You can control whether a top-level model and referenced models use override signal
logging settings or use the signal logging settings specified by the model. Use the
LoggingMode and LogAsSpecifiedByModels properties to control which logging
settings to apply.

Logging Mode for Models Property Settings

For top-level model and all
referenced models, use logging
settings specified in the model.

Set LoggingMode to LogAllAsSpecifiedInModel.

For top-level model and all
referenced models, use override
signal logging settings.

Set LoggingMode to OverrideSignals.

For top-level model and
referenced models, use a mix of
override signal logging settings
and the signal logging settings
specified in the model.

Set LoggingMode to OverrideSignals.

In the LogAsSpecifiedByModels cell array, include
the models that you do not want to use the override
signal logging settings.

For more information and examples, see “Override Signal Logging Settings from
MATLAB”.

 Simulink.SimulationData.ModelLoggingInfo

5-383

Property Summary

Name Description

LoggingMode Signal logging override status
LogAsSpecifiedByModels Source of signal logging settings for the top-level

model or a top-level Model block
Signals All signals that have signal override settings

Method Summary

Name Description

findSignal Find signals within the Signals vector, using
block path and output port index.

verifySignalAndModelPaths Verify signal and model paths for the model
signal logging override object.

getLogAsSpecifiedInModel Determine whether the model logs signals as
specified in the model or uses override settings.

setLogAsSpecifiedInModel Set the logging mode for the top-level model or
a top-level Model block.

createFromModel Create and populate a model signal logging
override object with all logged signals in the
model reference hierarchy.

ModelLoggingInfo Set signals to log or override logging settings.

Properties

LoggingMode

Description

Signal logging override status. Values are:

• OverrideSignals — (Default) Uses the logging settings for signals, as specified in
the Signals property. For models where getLogAsSpecifiedInModel is:

5 Simulink Classes

5-384

• true — Logs all signals, as specified in the model.
• false — Logs only the signals specified in the Signals property.

• LogAllAsSpecifiedInModel — Logs signals in the top-level model and all
referenced models, as specified in the model. Simulink honors the signal logging
indicators (blue antennae) and ignores the Signals property.

To change the logging mode for the top-level model or for a given reference model, use the
setLogAsSpecifiedInModel method.

Data Type

logical value — true or false

Access

RW

LogAsSpecifiedByModels

Description

When LoggingMode is set to 'OverrideSignals', this cell array specifies whether
the top-level model or a top-level Model block logs all signals based on the signal logging
settings defined in the model.

• For the top-level model and top-level Model blocks that the cell array includes,
Simulink ignores the Signals property overrides.

• For a model or Model block that the cell array does not include, Simulink uses the
Signals property to determine which signals to log.

When LoggingMode is set to 'LogAllAsSpecifiedInModel', Simulink ignores the
LogAsSpecifiedByModels property.

Use the getLogAsSpecifiedInModel method to determine whether the top-level model
or top-level Model block logs signals as specified in the model (default logging), and use
setLogAsSpecifiedInModel to turn default logging on and off.

Data Type

cell array — For the top-level model, specify the model name. For Model blocks, specify
the block path.

 Simulink.SimulationData.ModelLoggingInfo

5-385

Access

RW

Signals

Description

Vector of Simulink.SimulationData.SignalLoggingInfo objects for all signals
with signal logging override settings.

Data Type

vector of Simulink.SimulationData.SignalLoggingInfo objects

Access

RW

Methods

createFromModel

Purpose

Create a Simulink.SimulationData.ModelLoggingInfo object for a top-level model,
with override settings for each logged signal in the model.

Syntax

model_logging_info_object = ...

Simulink.SimulationData.ModelLoggingInfo.createFromModel(...

model, options)

Input Arguments

model

Name of the top-level model for which to create a
Simulink.SimulationData.ModelLoggingInfo object.

5 Simulink Classes

5-386

options

You can use any combination of the following option name and value pairs to control
the kinds of systems from which to include logged signals.

• FollowLinks

• on — (Default) Include logged signals from inside of libraries.
• off — Skip all libraries.

• LookUnderMasks

• all — (Default) Include logged signals from all masked subsystems.
• none — Skip all masked subsystems.
• graphical — Include logged signals from masked subsystems that do not

have a workspace or dialog box.
• functional — Include logged signals from masked subsystems that do not

have a dialog box.
• Variants

• ActiveVariants — (Default) Include logged signals from only active
subsystem and model reference variants.

• AllVariants — Include logged signals from all subsystem and model
reference variants.

• RefModels

• on — (Default) Include logged signals from referenced models.
• off — Skip all referenced models.

If you select more than one option, then the created
Simulink.SimlationData.ModelLoggingInfo object includes signals that
fit the combinations (the “AND”) of the specified options. For example, if you set
FollowLinks to on and set RefModels to off, then the model signal logging
override object does not include signals from library links that exist inside of
referenced models.

Output Arguments

model_logging_override_object

 Simulink.SimulationData.ModelLoggingInfo

5-387

Simulink.SimulationData.ModelLoggingInfo object for the top-level model.

Description

model_logging_info_object =

Simulink.SimulationData.ModelLoggingInfo.createFromModel(model)

creates a Simulink.SimulationData.ModelLoggingInfo object for the model that
includes logged signals for the following kinds of systems:

• Libraries
• Masked subsystems
• Referenced models
• Active variants

model_logging_override_object =

Simulink.SimulationData.ModelLoggingInfo.createFromModel(model,

options) creates a Simulink.SimulationData.ModelLoggingInfo object for the
model. The included logged signals reflect the options settings for the following kinds of
systems:

• Libraries
• Masked subsystems
• Referenced models
• Variants

Examples

The following example creates a model logging override object for the
sldemo_mdlref_bus model and automatically adds each logged signal in the model to
that object:
mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...

'sldemo_mdlref_bus')

mi =

 ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'

 LoggingMode: 'OverrideSignals'

 LogAsSpecifiedByModels: {}

 Signals: [1x3 Simulink.SimulationData.SignalLoggingInfo]

To apply the model override object settings, use:

5 Simulink Classes

5-388

set_param(sldemo_mdlref_bus, 'DataLoggingOverride', mi);

The following example explicitly specifies the kinds of systems from which to include
signals, rather than use the default settings for each kind of system. This example
specifies to include signals from all model reference variants (instead of using the default
of including only active variant).

The sldemo_mdlref_variants model has two variants:
sldemo_mrv_nonlinear_controller and sldemo_controller. In this
example, in each variant, you configure a signal for signal logging, and then create a
Simulink.SimulationData.ModelLoggingInfo object. The resulting object includes,
in the Signals property, two signals (one from each variant).

sldemo_mrv_nonlinear_controller;

sldemo_mrv_second_order_controller;

ph = get_param('sldemo_mrv_nonlinear_controller/Add','PortHandles');

set_param(ph.Outport(1),'DataLogging','on');

ph1 = get_param('sldemo_mrv_second_order_controller/Add','PortHandles');

set_param(ph1.Outport(1),'DataLogging','on');

mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...

'sldemo_mdlref_variants', 'Variants', 'AllVariants')

V_NONLINEAR_CONTROLLER =

Simulink.Variant

 Condition: 'CTRL==1'

V_SECOND_ORDER_CONTROLLER =

Simulink.Variant

 Condition: 'CTRL==2'

CTRL =

 1

mi =

 Simulink.SimulationData.ModelLoggingInfo

 Package: Simulink.SimulationData

 Properties:

 Model: 'sldemo_mdlref_variants'

 LoggingMode: 'OverrideSignals'

 LogAsSpecifiedByModels: {}

 Signals: [1x2 Simulink.SimulationData.SignalLoggingInfo]

 Methods

 Simulink.SimulationData.ModelLoggingInfo

5-389

ModelLoggingInfo

Purpose

Specify signals to log or override logging settings.

Syntax

model_logging_override_object =

Simulink.SimulationData.ModelLoggingInfo(model)

Input Arguments

model

Name of the top-level model for which to create a
Simulink.SimulationData.ModelLoggingInfo object

Output Arguments

model_logging_override_object

Simulink.SimulationData.ModelLoggingInfo object created for the specified
top-level model.

Description

model_logging_override_object=

Simulink.SimulationData.ModelLoggingInfo(model) creates a
Simulink.SimulationData.ModelLoggingInfo object for the specified top-level
model.

If you use the Simulink.SimulationData.ModelLoggingInfo constructor, specify
a Simulink.SimulationData.SignalLoggingInfo object for each logged signal for
which you want to override logging settings.

To check that you have specified valid signal logging override settings
for a model, use the verifySignalAndModelPaths method with the
Simulink.SimulationData.ModelLoggingInfo object for the model.

Examples

The following example shows how to log all signals as specified in the top-level model and
all referenced models.

5 Simulink Classes

5-390

mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');

mi.LoggingMode = 'LogAllAsSpecifiedInModel'

mi =

 ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'

 LoggingMode: 'LogAllAsSpecifiedInModel'

 LogAsSpecifiedByModels: {}

 Signals: []

To apply the model override object settings, use:

set_param(sldemo_mdlref_bus, 'DataLoggingOverride', mi);

The following example shows how to log only signals in the top-level model:
mi = ...

Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');

mi.LoggingMode = 'OverrideSignals';

mi = mi.setLogAsSpecifiedInModel('sldemo_mdlref_bus', true);

set_param('sldemo_mdlref_bus', 'DataLoggingOverride', mi);

findSignal

Purpose

Find signals within the Signals vector, using a block path and optionally an output port
index.

Syntax

signal_indices = ...

 model_logging_override_object.findSignal(block_path)

signal_indices = ...

 model_logging_override_object.findSignal(...

 block_path, port_index)

Input Arguments

block_path

Source block to search. The block_path must be one of the following:

• String
• Cell array of strings

 Simulink.SimulationData.ModelLoggingInfo

5-391

• Simulink.BlockPath object

port_index

Index of the output port to search. Specify a scalar greater than, or equal to, 1.

Output Arguments

signal_indices

Vector of numeric indices into the signals vector of the
Simulink.SimulationData.ModelLoggingInfo object.

Description

signal_indices = model_logging_override_object.findSignal(

block_path) finds the indices of the signals for the block path that you specify.

To find a single instance of a signal within a referenced model, use a
Simulink.BlockPath object or a cell array with a full path.

To find all instances of a signal within a referenced model, use a string with the relative
path of the signal within the referenced model.

To find a logged chart signal within a Stateflow chart, use a Simulink.BlockPath
object and set the SubPath property to the name of the Stateflow chart signal.

signal_indices = model_logging_override_object.findSignal(

block_path, port_index) finds the indices of the output signal for the port that you
specify, for the block path that you specify.

Do not use the port_index argument for Stateflow chart signals.

Examples

To find a signal that is not in a Stateflow chart and that does not appear in multiple
instances of a referenced model:
open_system(docpath(fullfile(docroot,'toolbox','simulink','examples','ex_bus_logging')))

% Open the referenced model

ex_mdlref_counter_bus

mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...

 'ex_bus_logging');

% Click the COUNTERBUSCreator block that is the source of

% the logged COUNTERBUS signal

signal_index = mi.findSignal(gcb)

5 Simulink Classes

5-392

signal_index =

 1

To find a signal in a specific instance of a referenced model that is not in a Stateflow
chart, use the following approach:
signal_index = mi.findSignal({'ex_bus_logging/CounterA', ...

'ex_mdlref_counter_bus/Bus Creator'})

signal_index =

 4

For an example that uses the findSignal method with a Stateflow chart, see “Override
Logging Properties with the Command-Line API” in the Stateflow documentation.

getLogAsSpecifiedInModel

Purpose

Determine whether the model logs as specified in the model or uses override settings.

Syntax

logging_mode = ...

getLogAsSpecifiedInModel(model_logging_override_object, path)

Input Arguments

model_logging_override_object

A Simulink.SimulationData.ModelLoggingInfo object.
path

The path is a string that specifies one of the following:

• Name of the top-level model
• Block path of a Model block in the top-level model

Output Arguments

logging_mode

The logging_mode is:

 Simulink.SimulationData.ModelLoggingInfo

5-393

• true, if the model specified by path is logged as specified in the model.
• false, if the model specified by path is logged using the override settings

specified in the Signals property.

Description

logging_mode =

model_logging_override_object.getLogAsSpecifiedInModel(path) returns:

• true, if the model specified by path is logged as specified in the model.
• false, if the model specified by path is logged using the override settings specified in

the Signals property.

Examples

In the following example, the Simulink.SimulationData.ModelLoggingInfo object
mi uses the override settings specified in its Signals property.

mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');

logging_mode = getLogAsSpecifiedInModel(mi, 'sldemo_mdlref_bus')

logging_mode =

 0

setLogAsSpecifiedInModel

Purpose

Set logging mode for top-level model or top-level Model block

Syntax

setLogAsSpecifiedInModel(override_object, path)

Input Arguments

override_object

Simulink.SimulationData.ModelLoggingInfo object.
path

String that specifies one of the following:

5 Simulink Classes

5-394

• Name of the top-level model
• Block path of a Model block in the top-level model

value

Logging mode:

• true, if the model specified by path is logged as specified in the model
• false, if the model specified by path is logged using the override settings

specified in the Signals property.

Description

setLogAsSpecifiedInModel(override_object, path, value) sets the
LoggingMode property for a top-level model or a Model block in the top-level model.

Example

The following example shows how to log only signals in the top-level model, using the
logging settings specified in that model:
sldemo_mdlref_bus;

mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');

mi.LoggingMode = 'OverrideSignals';

mi = setLogAsSpecifiedInModel(mi, 'sldemo_mdlref_bus', true);

set_param('sldemo_mdlref_bus', 'DataLoggingOverride', mi);

verifySignalAndModelPaths

Purpose

Verify paths in Simulink.SimulationData.ModelLoggingInfo object.

Syntax

verified_object = verifySignalAndModelPaths...

 (model_logging_override_object, action)

Input Arguments

model_logging_override_object

The Simulink.SimulationData.ModelLoggingInfo object to verify. This
argument is required.

 Simulink.SimulationData.ModelLoggingInfo

5-395

action

The action that the function performs if verification fails. This argument is optional.
Specify one of the following values:

• error — (default) Throw an error when verification fails
• warnAndRemove — Issue a warning when verification fails and update the

Simulink.SimulationData.ModelLoggingInfo object.
• remove — Silently update the

Simulink.SimulationData.ModelLoggingInfo object.

Output Arguments

verified_object

If the method detects no invalid paths, it returns the validated object. For example:
verified_object =

 Simulink.SimulationData.ModelLoggingInfo

 Package: Simulink.SimulationData

 Properties:

 Model: 'logging_top'

 LoggingMode: 'OverrideSignals'

 LogAsSpecifiedByModels: {}

 Signals: [1x11 Simulink.SimulationData.SignalLoggingInfo]

If the method detects an invalid path, it performs the action specified by the action
argument. By default, it issues an error message.

Description

verified_object = verifySignalAndModelPaths(

model_logging_override_object, action)

For a Simulink.SimulationData.ModelLoggingInfo object, verify that:

• All strings in the LogAsSpecifiedByModels property are either the name of the
top-level model or the block path of a Model block in the top-level model.

• The block paths for signals in the Signals property refer to valid blocks within the
hierarchy of the top-level model.

• The OutputPortIndex property for all signals in the Signals property are valid for
the given block.

• All signals in the Signals property refer to logged signals.

5 Simulink Classes

5-396

The action argument specifies what action the method performs. By default, the
method returns an error if it detects an invalid path.

If you use the Simulink.SimulationData.ModelLoggingInfo constructor and
specify a Simulink.SimulationData.SignalLoggingInfo object for each signal,
then consider using the verifySignalAndModelPaths method to verify that your
object definitions are valid.

Example

The following example shows how to validate the signal and block paths
in a Simulink.SimulationData.ModelLoggingInfo object. Because
the action argument is warnAndRemove, if the validation fails, the
verifySignalAndModelPaths method issues a warning and updates the
Simulink.SimulationData.ModelLoggingInfo object.
mi = Simulink.SimulationData.ModelLoggingInfo('sldemo_mdlref_bus');

verified_object = verifySignalAndModelPaths...

 (mi, 'warnAndRemove')

More About
• “Override Signal Logging Settings from MATLAB”
• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”

See Also
Simulink.BlockPath | Simulink.SimulationData.LoggingInfo
| Simulink.SimulationData.SignalLoggingInfo |
Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.ModelDataLogs

Introduced in R2012b

 Simulink.SimulationData.SignalLoggingInfo

5-397

Simulink.SimulationData.SignalLoggingInfo
Signal logging override settings for signal

Description

This object contains the signal override signal logging settings for a single logged signal.

Property Summary

Name Description

BlockPath Simulink.BlockPath of source block of a signal to
log.

OutputPortIndex Index of an output port to log.
LoggingInfo Simulink.SimulationData.LoggingInfo object

containing all logging override settings for a signal.

Method Summary

Name Description

SignalLoggingInfo Create a signal logging override object for a signal.

Properties

BlockPath

Description

Simulink.BlockPath of source block of signal to log. The block path represents the full
model reference hierarchy.

5 Simulink Classes

5-398

To specify a specific instance of a signal, use an absolute path, reflecting the model
reference hierarchy, starting at the top model. For example:
sig_log_info = Simulink.SimulationData.SignalLoggingInfo(...

{'sldemo_mdlref_bus/CounterA', ...

'sldemo_mdlref_counter_bus/Bus Creator'})

Data Type

Simulink.BlockPath

Access

RW

OutputPortIndex

Description

Index of the output port to log. The index is a 1-based numeric value.

Data Type

nonzero integer

Access

RW

LoggingInfo

Description

Simulink.SimulationData.LoggingInfo object containing logging override settings
for a signal. The logging settings specify whether signal logging is overridden for this
signal. The logging settings also can specify a logging name, a decimation factor, and a
maximum number of data points.

Data Type

cell array

 Simulink.SimulationData.SignalLoggingInfo

5-399

Access

RW

Methods

SignalLoggingInfo

Purpose

Construct a Simulink.SimulationData.SignalLoggingInfo object.

Syntax

signal_logging_info_object = ...

 Simulink.SimulationData.SignalLoggingInfo()

signal_loggingInfo_object = ...

 Simulink.SimulationData.SignalLoggingInfo(path)

signalLoggingInfo_object = ...

 Simulink.SimulationData.SignalLoggingInfo(path,index)

Input Arguments

path

The block path of the source block for which the signal logging override settings
apply. If you use this argument without also using the port argument, then
Simulink sets the output port index to 1.

index

Output port index to which the signal logging override settings apply.

Output Arguments

signal_logging_object

Simulink.SimulationData.SignalLoggingInfo object that represents the
override settings of a signal.

Description

signal_logging_override_object =

Simulink.SimulationData.SignalLoggingInfo() creates a

5 Simulink Classes

5-400

Simulink.SimulationData.LoggingInfo object that contains default logging
settings for a signal.

signal_logging_override_object =

Simulink.SimulationData.SignalLoggingInfo(path) creates a
Simulink.SimulationData.LoggingInfo object, using the specified block path, and
sets the output port index to 1.

signal_logging_override_object =

Simulink.SimulationData.SignalLoggingInfo(path, port) creates a
Simulink.SimulationData.LoggingInfo object that contains default logging
settings for the specified block path and output port index.

Examples

The following example creates a Simulink.SimulationData.SignalLoggingInfo
object for the first output port of the Bus Creator block in the sldemo_mdlref_bus
model.

sldemo_mdlref_bus;

mi = Simulink.SimulationData.ModelLoggingInfo(...

'sldemo_mdlref_bus');

mi.LoggingMode = 'OverrideSignals';

mi.Signals = ...

 Simulink.SimulationData.SignalLoggingInfo(...

 {'sldemo_mdlref_bus/CounterA', ...

'sldemo_mdlref_counter_bus/Bus Creator'}, 1)

The output is:
mi =

 Data.ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'

 LoggingMode: 'OverrideSignals'

 LogAsSpecifiedByModels: {}

 Signals: [1x1 Simulink.SimulationData.SignalLoggingInfo]

 Methods

More About
• “Override Signal Logging Settings from MATLAB”
• “Specify the Signal Logging Data Format”

 Simulink.SimulationData.SignalLoggingInfo

5-401

• “Export Signal Data Using Signal Logging”
• “Log Data Stores”

See Also
Simulink.SimulationData.ModelLoggingInfo

| Simulink.SimulationData.LoggingInfo |
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.ModelDataLogs

Introduced in R2012b

5 Simulink Classes

5-402

Simulink.SimulationData.Signal
Container for signal logging information

Description

Simulink uses Simulink.SimulationData.Signal objects to store signal logging
information during simulation. The objects contain information about the source block for
the signal, including the port type and index.

Property Summary

Name Description

BlockPath Block path for the source block for the signal
Name Name of signal element to use for name-based access
PropagatedName Propagated signal name, if any
PortIndex Numeric index of port that was logged
PortType Type of port that was logged: for signal logging, the

port type is 'outport'
Values Time and data that were logged

Properties

BlockPath

Description

Block path for the source block for the signal

Data Type

Simulink.SimulationData.BlockPath

 Simulink.SimulationData.Signal

5-403

Access

RW

Name

Description

Name of signal element to use for name-based access

Data Type

string

Access

RW

PropagatedName

Description

Propagated name of signal element

Signal logging and root Outport block logging data for a signal captures the propagated
signal name if the logging format is Dataset and:

• For signal logging, you:

• Mark the signal for signal logging and in the Signal Properties dialog box select
Show Propagated Signals.

• Enable Configuration Parameters > Data Import/Export > Signal logging.
• For root Outport block logging, you select Configuration Parameters > Data

Import/Export > Output.

The propagated signal name does not include angle brackets (<>).

Data Type

string

5 Simulink Classes

5-404

Access

RO

PortIndex

Description

Numeric index of port that was logged

Data Type

string

Access

RW

PortType

Description

Type of port that was logged: for signal logging, the port type is 'outport'

Data Type

string

Access

RW

Values

Description

Time and data that were logged.

For an example of how to use the Values property and plot logged signal data, in the
sldemo_mdlref_bus example, see “Logging Signal Data.”

 Simulink.SimulationData.Signal

5-405

Data Type

A single MATLAB timeseries object or a MATLAB structure of timeseries objects
(for bus signals)

Access

RW

More About
• “Access Signal Logging Data”
• “Import MATLAB timeseries Data”
• “Import Bus Data to Root-Level Input Ports”

See Also
Simulink.BlockPath | Simulink.SimulationData.Dataset | timeseries

5 Simulink Classes

5-406

Simulink.SimulationData.State class
Package: Simulink.SimulationData

State logging element

Description

Simulink uses Simulink.SimulationData.State objects to store state logging
information during simulation. The objects contain state information about which block
the state data is coming from and the type of state.

Properties

Name — Name of state element to use for name-based access
string

Name of state element to use for name-based access, specified as a string. If you do not
specify a name, 'CSTATE' or 'DSTATE' is used, depending on whether it a continuous or
discrete state.

BlockPath — Block path for state source block
a Simulink.SimulationData.BlockPath object

Block path for state source block, specified as a
Simulink.SimulationData.BlockPath object

Label — Type of state
'CSTATE' | 'DSTATE'

Type of state, returned as 'CSTATE' or 'DSTATE'. Read-only property.

• 'CSTATE' – Continuous state
• 'DSTATE' – Discrete state

Values — State element information
single MATLAB timeseries object | a structure of MATLAB timeseries objects

 Simulink.SimulationData.State class

5-407

State element information, specified as a single MATLAB timeseries object or as a
structure of MATLAB timeseries objects.

Examples

Final State Information in Structure with Dataset Format

Saved final state information in Dataset format and access the state data after
simulation.

Open the vdp model and specify to log final states in Dataset format. Use the default
logged state variable, xFinal.

open_system('vdp');

set_param(gcs,'SaveFinalState','on','SaveFormat','Dataset');

Simulate the model.

sim('vdp');

View the state logging information in xFinal.

xFinal

xFinal =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'xFinal'

 Total Elements: 2

 Elements:

 1: 'CSTATE'

 2: 'DSTATE'

Examine the first element of the state dataset.

xFinal.get(1)

ans =

5 Simulink Classes

5-408

 Simulink.SimulationData.State

 Package: Simulink.SimulationData

 Properties:

 Name: 'STATE'

 BlockPath: [1x1 Simulink.SimulationData.BlockPath]

 Label: CSTATE

 Values: [1x1 timeseries]

See Also
Simulink.SimulationData.Dataset

More About
• “State Information”

Introduced in R2015a

 Simulink.SimulationMetadata class

5-409

Simulink.SimulationMetadata class
Package: Simulink

Access metadata of simulation runs

Description

The SimulationMetadata class contains information about a simulation run including:

• Model information
• Timing information
• Custom string to tag the simulation
• Custom data to describe the simulation

SimulationMetadata packages this information with the SimulationOutput object.
To use SimulationMetadata:

• In Configuration Parameters > Data Import/Export, under Save options, select
Save simulation output as single object.

• Use set_param to set ReturnWorkspaceOutputs to on.

set_param(model_name,'ReturnWorkspaceOutputs','on');

To retrieve the SimulationMetadata object, use the getSimulationMetadata
method on a SimulationOutput object.

Properties

ModelInfo — Information about the model and simulation operating environment
Structure

The ModelInfo structure has these fields.

Field Name Type Description

ModelName char Name of the model
ModelVersion char Version of the model

5 Simulink Classes

5-410

Field Name Type Description

ModelFilePath char Absolute location of the .mdl/.slx file
UserID char System user ID of the machine used for

the simulation
MachineName char Hostname of the machine used for the

simulation
Platform char Operating system of the machine used for

the simulation
ModelStructuralChecksum4–by–1 uint32 Structural checksum of the model

calculated after an update diagram
SimulationMode char Simulation mode
StartTime double Simulation start time
StopTime double Time at which the simulation was

terminated
SolverInfo struct Solver information:

• Fixed-step solvers – Solver type,
name, and fixed step size

• Variable solvers – Solver type, name,
and max step size (initial setting)

SimulinkVersion struct Version of Simulink

TimingInfo — Structure to store profiling information about the simulation
Structure

Structure to store profiling information about the simulation, including the time stamps
for the start and end of the simulation. The structure has these fields.

Field Name Type Description

WallClockTimestampStartstring Wall clock time when the simulation
started, in YYYY-MM-DD HH:MI:SS
format with microsecond resolution

WallClockTimestampStop string Wall clock time when the simulation
stopped, in YYYY-MM-DD HH:MI:SS
format with microsecond resolution

 Simulink.SimulationMetadata class

5-411

Field Name Type Description

InitializationElapsedWallTimedouble Time spent before execution, in seconds
ExecutionElapsedWallTimedouble Time spent during execution, in seconds
TerminationElapsedWallTimedouble Time spent after execution in, seconds

The ExecutionElapsedWallTime includes the time that Simulink spent to roll back or
step back in a simulation. The ExecutionElapsedWallTime does not include the time
spent between steps. For example, if you use Stepper to step through a simulation, the
ExecutionElapsedWallTime time does not include the time when the simulation is in
a paused state. For more information about using Stepper, see “How Simulation Stepper
Helps With Model Analysis”.

UserString — Custom string to describe the simulation
String

Use Simulink.SimulationOutput.setUserString to directly store a string in the
SimulationMetadata object that is contained in the SimulationOutput object.

UserData — Custom data to store in SimulationMetadata object that is contained in the
SimulationOutput object
String

Use Simulink.SimulationOutput.setUserData to store custom data in the
SimulationMetadata object that is contained in the SimulationOutput object.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Get a SimulationMetadata Object for vdp Simulation

Simulate the vdp model. Retrieve metadata from a SimulationMetadata object of the
simulation.

5 Simulink Classes

5-412

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object
in simout.

 open_system('vdp');

 simout = sim(bdroot,'ReturnWorkspaceOutputs','on');

Retrieve metadata information about this simulation using mData. This is the
SimulationMetadata object that simout contains.

 mData=simout.getSimulationMetadata()

SimulationMetadata with properties:

 ModelInfo: [1x1 struct]

 TimingInfo: [1x1 struct]

 UserString: ''

 UserData: []

Store custom data or string in simout.

 simout=simout.setUserData(struct('param1','value1','param2','value2','param3','value3'));

 simout=simout.setUserString('Store first simulation results');

Retrieve the custom data you stored from mData.

 mData=simout.getSimulationMetadata()

 disp(mData.UserData)

 param1: 'value1'

 param2: 'value2'

 param3: 'value3'

Retrieve the custom string you stored from mData.

 mData=simout.getSimulationMetadata()

 disp(mData.UserString)

 Store first simulation results

See Also
Simulink.SimulationOutput.getSimulationMetadata |
Simulink.SimulationOutput.setUserData | Simulink.SimulationOutput.setUserString

 Simulink.SimulationOutput class

5-413

Simulink.SimulationOutput class
Package: Simulink

Access object values of simulation results

Description

The SimulationOutput class contains all simulation outputs, including workspace
variables.

Use Simulink.SimulationOutput.who and either
Simulink.SimulationOutput.get or Simulink.SimulationOutput.find methods
to access the output variable names and their respective values.

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples

Simulate the vdp model and place the results of the Simulink.SimulationOutput
object in simOut.

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew');

Store the variable names of the outputs in simOutVars, using the who method.

simOutVars = simOut.who

Simulink returns and displays:

5 Simulink Classes

5-414

simOutVars =

 'xoutNew'

 'youtNew'

Get the values of the variable youtNew.

yout = simOut.get('youtNew')

Simulink returns and displays the values.

See Also
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Dataset

How To
• “Specify the Signal Logging Data Format”
• “Export Simulation Data”

 Simulink.SubsysDataLogs

5-415

Simulink.SubsysDataLogs
Container for subsystem's signal data logs

Description

Note: The Simulink.SubsysDataLogs class is used in conjunction with the
ModelDataLogs logging data format. The ModelDataLogs format is supported for
backwards compatibility. The ModelDataLogs format will be removed in a future
release.

For new models, use the Dataset logging format.

Simulink software creates instances of this class to contain logs for signals belonging
to a subsystem (see “Export Signal Data Using Signal Logging”). Objects of this class
have a variable number of properties. The first property, named Name, is the name of the
subsystem whose log data this object contains. The remaining properties are signal log or
signal log container objects containing the data logged for the subsystem specified by this
object's Name property.

Consider, for example, the following model.

After simulation of this model, the MATLAB workspace contains a
Simulink.ModelDataLogs object, named logsout, that contains a

5 Simulink Classes

5-416

Simulink.SubsysDataLogs object, named Gain, that contains the log data for signals
a and m in the subsystem named Gain.

>> logsout.Gain

ans =

Simulink.SubsysDataLogs (Gain):

 Name elements Simulink Class

 a 1 Timeseries

 m 2 TsArray

You can use either fully qualified log names or the unpack command to access the signal
logs contained by a SubsysDataLogs object. For example, to access the amplitudes
logged for signal a in the preceding example, you could enter the following at the
MATLAB command line:

>> data = logsout.Gain.a.Data;

or

>> logsout.unpack('all');

data = a.Data;

See Also

“Create Signal Data to Load”, Simulink.ModelDataLogs, Simulink.Timeseries,
Simulink.TsArray, Simulink.SimulationData.Dataset, who, whos, unpack

Introduced before R2006a

 Simulink.TimeInfo

5-417

Simulink.TimeInfo

Provide information about time data in Simulink.Timeseries object

Description

Simulink software creates instances of these objects to describe the time data that it
includes in Simulink.Timeseries objects.

Properties

Name Access Description

Units RW The units, e.g., 'seconds', in which the time
series data are expressed in the associated
Simulink.Timeseries object.

Start RW If the associated signal is not in a conditionally
executed subsystem, this field contains the simulation
time of the first signal value recorded in the associated
Simulink.Timeseries object. If the signal is in a
conditionally executed subsystem, this field contains
an array of times when the system became active.

end RW If the associated signal is not in a conditionally
executed subsystem, this field contains the simulation
time of the last signal value recorded in the associated
Simulink.Timeseries object. If the signal is in a
conditionally executed subsystem, this field contains
an array of times when the system became inactive.

Increment RW The interval between simulation times at
which signal data is logged in the associated
Simulink.Timeseries object. If the signal is
aperiodic (continuous signal with variable-step solver),
this property has a value of NaN. A signal is periodic
if it has a discrete sample time (not continuous or
constant) or is continuous with a fixed-step solver.

5 Simulink Classes

5-418

Name Access Description

Length W The number of signal samples recorded in the
associated Simulink.Timeseries object, i.e., the
length of the arrays referenced by the object's Time
and Data properties.

See Also

Simulink.Timeseries , Simulink.SimulationData.Dataset

Introduced before R2006a

 Simulink.Timeseries

5-419

Simulink.Timeseries
Store data for any signal except mux or bus signal

Description

Simulink software creates instances of this class to store signal data that it logs for
any signal except a mux or bus signal, which are stored in a Simulink.TsArray. See
“Export Signal Data Using Signal Logging” for more information.

Properties

Name Access Description

Name RW Name of this signal log.
BlockPath RW Path of the block that output the signal logged in this

signal log.
PortIndex RW Index of the output port that emitted the signal logged

in this signal log.
SignalName RW Name of the signal logged in this signal log.
ParentName RW Name of the parent of the signal recorded in this log,

if the signal is an element of a mux or a virtual bus;
otherwise, the same as SignalName.

TimeInfo RW An object of Simulink.TimeInfo class that describes
the time data in this log.

Time RW An array containing the simulation times at which
signal data was logged.

Data RW An array containing the signal data.

See Also

“Export Signal Data Using Signal Logging”, Simulink.TimeInfo,
Simulink.SimulationData.Dataset, Simulink.ModelDataLogs,
Simulink.SubsysDataLogs, Simulink.TsArray, who, whos, unpack

5 Simulink Classes

5-420

Introduced before R2006a

 Simulink.TsArray

5-421

Simulink.TsArray
Store data for mux or bus signal

Description

Simulink software creates instances of this class to contain the data that it logs for a mux
or bus signal. Other types of signals are stored in a Simulink.Timeseries. See “Export
Signal Data Using Signal Logging” for more information.

Objects of the Simulink.TsArray class have a variable number of properties. The
first property, called Name, specifies the log name of the logged signal. The remaining
properties reference logs for the elements of the logged signal: Simulink.Timeseries
objects for elementary signals and Simulink.TSArray objects for mux or bus signals.
The name of each property is the log name of the corresponding signal.

For example, consider the following model.

This model specifies that Simulink software should log the values of the signal
b2 during simulation. After simulation of this model, the MATLAB workspace
contains a Simulink.ModelDataLogs object, named logsout, that contains a
Simulink.TsArray object, named b2, that contains the logs for the elements of b2, i.e.,
for the elementary signal x1 and the bus signal b1. entering the fully qualified name of
the Simulink.TsArray object, i.e., logsout.b2, at the MATLAB command line reveals
the structure of the signal log for this model.

5 Simulink Classes

5-422

>> logsout.b2

Simulink.TsArray (untitled/Bus Creator1):

 Name elements Simulink Class

 x1 1 Timeseries

 b1 2 TsArray

You can use either fully qualified log names or the unpack command to access the signal
logs contained by a Simulink.TsArray object. For example, to access the amplitudes
logged for signal x1 in the preceding example, you could enter the following at the
MATLAB command line:

>> data = logsout.b2.x1.Data;

or

>> logsout.unpack('all');

data = x1.Data;

See Also

“Export Signal Data Using Signal Logging”,Simulink.ModelDataLogs,
Simulink.SubsysDataLogs, Simulink.Timeseries,
Simulink.SimulationData.Dataset, who, whos, unpack

Introduced before R2006a

 Simulink.Variant class

5-423

Simulink.Variant class
Package: Simulink

Specify conditions that control variant selection

Description

An object of the Simulink.Variant class represents a conditional expression called a
variant control. The object allows you to specify a Boolean expression that activates a
specific variant choice when it evaluates to true.

A variant control comprises one or more variant control variables, specified using
MATLAB variables or Simulink.Parameter objects.

You specify variant controls for each variant choice represented in a Variant Subsystem
or Model Variant block. For a given Variant Subsystem or Model Variant block, only one
variant control can evaluate to true at a time. When a variant control evaluates to true,
Simulink activates the variant choice that corresponds to that variant control.

Construction

variantControl = Simulink.Variant(conditionExpression) creates a variant
control.

Properties

conditionExpression — Variant condition expression
'' (default) | string

Variant condition expression, specified as a string containing one or more of these
operands and operators.

Operands

• Variable names that resolve to MATLAB variables or Simulink.Parameter objects
with integer or enumerated data type and scalar literal values

5 Simulink Classes

5-424

• Variable names that resolve to Simulink.Variant objects
• Scalar literal values that represent integer or enumerated values

Operators

• Parentheses for grouping
• Arithmetic, relational, logical, or bit-wise operators

The variant condition expression evaluates to a Boolean value. This property has read
and write access.
Example: '(Fuel==2 || Emission==1) && Ratio==2'

Examples

Create Variant Controls Using MATLAB Variables

Use MATLAB variables when you want to simulate the model but are not considering
code generation.

Create MATLAB variables with scalar literal values.

Fuel = 3;

Emission = 1;

Ratio = 3;

Develop conditional expressions using the variables.

Variant1 = Simulink.Variant('Fuel==1 && Emission==2');

Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');

Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

Create Variant Controls Using Simulink.Parameter Objects

If you want to generate preprocessor conditionals for code generation, use
Simulink.Parameter objects instead of MATLAB variables.

Create variant Simulink.Parameter objects with scalar literal values.

Fuel = Simulink.Parameter(3);

 Simulink.Variant class

5-425

Emission = Simulink.Parameter(1);

Ratio = Simulink.Parameter(3);

Specify the custom storage class for these objects as ImportedDefine so that the values
are specified by an external header file.

Other valid values for the custom storage class are Define and CompilerFlag.

Fuel.CoderInfo.StorageClass = 'Custom';

Fuel.CoderInfo.CustomStorageClass = 'ImportedDefine';

Emission.CoderInfo.StorageClass = 'Custom';

Emission.CoderInfo.CustomStorageClass = 'ImportedDefine';

Ratio.CoderInfo.StorageClass = 'Custom';

Ratio.CoderInfo.CustomStorageClass = 'ImportedDefine';

Develop conditional expressions using the variables and create variant controls.

Variant1 = Simulink.Variant('Fuel==1 && Emission==2');

Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');

Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

See Also
“Operators and Operands in Variant Condition Expressions”

More About
• “Select Variant Control Specification”

5 Simulink Classes

5-426

Simulink.VariantConfigurationData class

Package: Simulink

Class representing a variant configurations data object

Description

The variant configuration data object, stores a collection of variant
configurations, constraints, and the name of the default active configuration. The
Simulink.VariantConfigurationData class has properties that enable you to add,
modify, or remove variant configurations, constraints, and control variables. Use an
instance of Simulink.VariantConfigurationData class to do the following:

• Define and edit variant configurations.
• Add control variables to variant configurations.
• Add copy of variant configuration.
• Delete existing variant configurations, constraints, and sub model configurations.
• Set a specific configuration as default active.
• Validate model using default or a specific variant configuration.
• Query or create variant configurations data object for a given model.

Properties

VariantConfigurations

Set of variant configurations. The names of the configurations must be unique and valid
MATLAB variable names.

Constraints

Set of constraints that must always be satisfied by the model for all variant
configurations. The name of the constraints must be unique and valid MATLAB variable
names.

 Simulink.VariantConfigurationData class

5-427

DefaultConfigurationName

Name of the variant configuration to be used by default for validation.

Methods

addConfiguration Add a new variant configuration to the
variant configuration data object

addConstraint Add a constraint to the variant
configuration data object

addControlVariables Add control variables to an existing variant
configuration

addCopyOfConfiguration Add a copy of an existing variant
configuration to the variant configuration
data object

addSubModelConfigurations Add to a variant configuration the names of
the configurations to be used for submodels

existsFor Check if variant configuration data object
exists for a model

getConfiguration Returns the variant configuration with a
given name from a variant configuration
data object

getDefaultConfiguration Returns default variant configuration, if
any, for a variant configuration data object

getFor Get existing variant configuration data
object for a model

getOrCreateFor Get existing or create a new variant
configuration data object for a model

removeConfiguration Remove a variant configuration with a
given name from the variant configuration
data object

removeConstraint Remove a constraint from the variant
configuration data object

removeControlVariable Remove a control variable from a variant
configuration

5 Simulink Classes

5-428

removeSubModelConfiguration Remove from a variant configuration, the
configuration to be used for a sub model.

setDefaultConfigurationName Set name of the default variant
configuration for a variant configuration
data object

validateModel Validate all variant blocks in the model
and submodels in the hierarchy during
simulation

VariantConfigurationData Object constructor with optional arguments
for variant configurations, constraints, and
default configuration name

More About
• “Variant Management”

 addConfiguration

5-429

addConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Add a new variant configuration to the variant configuration data object

Syntax
vcdataObj.addConfiguration(name)

vcdataObj.addConfiguration(name,description)

vcdataObj.addConfiguration(name,description,controlVars)

vcdataObj.addConfiguration(name,description,controlVars,

subModelConfigurations)

Description
vcdataObj.addConfiguration(name) adds a new variant configuration with a given
name to the variant configuration data object.

vcdataObj.addConfiguration(name,description) adds a new variant
configuration with a given name and optional description to the variant configuration
data object.

vcdataObj.addConfiguration(name,description,controlVars) adds a new
variant configuration with a given name, optional description, and control variables to
the variant configuration data object.

vcdataObj.addConfiguration(name,description,controlVars,

subModelConfigurations) adds a new variant configuration with a given name,
optional description, control variables, and submodel configurations to the variant
configuration data object.

Input Arguments

name

Name of variant configuration being added.

5 Simulink Classes

5-430

description

Description text for the variant configuration being added.

controlVars

Control variables for the variant configuration being added. This argument must be a
vector of structures with required fields: Name and Value. The values assigned to the
Name field must be unique and valid MATLAB variable names. The Value field can
contain either strings or Simulink.Parameter objects. The values of control variables
are checked during validation of the variant configuration.

subModelConfigurations

Vector of structures containing fields: ModelName, ConfigurationName. The names of
submodels must be unique and valid MATLAB variable names and configuration names
must be valid MATLAB variables.

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add a variant configuration LinInterExp

vcdataObj.addConfiguration('LinInterExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addControlVariables |
Simulink.VariantConfigurationData.addSubModelConfigurations

 addConstraint

5-431

addConstraint
Class: Simulink.VariantConfigurationData
Package: Simulink

Add a constraint to the variant configuration data object

Syntax

vcdataObj.addConstraint(nameOfConstraint)

vcdataObj.addConstraint(nameOfConstraint,condition)

vcdataObj.addConstraint(nameOfConstraint,condition,description)

Description

vcdataObj.addConstraint(nameOfConstraint) adds a new constraint with a given
name to vcdataObj.

vcdataObj.addConstraint(nameOfConstraint,condition) adds a new constraint
with a given name and condition expression to vcdataObj.

vcdataObj.addConstraint(nameOfConstraint,condition,description)adds a
new constraint with a given name, condition expression, and description to vcdataObj.

Input Arguments

nameOfConstraint

Name of constraint being added. Must be unique and valid MATLAB variable name.

condition

Boolean expression that must evaluate to true. When the expression evaluates to true, it
means the constraint is satisfied.

description

Text that describes the constraint.

5 Simulink Classes

5-432

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add a constraint named LinNotExtern

vcdataObj.addConstraint('LinNotExtern','((Ctrl~=1)...

 || (PlantLocation ~=1))','Description of the constraint')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.removeConstraint |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.removeConfiguration

 addControlVariables

5-433

addControlVariables
Class: Simulink.VariantConfigurationData
Package: Simulink

Add control variables to an existing variant configuration

Syntax

vcdataObj.addControlVariables(nameOfConfiguration,controlVars)

Description

vcdataObj.addControlVariables(nameOfConfiguration,controlVars), adds
control variables to a variant configuration.

Input Arguments

nameOfConfiguration

Specifies the name of an existing configuration.

controlVars

Control variables being added. This argument must be a vector of structures with
required fields: Name and Value. The values assigned to the Name field must be unique
and valid MATLAB variable names. The Value field can contain either strings or
Simulink.Parameter objects. The values of control variables are checked during
validation of the variant configuration.

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

5 Simulink Classes

5-434

% Add a variant configuration named LinInterExp

vcdataObj.addConfiguration('LinInterExp',...

'Linear Internal Experimental Plant Controller');

% Add control variables SmartSensor1Mod and PlanLocation

vcdataObj.addControlVariables('LinInterExp',...

 cell2struct({'SmartSensor1Mod', '2';...

 'PlantLocation', '1'},...

 {'Name', 'Value'}, 2))

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.removeControlVariable |
Simulink.VariantConfigurationData.addSubModelConfigurations |
Simulink.VariantConfigurationData.removeSubModelConfiguration

 addCopyOfConfiguration

5-435

addCopyOfConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Add a copy of an existing variant configuration to the variant configuration data object

Syntax

vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration)

vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration,

nameOfTobeAddedConfiguration)

Description

vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration), adds a
new configuration with a default name (default name is based on existing configuration
name being copied) as a copy of the existing configuration to the variant configuration
data object.

vcdataObj.addCopyOfConfiguration(nameOfExistingConfiguration,

nameOfTobeAddedConfiguration), adds a new configuration with a specified name,
as a copy of the existing configuration, to the variant configuration data object.

Input Arguments

nameOfExistingConfiguration

Name of existing configuration.

Default:

nameOfTobeAddedConfiguration

Name of new configuration to be added as a copy of the configuration.

Default:

5 Simulink Classes

5-436

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration LinInterExp

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

% Add a copy of variant configuration LinInterExp

% and name the copy as LinExtExp

vcdataObj.addCopyOfConfiguration('LinInterExp','LinExtExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.removeConfiguration |
Simulink.VariantConfigurationData.setDefaultConfiguration

 addSubModelConfigurations

5-437

addSubModelConfigurations
Class: Simulink.VariantConfigurationData
Package: Simulink

Add to a variant configuration the names of the configurations to be used for submodels

Syntax

vcdataObj.addSubModelConfigurations(nameOfConfiguration,

subModelConfigurations)

Description

vcdataObj.addSubModelConfigurations(nameOfConfiguration,

subModelConfigurations), specifies names of the configurations to be used for
submodels.

Input Arguments

nameOfConfiguration

Name for the configuration of submodels that are model references.

subModelConfigurations

Vector of structures containing fields: ModelName, ConfigurationName. The names of
submodels must be unique and valid MATLAB variable names and configuration names
must be valid MATLAB variables.

Examples
% Add the path to the model file

addpath(fullfile(docroot,'toolbox','simulink','examples'));

5 Simulink Classes

5-438

% Load the model

load_system('slexVariantManagementExample');

% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration LinInterExp

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

% Add a new submodel configuration to LinInterExp

vcdataObj.addSubModelConfigurations('LinInterExp',...

 [struct('ModelName', 'slexVariantManagementExternalPlantMdlRef',...

 'ConfigurationName', 'LowFid')])

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.removeSubModelConfiguration
| Simulink.VariantConfigurationData.addControlVariables |
Simulink.VariantConfigurationData.removeControlVariable

 existsFor

5-439

existsFor
Class: Simulink.VariantConfigurationData
Package: Simulink

Check if variant configuration data object exists for a model

Syntax
Simulink.VariantConfigurationData.existsFor(modelNameOrHandle)

Description
Simulink.VariantConfigurationData.existsFor(modelNameOrHandle) returns
true if the variant configuration data object exists for the model.

Input Arguments
modelNameOrHandle

Name or handle to the model.

Examples
% Add the path to the model file

addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model

load_system('slexVariantManagementExample');

% Checks whether a variant configuration

% data object exists for model

[exists] = Simulink.VariantConfigurationData.existsFor...

 ('slexVariantManagementExample')

See Also
Simulink.VariantConfigurationData | Simulink.VariantConfigurationData.getFor

5 Simulink Classes

5-440

getConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Returns the variant configuration with a given name from a variant configuration data
object

Syntax

vcdataObj.getConfiguration(nameOfConfiguration)

Description

vcdataObj.getConfiguration(nameOfConfiguration) returns a specific variant
configuration that is associated with the variant configuration data object.

Input Arguments

nameOfConfiguration

Name of the variant configuration to be returned.

Examples
 % Define the variant configuration data object

 vcdataObj = Simulink.VariantConfigurationData;

 % Add the variant configuration LinInterExp

 vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

 % Add a control variable SmartSensor1Mod

 vcdataObj.addControlVariables('LinInterExp',...

 [struct('Name','SmartSensor1Mod','Value','2')]);

 getConfiguration

5-441

 % Obtain information on the variant configuration..

 % LinInterExp from the variant configuration data object

 vc = vcdataObj.getConfiguration('LinInterExp')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.removeConfiguration |
Simulink.VariantConfigurationData.getDefaultConfiguration

5 Simulink Classes

5-442

getDefaultConfiguration

Class: Simulink.VariantConfigurationData
Package: Simulink

Returns default variant configuration, if any, for a variant configuration data object

Syntax

vcdataObj.getDefaultConfiguration

Description

vcdataObj.getDefaultConfiguration returns the default variant configuration. If
no default variant configuration is defined, then [] is returned.

Examples

% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration named LinInterExp

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

% Add the variant configuration LinInterStd

vcdataObj.addConfiguration('LinInterStd',...

 'Linear Internal Standard Plant Controller');

% Set LinExtExp as the default variant configuration

vcdataObj.setDefaultConfigurationName('LinExtExp');

% Obtain the default variant configuration

defvc = vcdataObj.getDefaultConfiguration

 getDefaultConfiguration

5-443

See Also
Simulink.VariantConfigurationData.setDefaultConfigurationName |
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.getConfiguration

5 Simulink Classes

5-444

getFor
Class: Simulink.VariantConfigurationData
Package: Simulink

Get existing variant configuration data object for a model

Syntax

Simulink.VariantConfigurationData.getFor(modelNameOrHandle)

Description

Simulink.VariantConfigurationData.getFor(modelNameOrHandle), returns the
variant configuration object for the model. If no default variant configuration is defined,
then [] is returned.

Input Arguments

modelNameOrHandle

Model name or handle.

Examples
% Add the path to the model file

addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model

load_system('slexVariantManagementExample');

% Obtain variant configuration data object for the model

% slexVariantManagementExample

vcdataObj = Simulink.VariantConfigurationData.getFor...

 ('slexVariantManagementExample')

 getFor

5-445

See Also
Simulink.VariantConfigurationData | Simulink.VariantConfigurationData.existsFor |
Simulink.VariantConfigurationData.getOrCreateFor

5 Simulink Classes

5-446

getOrCreateFor
Class: Simulink.VariantConfigurationData
Package: Simulink

Get existing or create a new variant configuration data object for a model

Syntax

Simulink.VariantConfigurationData.getOrCreateFor(modelNameOrHandle)

Description

Simulink.VariantConfigurationData.getOrCreateFor(modelNameOrHandle),
returns the object if the variant configuration data objects exists otherwise, creates an
empty object.

Input Arguments

modelNameOrHandle

Model name or handle to the model.

Examples
% Add the path to the model file

addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model

load_system('slexVariantManagementExample');

% Obtain existing or create an empty variant configuration

% data object for the slexVariantManagementExample model

vcdataObj = Simulink.VariantConfigurationData.getOrCreateFor...

 ('slexVariantManagementExample')

 getOrCreateFor

5-447

See Also
Simulink.VariantConfigurationData | Simulink.VariantConfigurationData.existsFor |
Simulink.VariantConfigurationData.getFor

5 Simulink Classes

5-448

removeConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove a variant configuration with a given name from the variant configuration data
object

Syntax

vcdataObj.removeConfiguration(nameOfConfiguration)

Description

vcdataObj.removeConfiguration(nameOfConfiguration) removes the
configuration from the variant configuration data object.

Input Arguments

nameOfConfiguration

Name of the configuration to be removed.

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add the LinInterExp variant configuration

% to the variant configuration data object

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

% Remove the LinInterExp configuration

% from the variant configuration data object

vcdataObj.removeConfiguration('LinInterExp')

 removeConfiguration

5-449

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration |
Simulink.VariantConfigurationData.getConfiguration

5 Simulink Classes

5-450

removeConstraint
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove a constraint from the variant configuration data object

Syntax

vcdataObj.removeConstraint(nameOfConstraint)

Description

vcdataObj.removeConstraint(nameOfConstraint), removes the constraint from
the variant configuration data object.

Input Arguments

nameOfConstraint

Name of the constraint to be removed.

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add a constraint named LinNotExtern

vcdataObj.addConstraint('LinNotExtern','((Ctrl~=1)...

 || (PlantLocation ~=1))',..

 'Description of the constraint');

% Remove the constraint LinNotExtern

% from the variant configuration

vcdataObj.removeConstraint('LinNotExtern')

 removeConstraint

5-451

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConstraint

5 Simulink Classes

5-452

removeControlVariable
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove a control variable from a variant configuration

Syntax

vcdataObj.removeControlVariable(nameOfConfiguration,

nameOfControlVariable)

Description

vcdataObj.removeControlVariable(nameOfConfiguration,

nameOfControlVariable) removes a control variable from a variant configuration.

Input Arguments

nameOfConfiguration

Name of the variant configuration.

nameOfControlVariable

Name of the control variable to be deleted.

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add a variant configuration named LinInterExp

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

 removeControlVariable

5-453

% Add control variables SmartSensor1Mod and PlanLocation

vcdataObj.addControlVariables('LinInterExp',...

 [struct('Name','SmartSensor1Mod','Value','2')]);

% Remove the control variable SmartSensor1Mod

% from the configuration LinInterExp

vcdataObj.removeControlVariable('LinInterExp',...

 'SmartSensor1Mod')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addControlVariables

5 Simulink Classes

5-454

removeSubModelConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove from a variant configuration, the configuration to be used for a sub model.

Syntax

vcdataObj.removeSubModelConfiguration(nameOfConfiguration,

nameOfSubModel)

Description

vcdataObj.removeSubModelConfiguration(nameOfConfiguration,

nameOfSubModel), removes the configuration specified for a submodel.

Input Arguments

nameOfConfiguration

Name of the submodel configuration to be removed.

nameOfSubModel

Name of the submodel from which the configuration must be removed.

Examples
% Load the model

load_system('slexVariantManagementExample');

% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration named LinInterExp

 removeSubModelConfiguration

5-455

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller',controlvars);

% Add a new submodel configuration to LinInterExp

vcdataObj.addSubModelConfigurations('LinInterExp',...

 [struct('ModelName','slexVariantManagementExternalPlantMdlRef',...

 'ConfigurationName', 'LowFid')]);

% Remove the submodel configuration LinInterExp

% from the submodel slexVariantManagementExternalPlantMdlRef

vcdataObj.removeSubModelConfiguration('LinInterExp',..

 'slexVariantManagementExternalPlantMdlRef')

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addSubModelConfigurations

5 Simulink Classes

5-456

setDefaultConfigurationName
Class: Simulink.VariantConfigurationData
Package: Simulink

Set name of the default variant configuration for a variant configuration data object

Syntax

vcdataObj.setDefaultConfiguration(nameOfConfiguration)

Description

vcdataObj.setDefaultConfiguration(nameOfConfiguration) sets the default
configuration name. A variant configuration must exist with the same name. If an empty
value is passed, then the default configuration name is cleared.

Input Arguments

nameOfConfiguration

Name of the configuration to be set as the default.

Examples
% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add the LinInterExp variant configuration

vcdataObj.addConfiguration('LinInterExp',...

 'Linear Internal Experimental Plant Controller');

% Set the configuration LinInterExp as default

vcdataObj.setDefaultConfigurationName('LinInterExp');

% Obtain the default variant configuration

 setDefaultConfigurationName

5-457

dconfig = vcdataObj.getDefaultConfiguration

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.getDefaultConfiguration

5 Simulink Classes

5-458

validateModel
Class: Simulink.VariantConfigurationData
Package: Simulink

Validate all variant blocks in the model and submodels in the hierarchy during
simulation

Syntax

Simulink.VariantConfigurationData.validateModel(modelName)

Simulink.VariantConfigurationData.validateModel(modelName,

configName)

Description

Simulink.VariantConfigurationData.validateModel(modelName), validates
the model and referenced models during simulation.

Simulink.VariantConfigurationData.validateModel(modelName,

configName), validates the model and referenced models during simulation optionally
using a variant configuration.

Input Arguments

modelName

Name of the model

configName

Name of the configuration to be validated

Examples
% Add the path to the model file

 validateModel

5-459

addpath(fullfile(docroot,'toolbox','simulink','examples'));

% Load the model

load_system('slexVariantManagementExample');

% Define the variant configuration data object

vcdataObj = Simulink.VariantConfigurationData;

% Add a variant configuration LinInterExp

vcdataObj.addConfiguration('LinInterExp');

% Add control variables to LinInterExp

vcdataObj.addControlVariables('LinInterExp',...

 cell2struct({'Ctrl', '1';...

 'PlantLocation', '2';...

 'SimType', '2'},...

 {'Name', 'Value'}, 2));

% Associate this object with the model

set_param('slexVariantManagementExample',...

 'VariantConfigurationObject', 'vcdataObj');

% Validate the model slexVariantManagementExample using

% the configuration LinInterExp

[valid, errors] = Simulink.VariantConfigurationData.validateModel...

 ('slexVariantManagementExample','LinInterExp')

See Also
Simulink.VariantConfigurationData | Simulink.VariantConfigurationData.getFor
| Simulink.VariantConfigurationData.existsFor |
Simulink.VariantConfigurationData.getOrCreateFor

5 Simulink Classes

5-460

VariantConfigurationData
Class: Simulink.VariantConfigurationData
Package: Simulink

Object constructor with optional arguments for variant configurations, constraints, and
default configuration name

Syntax

vardataObj = Simulink.VariantConfigurationData(

variantConfigurations)

Description

vardataObj = Simulink.VariantConfigurationData(

variantConfigurations), constructor that creates an empty variant configuration
data object. Optionally, can also accept constraints and a default configuration name as
inputs.

Input Arguments

variantConfigurations

Configurations that are part of the variant configuration data object.

constraints

Constraints to be satisfied by the model.

defaultConfigurationName

Name of the default configuration

Examples
% Create an empty variant configuration data object

 VariantConfigurationData

5-461

vcdataObj = Simulink.VariantConfigurationData

See Also
Simulink.VariantConfigurationData |
Simulink.VariantConfigurationData.addConfiguration
| Simulink.VariantConfigurationData.addConstraint |
Simulink.VariantConfigurationData.addControlVariables |
Simulink.VariantConfigurationData.addSubModelConfigurations

5 Simulink Classes

5-462

Simulink.WorkspaceVar class
Package: Simulink

Contains information about workspace variables and blocks that use them

Note: Simulink.WorkspaceVar will be removed in a future release. Use
Simulink.VariableUsage instead.

Description

A Simulink.WorkspaceVar object describes attributes of a workspace variable and lists
the blocks that use the variable. The Simulink.findVars function returns one or more
Simulink.WorkspaceVar objects that embody the results of searching for variables.

Tip

Only a Simulink.WorkspaceVar constructor can set any field value in a
Simulink.WorkspaceVar object. The fields are otherwise read-only.

Properties

Name

The name of the variable described by the Simulink.WorkspaceVar object

Workspace

The name of the workspace in which the variable resides, for example:

Workspace value Meaning

'base workspace' The MATLAB base workspace
'MyModel' The model workspace for the model MyModel.

 Simulink.WorkspaceVar class

5-463

Workspace value Meaning

'MyModel/Mask1' The mask workspace for the masked block Mask1 in the
model MyModel.

WorkspaceType

The type of workspace in which the variable resides. The possible values are:

• 'base'

• 'model'

• 'mask'

UsedByBlocks

A cell array of strings. Each string names a block that uses the variable.
Simulink.findVars populates this field.

Construction

var = Simulink.WorkspaceVar (VarName, WkspName), where both arguments
are strings, returns a Simulink.WorkspaceVar object with Name VarName and
Workspace WkspName. The inputs need not exist in the model. Simulink will provide a
WorkspaceType automatically.

vars = Simulink.WorkspaceVar (VarNames, WkspName), where VarNames is a
cell array of strings, returns a vector of Simulink.WorkspaceVar objects, each with a
specified name and Workspace = WkspName.

Methods

[VarsOut] = VarsIn1.setdiff (VarsIn2) — Calls setdiff to return the difference
between VarsIn1 and VarsIn2. The arguments and return value are vectors of
Simulink.WorkspaceVar objects.

[VarsOut] = VarsIn1.intersect (VarsIn2) — Calls intersect to return the
intersection between VarsIn1 and VarsIn2. The arguments and return value are
vectors of Simulink.WorkspaceVar objects.

5 Simulink Classes

5-464

Examples

Create a Simulink.WorkspaceVar object for the variable 'k' in the base workspace.

var = Simulink.WorkspaceVar('k', 'base workspace');

Return a vector of Simulink.WorkspaceVar objects, one object for each variable
returned by who.

[vars] = Simulink.WorkspaceVar (who, WkspName)

Return a vector of Simulink.WorkspaceVar objects, one object for each variable
returned by whos.

[vars] = Simulink.WorkspaceVar (who, WkspName)

Create a vector of Simulink.WorkspaceVar objects that describes all the variables in a
model workspace

hws = get_param('mymodel', 'ModelWorkspace');

vars=Simulink.WorkspaceVar(hws.whos, 'MyModel')

Create a vector of Simulink.WorkspaceVar objects that describes all the variables in a
mask workspace

maskVars = get_param('mymodel/maskblock', 'MaskWSVariables');

vars = Simulink.WorkspaceVar(maskVars, 'mymodel/maskblock');

See Also

• Simulink.findVars

• setdiff
• intersect

 Simulink.VariableUsage class

5-465

Simulink.VariableUsage class
Package: Simulink

Get information about workspace variables and blocks that use them

Tip

Only a Simulink.VariableUsage constructor can set any property value in a
Simulink.VariableUsage object. The properties are otherwise read only.

Description

Create a Simulink.VariableUsage object to get the attributes of a workspace variable
and determine the blocks that use the variable.

You can also use the Simulink.findVars function to create
Simulink.VariableUsage objects that describe the variables and, optionally,
enumerated data types that are used by a model.

Construction

vars = Simulink.VariableUsage(VarNames,SourceName) creates an array of
Simulink.VariableUsage objects to describe the variables VarNames. The constructor
sets the Name property of each object to one of the variable names specified by VarNames,
and sets the Source property of all the objects to the source specified by SourceName.

You can specify VarNames with variables that are not used in any loaded models.

Input Arguments

VarNames — Names of target variables
string | cell array of strings

Names of target variables, specified as a string or a cell array of strings. The constructor
creates a Simulink.VariableUsage object for each variable name.

5 Simulink Classes

5-466

Example: ‘k’

Example: {’k’,’asdf’,’fuelFlow’}

Data Types: char | cell

SourceName — Name of variable source
string

Name of the source that defines the target variables, specified as a string. For example,
you can specify the MATLAB base workspace or a data dictionary as a source. The
constructor also determines and sets the SourceType property of each of the returned
Simulink.VariableUsage objects.

Example: ‘base workspace’

Example: ‘myModel’

Example: ‘myDictionary.sldd’

Data Types: char

Properties

Name — Name of variable or enumerated type
string

The name of the variable or enumerated data type the object describes, returned as a
string.

Source — Name of defining workspace
string

The name of the workspace or data dictionary that defines the described variable,
returned as a string. The table shows some examples.

Source value Meaning

'base workspace' MATLAB base workspace
'MyModel' Model workspace for the model MyModel
'MyModel/Mask1' Mask workspace for the masked block Mask1 in the

model MyModel

 Simulink.VariableUsage class

5-467

Source value Meaning

'sldemo_fuelsys_dd_controller.sldd'The data dictionary named
'sldemo_fuelsys_dd_controller.sldd'

The table shows some examples if you created the Simulink.VariableUsage object by
using the Simulink.findVars function to find enumerated data types.

Source value Meaning

'BasicColors.m' The enumerated type is defined in the MATLAB file
'BasicColors.m'.

'' The enumerated type is defined dynamically and has no
source.

'sldemo_fuelsys_dd_controller.sldd'The enumerated type is defined in the data dictionary
named 'sldemo_fuelsys_dd_controller.sldd'.

SourceType — Type of defining workspace
string

The type of the workspace that defines the variable, returned as a string. The possible
values are:

• 'base workspace'

• 'model workspace'

• 'mask workspace'

• 'data dictionary'

If you created the Simulink.VariableUsage object by using the Simulink.findVars
function to find enumerated data types, the possible values are:

• 'MATLAB file'

• 'dynamic class'

• 'data dictionary'

Users — Model blocks that use the variable or models that use the enumerated type
cell array of strings

Model blocks that use the variable or models that use the enumerated type, returned
as a cell array of strings. Each string names a block or model that uses the variable or
enumerated type. The Simulink.findVars function populates this field.

5 Simulink Classes

5-468

Methods

intersect Intersection of two arrays of
Simulink.VariableUsage objects

setdiff Return difference between two arrays of
Simulink.VariableUsage objects

Examples

Return a Simulink.VariableUsage object for the variable 'k' in the base workspace.

var = Simulink.VariableUsage('k','base workspace');

Return an array of Simulink.VariableUsage objects containing one object for each
variable returned by the whos command.

vars = Simulink.VariableUsage(whos,'base workspace')

Return an array of Simulink.VariableUsage objects that describes all the variables in
a model workspace.

hws = get_param('mymodel','ModelWorkspace');

vars = Simulink.VariableUsage(hws.whos,'MyModel')

Return an array of Simulink.VariableUsage objects that describes all the variables in
a mask workspace.

maskVars = get_param('mymodel/maskblock','MaskWSVariables');

vars = Simulink.VariableUsage(maskVars,'mymodel/maskblock');

See Also
Simulink.data.existsInGlobal | Simulink.findVars

More About
• “Model Exploration”
• “Variables”

 intersect

5-469

intersect
Class: Simulink.VariableUsage
Package: Simulink

Intersection of two arrays of Simulink.VariableUsage objects

Syntax

VarsOut = intersect(VarsIn1,VarsIn2)

Description

VarsOut = intersect(VarsIn1,VarsIn2) returns an array that
identifies the variables described in VarsIn1 and in VarsIn2, which are
arrays of Simulink.VariableUsage objects. If a variable is described by a
Simulink.VariableUsage object in VarsIn1 and in VarsIn2, the function returns a
Simulink.VariableUsage object that stores the variable usage information from both
objects in the Users property.

intersect compares the Name, Source, and SourceType properties of the
Simulink.VariableUsage objects in VarsIn1 with the same properties of the objects
in VarsIn2. If VarsIn1 and VarsIn2 each contain Simulink.VariableUsage objects
that have the same values for these three properties, they both describe the same
variable.

Input Arguments

VarsIn1 — First array of variables for comparison
array of Simulink.VariableUsage objects

First array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for comparison
array of Simulink.VariableUsage objects

5 Simulink Classes

5-470

Second array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

Output Arguments

VarsOut — Variables described in both input arrays
array of Simulink.VariableUsage objects

Variables that are described in both input arrays, returned as an array of
Simulink.VariableUsage objects. The function returns an object for each variable
that is described in VarsIn1 and in VarsIn2.

Examples

Compare Variables Used by Models

Given two models, discover the variables needed by both models.

model1Vars = Simulink.findVars('model1');

model2Vars = Simulink.findVars('model2');

commonVars = intersect(model1Vars,model2Vars);

See Also
Simulink.VariableUsage | setdiff | Simulink.findVars

More About
• “Model Exploration”
• “Variables”

 setdiff

5-471

setdiff

Class: Simulink.VariableUsage
Package: Simulink

Return difference between two arrays of Simulink.VariableUsage objects

Syntax

VarsOut = setdiff(VarsIn1,VarsIn2)

Description

VarsOut = setdiff(VarsIn1,VarsIn2) returns an array that identifies
the variables described in VarsIn1 but not in VarsIn2, which are
arrays of Simulink.VariableUsage objects. If a variable is described by a
Simulink.VariableUsage object in VarsIn1 but not in VarsIn2, the function returns
a copy of the object.

setdiff compares the Name, Source, and SourceType properties of the
Simulink.VariableUsage objects in VarsIn1 with the same properties of the objects
in VarsIn2. If VarsIn1 and VarsIn2 each contain a Simulink.VariableUsage object
with the same values for these three properties, the objects describe the same variable,
and setdiff does not return an object to describe it.

Input Arguments

VarsIn1 — First array of variables for comparison
array of Simulink.VariableUsage objects

First array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for comparison
array of Simulink.VariableUsage objects

5 Simulink Classes

5-472

Second array of variables for comparison, specified as an array of
Simulink.VariableUsage objects.

Output Arguments

VarsOut — Variables described in first array but not second array
array of Simulink.VariableUsage objects

Variables that are described in the first input array but not in the second input array,
returned as an array of Simulink.VariableUsage objects. The function returns an
object for each variable that is described in VarsIn1 but not in VarsIn2.

Examples

Determine Variable Usage Difference Between Models

Given two models, discover the variables that are needed by the first model but not the
second model.

model1Vars = Simulink.findVars('model1');

model2Vars = Simulink.findVars('model2');

commonVars = setdiff(model1Vars,model2Vars);

Find Variables Not Used by Model

Locate all variables in the base workspace that are not used by a loaded model that has
been recently compiled.

models = find_system('type','block_diagram','LibraryType','None');

base_vars = Simulink.VariableUsage(who);

used_vars = Simulink.findVars(models,'WorkspaceType','base');

unusedVars = setdiff(base_vars,used_vars);

See Also
Simulink.VariableUsage | intersect | Simulink.findVars

More About
• “Model Exploration”

 setdiff

5-473

• “Variables”

5 Simulink Classes

5-474

Simulink.data.Dictionary class
Package: Simulink.data

Configure data dictionary

Description

An object of the Simulink.data.Dictionary class represents a data dictionary. The
object allows you to perform operations on the data dictionary such as save or discard
changes, import data from the base workspace, and add other data dictionaries as
references.

Construction

The functions Simulink.data.dictionary.create and
Simulink.data.dictionary.open create a Simulink.data.Dictionary object.

Properties

DataSources — Referenced data dictionaries
cell array of strings

Referenced data dictionaries by file name, returned as a cell array of strings.
This property only lists directly referenced dictionaries whose parent is the
Simulink.data.Dictionary object. This property is read only.

HasUnsavedChanges — Indicator of unsaved changes
0 | 1

Indicator of unsaved changes to the data dictionary, returned as 0 or 1. The value is 1
if changes have been made since last data dictionary save and 0 if not. This property is
read only.

NumberOfEntries — Total number of entries in data dictionary
integer

 Simulink.data.Dictionary class

5-475

Total number of entries in data dictionary, including those in referenced dictionaries,
returned as an integer. This property is read only.

Methods

addDataSource Add reference data dictionary to parent
data dictionary

close Close connection between data dictionary
and Simulink.data.Dictionary object

discardChanges Discard changes to data dictionary
filepath Full path and file name of data dictionary
getSection Return

Simulink.data.dictionary.Section

object to represent data dictionary section
hide Remove data dictionary from Model

Explorer
importEnumTypes Import enumerated type definitions to data

dictionary
importFromBaseWorkspace Import base workspace variables to data

dictionary
listEntry List data dictionary entries
removeDataSource Remove reference data dictionary from

parent data dictionary
saveChanges Save changes to data dictionary
show Show data dictionary in Model Explorer

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

5 Simulink Classes

5-476

Examples

Create New Data Dictionary and Data Dictionary Object

Create a data dictionary file myNewDictionary.sldd and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the
object to variable dd1.

dd1 = Simulink.data.dictionary.create('myNewDictionary.sldd')

dd1 =

 data dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 0

 NumberOfEntries: 0

Open Existing Data Dictionary

Create a Simulink.data.Dictionary object representing the existing data dictionary
myDictionary_ex_API.sldd. Assign the object to variable dd2.

dd2 = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

dd2 =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}

 HasUnsavedChanges: 0

 NumberOfEntries: 4

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.create | Simulink.data.dictionary.Entry |
Simulink.data.dictionary.open | Simulink.data.dictionary.Section

More About
• “What Is a Data Dictionary?”

 Simulink.data.Dictionary class

5-477

Introduced in R2015a

5 Simulink Classes

5-478

addDataSource
Class: Simulink.data.Dictionary
Package: Simulink.data

Add reference data dictionary to parent data dictionary

Syntax

addDataSource(dictionaryObj,refDictionaryFile)

Description

addDataSource(dictionaryObj,refDictionaryFile) adds a data dictionary,
refDictionaryFile, as a reference dictionary to a parent dictionary dictionaryObj,
a Simulink.data.Dictionary object.

The parent dictionary contains all the entries that are defined in the referenced
dictionary until the referenced dictionary is removed from the parent dictionary. The
DataSource property of an entry indicates the dictionary that defines the entry.

Input Arguments

dictionaryObj — Parent data dictionary
Simulink.data.Dictionary object

Parent data dictionary, specified as a Simulink.data.Dictionary object. Before
you use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

refDictionaryFile — File name of data dictionary to reference
string

File name of data dictionary to reference, specified as a string that includes the .sldd
extension. The data dictionary file must be on your MATLAB path.

 addDataSource

5-479

Example: ‘mySubDictionary_ex_API.sldd’

Data Types: char

Examples

Add a Reference Data Dictionary to a Parent Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Add the data dictionary mySubDictionary_ex_API.sldd as a reference dictionary to
myDictionary_ex_API.sldd.

addDataSource(myDictionaryObj,'mySubDictionary_ex_API.sldd');

Confirm the addition by viewing the DataSources property of variable
myDictionaryObj. The property returns the name of the newly referenced dictionary.

myDictionaryObj.DataSources

ans =

 'myRefDictionary_ex_API.sldd'

 'mySubDictionary_ex_API.sldd'

• “Store Data in Dictionary Programmatically”

Alternatives

You can use the Model Explorer window to manage reference dictionaries. See “Partition
Data Dictionary” for more information.

See Also
removeDataSource | Simulink.data.Dictionary

Introduced in R2015a

5 Simulink Classes

5-480

close

Class: Simulink.data.Dictionary
Package: Simulink.data

Close connection between data dictionary and Simulink.data.Dictionary object

Syntax

close(dictionaryObj)

Description

close(dictionaryObj) closes the connection between the Simulink.data.Dictionary
object dictionaryObj and the data dictionary it represents. dictionaryObj remains
as a Simulink.data.Dictionary object but no longer represents any data dictionary.

Tips

• Use the close function in a custom MATLAB function to disassociate a
Simulink.data.Dictionary object from a data dictionary. Custom MATLAB
functions can create and store variables and objects in function workspaces but cannot
delete those variables and objects.

• The close function does not affect the content or the state of the represented
data dictionary. The function does not discard unsaved changes to the represented
dictionary or entries. You can save or discard them later.

Input Arguments

dictionaryObj — Target Simulink.data.Dictionary object
handle to Simulink.data.Dictionary object

Target Simulink.data.Dictionary object, specified as a handle to the object.

 close

5-481

See Also
Simulink.data.Dictionary

Related Examples
• “Store Data in Dictionary Programmatically”

Introduced in R2015a

5 Simulink Classes

5-482

discardChanges
Class: Simulink.data.Dictionary
Package: Simulink.data

Discard changes to data dictionary

Syntax

discardChanges(dictionaryObj)

Description

discardChanges(dictionaryObj) discards all changes made to the specified
data dictionary since the last time changes to the dictionary were saved using the
saveChanges function. discardChanges also discards changes made to referenced
data dictionaries. The changes to the target dictionary and its referenced dictionaries are
permanently lost.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

Discard Changes to Data Dictionary

Create a Simulink.data.Dictionary object representing the data dictionary
myDictionary_ex_API.sldd and assign the object to variable myDictionaryObj.

 discardChanges

5-483

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}

 HasUnsavedChanges: 0

 NumberOfEntries: 4

Make a change to myDictionary_ex_API.sldd by adding an entry named
myNewEntry with value 237. View the HasUnsavedChanges property of
myDictionaryObj to confirm a change was made.

addEntry(dDataSectObj,'myNewEntry',237);

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}

 HasUnsavedChanges: 1

 NumberOfEntries: 5

Discard all changes to myDictionary_ex_API.sldd. The HasUnsavedChanges
property of myDictionaryObj indicates changes were discarded.

discardChanges(myDictionaryObj)

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}

 HasUnsavedChanges: 0

 NumberOfEntries: 4

• “Store Data in Dictionary Programmatically”

5 Simulink Classes

5-484

Alternatives

You can use the Model Explorer window to discard changes to data dictionaries. See
“View and Revert Changes to Dictionary Entries” for more information.

See Also
Simulink.data.Dictionary | saveChanges

More About
• “What Is a Data Dictionary?”

Introduced in R2015a

 filepath

5-485

filepath
Class: Simulink.data.Dictionary
Package: Simulink.data

Full path and file name of data dictionary

Syntax

dictionaryFilePath = filepath(dictionaryObj)

Description

dictionaryFilePath = filepath(dictionaryObj) returns the full path and file
name of the data dictionary dictionaryObj, a Simulink.data.Dictionary object.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

Return Path of Data Dictionary File

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

5 Simulink Classes

5-486

Return the full path of myDictionary_ex_API.sldd and assign it to variable
myDictionaryFilePath.

myDictionaryFilePath = filepath(myDictionaryObj)

myDictionaryFilePath =

C:\Users\jsmith\myDictionary_ex_API.sldd

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary

Introduced in R2015a

 getSection

5-487

getSection
Class: Simulink.data.Dictionary
Package: Simulink.data

Return Simulink.data.dictionary.Section object to represent data dictionary
section

Syntax

sectionObj = getSection(dictionaryObj,sectionName)

Description

sectionObj = getSection(dictionaryObj,sectionName) returns a
Simulink.data.dictionary.Section object representing one section, sectionName, of a
data dictionary dictionaryObj, a Simulink.data.Dictionary object.

Input Arguments

dictionaryObj — Data dictionary containing target section
Simulink.data.Dictionary object

Data dictionary containing target section, specified as a Simulink.data.Dictionary
object. Before you use this function, represent the dictionary
with a Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

sectionName — Name of target data dictionary section
string

Name of target data dictionary section, specified as a string.
Example: ‘Design Data’

Example: ‘Configurations’

5 Simulink Classes

5-488

Data Types: char

Examples

Create New Data Dictionary Section Object

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

dDataSectObj = getSection(myDictionaryObj,'Design Data')

dDataSectObj =

 Section with properties:

 Name: 'Design Data'

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.Section

Introduced in R2015a

 hide

5-489

hide
Class: Simulink.data.Dictionary
Package: Simulink.data

Remove data dictionary from Model Explorer

Syntax

hide(dictionaryObj)

Description

hide(dictionaryObj) removes the data dictionary dictionaryObj from the Model
Hierarchy pane of Model Explorer. The target dictionary no longer appears as a node in
the model hierarchy tree. Use this function when you are finished working with a data
dictionary and want to reduce clutter in the Model Explorer.

Tips

• To add a data dictionary as a node in the model hierarchy tree in Model Explorer,
use the show function or use the interface to open and view the dictionary in Model
Explorer.

• The hide function does not affect the content of the target dictionary.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

5 Simulink Classes

5-490

Examples

Hide Data Dictionary from Model Explorer

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Open Model Explorer and display the new data dictionary as the selected tree node in the
Model Hierarchy pane.

show(myDictionaryObj)

With Model Explorer open, at the MATLAB command prompt, call the hide function to
observe the removal of myDictionary_ex_API.sldd from the model hierarchy tree.

hide(myDictionaryObj)

• “Store Data in Dictionary Programmatically”

Alternatives

You can remove a data dictionary from the Model Hierarchy pane of Model Explorer by
right-clicking the dictionary tree node and selecting Close.

See Also
show | Simulink.data.Dictionary

Introduced in R2015a

 importEnumTypes

5-491

importEnumTypes
Class: Simulink.data.Dictionary
Package: Simulink.data

Import enumerated type definitions to data dictionary

Syntax

importedTypes = importEnumTypes(dictionaryObj,targetTypes)

[importedTypes,importFailures] = importEnumTypes(dictionaryObj,

targetTypes)

Description

importedTypes = importEnumTypes(dictionaryObj,targetTypes) imports to
the data dictionary dictionaryObj the definitions of one or more enumerated types
targetTypes. importEnumTypes does not import MATLAB variables created using
enumerated types but instead, in support of those variables, imports the definitions of
the types. The target data dictionary stores the definition of a successfully imported type
as an entry. This syntax returns a list of the names of successfully imported types.

[importedTypes,importFailures] = importEnumTypes(dictionaryObj,

targetTypes) additionally returns a list of any target types that were not successfully
imported. You can inspect the list to determine the reason for each failure.

Tips
• Before you can import an enumerated data type definition to a data dictionary, you

must clear the base workspace of any variables created using the target type.
• You can define an enumerated type using a classdef block in a MATLAB file or a P-

file. importEnumTypes imports type definitions directly from these files if you specify
the names of the types to import using the input argument targetTypes and if the
files defining the types are on your MATLAB path.

• To avoid conflicting definitions for imported types, importEnumTypes renders
MATLAB files or P-files ineffective by appending .save to their names. The .save

5 Simulink Classes

5-492

extensions cause variables to rely on the definitions in the target data dictionary and
not on the definitions in the files. You can remove the .save extensions to restore the
files to their original state.

• You can use importEnumTypes to import enumerated types defined using the
Simulink.defineIntEnumType function. Because such types are not defined using
MATLAB files or P-files, importEnumTypes does not rename any files.

• Use the function Simulink.findVars to generate a list of the enumerated types
that are used by a model. Then, use the list with importEnumTypes to import the
definitions of the types to a data dictionary. See “Migrate Enumerated Types into
Data Dictionary” for more information.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

targetTypes — Enumerated type definitions to import
cell array of strings

Enumerated type definitions to import, specified as a cell array of strings. If any target
types are defined using classdef blocks in MATLAB files or P-files, the files must be
available on your MATLAB path so that importEnumTypes can disable them.

Example: {’myEnumType’}

Example: {’myFirstEnumType’,’mySecondEnumType’,’myThirdEnumType’}

Data Types: cell

Output Arguments

importedTypes — Target types successfully imported
array of structures

 importEnumTypes

5-493

Target enumerated type definitions successfully imported, returned as an array of
structures. Each structure in the array represents one imported type. The className
field of each structure identifies a type by name and the renamedFiles field identifies
any renamed MATLAB files or P-files.

importFailures — Target types not imported
array of structures

Enumerated type definitions targeted but not imported, returned as an array of
structures. Each structure in the array represents one type not imported. The
className field of each structure identifies a type by name and the reason field
explains the failure.

Examples

Import Enumerated Data to Data Dictionary

Create a data dictionary myNewDictionary.sldd in your current working folder and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the
object to the variable myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd');

Run the script in the MATLAB file myDataEnum_ex_API.m. The file defines an
enumerated type named InstrumentTypes using the Simulink.defineIntEnumType
function and creates three variables based on the new type. Then, import the new
variables from the base workspace to myDictionary_ex_API.sldd.

myDataEnum_ex_API

importFromBaseWorkspace(myDictionaryObj,'varList',...

{'firstEnumVariable','secondEnumVariable','thirdEnumVariable'});

Clear the imported variables from the base workspace. Before you can import an
enumerated data type definition to the target data dictionary, you must clear the base
workspace of any variables created using the target type.

clear firstEnumVariable

clear secondEnumVariable

clear thirdEnumVariable

Import the data type definition to myDictionary_ex_API.sldd.

5 Simulink Classes

5-494

importEnumTypes(myDictionaryObj,{'InstrumentTypes'})

ans =

 className: 'InstrumentTypes'

 renamedFiles: {}

• “Migrate Enumerated Types into Data Dictionary”
• “Store Data in Dictionary Programmatically”

See Also
importFromBaseWorkspace | Simulink.data.Dictionary

Introduced in R2015a

 importFromBaseWorkspace

5-495

importFromBaseWorkspace
Class: Simulink.data.Dictionary
Package: Simulink.data

Import base workspace variables to data dictionary

Syntax

importedVars = importFromBaseWorkspace(dictionaryObj)

importedVars = importFromBaseWorkspace(dictionaryObj,Name,Value)

[importedVars,existingVars] = importFromBaseWorkspace(___)

Description

importedVars = importFromBaseWorkspace(dictionaryObj) imports all
variables from the MATLAB base workspace to the data dictionary dictionaryObj
without overwriting existing entries in the dictionary. If any base workspace variables
are already in the dictionary, the function present a warning and a list.

This syntax returns a list of names of the successfully imported variables. A variable is
considered successfully imported only if importFromBaseWorkspace assigns the value
of the variable to the corresponding entry in the target data dictionary.

importedVars = importFromBaseWorkspace(dictionaryObj,Name,Value)

imports base workspace variables to a data dictionary, with additional options specified
by one or more Name,Value pair arguments.

[importedVars,existingVars] = importFromBaseWorkspace(___)

additionally returns a list of variables that were not overwritten. Use this syntax if
existingVarsAction is set to ‘none’, the default value, which prevents existing
dictionary entries from being overwritten.

Tips
• importFromBaseWorkspace can import MATLAB variables created from

enumerated data types but cannot import the definitions of the enumerated types.

5 Simulink Classes

5-496

Use the importEnumTypes function to import enumerated data type definitions to a
data dictionary. If you import variables of enumerated data types to a data dictionary
but do not import the enumerated type definitions, the dictionary is less portable and
might not function properly if used by someone else.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'clearWorkspaceVars' — Flag to clear base workspace of imported variables
false (default) | true

Flag to clear the base workspace of any successfully imported variables, specified as the
comma-separated pair consisting of ‘clearWorkspaceVars’ and true or false.

Example: ‘clearWorkspaceVars’,true

Data Types: logical

'existingVarsAction' — Action to take for existing dictionary variables
‘none’ (default) | ‘error’ | ‘overwrite’

Action to take for existing dictionary variables, specified as the comma-separated pair
consisting of ‘existingVarsAction’ and ‘none’, ‘error’, or ‘overwrite’.

If you specify 'none', importFromBaseWorkspace attempts to import target variables
but does not import or make any changes to variables that are already in the data
dictionary.

 importFromBaseWorkspace

5-497

If you specify 'error', importFromBaseWorkspace returns an error, without
importing any variables, if any target variables are already in the data dictionary.

If you specify 'overwrite', importFromBaseWorkspace imports all target variables
and overwrites any variables that are already in the data dictionary.
Example: ‘existingVarsAction’,'error'

Data Types: char

'varList' — Variables to import
cell array of strings

Names of specific base workspace variables to import, specified as the comma-separated
pair consisting of ‘varList’ and a cell array of strings. If you want to import only
one variable, specify the name inside a cell array. If you do not specify ‘varList’,
importFromBaseWorkspace imports all variables from the MATLAB base workspace.

Example: ‘varList’,{’a’,’myVariable’,’fuelFlow’}

Example: ‘varList’,{’fuelFlow’}

Data Types: cell

Output Arguments

importedVars — Successfully imported variables
cell array of strings

Names of successfully imported variables, returned as a cell array of strings. A variable
is considered successfully imported only if importFromBaseWorkspace assigns the
value of the variable to the corresponding entry in the target data dictionary.

existingVars — Variables that were not imported
cell array of strings

Names of target variables that were not imported due to their existence in the target
data dictionary, returned as a cell array of strings. existingVars has content only
if ‘existingVarsAction’ is set to ‘none’ which is also the default. In that case
importFromBaseWorkspace imports only variables that are not already in the target
data dictionary.

5 Simulink Classes

5-498

Examples

Import All Base Workspace Variables to Data Dictionary

In the MATLAB base workspace, create variables to import.

a = 'String Variable';

myVariable = true;

fuelFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import all base workspace variables to the data dictionary and return a list of
successfully imported variables. If any base workspace variables are already in
myDictionary_ex_API.sldd, importFromBaseWorkspace presents a warning and a
list of the affected variables.

importFromBaseWorkspace(myDictionaryObj);

Warning: The following variables were not imported because

they already exist in the dictionary:

 fuelFlow

Specify Variables to Import to Data Dictionary from Base Workspace

In the MATLAB base workspace, create variables to import.

b = 'String Variable';

mySecondVariable = true;

airFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import only the new base workspace variables to the data dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',...

 importFromBaseWorkspace

5-499

{'b','mySecondVariable','airFlow'});

Import Variables from Base Workspace and Overwrite Conflicts

In the MATLAB base workspace, create a variable to import.

fuelFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it
with a Simulink.data.Dictionary object named myDictionaryObj.
myDictionary_ex_API.sldd already contains an entry called fuelFlow.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the variable fuelFlow and overwrite the corresponding entry in
myDictionary_ex_API.sldd.

importFromBaseWorkspace(myDictionaryObj,'varList',{'fuelFlow'},...

'existingVarsAction','overwrite');

importFromBaseWorkspace assigns the value of the base workspace variable
fuelFlow to the value of the corresponding entry in myDictionary_ex_API.sldd.

Return Variables Not Imported to Data Dictionary from Base Workspace

Return a list of variables that are not imported from the MATLAB base workspace
because they are already in the target data dictionary.

In the MATLAB base workspace, create variables to import.

fuelFlow = 324;

myNewVariable = 'This is a string.'

Open the data dictionary myDictionary_ex_API.sldd and represent it
with a Simulink.data.Dictionary object named myDictionaryObj.
myDictionary_ex_API.sldd already contains an entry called fuelFlow.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the variables fuelFlow and myNewVariable to the data dictionary. Specify
names for the output arguments of importFromBaseWorkspace to return the names of
successfully and unsuccessfully imported variables.

[importedVars,existingVars] = importFromBaseWorkspace(myDictionaryObj,...

5 Simulink Classes

5-500

'varList',{'fuelFlow','myNewVariable'})

importedVars =

 'myNewVariable'

existingVars =

 'fuelFlow'

importFromBaseWorkspace does not import the variable fuelflow because it is
already in the target data dictionary.

• “Store Data in Dictionary Programmatically”

Alternatives

• When you use the Simulink Editor to link a model to a data dictionary, you can choose
to import model variables from the base workspace. See “Migrate Single Model to Use
Dictionary” for more information.

• You can also use the Model Explorer window to drag-and-drop variables from the base
workspace into a data dictionary.

See Also
importEnumTypes | Simulink.data.Dictionary

Introduced in R2015a

 listEntry

5-501

listEntry

Class: Simulink.data.Dictionary
Package: Simulink.data

List data dictionary entries

Syntax

listEntry(dictionaryObj)

listEntry(dictionaryObj,Name,Value)

Description

listEntry(dictionaryObj) displays in the MATLAB Command Window a
table of information about all the entries in the data dictionary dictionaryObj, a
Simulink.data.Dictionary object. The displayed information includes the name of each
entry, the name of the section containing each entry, the status of each entry, the date
and time each entry was last modified, the last user name to modify each entry, and the
class of the value each entry contains. By default, the function sorts the list of entries
alphabetically by entry name.

listEntry(dictionaryObj,Name,Value) displays the entries in a data dictionary
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

5 Simulink Classes

5-502

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Ascending' — Sort order of list
true (default) | false

Sort order of the list of data dictionary entries, specified as the comma-separated pair
consisting of ‘Ascending’ and true or false. If you specify false, listEntry sorts
the list in descending order.
Example: ‘Ascending’,false

Data Types: logical

'Class' — Criteria to filter list by class
string

Criteria to filter the list of data dictionary entries by class, specified as the comma-
separated pair consisting of ‘Class’ and a string identifying a valid class. The function
lists only entries whose values are of the specified class.
Example: ‘Class’,’Simulink.Parameter’

Data Types: char

'LastModifiedBy' — Criteria to filter list by user name of last modifier
string

Criteria to filter the list of data dictionary entries by the user name of the last
user to modify each entry, specified as the comma-separated pair consisting of
‘LastModifiedBy’ and a string identifying the specified user name. The function lists
only entries that were last modified by the specified user name.
Example: ‘LastModifiedBy’,’jsmith’

Data Types: char

'Limit' — Maximum number of entries to list
integer

 listEntry

5-503

Maximum number of entries to list, specified as the comma-separated pair consisting of
‘Limit’ and an integer. The function lists up to the specified number of entries starting
from the top of the sorted and filtered list.
Example: ‘Limit’,9

Data Types: double

'Name' — Criteria to filter list by entry name
string

Criteria to filter the list of data dictionary entries by entry name, specified as the comma-
separated pair consisting of ‘Name’ and a string defining the filter criteria. You can
use an asterisk character, *, as a wildcard to represent any number of characters. The
function lists only entries whose names match the filter criteria.
Example: ‘Name’,’fuelFlow’

Example: ‘Name’,’fuel*’

Data Types: char

'Section' — Criteria to filter list by data dictionary section
string

Criteria to filter the list of data dictionary entries by section, specified as the comma-
separated pair consisting of ‘Section’ and a string identifying the target section. The
function lists only entries that are contained in the target section.
Example: ‘Section’,’Design Data’

'SortBy' — Flag to sort list by specific property
‘Name’ (default) | ‘Section’ | ‘LastModified’ | ‘LastModifiedBy’

Flag to sort the list of data dictionary entries by a specific property, specified as the
comma-separated pair consisting of ‘SortBy’ and a string identifying a property in
the list of entries. Valid properties include ‘Name’, ‘Section’, ‘LastModified’, and
‘LastModifiedBy’.

Example: ‘SortBy’,’LastModifiedBy’

5 Simulink Classes

5-504

Examples

List All Entries in Data Dictionary

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the data dictionary.

listEntry(myDictionaryObj)

Sort List of Data Dictionary Entries in Descending Order

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the data dictionary and sort the list in descending order by entry
name.

listEntry(myDictionaryObj,'Ascending',false)

Filter List of Data Dictionary Entries by Name

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List only the entries in the data dictionary whose names begin with max.

listEntry(myDictionaryObj,'Name','max*')

Sort List of Data Dictionary Entries by Time of Modification

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the dictionary and sort the list by the date and time each entry was
last modified.

 listEntry

5-505

listEntry(myDictionaryObj,'SortBy','LastModified')

• “Store Data in Dictionary Programmatically”

See Also
evalin | Simulink.data.Dictionary | Simulink.data.dictionary.Entry

More About
• “What Is a Data Dictionary?”

Introduced in R2015a

5 Simulink Classes

5-506

removeDataSource

Class: Simulink.data.Dictionary
Package: Simulink.data

Remove reference data dictionary from parent data dictionary

Syntax

removeDataSource(dictionaryObj,refDictionaryFile)

Description

removeDataSource(dictionaryObj,refDictionaryFile) removes a referenced
data dictionary, refDictionaryFile, from a parent dictionary dictionaryObj, a
Simulink.data.Dictionary object.

The parent dictionary no longer contains the entries that are defined in the referenced
dictionary.

Input Arguments

dictionaryObj — Parent data dictionary
Simulink.data.Dictionary object

Parent data dictionary, specified as a Simulink.data.Dictionary object. Before
you use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

refDictionaryFile — File name of referenced data dictionary
string

File name of referenced data dictionary, specified as a string that includes the .sldd
extension. The data dictionary file must be on your MATLAB path.

 removeDataSource

5-507

Example: ‘myRefDictionary_ex_API.sldd’
Data Types: char

Examples

Remove Referenced Data Dictionary from Parent Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj. The DataSources
property of myDictionaryObj indicates myDictionary_ex_API.sldd references
myRefDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}

 HasUnsavedChanges: 0

 NumberOfEntries: 4

Remove myRefDictionary_ex_API.sldd from myDictionary_ex_API.sldd.

removeDataSource(myDictionaryObj,'myRefDictionary_ex_API.sldd');

View the properties of the Simulink.data.Dictionary object myDictionaryObj,
which represents the parent data dictionary. The DataSources property confirms the
removal of myRefDictionary_ex_API.sldd.

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 1

 NumberOfEntries: 3

• “Store Data in Dictionary Programmatically”

5 Simulink Classes

5-508

Alternatives

You can use Model Explorer to manage reference dictionaries. See “Partition Data
Dictionary” for more information.

See Also
addDataSource | Simulink.data.Dictionary

Introduced in R2015a

 saveChanges

5-509

saveChanges
Class: Simulink.data.Dictionary
Package: Simulink.data

Save changes to data dictionary

Syntax
saveChanges(dictionaryObj)

Description
saveChanges(dictionaryObj) saves all changes made to a data dictionary
dictionaryObj, a Simulink.data.Dictionary object. saveChanges also saves changes
made to referenced data dictionaries. The previous states of the target dictionary and its
referenced dictionaries are permanently lost.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

Examples

Save Changes to Data Dictionary

Create a new data dictionary myNewDictionary.sldd and represent the Design Data
section with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd')

dDataSectObj = getSection(myDictionaryObj,'Design Data');

5 Simulink Classes

5-510

myDictionaryObj =

 data dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 0

 NumberOfEntries: 0

Change myNewDictionary.sldd by adding an entry named myNewEntry with value
237. View the HasUnsavedChanges property of myDictionaryObj to confirm a change
was made.

addEntry(dDataSectObj,'myNewEntry',237);

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 1

 NumberOfEntries: 1

Save all changes to myNewDictionary.sldd. The HasUnsavedChanges property of
myDictionaryObj indicates changes were saved.

saveChanges(myDictionaryObj)

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 0

 NumberOfEntries: 1

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to save changes to a data dictionary by right-clicking on the
dictionary tree node in the Model Hierarchy pane and selecting Save Changes.

 saveChanges

5-511

See Also
discardChanges | Simulink.data.Dictionary

Introduced in R2015a

5 Simulink Classes

5-512

show
Class: Simulink.data.Dictionary
Package: Simulink.data

Show data dictionary in Model Explorer

Syntax

show(dictionaryObj)

show(dictionaryObj,openModelExplorer)

Description

show(dictionaryObj) opens Model Explorer and displays the data dictionary
dictionaryObj as the selected tree node in the Model Hierarchy pane.

show(dictionaryObj,openModelExplorer) enables you to add the target dictionary
to the Model Hierarchy pane without opening Model Explorer.

Tips
• Use the hide function to remove a data dictionary from the tree in the Model

Hierarchy pane of Model Explorer. The dictionary does not appear in the hierarchy
again until you use the show function or you open and view the dictionary in the
Model Explorer using the interface.

Input Arguments

dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you
use this function, represent the target dictionary with a Simulink.data.Dictionary
object by using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

 show

5-513

openModelExplorer — Flag to open Model Explorer
true (default) | false

Flag to open Model Explorer, specified as true or false.

Data Types: logical

Examples

Show Data Dictionary in Model Explorer

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Open Model Explorer and display myDictionary_ex_API as the selected node of the
model hierarchy tree in the Model Hierarchy pane.

show(myDictionaryObj)

Add Data Dictionary to Model Hierarchy Tree

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Add myDictionary_ex_API.sldd to the model hierarchy tree without opening Model
Explorer.

show(myDictionaryObj,false)

You can confirm the addition of myDictionary_ex_API to the model hierarchy tree by
manually opening Model Explorer.

• “Store Data in Dictionary Programmatically”

See Also
hide | Simulink.data.Dictionary

Introduced in R2015a

5 Simulink Classes

5-514

Simulink.data.dictionary.Entry class
Package: Simulink.data.dictionary

Configure data dictionary entry

Description

An object of the Simulink.data.dictionary.Entry class represents one entry of a
data dictionary. The object allows you to perform operations such as assign the entry a
value or change the name of the entry.

Before you can create a new Simulink.data.dictionary.Entry object,
you must create a Simulink.data.dictionary.Section object representing the
data dictionary section that contains the target entry. However, once created,
the Simulink.data.dictionary.Entry object exists independently of the
Simulink.data.dictionary.Section object. Use the function getSection to create a
Simulink.data.dictionary.Section object.

Construction

The functions addEntry, getEntry, and find create
Simulink.data.dictionary.Entry objects.

Properties

DataSource — File name of containing data dictionary
string

File name of containing data dictionary, specified as a string. Changes you make to this
property affect the represented data dictionary entry.
Example: ‘myDictionary.sldd’

Data Types: char

LastModified — Date and time of last modification
string

 Simulink.data.dictionary.Entry class

5-515

Date and time of last modification to entry, returned in Coordinated Universal Time
(UTC) as a string. This property is read only.

LastModifiedBy — Name of last user to modify entry
string

Name of last user to modify entry, returned as a string. This property is read only.

Name — Name of entry
string

Name of entry, specified as a string. Changes you make to this property affect the
represented data dictionary entry.
Data Types: char

Status — State of entry
‘New’ | ‘Modified’ | ‘Unchanged’ | ‘Deleted’

State of entry, returned as ‘New’, ‘Modified’, ‘Unchanged’, or ‘Deleted’. The state
is valid since the last data dictionary save. If the state is ‘Deleted’, the represented
entry was deleted from its data dictionary. This property is read only.

Methods

deleteEntry Delete data dictionary entry
discardChanges Discard changes to data dictionary entry
find Search in array of data dictionary entries
getValue Return value of data dictionary entry
setValue Set value of data dictionary entry
showChanges Display changes made to data dictionary

entry

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

5 Simulink Classes

5-516

Examples

Add Entry to Data Dictionary and Modify its Value

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry myEntry with value 27 to the Design Data
section of myDictionary_ex_API.sldd. Assign the returned
Simulink.data.dictionary.Entry object to variable e.

e = addEntry(dDataSectObj,'myEntry',27)

e =

 Entry with properties:

 Name: 'myEntry'

 Value: 27

 DataSource: 'myDictionary_ex_API.sldd'

 LastModified: '2014-Aug-26 18:42:08.439709'

 LastModifiedBy: 'jsmith'

 Status: 'New'

Change the value of myEntry from 27 to the string ‘My New Value’.

setValue(e,'My New Value')

e

e =

 Entry with properties:

 Name: 'myEntry'

 Value: 'My New Value'

 DataSource: 'myDictionary_ex_API.sldd'

 LastModified: '2014-Aug-26 18:45:58.336598'

 LastModifiedBy: 'jsmith'

 Simulink.data.dictionary.Entry class

5-517

 Status: 'New'

Return Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Return the value of the entry fuelFlow and assign the value to the variable
fuelFlowValue.

fuelFlowValue = getValue(fuelFlowObj)

fuelFlowValue =

 237

Move Entry Within Data Dictionary Hierarchy

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named
dDataSectObj. myDictionary_ex_API.sldd references the data dictionary
myRefDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Create a Simulink.data.dictionary.Entry object representing the entry fuelFlow,
which resides in myDictionary_ex_API.sldd. Assign the object to variable e.

e = getEntry(dDataSectObj,'fuelFlow')

e =

 Entry with properties:

 Name: 'fuelFlow'

 Value: 237

 DataSource: 'myDictionary_ex_API.sldd'

 LastModified: '2014-Sep-05 13:12:06.099278'

 LastModifiedBy: 'jsmith'

5 Simulink Classes

5-518

 Status: 'Unchanged'

Migrate the entry fuelFlow to the reference data dictionary
myRefDictionary_ex_API.sldd by modifying the DataSource property of e.

e.DataSource = 'myRefDictionary_ex_API.sldd'

e =

 Entry with properties:

 Name: 'fuelFlow'

 Value: 237

 DataSource: 'myRefDictionary_ex_API.sldd'

 LastModified: '2014-Sep-05 13:12:06.099278'

 LastModifiedBy: 'jsmith'

 Status: 'Modified'

Because myDictionary_ex_API.sldd references myRefDictionary_ex_API.sldd,
both dictionaries belong to the same dictionary hierarchy, allowing you to migrate the
entry fuelFlow between them.

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.Section | Simulink.data.Dictionary | getEntry

More About
• “What Is a Data Dictionary?”

Introduced in R2015a

 deleteEntry

5-519

deleteEntry

Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Delete data dictionary entry

Syntax

deleteEntry(entryObj)

Description

deleteEntry(entryObj) deletes the data dictionary entry represented by entryObj, a
Simulink.data.dictionary.Entry object. The represented entry no longer exists in the data
dictionary that defined it.

The function sets the Status properties of any Simulink.data.dictionary.Entry
objects representing the deleted entry to ‘Deleted’. You can access only the Status
properties of the objects.

Input Arguments

entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry
object. Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

5 Simulink Classes

5-520

Examples

Delete Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Delete the entry fuelFlow from the data dictionary myDictionary_ex_API.sldd.
myDictionary_ex_API.sldd no longer contains the fuelFlow entry.

deleteEntry(fuelFlowObj)

• “Store Data in Dictionary Programmatically”

Alternatives

You can use the Model Explorer window to view the contents of a data dictionary and
delete entries.

See Also
addEntry | Simulink.data.dictionary.Entry

Introduced in R2015a

 discardChanges

5-521

discardChanges
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Discard changes to data dictionary entry

Syntax

discardChanges(entryObj)

Description

discardChanges(entryObj) discards all changes made to the data dictionary entry
entryObj, a Simulink.data.dictionary.Entry object, since the last time the containing
data dictionary was saved using the saveChanges function. The changes to the entry are
permanently lost.

Tips

• You can use the discardChanges function or the saveChanges function with an entire
data dictionary, discarding or saving changes to all entries in the dictionary at once.
However, only the discardChanges function can additionally operate on individual
entries. You cannot use the saveChanges function to save changes to individual
entries.

Input Arguments

entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry
object. Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

5 Simulink Classes

5-522

Examples

Discard Changes to Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Change the entry fuelFlow by assigning it the new value 493. Confirm a change was
made by viewing the Status property of fuelFlowObj.

setValue(fuelFlowObj,493);

fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'

 Value: 493

 DataSource: 'myDictionary_ex_API.sldd'

 LastModified: '2014-Sep-05 13:14:30.661978'

 LastModifiedBy: 'jsmith'

 Status: 'Modified'

Discard all changes to the entry fuelFlow. The Status property of fuelFlowObj shows
that changes were discarded.

discardChanges(fuelFlowObj)

fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'

 Value: 237

 DataSource: 'myDictionary_ex_API.sldd'

 LastModified: '2014-Sep-05 13:12:06.099278'

 LastModifiedBy: 'jsmith'

 discardChanges

5-523

 Status: 'Unchanged'

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer and the Comparison Tool to discard changes to data
dictionary entries. See “View and Revert Changes to Dictionary Entries” for more
information.

See Also
saveChanges | Simulink.data.dictionary.Entry

Introduced in R2015a

5 Simulink Classes

5-524

find
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Search in array of data dictionary entries

Syntax

foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN)

foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN,

options)

Description

foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN)

searches the array of data dictionary entries targetEntries using search criteria
PName1,PValue1,...,PNameN,PValueN, and returns an array of entries matching the
criteria. This syntax matches the search criteria with the properties of the target entries,
which are Simulink.data.dictionary.Entry objects, but not with the properties
of their values. See Simulink.data.dictionary.Entry for a list of data dictionary entry
properties.

foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN,

options) searches for data dictionary entries using additional search options. For
example, you can match the search criteria with the values of the target entries.

Input Arguments

targetEntries — Data dictionary entries to search
array of Simulink.data.dictionary.Entry objects

Data dictionary entries to search, specified as an array
Simulink.data.dictionary.Entry objects. Before you use this function, represent
the target entries with Simulink.data.dictionary.Entry objects by using, for
example, the getEntry function.

 find

5-525

Example: [myEntryObj1,myEntryObj2,myEntryObj3]

PName1,PValue1,...,PNameN,PValueN — Search criteria
name-value pairs representing properties

Search criteria, specified as one or more name-value pairs representing names and
values of properties of the target data dictionary entries. For a list of the properties of a
data dictionary entry, see Simulink.data.dictionary.Entry. If you specify more than one
name-value pair, the returned entries meet all of the criteria.

If you include the ‘-value’ option to search in the values of the target entries, the
search criteria apply to the values of the entries rather than to the entries themselves.
Example: ‘LastModifiedBy’,'jsmith'

Example: ‘DataSource’,’myRefDictionary_ex_API.sldd’

options — Additional search options
supported option codes

Additional search options, specified as one or more of the following supported option
codes.

‘-value’ This option causes find to search only in the
values of the target data dictionary entries.
Specify this option before any other search criteria
or options arguments.

‘-and’, ‘-or’, ‘-xor’, or ‘-not’
logical operators

These options modify or combine multiple search
criteria or other option codes.

‘-property’,propertyName This name-value pair causes find to search
for entries or values that have the property
propertyName regardless of the value of the
property. Specify propertyName as a string.

‘-class’,className This name-value pair causes find to search for
entries or values that are objects of the class
className. Specify className as a string.

‘-isa’,className This name-value pair causes find to search for
entries or values that are objects of the class or of
any subclass derived from the class className.
Specify className as a string.

5 Simulink Classes

5-526

‘-regexp’ This option allows you to use regular expressions
in your search criteria. This option affects only
search criteria that follow ‘-regexp’.

Example: ‘-value’

Example: '-value',‘-property’,’CoderInfo’

Example: '-value',‘-class’,’Simulink.Parameter’

Output Arguments

foundEntries — Data dictionary entries matching search criteria
array of Simulink.data.dictionary.Entry objects

Data dictionary entries matching the specified search criteria, returned as an array of
Simulink.data.dictionary.Entry objects.

Examples

Search Data Dictionary Entry Values for Specific Class

Search in an array of data dictionary entries myEntryObjs for entries whose values are
objects of the class Simulink.Parameter.

foundEntries = find(myEntryObjs,'-value','-class','Simulink.Parameter')

Search Data Dictionary Entries for Modifying User

Search in an array of data dictionary entries myEntryObjs for entries that were last
modified by the user jsmith.

foundEntries = find(myEntryObjs,'LastModifiedBy','jsmith')

Search Data Dictionary Entries Using Multiple Criteria

Search in an array of data dictionary entries myEntryObjs for entries that were last
modified by the user jsmith or whose names begin with fuel.

foundEntries = find(myEntryObjs,'LastModifiedBy','jsmith','-or',...

 find

5-527

'-regexp','Name','fuel*')

Search Data Dictionary Entries Using Regular Expressions

Search in an array of data dictionary entries myEntryObjs for entries whose names
begin with Press.

foundEntries = find(myEntryObjs,'-regexp','Name','Press*')

Search Data Dictionary Entries for Specific Value

Search in an array of data dictionary entries myEntryObjs for entries whose values are
273. If you find more than one entry, store the entries in an array called foundEntries.

foundEntries = [];

for i = 1:length(myEntryObjs)

 if getValue(myEntryObjs(i)) == 237

 foundEntries = [foundEntries myEntryObjs(i)];

 end

end

Search Data Dictionary Entry Values for Specific Property

Search in an array of data dictionary entries myEntryObjs for entries whose values have
a property DataType.

foundEntries = find(myEntryObjs,'-value','-property','DataType')

• “Store Data in Dictionary Programmatically”

See Also
find | Simulink.data.dictionary.Entry

Introduced in R2015a

5 Simulink Classes

5-528

getValue
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Return value of data dictionary entry

Syntax

entryValue = getValue(entryObj)

Description

entryValue = getValue(entryObj) returns the value of the data dictionary entry
entryObj, a Simulink.data.dictionary.Entry object.

Input Arguments

entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry
object. Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

Examples

Return Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

 getValue

5-529

dDataSectObj = getSection(myDictionaryObj,'Design Data');

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Return the value of the entry fuelFlow and assign the value to variable
fuelFlowValue.

fuelFlowValue = getValue(fuelFlowObj)

fuelFlowValue =

 237

• “Store Data in Dictionary Programmatically”

See Also
setValue | Simulink.data.dictionary.Entry

Introduced in R2015a

5 Simulink Classes

5-530

setValue
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Set value of data dictionary entry

Syntax

setValue(entryObj,newValue)

Description

setValue(entryObj,newValue) assigns the value newValue to the data dictionary
entry entryObj, a Simulink.data.dictionary.Entry object.

Input Arguments

entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry
object. Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

newValue — Value to assign to data dictionary entry
MATLAB expression

Value to assign to data dictionary entry, specified as a MATLAB expression. The
expression must return a value that is supported by the data dictionary section that
contains the entry.
Example: 27.5

Example: myBaseWorkspaceVariable

Example: Simulink.Parameter

 setValue

5-531

Examples

Set Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Set the value of the entry fuelFlow to 493. Then, view the Value property of
fuelFlowObj to observe the change.

setValue(fuelFlowObj,493)

fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'

 Value: 493

 DataSource: 'myDictionary_ex_API.sldd'

 LastModified: '2014-Sep-05 13:37:22.161124'

 LastModifiedBy: 'jsmith'

 Status: 'Modified'

• “Store Data in Dictionary Programmatically”

Alternatives

You can use the Model Explorer window to view and change the values of data dictionary
entries.

See Also
getValue | Simulink.data.dictionary.Entry

Introduced in R2015a

5 Simulink Classes

5-532

showChanges
Class: Simulink.data.dictionary.Entry
Package: Simulink.data.dictionary

Display changes made to data dictionary entry

Syntax

showChanges(entryObj)

Description

showChanges(entryObj) opens the Comparison Tool to show changes made to the data
dictionary entry entryObj, a Simulink.data.dictionary.Entry object. The Comparison
Tool displays the properties of entryObj as they were when the data dictionary was last
saved and as they were when the showChanges function was called.

Input Arguments

entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry
object. Before you use this function, represent the target entry with a
Simulink.data.dictionary.Entry object by using, for example, the getEntry
function.

Examples

View Unsaved Changes to Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

 showChanges

5-533

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Make a change to the entry fuelFlow by assigning it the new value 494.

setValue(fuelFlowObj,494);

Observe the unsaved change to the entry fuelFlow. The Comparison Tool opens and
compares side by side the current state of the entry with its most recently saved state.

showChanges(fuelFlowObj)

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer and the Comparison Tool to view changes to data dictionary
entries. See “View and Revert Changes to Dictionary Entries” for more information.

See Also
discardChanges | Simulink.data.dictionary.Entry

Introduced in R2015a

5 Simulink Classes

5-534

Simulink.data.dictionary.EnumTypeDefinition class
Package: Simulink.data.dictionary

Store enumerated type definition in data dictionary

Description

An object of the Simulink.data.dictionary.EnumTypeDefinition class defines an
enumerated data type in a data dictionary. You store the object in a data dictionary entry
so models linked to the dictionary can use the enumerated type definition.

In the MATLAB base workspace, objects of this class retain information about an
enumerated type but do not define the type for use by other variables or by models.

Construction

When you use the function importEnumTypes to import the definitions
of enumerated types to a data dictionary, Simulink creates a
Simulink.data.dictionary.EnumTypeDefinition object in the dictionary for each
imported definition. The dictionary stores each object in an individual entry.

The constructor Simulink.data.dictionary.EnumTypeDefinition creates an
instance of this class with default property values and a single enumeration member that
has underlying integer value 0.

Properties

AddClassNameToEnumNames — Flag to control enumeration identifiers in generated code
false (default) | true

Flag to prefix enumerations with the class name in generated code, specified as true or
false.

If you specify true, when you generate code the identifier of each enumeration member
begins with the name of the enumeration class. For example, an enumeration class

 Simulink.data.dictionary.EnumTypeDefinition class

5-535

LEDcolor with enumeration members GREEN and RED defines the enumeration members
in generated code as LEDcolor_GREEN and LEDcolor_RED.

Data Types: logical

DataScope — Flag to control data type definition in generated code
'Auto' (default) | 'Imported' | 'Exported'

Flag to control data type definition in generated code, specified as 'Auto', 'Imported',
or 'Exported'. The table describes the behavior of generated code for each value.

Value Action

Auto (default) If you do not specify the property
Headerfile, export the data type
definition to model_types.h, where
model is the model name.

If you specify Headerfile, import the data
type definition from the specified header
file.

Exported Export the data type definition to a
separate header file.

If you do not specify the property
Headerfile, the header file name defaults
to type.h, where type is the data type
name.

Imported Import the data type definition from a
separate header file.

If you do not specify the property
Headerfile, the header file name defaults
to type.h, where type is the data type
name.

DefaultValue — Default enumeration member
'' (default) | string

Default enumeration member, specified as a string. Specify DefaultValue as the name
of an enumeration member you have already defined.

5 Simulink Classes

5-536

When you create a Simulink.data.dictionary.EnumTypeDefinition object,
DefaultValue is an empty string, '', and Simulink uses the first enumeration member
as the default member.
Example: ‘enumMember1’

Description — Description of enumerated data type in generated code
'' (default) | string

Description of the enumerated data type, specified as a string. Use this property to
explain the purpose of the type in generated code.
Example: 'Two possible colors of LED indicator: GREEN and RED.'

Data Types: char

HeaderFile — Name of header file defining enumerated data type in generated code
'' (default) | string

Name of the header file that defines the enumerated data type in generated code,
specified as a string. Use a .h extension to specify the file name.

If you do not specify HeaderFile, generated code uses a default header file name that
depends on the value of the DataScope property .

Example: 'myTypeIncludeFile.h'

Data Types: char

StorageType — Data type of underlying integer values
'' (default) | string

Data type of the integer values underlying the enumeration members, specified as a
string. Generated code stores the underlying integer values using the data type you
specify.

You can specify one of these supported integer types:

• 'int8'

• 'int16'

• 'int32'

• 'uint8'

 Simulink.data.dictionary.EnumTypeDefinition class

5-537

• 'uint16'

To store the underlying integer values in generated code using the native integer type of
the target hardware, specify StorageType as an empty string, '', which is the default
value.
Example: 'int16’

''

Methods

appendEnumeral Add enumeration member to enumerated
data type definition in data dictionary

removeEnumeral Remove enumeration member from
enumerated data type definition in data
dictionary

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new
type defines a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 enum1

5 Simulink Classes

5-538

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')

appendEnumeral(myColors,'Black',2,'')

appendEnumeral(myColors,'Cyan',3,'')

myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 enum1

 Orange

 Black

 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration
member in the list, identify it with index 1.

removeEnumeral(myColors,1)

myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 Orange

 Black

 Cyan

Customize the enumerated type by configuring the properties of the object representing
it.

myColors.Description = 'These are my favorite colors.';

myColors.DefaultValue = 'Cyan';

myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

• “Store Data in Dictionary Programmatically”

 Simulink.data.dictionary.EnumTypeDefinition class

5-539

Alternatives

You can use Model Explorer to add and modify enumerated data types stored in a data
dictionary.

See Also
Simulink.data.Dictionary

More About
• “Use Enumerated Data in Simulink Models”

Introduced in R2015a

5 Simulink Classes

5-540

appendEnumeral
Class: Simulink.data.dictionary.EnumTypeDefinition
Package: Simulink.data.dictionary

Add enumeration member to enumerated data type definition in data dictionary

Syntax

appendEnumeral(typeObj,memberName,memberValue,memberDesc)

Description

appendEnumeral(typeObj,memberName,memberValue,memberDesc) adds
an enumeration member to the enumerated type definition stored by typeObj, a
Simulink.data.dictionary.EnumTypeDefinition object.

Input Arguments

typeObj — Target enumerated type definition
Simulink.data.dictionary.EnumTypeDefinition object

Target enumerated type definition, specified as a
Simulink.data.dictionary.EnumTypeDefinition object.

memberName — Name of new enumeration member
string

Name of the new enumeration member, specified as a string.
Example: ‘myNewEnumMember’

Data Types: char

memberValue — Integer value underlying new enumeration member
integer

Integer value underlying the new enumeration member, specified as an integer.

 appendEnumeral

5-541

The definition of the enumeration class determines the integer data type used in
generated code to store the underlying values of enumeration members.
Example: 3

Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | double

memberDesc — Description of new enumeration member
string

Description of the new enumeration member, specified as a string.

If you do not want to supply a description for the enumeration member, use an empty
string.
Example: 'Enumeration member number 1.'

Example: ''

Data Types: char

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new
type defines a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')

appendEnumeral(myColors,'Black',2,'')

appendEnumeral(myColors,'Cyan',3,'')

myColors

myColors =

5 Simulink Classes

5-542

 Simulink.data.dictionary.EnumTypeDefinition

 enum1

 Orange

 Black

 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration
member in the list, identify it with index 1.

removeEnumeral(myColors,1)

myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 Orange

 Black

 Cyan

Customize the enumerated type by configuring the properties of the object representing
it.

myColors.Description = 'These are my favorite colors.';

myColors.DefaultValue = 'Cyan';

myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to add enumeration members to the enumerated data type
represented by a Simulink.data.dictionary.EnumTypeDefinition object.

 appendEnumeral

5-543

See Also
Simulink.data.dictionary.EnumTypeDefinition |
Simulink.data.dictionary.EnumTypeDefinition.removeEnumeral

More About
• “Use Enumerated Data in Simulink Models”

Introduced in R2015a

5 Simulink Classes

5-544

removeEnumeral
Class: Simulink.data.dictionary.EnumTypeDefinition
Package: Simulink.data.dictionary

Remove enumeration member from enumerated data type definition in data dictionary

Syntax

removeEnumeral(typeObj,memberNum)

Description

removeEnumeral(typeObj,memberNum) removes an enumeration
member from the enumerated type definition stored by typeObj, a
Simulink.data.dictionary.EnumTypeDefinition object.

Input Arguments

typeObj — Target enumerated type definition
Simulink.data.dictionary.EnumTypeDefinition object

Target enumerated type definition, specified as a
Simulink.data.dictionary.EnumTypeDefinition object.

memberNum — Index of target enumeration member
integer

Index of target enumeration member, specified as an integer.

The first enumeration member in an enumerated type definition has index 1. For
example, suppose an enumerated type BasicColors has this definition:

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 Orange

 Black

 removeEnumeral

5-545

 Cyan

To remove the enumeration member Black, specify memberNum as 2. To remove the
enumeration member Cyan, specify 3.

Do not specify memberNum using the integer value underlying an enumeration member.
The integer value underlying the member is not equivalent to the index of the member.
Example: 3

Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | double

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new
type defines a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')

appendEnumeral(myColors,'Black',2,'')

appendEnumeral(myColors,'Cyan',3,'')

myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 enum1

 Orange

 Black

 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration
member in the list, identify it with index 1.

5 Simulink Classes

5-546

removeEnumeral(myColors,1)

myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition

 Orange

 Black

 Cyan

Customize the enumerated type by configuring the properties of the object representing
it.

myColors.Description = 'These are my favorite colors.';

myColors.DefaultValue = 'Cyan';

myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to remove enumeration members from the enumerated data
type represented by a Simulink.data.dictionary.EnumTypeDefinition object.

See Also
Simulink.data.dictionary.EnumTypeDefinition |
Simulink.data.dictionary.EnumTypeDefinition.appendEnumeral

More About
• “Use Enumerated Data in Simulink Models”

Introduced in R2015a

 Simulink.data.dictionary.Section class

5-547

Simulink.data.dictionary.Section class
Package: Simulink.data.dictionary

Configure data dictionary section

Description

An object of the Simulink.data.dictionary.Section class represents one section
of a data dictionary, such as Design Data or Configurations. The object allows you to
perform operations on the section such as add or delete entries and import data from
files.

Before you can create a Simulink.data.dictionary.Section object, you must
create a Simulink.data.Dictionary object representing the target data dictionary. Once
created, the Simulink.data.dictionary.Section object exists independently of the
Simulink.data.Dictionary object.

Construction

The function getSection creates a Simulink.data.dictionary.Section object.

Properties

Name — Name of data dictionary section
string

Name of data dictionary section, returned as a string. This property is read only.

Methods

addEntry Add new entry to data dictionary section
assignin Assign value to data dictionary entry
deleteEntry Delete data dictionary entry

5 Simulink Classes

5-548

evalin Evaluate MATLAB expression in data
dictionary section

exist Check existence of data dictionary entry
exportToFile Export data dictionary entries from section

to MAT-file or MATLAB file
find Search in data dictionary section
getEntry Create

Simulink.data.dictionary.Entry

object to represent data dictionary entry
importFromFile Import variables from MAT-file or

MATLAB file to data dictionary section

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create New Data Dictionary Section Object

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

dDataSectObj = getSection(myDictionaryObj,'Design Data')

dDataSectObj =

 Section with properties:

 Name: 'Design Data'

• “Store Data in Dictionary Programmatically”

 Simulink.data.dictionary.Section class

5-549

See Also
Simulink.data.Dictionary | getSection

More About
• “What Is a Data Dictionary?”

Introduced in R2015a

5 Simulink Classes

5-550

addEntry
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Add new entry to data dictionary section

Syntax

addEntry(sectionObj,entryName,entryValue)

entryObj = addEntry(sectionObj,entryName,entryValue)

Description

addEntry(sectionObj,entryName,entryValue) adds an entry, with name
entryName and value entryValue, to the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object.

entryObj = addEntry(sectionObj,entryName,entryValue) returns a
Simulink.data.dictionary.Entry object representing the newly added data dictionary
entry.

Tips
• addEntry returns an error if the entry name you specify with entryName is already

the name of an entry in the target data dictionary section or in the same section of
any referenced dictionaries.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

 addEntry

5-551

entryName — Name of new data dictionary entry
string

Name of new data dictionary entry, specified as a string.
Example: ‘myNewEntry’

Data Types: char

entryValue — Value of new data dictionary entry
MATLAB expression

Value of new data dictionary entry, specified as a MATLAB expression that returns any
valid data dictionary content.
Example: 27.5

Example: myBaseWorkspaceVariable

Example: Simulink.Parameter

Examples

Add Entry to Design Data Section of Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry to the Design Data section of myDictionary_ex_API.sldd an entry
myNewEntry with value 237.

addEntry(dDataSectObj,'myNewEntry',237)

Add New Simulink.Parameter Object to Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

5 Simulink Classes

5-552

Add an entry to the Design Data section of myDictionary_ex_API.sldd. Name the
new entry myNewParam and assign a Simulink.Parameter object to the value.

addEntry(dDataSectObj,'myNewParam',Simulink.Parameter)

The expression Simulink.Parameter constructs a new Simulink.Parameter object,
and the addEntry function assigns the object to the value of the new data dictionary
entry myNewParam.

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to add entries to a data dictionary in the same way you can
use it to add variables to a model workspace or the base workspace.

See Also
assignin | Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section

Introduced in R2015a

 assignin

5-553

assignin
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Assign value to data dictionary entry

Syntax

assignin(sectionObj,entryName,entryValue)

Description

assignin(sectionObj,entryName,entryValue) assigns the value entryValue
to the data dictionary entry entryName in the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. If an entry with the specified name is not in the
target section, assignin creates the entry with the specified name and value.

If an entry with the name specified by input argument entryName is not defined in the
target data dictionary section but is defined in a referenced dictionary, assignin does
not create a new entry in the target section but operates on the entry in the referenced
dictionary.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

entryName — Name of target data dictionary entry
string

Name of target data dictionary entry, specified as a string. If a matching entry does not
already exist, the functions creates a new entry using the specified name.

5 Simulink Classes

5-554

Example: ‘myEntry’

Data Types: char

entryValue — Value to assign to data dictionary entry
MATLAB expression

Value to assign to data dictionary entry, specified as a MATLAB expression that returns
any valid data dictionary content.
Example: 27.5

Example: myBaseWorkspaceVariable

Example: Simulink.Parameter

Examples

Assign Value to Data Dictionary Entry

Assign a value to a data dictionary entry by operating on a
Simulink.data.dictionary.Section object.

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Assign the value 237 to an entry myAssignedEntry in the data dictionary
myDictionary_ex_API.sldd. If an entry named myAssignedEntry is not in
myDictionary_ex_API.sldd, create it.

assignin(dDataSectObj,'myAssignedEntry',237)

• “Store Data in Dictionary Programmatically”

Alternatives

You can use the Model Explorer window to view and change the values of data dictionary
entries.

 assignin

5-555

See Also
setValue | Simulink.data.dictionary.Section

Introduced in R2015a

5 Simulink Classes

5-556

deleteEntry

Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Delete data dictionary entry

Syntax

deleteEntry(sectionObj,entryName)

deleteEntry(sectionObj,entryName,'DataSource',dictionaryName)

Description

deleteEntry(sectionObj,entryName) deletes a data dictionary entry entryName
from the data dictionary section sectionObj, a Simulink.data.dictionary.Section
object. If there are multiple entries with the specified name in a hierarchy of reference
dictionaries, the function deletes all the entries. If you represent a data dictionary entry
with one or more Simulink.data.dictionary.Entry objects and later delete the entry
using the deleteEntry function, the objects remain with their Status property set to
‘Deleted’.

deleteEntry(sectionObj,entryName,'DataSource',dictionaryName) deletes
an entry that is defined in the data dictionary DictionaryName. Use this syntax to
uniquely identify an entry that is defined more than once in a hierarchy of referenced
data dictionaries.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

 deleteEntry

5-557

entryName — Name of target data dictionary entry
string

Name of target data dictionary entry, specified as a string.
Example: ‘myEntry’

Data Types: char

dictionaryName — Name of data dictionary that defines target entry
string

File name of data dictionary that defines the target entry, specified as a string including
the .sldd extension.

Example: ’mySubDictionary_ex_API.sldd’

Data Types: char

Examples

Delete Entry from Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj. The
Design Data section of myDictionary_ex_API.sldd already contains an entry named
fuelFlow.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Delete the entry fuelFlow from the data dictionary myDictionary_ex_API.sldd.
myDictionary_ex_API.sldd no longer contains the fuelFlow entry.

deleteEntry(dDataSectObj,'fuelFlow')

Delete Entry from Reference Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

5 Simulink Classes

5-558

Delete the entry myRefEntry from the data dictionary
myRefDictionary_ex_API.sldd. myDictionary_ex_API.sldd references
myRefDictionary_ex_API.sldd, and myRefDictionary_ex_API.sldd defines an
entrymyRefEntry.

deleteEntry(dDataSectObj,'myRefEntry','DataSource',...

'myRefDictionary_ex_API.sldd')

• “Store Data in Dictionary Programmatically”

Alternatives

You can use the Model Explorer window to delete entries from a data dictionary in the
same way you can delete variables from a model workspace or the base workspace.

See Also
addEntry | Simulink.data.dictionary.Entry | Simulink.data.dictionary.Section

Introduced in R2015a

 evalin

5-559

evalin
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Evaluate MATLAB expression in data dictionary section

Syntax

returnValue = evalin(sectionObj,expression)

Description

returnValue = evalin(sectionObj,expression) evaluates a MATLAB expression
in the data dictionary section sectionObj and returns the values returned by
expression.

Tips

• evalin allows you to treat a data dictionary section as a MATLAB workspace.
You can think of entries contained in the section as workspace variables you can
manipulate with MATLAB expressions.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

expression — MATLAB expression to evaluate
string

5 Simulink Classes

5-560

MATLAB expression to evaluate, specified as a string.
Example: ‘a = 5.3’

Example: ‘whos’

Example: 'CurrentSpeed.Value = 290.73'

Data Types: char

Examples

List All Entries in Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Execute the whos command in the Design Data section of
myDictionary_ex_API.sldd.

evalin(dDataSectObj,'whos')

 Name Size Bytes Class Attributes

 fuelFlow 1x1 8 double

 myRefEntry 1x1 1 logical

 parameterGain37 1x1 112 Simulink.Parameter

• “Store Data in Dictionary Programmatically”

See Also
Simulink.data.dictionary.Section | Simulink.data.evalinGlobal

Introduced in R2015a

 exist

5-561

exist
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Check existence of data dictionary entry

Syntax

doesExist = exist(sectionObj,entryName)

Description

doesExist = exist(sectionObj,entryName) determines if the data dictionary
section sectionObj contains an entry by the name of entryName and returns an
indication.

Tips
• exist also determines if a matching entry exists in the same section of any

referenced data dictionaries. For example, if sectionObj represents the Design
Data section of a data dictionary myDictionary_ex_API.sldd, exist searches the
Design Data section of myDictionary_ex_API.sldd and the Design Data sections
of any dictionaries referenced by myDictionary_ex_API.sldd.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

entryName — Name of target entry
string

5 Simulink Classes

5-562

Name of target entry, specified as a string.
Example: ‘myEntry’

Data Types: char

Output Arguments

doesExist — Indication of entry existence
0 | 1

Indication of entry existence, returned as 0 if false and 1 if true.

Examples

Determine if Data Dictionary Entry Exists

Determine if an entry exists in a data dictionary by searching for the name of the entry

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Determine if an entry fuelFlow exists in the Design Data section of
myDictionary_ex_API.sldd.

exist(dDataSectObj,'fuelFlow')

ans =

 1

Determine if an entry myEntry exists in the Design Data section of
myDictionary_ex_API.sldd.

exist(dDataSectObj,'myEntry')

ans =

 exist

5-563

 0

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to search a data dictionary for an entry.

See Also
find | Simulink.data.dictionary.Section | Simulink.data.existsInGlobal

Introduced in R2015a

5 Simulink Classes

5-564

exportToFile
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Export data dictionary entries from section to MAT-file or MATLAB file

Syntax

exportToFile(sectionObj,fileName)

Description

exportToFile(sectionObj,fileName) exports to a MAT or MATLAB file all
the values of the entries contained in the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. exportToFile exports the values of all entries,
including those defined in referenced dictionaries.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

fileName — Name of MAT or MATLAB file
string

Name of target MAT or MATLAB file, specified as a string. exportToFile supplies a
file extension .mat if you do not specify an extension.

Example: ‘myNewFile.mat’

Example: ‘myNewFile.m’

Data Types: char

 exportToFile

5-565

Examples

Export Data Dictionary Entries to MAT or MATLAB Files

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.
Represent the Configurations section of myDictionary_ex_API.sldd with an object
named configSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

configSectObj = getSection(myDictionaryObj,'Configurations');

Export the entries from the Design Data section of myDictionary_ex_API.sldd to a
MATLAB file in your current working folder.

exportToFile(dDataSectObj,'myDictionaryDesignData.m')

Export the entries from the Configurations section of myDictionary_ex_API.sldd to a
MAT-file in your current working folder.

exportToFile(configSectObj,'myDictionaryConfigurations.mat')

Exported 1 entries from scope 'Configurations'

to MAT-file myDictionaryConfigurations.mat.

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to export data dictionary entries to a file. See “Export Design
Data from Dictionary” for more information.

See Also
importFromFile | Simulink.data.dictionary.Section

Introduced in R2015a

5 Simulink Classes

5-566

find
Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Search in data dictionary section

Syntax
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN)

foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN,

options)

Description
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN)

searches the data dictionary section sectionObj using search criteria
PName1,PValue1,...,PNameN,PValueN, and returns an array of matching entries
that were found in the target section. This syntax matches the search criteria with the
properties of the entries in the target section but not with the properties of their values.
See Simulink.data.dictionary.Entry for a list of data dictionary entry properties.

foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN,

options) searches for data dictionary entries using additional search options. For
example, you can match the search criteria with the values of the entries in the target
section.

Input Arguments
sectionObj — Data dictionary section to search
Simulink.data.dictionary.Section object

Data dictionary section to search, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

PName1,PValue1,...,PNameN,PValueN — Search criteria
name-value pairs representing properties

 find

5-567

Search criteria, specified as one or more name-value pairs representing names and
values of properties of the entries in the target data dictionary section. For a list of the
properties of a data dictionary entry, see Simulink.data.dictionary.Entry. If you specify
more than one name-value pair, the returned entries meet all of the criteria.

If you include the ‘-value’ option to search in the values of the entries, the search
criteria apply to the values of the entries rather than to the entries themselves.
Example: ‘LastModifiedBy’,'jsmith'

Example: ‘DataSource’,’myRefDictionary_ex_API.sldd’

options — Additional search options
supported option codes

Additional search options, specified as one or more of the following supported option
codes.

‘-value’ This option causes find to search only in the
values of the entries in the target data dictionary
section. Specify this option before any other search
criteria or options arguments.

‘-and’, ‘-or’, ‘-xor’, ‘-not’
logical operators

These options modify or combine multiple search
criteria or other option codes.

‘-property’,propertyName This name-value pair causes find to search
for entries or values that have the property
propertyName regardless of the value of the
property. Specify propertyName as a string.

‘-class’,className This name-value pair causes find to search for
entries or values that are objects of the class
className. Specify className as a string.

‘-isa’,className This name-value pair causes find to search for
entries or values that are objects of the class or of
any subclass derived from the class className.
Specify className as a string.

‘-regexp’ This option allows you to use regular expressions
in your search criteria. This option affects only
search criteria that follow ‘-regexp’.

Example: ‘-value’

5 Simulink Classes

5-568

Example: '-value',‘-property’,’CoderInfo’

Example: '-value',‘-class’,’Simulink.Parameter’

Output Arguments

foundEntries — Data dictionary entries matching search criteria
array of Simulink.data.dictionary.Entry objects

Data dictionary entries matching the specified search criteria, returned as an array of
Simulink.data.dictionary.Entry objects.

Examples

Return Array of All Entries in Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Return all of the entries stored in the Design Data section of the data dictionary
myDictionary_ex_API.sldd.

allEntries = find(dDataSectObj)

Search Data Dictionary Section for Specific Class

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose
values are objects of the Simulink.Parameter class.

 find

5-569

foundEntries = find(dDataSectObj,'-value','-class','Simulink.Parameter')

Search Data Dictionary Section for Modifying User

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries that were
last modified by the user jsmith.

foundEntries = find(dDataSectObj,'LastModifiedBy','jsmith')

Search Data Dictionary Section Using Multiple Criteria

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries that were
last modified by the user jsmith or whose names begin with fuel.

foundEntries = find(dDataSectObj,'LastModifiedBy','jsmith','-or',...

'-regexp','Name','fuel*')

Search Data Dictionary Section Using Regular Expressions

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose
names begin with fuel.

foundEntries = find(dDataSectObj,'-regexp','Name','fuel*')

Search Data Dictionary Section for Specific Value

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

5 Simulink Classes

5-570

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Return all of the entries stored in the Design Data section of the data dictionary
myDictionary_ex_API.sldd.

allEntries = find(dDataSectObj);

Find the entries with value 237. If you find more than one entry, store the entries in an
array called foundEntries.

foundEntries = [];

for i = 1:length(allEntries)

 if getValue(allEntries(i)) == 237

 foundEntries = [foundEntries allEntries(i)];

 end

end

Search Data Dictionary Section for Specific Property

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose
values have a property DataType.

foundEntries = find(dDataSectObj,'-value','-property','DataType')

• “Store Data in Dictionary Programmatically”

Alternatives

You can use Model Explorer to search a data dictionary for entries using arbitrary
criteria.

See Also
Simulink.data.dictionary.Section | Simulink.data.dictionary.Entry | exist | find

Introduced in R2015a

 getEntry

5-571

getEntry

Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Create Simulink.data.dictionary.Entry object to represent data dictionary entry

Syntax

entryObj = getEntry(sectionObj,entryName)

entryObj = getEntry(sectionObj,

entryName,'DataSource',dictionaryName)

Description

entryObj = getEntry(sectionObj,entryName) returns an array of
Simulink.data.dictionary.Entry objects representing data dictionary entries entryName
found in the data dictionary section sectionObj, a Simulinkdata.dictionary.Section
object. getEntry returns multiple objects if multiple entries have the specified name in
a reference hierarchy of data dictionaries.

entryObj = getEntry(sectionObj,

entryName,'DataSource',dictionaryName) returns an object representing a data
dictionary entry that is defined in the data dictionary dictionaryName. Use this syntax
to uniquely identify an entry that is defined more than once in a hierarchy of referenced
data dictionaries.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

5 Simulink Classes

5-572

entryName — Name of target data dictionary entry
string

Name of target data dictionary entry, specified as a string.
Example: ‘myEntry’

Data Types: char

dictionaryName — Name of data dictionary containing target entry
string

File name of data dictionary containing the target entry, specified as a string including
the .sldd extension.

Example: ’mySubDictionary_ex_API.sldd’

Data Types: char

Output Arguments

entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, returned as one or more
Simulink.data.dictionary.Entry objects.

Examples

Set Value of Data Dictionary Entry

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Represent the data dictionary entry fuelFlow with a
Simulink.data.dictionary.Entry object named fuelFlowObj. fuelFlow is
defined in the data dictionary myDictionary_ex_API.sldd.

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

 getEntry

5-573

Set the value of the entry fuelFlow to 493.

setValue(fuelFlowObj,493)

Set Value of Entry in Reference Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Represent the data dictionary entry myRefEntry with a
Simulink.data.dictionary.Entry object named refEntryObj.
myDictionary_ex_API.sldd references myRefDictionary_ex_API.sldd, and
myRefDictionary_ex_API.sldd defines an entry myRefEntry.

refEntryObj = getEntry(dDataSectObj,'myRefEntry','DataSource',...

'myRefDictionary_ex_API.sldd');

Set the value of the entry myRefEntry to 493.

setValue(refEntryObj,493)

• “Store Data in Dictionary Programmatically”

See Also
addEntry | getValue | Simulink.data.dictionary.Entry |
Simulink.data.dictionary.Section

Introduced in R2015a

5 Simulink Classes

5-574

importFromFile

Class: Simulink.data.dictionary.Section
Package: Simulink.data.dictionary

Import variables from MAT-file or MATLAB file to data dictionary section

Syntax

importedVars = importFromFile(sectionObj,fileName)

importedVars = importFromFile(sectionObj,

fileName,'existingVarsAction',existAction)

[importedVars,existingVars] = importFromFile(___)

Description

importedVars = importFromFile(sectionObj,fileName) imports variables
defined in the MAT-file or MATLAB file fileName to the data dictionary section
sectionObj without overwriting any variables that are already in the target section.
If any variables are already in the target section, the function displays a warning
and a list in the MATLAB Command Window. This syntax returns a list of variables
that were successfully imported. A variable is considered successfully imported only if
importFromFile assigns the value of the variable to the corresponding entry in the
target data dictionary.

importedVars = importFromFile(sectionObj,

fileName,'existingVarsAction',existAction) imports variables that are
already in the target section by taking a specified action existAction. For example,
you can choose to use the variable values in the target file to overwrite the corresponding
values in the target section.

[importedVars,existingVars] = importFromFile(___) returns a list
of variables in the target section that were not overwritten. Use this syntax if
existingVarsAction is set to ‘none’, the default value, which prevents existing
dictionary entries from being overwritten.

 importFromFile

5-575

Tips
• importFromFile can import MATLAB variables created from enumerated

data types but cannot import the definitions of the enumerated types. Use the
importEnumTypes function to import enumerated data type definitions to a data
dictionary. If you import variables of enumerated data types to a data dictionary but
do not import the enumerated type definitions, the dictionary is less portable and
might not function properly if used by someone else.

Input Arguments

sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section
object. Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

fileName — Name of MAT or MATLAB file
string

Name of target MAT or MATLAB file, specified as a string. importFromFile
automatically supplies a file extension .mat if you do not specify an extension.

Example: ‘myFile.mat’

Example: ‘myFile.m’

Data Types: char

existAction — Action to take for existing dictionary variables
‘none’ (default) | ‘overwrite’ | ‘error’

Action to take for existing dictionary variables, specified as ‘none’, ‘overwrite’, or
‘error’.

If you specify ’none’, importFromFile attempts to import target variables but does
not import or make any changes to variables that are already in the data dictionary
section.

If you specify ’overwrite’, importFromFile imports all target variables and
overwrites any variables that are already in the data dictionary section.

5 Simulink Classes

5-576

If you specify ’error’, importFromFile returns an error, without importing any
variables, if any target variables are already in the data dictionary section.
Example: ’overwrite’

Data Types: char

Output Arguments

importedVars — Successfully imported variables
cell array of strings

Names of successfully imported variables, returned as a cell array of strings. A variable
is considered successfully imported only if importFromFile assigns its value to the
corresponding entry in the target data dictionary.

existingVars — Variables that were not imported
cell array of strings

Names of target variables that were not imported due to their existence in the target
data dictionary, returned as a cell array of strings. existingVars has content only if
existAction is set to ‘none’, which is also the default. In that case importFromFile
imports only variables that are not already in the target data dictionary.

Examples

Import to Data Dictionary from File

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary
and return a list of successfully imported variables. If any variables are already in
myDictionary_ex_API.sldd, importFromFile returns a warning and a list of the
affected variables.

importFromFile(dDataSectObj,'myData_ex_API.m')

 importFromFile

5-577

Warning: The following variables were not imported because

they already exist in the dictionary:

 fuelFlow

ans =

 'myFirstEntry'

 'mySecondEntry'

 'myThirdEntry'

Import Variables from File and Overwrite Conflicts

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary,
overwrite any variables that are already in the dictionary, and return a list of
successfully imported variables.

importFromFile(dDataSectObj,'myData_ex_API.m','existingVarsAction','overwrite')

ans =

 'fuelFlow'

 'myFirstEntry'

 'mySecondEntry'

 'myThirdEntry'

Return Variables Not Imported to Data Dictionary from File

Return a list of variables that are not imported from a file because they are already in
the target data dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd
with a Simulink.data.dictionary.Section object named dDataSectObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary.
Specify names for the output arguments of importFromFile to return the names of
successfully and unsuccessfully imported variables.

5 Simulink Classes

5-578

[importedVars,existingVars] = importFromFile(dDataSectObj,'myData_ex_API.m')

importedVars =

 'myFirstEntry'

 'mySecondEntry'

 'myThirdEntry'

existingVars =

 'fuelFlow'

importFromFile does not import the variable fuelflow because it is already in the
target data dictionary.

• “Store Data in Dictionary Programmatically”

Alternatives

You can use the Model Explorer to import variables to a data dictionary from a file. See
“Import Data to Dictionary from File” for more information.

See Also
exportToFile | importEnumTypes | Simulink.data.dictionary.Section

Introduced in R2015a

 Simulink.DualScaledParameter

5-579

Simulink.DualScaledParameter

Specify name, value, units, and other properties of Simulink dual-scaled parameter

Description

This class extends the Simulink.Parameter class so that you can define an object
that stores two scaled values of the same physical value. For example, for temperature
measurement, you can store a Fahrenheit scale and a Celsius scale with conversion
defined by a computational method that you provide. Given one scaled value, the
Simulink.DualScaledParameter computes the other scaled value using the
computational method.

A dual-scaled parameter has:

• A calibration value. The value that you prefer to use.
• A main value. The real-world value that Simulink uses.
• An internal stored integer value. The value that is used in the embedded code.

You can use Simulink.DualScaledParameter objects in your model for both
simulation and code generation. The parameter computes the internal value before code
generation via the computational method. This offline computation results in leaner
generated code.

If you provide the calibration value, the parameter computes the main value using the
computational method. This method can be a first-order rational function.

y
ax b

cx d
=

+

+

• x is the calibration value.
• y is the main value.
• a and b are the coefficients of the CalToMain compute numerator.
• c and d are the coefficients of the CalToMain compute denominator.

5 Simulink Classes

5-580

If you provide the calibration minimum and maximum values, the parameter computes
minimum and maximum values of the main value. Simulink performs range checking of
parameter values. The software alerts you when the parameter object value lies outside a
range that corresponds to its specified minimum and maximum values and data type.

You can use the Simulink.DualScaledParameter dialog box to define a
Simulink.DualScaledParameter object. To open the dialog box:

1 In the Model Explorer, select the base workspace or a model workspace and select
Add > Add Custom.

2 In the Model Explorer — Select Object dialog box, set Object class to
Simulink.DualScaledParameter.

 Simulink.DualScaledParameter

5-581

Property Dialog Box

Main Attributes Tab

This tab shows the properties inherited from theSimulink.Parameter class. For more
information, see Simulink.Parameter.

5 Simulink Classes

5-582

Calibration Attributes Tab

Calibration value
Calibration value of the parameter. The value that you prefer to use. The default
value is [] (unspecified). Specify a finite, real, double value.

 Simulink.DualScaledParameter

5-583

Before specifying Calibration value, you must specify CalToMain compute
numerator and CalToMain compute denominator to define the computational
method. The parameter uses the computational method and the calibration value to
calculate the main value that Simulink uses.

Calibration minimum
Minimum value for the calibration parameter. The default value is [] (unspecified).
Specify a finite, real, double scalar value.

Before specifying Calibration minimum, you must specify CalToMain compute
numerator and CalToMain compute denominator to define the computational
method. The parameter uses the computational method and the calibration minimum
value to calculate the minimum or maximum value that Simulink uses. A first
order rational function is strictly monotonic, either increasing or decreasing. If it is
increasing, setting the calibration minimum sets the main minimum value. If it is
decreasing, setting the calibration minimum sets the main maximum.

If the parameter value is less than the minimum value or if the minimum value is
outside the range of the parameter data type, Simulink generates a warning. In these
cases, when updating the diagram or starting a simulation, Simulink generates an
error.

Calibration maximum
Maximum value for the calibration parameter. The default value is [] (unspecified).
Specify a finite, real, double scalar value.

Before specifying Calibration maximum, you must specify CalToMain compute
numerator and CalToMain compute denominator to define the computational
method. The parameter uses the computational method and the calibration
maximum value to calculate the corresponding maximum or minimum value that
Simulink uses. A first order rational function is strictly monotonic, either increasing
or decreasing. If it is increasing, setting the calibration maximum sets the main
maximum value. If it is decreasing, setting the calibration maximum sets the main
minimum.

If the parameter value is less than the minimum value or if the minimum value is
outside the range of the parameter data type, Simulink generates a warning. In these
cases, when updating the diagram or starting a simulation, Simulink generates an
error.

CalToMain compute numerator
Specify the numerator coefficients a and b of the first-order linear equation:

5 Simulink Classes

5-584

y
ax b

cx d
=

+

+

The default value is [] (unspecified). Specify finite, real, double scalar values for a
and b. For example, [1 1] or, for reciprocal scaling, 1.

Once you have applied CalToMain compute numerator, you cannot change it.
CalToMain compute denominator

Specify the denominator coefficients c and d of the first-order linear equation:

y
ax b

cx d
=

+

+

The default value is [] (unspecified). Specify finite, real, double scalar values for c
and d. For example, [1 1].

Once you have applied CalToMain compute denominator, you cannot change it.
Calibration name

Specify the name of the calibration parameter. The default value is ''. Specify a
string value, for example, 'T1'.

Calibration units
Specify the measurement units for this calibration value. This field is intended for
use in documenting this parameter. The default value is ''. Specify a string value,
for example, 'Fahrenheit'.

Is configuration valid
Simulink indicates whether the configuration is valid. The default value is true.
If Simulink detects an issue with the configuration, it sets this field to false and
provides information in the Diagnostic message field. You cannot set this field.

Diagnostic message
If you specify invalid parameter settings, Simulink displays a message in this field.
Use the diagnostic information to help you fix an invalid configuration issue. You
cannot set this field.

 Simulink.DualScaledParameter

5-585

Properties

Name Access Description

CalibrationValue RW Calibration value of this parameter. (Calibration
value)

CalibrationMin RW Calibration minimum value of this parameter.
(Calibration minimum)

CalibrationMax RW Calibration maximum value of this parameter.
(Calibration maximum)

CalToMainCompuNumerator RW Numerator coefficients of the computational
method. (CalToMain compute numerator)

Once you have applied
CalToMainCompuNumerator, you cannot change
it.

CalToMainCompuDenominator RW Denominator coefficients of the computational
method. (CalToMain compute denominator)

Once you have applied
CalToMainCompuDenominator, you cannot
change it.

CalibrationName RW Name of the calibration parameter. (Calibration
name)

CalibrationDocUnits RW Measurement units for this calibration
parameter's value. (Calibration units)

IsConfigurationValid RO Information about validity of configuration. (Is
configuration valid)

DiagnosticMessage RO If the configuration is invalid, diagnostic
information to help you fix the issue. (Diagnostic
message)

5 Simulink Classes

5-586

Example

Create and Update a Dual-Scaled Parameter

Create a Simulink.DualScaledParameter object that stores a temperature as both
Fahrenheit and Celsius.

Create a Simulink.DualScaledParameter object.

Temp = Simulink.DualScaledParameter;

Set the computational method that converts between Fahrenheit and Celsius.

Temp.CalToMainCompuNumerator = [1 -32];

Temp.CalToMainCompuDenominator = [1.8];

Set the value of the temperature that you want to see in Fahrenheit.

Temp.CalibrationValue = 212

Temp =

 DualScaledParameter with properties:

 CalibrationValue: 212

 CalibrationMin: []

 CalibrationMax: []

 CalToMainCompuNumerator: [1 -32]

 CalToMainCompuDenominator: 1.8000

 CalibrationName: ''

 CalibrationDocUnits: ''

 IsConfigurationValid: 1

 DiagnosticMessage: ''

 Value: 100

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: ''

 DataType: 'auto'

 Min: []

 Max: []

 DocUnits: ''

 Complexity: 'real'

 Dimensions: [1 1]

 Simulink.DualScaledParameter

5-587

The Simulink.DualScaledParameter calculates Temp.Value which is the value that
Simulink uses. Temp.CalibrationValue is 212 (degrees Fahrenheit), so Temp.Value
is 100 (degrees Celsius).

Name the value and specify the units.

Temp.CalibrationName = 'TempF';

Temp.CalibrationDocUnits = 'Fahrenheit';

Set calibration minimum and maximum values.

Temp.CalibrationMin = 0;

Temp.CalibrationMax = 300;

If you specify a calibration value outside this allowable range, Simulink generates a
warning.

Specify the units that Simulink uses.

Temp.DocUnits = 'Celsius';

Open the Simulink.DualScaledParameter dialog box.

open Temp

5 Simulink Classes

5-588

The Calibration Attributes tab displays the calibration value and the computational
method that you specified.

In the dialog box, click the Main Attributes tab.

 Simulink.DualScaledParameter

5-589

This tab displays information about the value used by Simulink.

More About
• “Fixed Point”

5 Simulink Classes

5-590

See Also
AUTOSAR.DualScaledParameter | Simulink.Parameter

Related Examples
• “Configure AUTOSAR Data for Measurement and Calibration”

Introduced in R2013b

 Simulink.Mask class

5-591

Simulink.Mask class
Package: Simulink

Control masks programmatically

Description

Use an instance of Simulink.Mask class to perform the following operations:

• Create, copy, and delete masks.
• Create, edit, and delete mask parameters.
• Determine the block that owns the mask.
• Obtain workspace variables defined for a mask.

Properties

Type

Specifies the mask type of the associated block.

Type: string

Default: Empty String

Description

Specifies the block description of the associated block.

Type: string

Default: Empty String

Help

Specifies the help text that is displayed for the mask.

Type: string

5 Simulink Classes

5-592

Default: Empty String

Initialization

Specifies the initialization commands for the associated block.

Type: string

Default: Empty String

SelfModifiable

Indicates that the block can modify itself and its content.

Type: boolean

Values: 'on'|'off'

Default: 'off'

Display

Specifies MATLAB code for drawing the block icon.

Type: string

Default: Empty String

IconFrame

Sets the visibility of the block frame. (Visible is on, Invisible is off).

Type: boolean

Values: 'on'|'off'

Default: 'on'

IconOpaque

Sets the transparency of the icon (Opaque is on, Transparent is off).

Type: boolean

 Simulink.Mask class

5-593

Values: 'on'|'off'

Default: 'on'

RunInitForIconRedraw

Specifies whether Simulink must run mask initialization before executing the mask icon
commands.

Type: boolean

Values: 'on'|'off'

Default: ‘off’

IconRotate

Sets icon to rotate with the block.

Type: enum

Values: 'none'|'port'

Default: 'none'

PortRotate

Specifies the port rotation policy for the masked block.

Type: enum

Values: 'default'|'physical'

Default: 'default'

IconUnits

Specifies the units for the drawing commands.

Type: enum

Values: 'pixel'|'autoscale'|'normalized'

Default: 'autoscale'

5 Simulink Classes

5-594

Methods

addParameter Add a parameter to a mask
copy Copy a mask from one block to another
create Create a mask on a Simulink block
delete Unmask a block and delete the mask from

memory
get Get a block mask as a mask object
addDialogControl Add dialog control elements to mask dialog

box
getDialogControl Search for a specific dialog control on the

mask
getOwner Determine the block that owns a mask
getParameter Get a mask parameter using its name
getWorkspaceVariables Get all the variables defined in the mask

workspace for a masked block
numParameters Determine the number of parameters in a

mask
removeDialogControl Remove dialog control element from mask

dialog box
removeParameter Remove parameter from mask dialog box
removeAllParameters Remove all existing parameters from a

mask
set Set the properties of an existing mask

How To
• “Control Masks Programmatically”

 addParameter

5-595

addParameter
Class: Simulink.Mask
Package: Simulink

Add a parameter to a mask

Syntax

p = Simulink.Mask.get(blockName)

p.addParameter(Name,Value)

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.addParameter(Name,Value) appends a parameter to the mask. If you do not specify
name–value pairs as arguments with this command, Simulink creates an unnamed mask
parameter with control type set to edit.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type'

Type of control that is used to specify the value of this parameter.

5 Simulink Classes

5-596

Default: edit

'TypeOptions'

The options that are displayed within a popup control or in a promoted parameter. This
field is a cell array.

Default: empty

'Name'

The name of the mask parameter. This name is assigned to the mask workspace variable
created for this parameter.

Default: empty

'Prompt'

Text that identifies the parameter on the Mask Parameters dialog box.

Default: empty

'Value'

The default value of the mask parameter in the Mask Parameters dialog box.

Default: Type specific; depends on the Type of the parameter

'Evaluate'

Option to specify whether parameter must be evaluated.

Default: 'on'

'Tunable'

Option to specify whether parameter is tunable.

Default: 'on'

'Enabled'

Option to specify whether user can set parameter value.

Default: 'on'

 addParameter

5-597

'Visible'

Option to set whether mask parameter is hidden or visible to the user.

Default: 'on'

'Callback'

Container for MATLAB code that executes when user makes a change in the Mask
Parameters dialog box and clicks Apply.

Default: empty

'TabName'

The name of the tab in the Mask Parameters dialog box where the parameter appears.

Default: empty

'Container'

Option to specifies a container for the child dialog control. The permitted values are
'panel', 'group', and 'tab'.

Examples

1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Add a parameter to the mask without specifying name–value pairs for parameter
attributes.

p.addParameter;

3 Add a mask parameter of type popup that cannot be evaluated and appears on a tab
named Properties in the Mask Parameters dialog box.

p.addParameter('Type','popup','TypeOptions',...

{'Red' 'Blue' 'Green'},'Evaluate','off','TabName','Properties');

See Also
Simulink.Mask

5 Simulink Classes

5-598

Simulink.Mask.copy
Class: Simulink.Mask
Package: Simulink

Copy a mask from one block to another

Syntax

pSource = Simulink.Mask.get(srcBlockName)

pDest = Simulink.Mask.create(destBlockName)

pDest.copy(pSource)

Description

pSource = Simulink.Mask.get(srcBlockName) gets the mask on the source block
specified by blockName as a mask object.

pDest = Simulink.Mask.create(destBlockName) creates an empty mask on the
destination block specified by destBlockName.

pDest.copy(pSource) overwrites the destination mask with the source mask.

Input Arguments

srcBlockName

The handle to the source block or the path to the source block inside the model.

Note: The source block should be masked.

destBlockName

The handle to the destination block or the path to the destination block inside the model.

 Simulink.Mask.copy

5-599

Note: The destination block should have an empty mask. Otherwise, the copied mask will
overwrite the non-empty mask.

Examples

1 Create an empty mask on the destination block using the block’s path.

pDest = Simulink.Mask.create('myModel/Subsystem');

2 Get source mask as an object using the source block’s path.

pSource = Simulink.Mask.get('myModel/Abs');

3 Make the destination mask a copy of the source mask.

pDest.copy(pSource);

See Also
Simulink.Mask

5 Simulink Classes

5-600

Simulink.Mask.create
Class: Simulink.Mask
Package: Simulink

Create a mask on a Simulink block

Syntax

p = Simulink.Mask.create(blockName)

Description

p = Simulink.Mask.create(blockName) creates an empty mask on the block
specified by blockName. If the specified block is already masked, an error message
appears.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples

1 Create a mask using a block’s handle.

Note: In the model, select the block to be masked.

p = Simulink.Mask.create(gcbh);

2 Create a mask using the block’s path.

p = Simulink.Mask.create('myModel/Subsystem');

 Simulink.Mask.create

5-601

See Also
Simulink.Mask

5 Simulink Classes

5-602

delete
Class: Simulink.Mask
Package: Simulink

Unmask a block and delete the mask from memory

Syntax

p = Simulink.Mask.get(blockName)

p.delete

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.delete unmasks the block and deletes the mask from memory.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Unmask the block using the mask object and delete the mask from memory.

p.delete;

See Also
Simulink.Mask

 Simulink.Mask.get

5-603

Simulink.Mask.get
Class: Simulink.Mask
Package: Simulink

Get a block mask as a mask object

Syntax

p = Simulink.Mask.get(blockName)

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object. If the specified block is not masked, a null value returns.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples

1 Get mask as an object using a masked block’s handle.

Note: In the model, select the masked block.

p = Simulink.Mask.get(gcbh);

2 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

5 Simulink Classes

5-604

See Also
Simulink.Mask

 addDialogControl

5-605

addDialogControl
Class: Simulink.Mask
Package: Simulink

Add dialog control elements to mask dialog box

Syntax

successIndicator = maskObj.addDialogControl(controlType,

controlIdentifier)

successIndicator = maskObj.addDialogControl(Name,Value)

Description

successIndicator = maskObj.addDialogControl(controlType,

controlIdentifier) adds dialog control elements like text, hyperlinks, or tabs to
mask dialog box. First get the mask object and assign it to the variable maskObj

successIndicator = maskObj.addDialogControl(Name,Value) specifies the
Name and Value arguments for an element on the mask dialog box. You can specify
multiple Name-Value pairs.

Input Arguments

controlType — Value type of dialog control element
string

Type of dialog control element, specified

• 'panel'

• 'group'

• 'tabcontainer'

• 'tab'

• 'text'

• 'image'

5 Simulink Classes

5-606

• 'hyperlink'

• 'pushbutton'

controlIdentifer — Unique identifier for the element
string

Specifies the programmatic identifier for the element of mask dialog box. Use a name
that is unique and does not have space between words. For more information, see
“Variable Names”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside
single quotes (' ') and is case-sensitive. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

'Type'

Type of control that is used to specify the value of this dialog control element. Type is a
required argument. The permitted values are 'panel', 'group', 'tabcontainer',
'tab', 'text', 'image', 'hyperlink', and 'pushbutton'.

Default: empty

'Name'

The identifier of the dialog control element. Name is a required argument. This field is
available for all dialog control types.

Default: empty

'Prompt'

Text that is displayed in the dialog control element on the Mask dialog box. This field is
available for all except for panel and image dialog control types.

Default: empty

'Enabled'

Option to specify whether you can set value for the dialog control element. This field is
available for all dialog control types.

 addDialogControl

5-607

Default: 'on'

'Visible'

Option to set whether the dialog control element is hidden or visible to the user. This
field is available for all dialog control types.

Default: 'on'

'Callback'

Container for MATLAB code that executes when you edit the dialog control element and
click Apply. This field is available only for the hyperlink and pushbutton dialog control
types.

Default: empty

'Row'

Option to set whether the dialog control is placed in the new row or the same row. This
field is available for all dialog control types.

Default: empty

'Filepath'

Contains the path to an image file. This field is available for image, and pushbutton
dialog control types.

Default: empty

'Container'

Option to specifies a container for the child dialog control. The permitted values are the
names of 'panel', 'group', and 'tab' dialog controls.

Examples

Add Dialog Control Elements to Mask Dialog Box

Get mask object and add dialog control element to it.

5 Simulink Classes

5-608

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add hyperlink to mask dialog box

maskLink = maskObj.addDialogControl('hyperlink','link');

maskLink.Prompt = 'Mathworks Home Page';

maskLink.Callback = 'web(''www.mathworks.com'')'

% Add text to mask dialog box

maskText = maskObj.addDialogControl('text','text_tag');

maskText.Prompt = 'Enable range checking';

% Add button to mask dialog box

maskButton = maskObj.addDialogControl('pushbutton','button_tag');

maskButton.Prompt = 'Compute';

Add Dialog Control Elements to Mask Dialog Box Tabs

Create tabs on the mask dialog box and add elements to these tabs.

% Get mask object on a block named 'GainBlock'

maskObj = Simulink.Mask.get('GainBlock/Gain');

% Create a tab container

maskObj.addDialogControl('tabcontainer','allTabs');

tabs = maskObj.getDialogControl('allTabs');

% Create tabs and name them

maskTab1 = tabs.addDialogControl('tab','First');

maskTab1.Prompt = 'First tab';

maskTab2 = tabs.addDialogControl('tab','Second');

maskTab2.Prompt = 'Second tab';

% Add elements to one of the tabs

firstTab = tabs.getDialogControl('First');

firstTab.addDialogControl('text','textOnFirst');

 addDialogControl

5-609

firstTab.getDialogControl('textOnFirst').Prompt = 'Tab one';

Add Dialog Control Element Using Name-Value Pair

Add dialog control element and specify values for it

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add a dialog box and specify values for it

maskDialog = maskObj.addDialogControl('Type','text',...

'Prompt','hello','Visible','off');

See Also
Simulink.Mask

More About
• Control Masks Programmatically

Introduced in R2014a

5 Simulink Classes

5-610

getDialogControl

Class: Simulink.Mask
Package: Simulink

Search for a specific dialog control on the mask

Syntax

[control, phandle] = handle.getDialogControl(cname)

Description

[control, phandle] = handle.getDialogControl(cname) , search for a specific
child dialog control recursively on the mask dialog.

Input Arguments

cname

Name of the dialog control being searched on the mask dialog.

Default:

Output Arguments

control

Target dialog control being searched on the mask dialog.

phandle

Parent of the dialog control being searched mask dialog.

 getDialogControl

5-611

Examples

Find a dialog control

Find a text dialog control on the mask dialog box. maskObj is the handle to the mask
object. The getDialogControl method returns the handle to the dialog control
(hdlgctrl) and handle to the parent dialog control (phandle).

[hdlgctrl, phandle] = maskObj.getDialogControl(‘txt_var’)

See Also
Simulink.Mask

5 Simulink Classes

5-612

getOwner
Class: Simulink.Mask
Package: Simulink

Determine the block that owns a mask

Syntax

p = Simulink.Mask.get(blockName)

p.getOwner

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.getOwner returns the interface to the block that owns the mask.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Get the interface to the block that owns the mask.

p.getOwner;

See Also
Simulink.Mask

 getParameter

5-613

getParameter
Class: Simulink.Mask
Package: Simulink

Get a mask parameter using its name

Syntax

p = Simulink.Mask.get(blockName)

param = p.getParameter(paramName)

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

param = p.getParameter(paramName) returns the number of parameters in the
mask.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

paramName

The name of the parameter you want to get.

Examples

1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

5 Simulink Classes

5-614

2 Get a mask parameter by using its name.

param = p.getParameter('intercept');

See Also
Simulink.Mask

 getWorkspaceVariables

5-615

getWorkspaceVariables

Class: Simulink.Mask
Package: Simulink

Get all the variables defined in the mask workspace for a masked block

Syntax

p = Simulink.Mask.get(blockName)

vars = p.getWorkspaceVariables

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

vars = p.getWorkspaceVariables returns as a structure all the variables defined in
the mask workspace for the masked block.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples

1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Get all the variables defined in the mask workspace for the masked block.

vars = p.getWorkspaceVariables;

5 Simulink Classes

5-616

See Also
Simulink.Mask

 numParameters

5-617

numParameters
Class: Simulink.Mask
Package: Simulink

Determine the number of parameters in a mask

Syntax

p = Simulink.Mask.get(blockName)

p.numParameters

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.numParameters returns the number of parameters in the mask.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Get the number of parameters in the mask.

p.numParameters;

See Also
Simulink.Mask

5 Simulink Classes

5-618

removeDialogControl
Class: Simulink.Mask
Package: Simulink

Remove dialog control element from mask dialog box

Syntax

successIndicator = maskVariable.removeDialogControl(

controlIdentifier)

Description

successIndicator = maskVariable.removeDialogControl(

controlIdentifier) removes dialog control element, specified by
controlIndentifier, like text, hyperlinks, or tabs from a mask dialog box. First get
the mask object and assign it to the variable maskVariable.

Successful removal of a dialog control element returns a Boolean value of 1.

Input Arguments

controlIdentifer — Unique identifier for the element
string

Programmatic identifier for the dialog control element of mask dialog box, specified as a
string.

Examples

Remove Dialog Control Element from Mask Dialog Box

% Get mask object on the Gain block in the model Engine.

 removeDialogControl

5-619

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove element named AllTab from mask dialog box.

p = maskObj.removeDialogControl('AllTab');

See Also
Simulink.Mask

Introduced in R2013b

5 Simulink Classes

5-620

removeParameter
Class: Simulink.Mask
Package: Simulink

Remove parameter from mask dialog box

Syntax

successIndicator = maskVariable.removeParameter(controlIdentifier)

Description

successIndicator = maskVariable.removeParameter(controlIdentifier)

removes parameter, specified by controlIdentifier, like edit, check box, popup
from an existing mask dialog box. First get the mask object and assign it to the variable
maskVariable.

Successful removal of a parameter returns a Boolean value of 1.

Input Arguments

controlIdentifer — Unique identifier for the parameter
string

Programmatic identifier for the parameter of mask dialog box, specified as a string.

Examples

Remove Parameter from Mask Dialog Box

% Get mask object on the Gain block in the model Engine.

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove parameter named checkbox1 from mask dialog box.

 removeParameter

5-621

p = maskObj.removeParameter('checkbox1');

Note: You can also use the index number as the controlIdentifier.

See Also
Simulink.Mask

Introduced in R2012b

5 Simulink Classes

5-622

removeAllParameters
Class: Simulink.Mask
Package: Simulink

Remove all existing parameters from a mask

Syntax

p = Simulink.Mask.get(blockName)

p.removeAllParameters

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.removeAllParameters deletes all existing parameters from the mask.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Delete all existing parameters from the mask.

p.removeAllParameters;

See Also
Simulink.Mask

 set

5-623

set
Class: Simulink.Mask
Package: Simulink

Set the properties of an existing mask

Syntax

p = Simulink.Mask.get(blockName)

p.set(Name,Value)

Description

p = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

p.set(Name,Value) sets mask properties that you specify using name–value pairs as
arguments.

Input Arguments

blockName

The handle to the block or the path to the block inside the model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type'

Text used as title for mask documentation that user sees on clicking Help in the Mask
Parameters dialog box.

5 Simulink Classes

5-624

Default: empty

'Description'

Text used as summary for mask documentation that user sees on clicking Help in the
Mask Parameters dialog box.

Default: empty

'Help'

Text used as body text for mask documentation that user sees on clicking Help in the
Mask Parameters dialog box.

Default: empty

'Initialization'

MATLAB code that initializes the mask.

Default: empty

'SelfModifiable'

Option to set whether the mask can modify itself during simulation.

Default: 'off'

'Display'

MATLAB code that draws the mask icon.

Default: empty

'IconFrame'

Option to specify whether the mask icon appears inside a visible block frame.

Default: 'on'

'IconOpaque'

Option to set the mask icon as opaque or transparent.

 set

5-625

Default: 'on'

'RunInitForIconRedraw'

Option to specify whether Simulink should run mask initialization before executing the
mask icon commands.

Default: 'off'

'IconRotate'

Option to specify icon rotation.

Default: 'none'

'PortRotate'

Option to specify port rotation.

Default: 'default'

'IconUnits'

Option to specify whether mask icon is autoscaled, normalized, or scaled in pixels.

Default: 'autoscale'

Examples

1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Modify the mask so that its mask icon is transparent and its documentation
summarizes what it does.

p.set('IconOpaque','off','Type','Random number generator','Description',...

'This block generates random numbers.');

See Also
Simulink.Mask

5 Simulink Classes

5-626

Simulink.MaskParameter class
Package: Simulink

Control mask parameters programmatically

Description

Use an instance of Simulink.MaskParameter to set the properties of mask parameters.

Properties

Type

Specifies the mask parameter type.

Type: string

Values: 'edit'|'checkbox'|'popup'|'unidt'|'min'|'max'|'promote'

Default: 'edit'

TypeOptions

Specifies the option for the parameter if it exists, otherwise, it is empty. Applicable for
parameters of type popup and promote .

Type: cell array of strings

Default: {''}

Name

Specifies the name of the mask parameter. This name is assigned to the mask workspace
variable created for this parameter.

Type: string

Default: Empty String

 Simulink.MaskParameter class

5-627

Prompt

Specifies a string that appears as the label associated with the parameter on the mask
dialog.

Type: string

Default: Empty String

Value

Specifies the value of the mask parameter.

Default: Depends on the type of the parameter.

Evaluate

Indicates if the parameter value is to be evaluated in MATLAB or treated as a string
when the block is evaluated.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Tunable

Indicates if the parameter value can be changed during simulation.

Type: boolean

Values: 'on'|'off'

Default: 'on'

NeverSave

Indicates if the parameter value gets saved in the model file.

Type: boolean

Values: 'on'|'off'

Default: 'off'

5 Simulink Classes

5-628

Internal

Indicates if the parameter should never show on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'off'

Enabled

Indicates if the parameter is enabled in the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Indicates if the parameter is visible in the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

ToolTip

Indicates if tool tip is enabled for the mask parameter.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Callback

Specifies the MATLAB code that executes when a user changes the parameter value from
the mask dialog box.

 Simulink.MaskParameter class

5-629

Type: string

Default: Empty String

TabName

Specifies the tab name of the mask dialog box where the parameter is displayed.

Type: string

Default: Empty String

Methods

set Set properties of mask parameters

How To
• “Control Masks Programmatically”

5 Simulink Classes

5-630

set
Class: Simulink.MaskParameter
Package: Simulink

Set properties of mask parameters

Syntax

Simulink.MaskParameter.set(Name,Value)

Description

Simulink.MaskParameter.set(Name,Value) sets the properties of a mask
parameter.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type'

Type of control that is used to specify the value of this parameter.

Default: edit

'TypeOptions'

The options that are displayed within a popup control or in a promoted parameter. This
field is a cell array.

 set

5-631

Default: empty

'Name'

The name of the mask parameter. This name is assigned to the mask workspace variable
created for this parameter.

Default: empty

'Prompt'

Text that identifies the parameter on the Mask Parameters dialog.

Default: empty

'Value'

The default value of the mask parameter in the Mask Parameters dialog.

Default: Type specific; depends on the Type of the parameter

'Evaluate'

Option to specify whether parameter must be evaluated.

Default: 'on'

'Tunable'

Option to specify whether parameter is tunable.

Default: 'on'

'Enabled'

Option to specify whether user can set parameter value.

Default: 'on'

'Visible'

Option to set whether mask parameter is hidden or visible to the user.

Default: 'on'

5 Simulink Classes

5-632

'Callback'

Container for MATLAB code that executes when user makes a change in the Mask
Parameters dialog and clicks Apply.

Default: empty

'TabName'

The name of the tab in the Mask Parameters dialog where the parameter appears.

Default: empty

Examples

1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');

2 Get a mask parameter.

a = p.Parameters(1);

3 Edit mask parameter so it is of type popup, cannot be evaluated, and appears on a
tab named Properties in the Mask Parameters dialog.

a.set('Type','popup','TypeOptions',{'Red' 'Blue' 'Green'},...

'Evaluate','off','TabName','Properties');

See Also
Simulink.Mask | Simulink.MaskParameter

 Simulink.dialog.Control class

5-633

Simulink.dialog.Control class
Package: Simulink.dialog

Create instances of dialog control

Description

Use an instance of Simulink.dialog.Control class to create, delete, or search dialog
controls.

Properties

Name

Uniquely identifies the dialog control element and is a required field.

Type: string

See Also
Simulink.dialog.Button | Simulink.dialog.Image | Simulink.dialog.Text
| Simulink.dialog.parameter.Control | Simulink.dialog.Hyperlink |
Simulink.dialog.Container

5 Simulink Classes

5-634

Simulink.dialog.Container class
Package: Simulink.dialog

Create instances of a container dialog control

Description

Use an instance of Simulink.dialog.Container class to add container type dialog
control.

Properties

Name

Uniquely identifies the container dialog control and is a required filed.

Type: string

Enabled

Indicates whether container is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether container is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

 Simulink.dialog.Container class

5-635

DialogControls

Specifies the child dialog controls contained in the container.

Type: Simulink.dialog.Control

Default: Empty array

Methods

addDialogControl Add dialog control elements to mask dialog
box

removeDialogControl Remove dialog control element from mask
dialog box

getDialogControl Search for a specific dialog control on the
mask

See Also
Simulink.dialog.Group | Simulink.dialog.Tab |
Simulink.dialog.TabContainer | Simulink.dialog.Panel |
Simulink.dialog.Control

5 Simulink Classes

5-636

addDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Add dialog control elements to mask dialog box

Syntax

successIndicator = maskObj.addDialogControl(controlType,

controlIdentifier)

successIndicator = maskObj.addDialogControl(Name,Value)

Description

successIndicator = maskObj.addDialogControl(controlType,

controlIdentifier) adds dialog control elements like text, hyperlinks, or tabs to
mask dialog box. First get the mask object and assign it to the variable maskObj

successIndicator = maskObj.addDialogControl(Name,Value) specifies the
Name and Value arguments for an element on the mask dialog box. You can specify
multiple Name-Value pairs.

Input Arguments

controlType — Value type of dialog control element
string

Type of dialog control element, specified

• 'panel'

• 'group'

• 'tabcontainer'

• 'tab'

• 'text'

 addDialogControl

5-637

• 'image'

• 'hyperlink'

• 'pushbutton'

controlIdentifer — Unique identifier for the element
string

Specifies the programmatic identifier for the element of mask dialog box. Use a name
that is unique and does not have space between words. For more information, see
“Variable Names”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside
single quotes (' ') and is case-sensitive. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

'Type'

Type of control that is used to specify the value of this dialog control element. Type is a
required argument. The permitted values are 'panel', 'group', 'tabcontainer',
'tab', 'text', 'image', 'hyperlink', and 'pushbutton'. If the parent dialog
control type is 'tabcontainer', the child dialog control must be 'tab'.

'Name'

The identifier of the dialog control element. Name is a required argument. This field is
available for all dialog control types.

'Prompt'

Text that is displayed in the dialog control element on the Mask dialog box. This field is
available for all except for panel and image dialog control types.

Default: empty

'Enabled'

Option to specify whether you can set value for the dialog control element. This field is
available for all dialog control types.

5 Simulink Classes

5-638

Default: 'on'

'Visible'

Option to set whether the dialog control element is hidden or visible to the user. This
field is available for all dialog control types.

Default: 'on'

'Callback'

Container for MATLAB code that executes when you edit the dialog control element and
click Apply. This field is available only for the hyperlink and pushbutton dialog control
types.

Default: empty

'Row'

Option to set whether the dialog control is placed in the new row or the same row. This
field is available for all dialog control types.

Default: empty

'FilePath'

Contains the path to an image file. This field is available for image, and pushbutton
dialog control types.

Default: empty

'Container'

Option to specifies a container for the child dialog control. The permitted values are the
names of 'panel', 'group', and 'tab' dialog controls.

Examples

Add Dialog Control Elements to Mask Dialog Box

Get mask object and add dialog control element to it.

 addDialogControl

5-639

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add hyperlink to mask dialog box

maskLink = maskObj.addDialogControl('hyperlink','link');

maskLink.Prompt = 'Mathworks Home Page';

maskLink.Callback = 'web(''www.mathworks.com'')'

% Add text to mask dialog box

maskText = maskObj.addDialogControl('text','text_tag');

maskText.Prompt = 'Enable range checking';

% Add button to mask dialog box

maskButton = maskObj.addDialogControl('pushbutton','button_tag');

maskButton.Prompt = 'Compute';

Add Dialog Control Elements to Mask Dialog Box Tabs

Create tabs on the mask dialog box and add elements to these tabs.

% Get mask object on a block named 'GainBlock'

maskObj = Simulink.Mask.get('GainBlock/Gain');

% Create a tab container

maskObj.addDialogControl('tabcontainer','allTabs');

tabs = maskObj.getDialogControl('allTabs');

% Create tabs and name them

maskTab1 = tabs.addDialogControl('tab','First');

maskTab1.Prompt = 'First tab';

maskTab2 = tabs.addDialogControl('tab','Second');

maskTab2.Prompt = 'Second tab';

% Add elements to one of the tabs

firstTab = tabs.getDialogControl('First');

firstTab.addDialogControl('text','textOnFirst');

5 Simulink Classes

5-640

firstTab.getDialogControl('textOnFirst').Prompt = 'Tab one';

Add Dialog Control Element Using Name-Value Pair

Add dialog control element and specify values for it

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add a dialog box and specify values for it

maskDialog = maskObj.addDialogControl('Type','text',...

'Prompt','hello','Visible','off');

See Also
Simulink.dialog.Container

Introduced in R2014a

 removeDialogControl

5-641

removeDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Remove dialog control element from mask dialog box

Syntax

successIndicator = maskVariable.removeDialogControl(

controlIdentifier)

Description

successIndicator = maskVariable.removeDialogControl(

controlIdentifier) removes dialog control element, specified by
controlIndentifier, like text, hyperlinks, or tabs from a mask dialog box. First get
the mask object and assign it to the variable maskVariable.

Successful removal of a dialog control element returns a Boolean value of 1.

Input Arguments

controlIdentifer — Unique identifier for the element
string

Programmatic identifier for the dialog control element of mask dialog box, specified as a
string.

Examples

Remove Dialog Control Element from Mask Dialog Box

% Get mask object on the Gain block in the model Engine.

5 Simulink Classes

5-642

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove element named AllTab from mask dialog box.

maskTab = maskObj.removeDialogControl('AllTab');

Introduced in R2013b

 getDialogControl

5-643

getDialogControl

Class: Simulink.dialog.Container
Package: Simulink.dialog

Search for a specific dialog control on the mask

Syntax

[control, phandle] = handle.getDialogControl(controlIdentifier)

Description

[control, phandle] = handle.getDialogControl(controlIdentifier),
search for a specific child dialog control recursively on the mask dialog box.

Input Arguments

controlIdentifier

Name of the dialog control being searched on the mask dialog box.

Default:

Output Arguments

control

Target dialog control being searched on the mask dialog box.

phandle

Parent of the dialog control being searched mask dialog box.

5 Simulink Classes

5-644

Examples

Find a dialog control

Find a text dialog control on the mask dialog box. maskObj is the handle to the mask
object. The getDialogControl method returns the handle to the dialog control
(hdlgctrl) and handle to the parent dialog control (phandle).

[hdlgctrl, phandle] = maskObj.getDialogControl(‘txt_var’)

See Also
Simulink.dialog.Container

 Simulink.dialog.Panel class

5-645

Simulink.dialog.Panel class
Package: Simulink.dialog

Create an instance of a panel dialog control

Description

Use an instance of Simulink.dialog.Panel class to create an instance of panel dialog
control.

Properties

Name

Uniquely identifies the panel dialog control and is a required field.

Type: string

Row

Specifies whether panel is placed on the current row or on a new row.

Type: enumerated string

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether panel is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

5 Simulink Classes

5-646

Visible

Specifies whether panel is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the panel.

Type: Simulink.dialog.Control

Default: Empty array

Methods

addDialogControl Add dialog control elements to mask dialog
box

removeDialogControl Remove dialog control element from mask
dialog box

getDialogControl Search for a specific dialog control on the
mask

See Also
Simulink.dialog.Group | Simulink.dialog.TabContainer
| Simulink.dialog.Container | Simulink.dialog.Tab |
Simulink.dialog.Control

 Simulink.dialog.Group class

5-647

Simulink.dialog.Group class
Package: Simulink.dialog

Create an instance of a group dialog control

Description

Use an instance of Simulink.dialog.Group class to create an instance of group dialog
control.

Properties

Name

Uniquely identifies the group dialog control and is a required field.

Type: string

Prompt

Specifies the text displayed on the group.

Type: string

Default: Empty String

Row

Specifies whether group is placed on the current row or on a new row.

Type: enumerated string

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether group is active on the mask dialog box.

5 Simulink Classes

5-648

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Specifies whether group is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the group.

Type: Simulink.dialog.Control

Default: Empty array

Methods

addDialogControl Add dialog control elements to mask dialog
box

removeDialogControl Remove dialog control element from mask
dialog box

getDialogControl Search for a specific dialog control on the
mask

See Also
Simulink.dialog.Panel | Simulink.dialog.TabContainer
| Simulink.dialog.Container | Simulink.dialog.Tab |
Simulink.dialog.Control

 Simulink.dialog.Tab class

5-649

Simulink.dialog.Tab class
Package: Simulink.dialog

Create an instance of a tab dialog control

Description

Use an instance of Simulink.dialog.Tab class to create an instance of tab dialog
control.

Properties

Name

Uniquely identifies the tab dialog control and is a required field.

Type: string

Prompt

Specifies the text displayed on the tab.

Type: string

Default: Empty String

Enabled

Specifies whether tab is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Specifies whether tab is displayed on the mask dialog box.

5 Simulink Classes

5-650

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the tab dialog control.

Type: Simulink.dialog.Control

Default: Empty array

Methods

addDialogControl Add dialog control elements to mask dialog
box

removeDialogControl Remove dialog control element from mask
dialog box

getDialogControl Search for a specific dialog control on the
mask

See Also
Simulink.dialog.Group | Simulink.dialog.TabContainer
| Simulink.dialog.Container | Simulink.dialog.Panel |
Simulink.dialog.Control

 Simulink.dialog.TabContainer class

5-651

Simulink.dialog.TabContainer class
Package: Simulink.dialog

Create an instance of a tab container dialog control

Description

Use an instance of Simulink.dialog.TabContainer class to create an instance of
tab container dialog control. Tab container dialog box be used to group the tab dialog
controls.

Properties

Name

Uniquely identifies the tab container dialog control and is a required field.

Type: string

Row

Specifies whether tab container is placed on the current row or on a new row.

Type: enumerated string

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether tab container is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

5 Simulink Classes

5-652

Visible

Specifies whether tab container is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the group.
Simulink.dialog.TabContainer class can only contain Simulink.dialog.Tab
dialog control.

Type: Simulink.dialog.Tab

Default: Empty array

Methods

addDialogControl Add dialog control elements to mask dialog
box

removeDialogControl Remove dialog control element from mask
dialog box

getDialogControl Search for a specific dialog control on the
mask

See Also
Simulink.dialog.Group | Simulink.dialog.Tab |
Simulink.dialog.Container | Simulink.dialog.Panel |
Simulink.dialog.Control

 Simulink.dialog.Button class

5-653

Simulink.dialog.Button class
Package: Simulink.dialog

Create a button dialog control

Description

Use an instance of Simulink.dialog.Button class to add a button dialog control.

Properties

Name

Uniquely identifies the dialog control and is a required field.

Type: string

Prompt

Specifies the text displayed on the button dialog control.

Type: string

Default: empty

FilePath

Specifies the path to the image file to be shown on the button dialog control.

Type: string

Default: empty

Callback

Specifies the MATLAB command (s) to be executed when the dialog control is invoked.

Type: string

5 Simulink Classes

5-654

Default: empty

Row

Specifies whether dialog control is placed on the current row or on a new row.

Type: enumerated string

Value: 'current'|'new'

Default: 'current'

Enabled

Indicates whether container is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether container is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control

 Simulink.dialog.Hyperlink class

5-655

Simulink.dialog.Hyperlink class
Package: Simulink.dialog

Create a hyperlink dialog control

Description

Use an instance of Simulink.dialog.Hyperlink class to add a hyperlink dialog
control.

Properties

Name

Uniquely identifies the dialog control and is a required field.

Type: string

Prompt

Specifies the text displayed on the hyperlink.

Type: string

Default: empty

Callback

Specifies the MATLAB command (s) to be executed when the dialog control is invoked.

Type: string

Default: empty

Row

Specifies whether hyperlink is placed on the current row or on a new row.

Type: enumerated string

5 Simulink Classes

5-656

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether hyperlink is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether hyperlink is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control

 Simulink.dialog.Image class

5-657

Simulink.dialog.Image class
Package: Simulink.dialog

Create an image dialog control

Description

Use an instance of Simulink.dialog.Image class to add an image dialog control.

Properties

Name

Uniquely identifies the dialog control and is a required field.

Type: string

FilePath

Specifies the path to the image file to be displayed on the dialog box.

Type: string

Default: empty

Row

Specifies whether dialog control is placed on the current row or on a new row.

Type: enumerated string

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether image is active on the mask dialog box.

5 Simulink Classes

5-658

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether image is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control

 Simulink.dialog.Text class

5-659

Simulink.dialog.Text class
Package: Simulink.dialog

Create a text dialog control

Description

Use an instance of Simulink.dialog.Text class to add a text dialog control.

Properties

Name

Uniquely identifies the dialog control element and is a required field.

Type: string

Prompt

Specifies the text displayed on the mask dialog box.

Type: string

Default: empty

WordWrap

Specifies whether to wrap long text to the next line on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Row

Specifies whether dialog control is placed on the current row or on a new row.

5 Simulink Classes

5-660

Type: enumerated string

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether dialog control is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether dialog control is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control

 Simulink.dialog.parameter.Control class

5-661

Simulink.dialog.parameter.Control class
Package: Simulink.dialog.parameter

Create a parameter dialog control

Description

Use an instance of Simulink.dialog.parameter.Control class to add a parameter
dialog control.

Properties

Name

Uniquely identifies the dialog control element. This is a required field and has the same
value as its underlying parameter name.

Type: string

Row

Specifies whether the dialog control is placed on the current row or on a new row.

Type: enumerated string

Value: 'current'|'new'

Default: 'new'

See Also
Simulink.dialog.Control

5 Simulink Classes

5-662

addElement

Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Add element to end of data set

Syntax

dataset = addElement(dataset,element)

dataset = addElement(dataset,element,name)

Description

dataset = addElement(dataset,element) adds an element to the
Simulink.SimulationData.Dataset dataset.

dataset = addElement(dataset,element,name) adds an element to the
Simulink.SimulationData.Dataset data set and gives the element the name that
you specify with the name argument. If the object already has a name, the element
instead uses the name you specify by using the name argument.

Input Arguments

dataset — Data set
SimulationData.Dataset object

The data set to which to add the element.

element — Element to add
Simulink.SimulationData.Signal object |
Simulink.SimulationData.DataStoreMemory object

Element to add to the data set, specified as a Simulink.SimulationData.Signal
object or Simulink.SimulationData.DataStoreMemory object.

 addElement

5-663

name — Name for element
string

Name for element, specified as a string.

Output Arguments

dataset — Data set
string

The data set to which you add the element, returned as a string. The new element is
added to the end of the data set.

Examples

Create a Data Set

Create a data set and add three elements to it.

time = 0.1*(0:100)';

ds = Simulink.SimulationData.Dataset;

element1 = Simulink.SimulationData.Signal;

element1.Name = 'A';

element1.Values = timeseries(sin(time),time);

ds = addElement(ds,element1);

element2 = Simulink.SimulationData.Signal;

element2.Name = 'B';

element2.Values = timeseries(2*sin(time),time);

ds = addElement(ds,element2);

element3 = Simulink.SimulationData.Signal;

element3.Name = 'C';

element3.Values = timeseries(3*sin(time),time);

ds = addElement(ds,element3)

ds =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'logsout'

5 Simulink Classes

5-664

 Total Elements: 3

 Elements:

 1: 'A'

 2: 'B'

 3: 'C'

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.Dataset.concat | Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames
| Simulink.SimulationData.Dataset.numElements
| Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2011a

 concat

5-665

concat
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Concatenate dataset to another dataset

Syntax

dataset1 = concat(dataset1,dataset2)

Description

dataset1 = concat(dataset1,dataset2) concatenates the elements of dataset2
to dataset1.

Input Arguments

dataset1 — Dataset to concatenate to
data set

Dataset to concatenate to with dataset2, returned as a cell array.

dataset2 — Dataset to concatenate
data set

Data set to concatenate to dataset1, specified as a cell array.

Output Arguments

dataset1 — Concatenated dataset
data set

Concatenated dataset from dataset1 and dataset2.

5 Simulink Classes

5-666

Examples

Concatenate ds1 to ds

Convert output from two To Workspace blocks to Dataset format and concatenate them.

mdl = 'myvdp';

open_system(mdl);

sim(mdl)

ds = Simulink.SimulationData.Dataset(simout);

ds1 = Simulink.SimulationData.Dataset(simout1);

dsfinal = concat(ds,ds1);

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.find | Simulink.SimulationData.Dataset.get
| Simulink.SimulationData.Dataset.getElementNames
| Simulink.SimulationData.Dataset.numElements
| Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2015a

 get

5-667

get
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Get element or collection of elements from dataset

Syntax

element = get(dataset,index)

element = get(dataset,name)

element = get(dataset,{name})

Description

element = get(dataset,index) returns the element corresponding to the index.
The getElement method uses the same syntax and behavior as the get method.

element = get(dataset,name) returns the element whose name matches name.
When name is in a cell array, return the index of the element whose name matches name.

element = get(dataset,{name}) returns a single element if only one element name
matches, a SimulationData.Dataset if multiple elements with this name exist.

Input Arguments

dataset — Data set
SimulationData.Dataset object

The data set from which to get the element.

index — Index value of element to get
scalar numeric

Index value of element to get. The index reflects the index value of a data set element.

name — Name for data set element
character array | cell array

5 Simulink Classes

5-668

Name for a data set element, specified as:

• A character array reflecting the name of the data set element
• A cell array containing one string. To return a SimulationData.Dataset object

that can contain one element, use this format. Consider this form when writing
scripts.

Output Arguments

element — Element
element | SimulationData.Dataset object | empty object

The element that the get method finds.

• If index is the first argument after the data set, the method returns the element at
the index.

• If name is the first argument after the data set:

• If the method finds one element, it returns the element.
• If the method finds more than one element, return a Dataset that contains the

elements.
• If the method does not find an element, it returns an empty object.

Examples

Access Dataset Elements

Access dataset elements in the top model of the ex_bus_logging model. The signal
logging dataset is topOut.

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_bus_logging')));

sim('ex_bus_logging')

topOut

topOut =

 get

5-669

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'topOut'

 Total Elements: 4

 Elements:

 1: 'COUNTERBUS'

 2: 'OUTPUTBUS'

 3: 'INCREMENTBUS'

 4: 'inner_bus'

 -Use get or getElement to access elements by index, name or

 block path.

 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

Access Dataset Elements with Index

Access the element at index if the first argument is a numeric value.

el = logsout.get(1);

Access Dataset Elements with Characters

Access the element whose name matches name.

el = logsout.get('name');

Access Dataset Elements with Cell Array

Return a dataset if the first argument is a cell array with a string as the first element.

ds = logsout.get({'my_name'});

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

5 Simulink Classes

5-670

See Also
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat | Simulink.SimulationData.Dataset.find
| Simulink.SimulationData.Dataset.getElementNames
| Simulink.SimulationData.Dataset.numElements
| Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2011a

 getElementNames

5-671

getElementNames
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Return names of all elements in dataset

Syntax
element_list = getElementNames(dataset)

Description
element_list = getElementNames(dataset) returns the names of all of the
elements in the Simulink.SimulationData.Dataset object.

Input Arguments
dataset — Data set
SimulationData.Dataset object

The data set from which to the element name.

Output Arguments
element_list — Data set
cell array

Data set, returned as a cell array of the strings containing names of all of the elements of
the dataset.

Examples
Return Names of Elements

Return the names of the elements for the topOut data set (the signal logging data).

5 Simulink Classes

5-672

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot,'toolbox','simulink',...

'examples','ex_bus_logging')));

sim('ex_bus_logging')

el_names = topOut.getElementNames

el_names =

 'COUNTERBUS'

 'OUTPUTBUS'

 'INCREMENTBUS'

 'inner_bus'

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat | Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get | Simulink.SimulationData.Dataset.numElements
| Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2011a

 find

5-673

find
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Get element or collection of elements from dataset

Syntax

[datasetOut,retIndex]=find(datasetIn,Name,Value,…)

[datasetOut,retIndex]=find(datasetIn,Name,Value,'-logicaloperator',…

Name,Value,…)

[datasetOut,retIndex]=find(datasetIn,'-regexp',Name,Value,…)

Description

[datasetOut,retIndex]=find(datasetIn,Name,Value,…) returns a
Simulink.SimulationData.Dataset object and indices of the elements whose
property values match the specified property names and values. Specify optional comma-
separated pairs of Name,Value properties. Name is the property name and Value is
the corresponding value. Name must appear inside single quotes (' '). You can specify
several name-value pair properties in any order as Name1,Value1,...,NameN,ValueN.

[datasetOut,retIndex]=find(datasetIn,Name,Value,'-logicaloperator',

…Name,Value,…) applies the logical operator to the matching property value. You can
combine multiple logical operators. Logical operator can be one of:

• -or

• -and

If you do not specify an operation, the method assumes -and.

[datasetOut,retIndex]=find(datasetIn,'-regexp',Name,Value,…) matches
elements using regular expressions as if the value of the property is passed to the
regexp function as:

5 Simulink Classes

5-674

regexp(element.Name,Value)

The method applies regular expression matching to the name-value pairs that appear
after -regexp. If there is no -regexp, the method matches elements as if the value of
the property is passed as:

isequal(element.Name,Value)

For more information on -regexp, see “-regexp With Multiple Block Paths” on page
5-674.

-regexp With Multiple Block Paths

-regexp works with properties of type char. To specify multiple block paths, you
can use Simulink.SimulationData.BlockPath and Simulink.BlockPath.
For example, when a signal is logged in a referenced model, you can use
Simulink.SimulationData.BlockPath to specify multiple block paths.

The method returns elements that contain a BlockPath property where one or more of
the individual block paths match the specified Value path when you use:

• -regexp with the BlockPath Name property.
• Value as a string or scalar object of type Simulink.SimulationData.BlockPath

with one block path

Input Arguments

datasetIn — SimulationData.Dataset
SimulationData.Dataset object

SimulationData.Dataset object in which to search for matching elements.

Name — Name of property
string

Name of property to find in the element.

Value — Value of property
string | double | Simulink.SimulationData.BlockPath

Value of property to find in the element.

 find

5-675

Output Arguments

datasetOut — SimulationData.Dataset data set
SimulationData.Dataset

SimulationData.Dataset object that contains the elements that match the specified
criteria. If there is no matching SimulationData.Dataset object, the returned
SimulationData.Dataset object contains no elements.

retIndex — Indices
vector

Indices of the elements datasetIn that match the specified criteria.

Examples

Find Block Path

Find a specific block path (specified by string) and port index.

dsOut = find(dsIn, ‘BlockPath’, ‘vdp/x1’, ‘PortIndex’, 1)

Find Elements

Find elements that have either name or propagated name as InValve.

dsOut = find(dsIn, ‘Name’, ‘InValve’, ‘-or’, ‘PropagatedName’, ‘InValve’)

dsOut = find(dsIn, ‘-regex’,‘Name’, ‘In*’, ‘-or’, …

 ‘-regex’,‘PropagatedName’, ‘In*’)

Find and Change Element

Find and replace all elements containing specified_name with a new_name.

[dsOut,idxInDs] = find(ds, ‘specified_name’);

for idx=1: length(idxInDs)

 % process each element

 elm = get(dsOut, idx);

 elm.Name= ‘New_Name’

 dsIn = setElement(dsIn, idxInDs(idx), elm);

5 Simulink Classes

5-676

end

Find Signals in subSys Using -regexp

Find all signals logged in a subSys using -regexp.

dsOut = find(dsIn, ‘-regexp’, ‘BlockPath’, ‘mdl/subSys/.*’)

Find Signals in Referenced Model

Find all signals logged in the Model block.

dsOut = find(dsIn, ‘-regexp’, ‘BlockPath’, ‘refmdl/ModelBlk’)

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat | Simulink.SimulationData.Dataset.get
| Simulink.SimulationData.Dataset.getElementNames
| Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset.setElement | Simulink.SimulationData.Dataset
| findobj | regexp | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2015b

 numElements

5-677

numElements
Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Get number of elements in data set

Syntax
length = numElements(dataset)

Description
length = numElements(dataset) gets the number of elements in the top-level
dataset. To get the number of elements of a nested data set, use numElements with the
nested data set.

Input Arguments
dataset — Data set
SimulationData.Dataset object

The data set from which to get the number of elements.

Output Arguments
length — Number of elements
double

Number of elements, returned as a double.

Examples
Get Number of Elements

Get the number of elements in the signal logging data set for the ex_bus_logging.

5 Simulink Classes

5-678

length = topOut.numElements()

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat | Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames
| Simulink.SimulationData.Dataset.setElement |
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2011a

 setElement

5-679

setElement

Class: Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Change element stored at specified index

Syntax

dataset = setElement(dataset,index,... element)

dataset = setElement(index,element, name)

Description

dataset = setElement(dataset,index,... element) changes the element stored
at the specified index, for an existing index. If index is one greater than the number of
elements in the data set, the function adds the element at the end of the data set.

dataset = setElement(index,element, name) changes the element stored at the
specified index and gives it the name that you specify. You can use name to identify an
element that does not have a name. If the signal already has a name, the element instead
uses the name you specify by using the name argument.

Input Arguments

dataset — Data set
SimulationData.Dataset object

The data set for which to set the element.

index — Index
scalar

Index for the added element, specified as a scalar numeric value. The value must be
between 1 and the number of elements plus 1.

5 Simulink Classes

5-680

element — Element to replace existing element
Simulink.SimulationData.Signal object |
Simulink.SimulationData.DataStoreMemory object

Element to replace existing element or to add to the data set,
specified as a Simulink.SimulationData.Signal object or
Simulink.SimulationData.DataStoreMemory object.

name — Element name
string

Element name, returned as a string.

Output Arguments

dataset — Data set
string

Data set in which you change or add an element, specified as a string.

Examples

Set Element Name

Set element name.

ds = Simulink.SimulationData.Dataset

element1 = Simulink.SimulationData.Signal

element1.Name = 'A'

ds = ds.addElement(element1)

element2 = Simulink.SimulationData.Signal

element2.Name = 'B'

elementNew = Simulink.SimulationData.Signal

ds = ds.setElement(2,elementNew,'B1')

ds

ds =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 setElement

5-681

 Characteristics:

 Name: 'topOut'

 Total Elements: 2

 Elements:

 1: 'A'

 2: 'B1'

 Use getElement to access elements by index, name or

 block path.

 Methods, Superclasses

• “Specify the Signal Logging Data Format”
• “Export Signal Data Using Signal Logging”
• “Log Data Stores”
• “Migrate from ModelDataLogs to Dataset Format”
• “Model Reference Signal Logging Format Consistency”

See Also
Simulink.SimulationData.Dataset.addElement |
Simulink.SimulationData.Dataset.concat | Simulink.SimulationData.Dataset.find |
Simulink.SimulationData.Dataset.get |
Simulink.SimulationData.Dataset.getElementNames
| Simulink.SimulationData.Dataset.numElements |
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath
| Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Signal

Introduced in R2011a

5 Simulink Classes

5-682

coder.BuildConfig class

Package: coder

Build context during code generation

Description

The code generation software creates an object of this class to facilitate access to the
build context. The build context encapsulates the settings used by the code generation
software including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Use coder.BuildConfig methods in the methods that you write for the
coder.ExternalDependency class.

Construction

The code generation software creates objects of this class.

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

 coder.BuildConfig class

5-683

Examples

Use coder.BuildConfig methods to access the build context in
coder.ExternalDependency methods

This example shows how to use coder.BuildConfig methods to access the build
context in coder.ExternalDependency methods. In this example, you use:

• coder.BuildConfig.isMatlabHostTarget to verify that the code generation
target is the MATLAB host. If the host is not MATLAB report an error.

• coder.BuildConfig.getStdLibInfo to get the link-time and run-time library file
extensions. Use this information to update the build information.

Write a class definition file for an external library that contains the function adder.

%==

% This class abstracts the API to an external Adder library.

% It implements static methods for updating the build information

% at compile time and build time.

%==

classdef AdderAPI < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'AdderAPI';

 end

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('adder library not available for this target');

 end

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo();

 % Header files

 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');

5 Simulink Classes

5-684

 buildInfo.addIncludePaths(hdrFilePath);

 % Link files

 linkFiles = strcat('adder', linkLibExt);

 linkPath = hdrFilePath;

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files

 nbFiles = 'adder';

 nbFiles = strcat(nbFiles, execLibExt);

 buildInfo.addNonBuildFiles(nbFiles,'','');

 end

 %API for library function 'adder'

 function c = adder(a, b)

 if coder.target('MATLAB')

 % running in MATLAB, use built-in addition

 c = a + b;

 else

 % running in generated code, call library function

 coder.cinclude('adder.h');

 % Because MATLAB Coder generated adder, use the

 % housekeeping functions before and after calling

 % adder with coder.ceval.

 % Call initialize function before calling adder for the

 % first time.

 coder.ceval('adder_initialize');

 c = 0;

 c = coder.ceval('adder', a, b);

 % Call the terminate function after

 % calling adder for the last time.

 coder.ceval('adder_terminate');

 end

 end

 coder.BuildConfig class

5-685

 end

end

See Also
coder.ExternalDependency | coder.target

5 Simulink Classes

5-686

coder.ExternalDependency class

Package: coder

Interface to external code

Description

coder.ExternalDependency is an abstract class for encapsulating the interface
between external code and MATLAB code intended for code generation. You define
classes that derive from coder.ExternalDependency to encapsulate the interface to
external libraries, object files, and C/C++ source code. This encapsulation allows you to
separate the details of the interface from your MATLAB code. The derived class contains
information about external file locations, build information, and the programming
interface to external functions.

To define a class, myclass, make the following line the first line of your class definition
file:

classdef myclass < coder.ExternalDependency

You must define all of the methods listed in “Methods” on page 5-687. These
methods are static and are not compiled. When you write these methods, use
coder.BuildConfig methods to access build information.

You also define methods that call the external code. These methods are compiled. For
each external function that you want to call, write a method to define the programming
interface to the function. In the method, use coder.ceval to call the external function.
Suppose you define the following method for a class named AdderAPI:

function c = adder(a, b)

 coder.cinclude('adder.h');

 c = 0;

 c = coder.ceval('adder', a, b);

end

This method defines the interface to a function adder which has two inputs a and b. In
your MATLAB code, call adder this way:

y = AdderAPI.adder(x1, x2);

 coder.ExternalDependency class

5-687

Methods

Examples

Encapsulate the interface to an external C dynamic linked library

This example shows how to encapsulate the interface to an external C dynamic linked
library using coder.ExternalDependency.

Write a function adder that returns the sum of its inputs.

function c = adder(a,b)

 %#codegen

 c = a + b;

end

Generate a library that contains adder.

codegen('adder','-args', {-2,5}, '-config:dll', '-report');

Write the class definition file AdderAPI.m to encapsulate the library interface.

%==

% This class abstracts the API to an external Adder library.

% It implements static methods for updating the build information

% at compile time and build time.

%==

classdef AdderAPI < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'AdderAPI';

 end

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('adder library not available for this target');

 end

5 Simulink Classes

5-688

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo();

 % Header files

 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');

 buildInfo.addIncludePaths(hdrFilePath);

 % Link files

 linkFiles = strcat('adder', linkLibExt);

 linkPath = hdrFilePath;

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files

 nbFiles = 'adder';

 nbFiles = strcat(nbFiles, execLibExt);

 buildInfo.addNonBuildFiles(nbFiles,'','');

 end

 %API for library function 'adder'

 function c = adder(a, b)

 if coder.target('MATLAB')

 % running in MATLAB, use built-in addition

 c = a + b;

 else

 % running in generated code, call library function

 coder.cinclude('adder.h');

 % Because MATLAB Coder generated adder, use the

 % housekeeping functions before and after calling

 % adder with coder.ceval.

 % Call initialize function before calling adder for the

 % first time.

 coder.ceval('adder_initialize');

 c = 0;

 c = coder.ceval('adder', a, b);

 coder.ExternalDependency class

5-689

 % Call the terminate function after

 % calling adder for the last time.

 coder.ceval('adder_terminate');

 end

 end

 end

end

Write a function adder_main that calls the external library function adder.

function y = adder_main(x1, x2)

 %#codegen

 y = AdderAPI.adder(x1, x2);

end

Generate a MEX function for adder_main. The MEX Function exercises the
coder.ExternalDependency methods.

codegen('adder_main', '-args', {7,9}, '-report')

Copy the library to the current folder using the file extension for your platform.

For Windows, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.dll'));

For Linux, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.so'));

Run the MEX function and verify the result.

adder_main_mex(2,3)

See Also
coder.BuildConfig | coder.ceval | coder.cinclude | coder.updateBuildInfo

More About
• “Encapsulating the Interface to External Code”
• “Best Practices for Using coder.ExternalDependency”

5 Simulink Classes

5-690

Scope Configuration Properties
Control scope appearance and behavior

Scope configuration properties control the appearance and behavior of a Scope block.
Create a scope configuration object with get_param, and then change property values
using the object with dot notation.

open_system('vdp')

myScopeConfiguration = get_param('vdp/Scope','ScopeConfiguration')

myScopeConfiguration.NumInputPorts = '2'

ActiveDisplay — Display for setting display-specific properties
'1' (default) | positive integer string

Display for setting display-specific properties, specified as a positive integer string. The
number of a display corresponds to its column-wise placement index.

Dependency: Setting this property selects the display for setting the properties
ShowGrid, ShowLegend, Title, PlotAsMagnitudePhase, YLabel, and YLimits.

Block Configuration Property: Active display

AxesScaling — How to scale y-axes
'Manual' (default) | 'Auto' | 'Updates'

How to scale y-axes, specified as one of these values:

• 'Manual' — Manually scale y-axes with the Scale Y-axis Limits button.
• 'Auto' — Scale y-axes during and after simulation.
• 'Updates' — Scale y-axes after specified number of block updates (time intervals).

Dependency: If this property is set to ‘Updates’, also specify the property
AxesScalingNumUpdates.

Block Configuration Property: Axes scaling

AxesScalingNumUpdates — Number of updates before scaling y-axes
'10' (default) | positive integer string

Number of updates before scaling y-axes. Specified as a positive integer string.

 Scope Configuration Properties

5-691

Dependency: Activate this property by setting AxesScaling to 'Updates'.

Block Configuration Property: Number of updates

DataLogging — Save scope data
false (default) | true

Save scope data to a variable in the MATLAB workspace, specified as one of these values:

• false — Inactivate logging and logging properties.
• true — Activate logging and logging properties.

This property does not apply to floating scopes and scope viewers.

Dependency: If this property is set to true, also specify the properties
DataLoggingVariableName and DataLoggingSaveFormat.

Block Configuration Property: Log data to workspace

DataLoggingVariableName — Variable name for saving scope data
'ScopeData' (default) | character string

Variable name for saving scope data in the MATLAB workspace, specified as a character
string. This property does not apply to floating scopes and scope viewers.

Dependency: Activate this property by setting DataLogging to true.

Block Configuration Property: Variable name

DataLoggingSaveFormat — Variable format for saving scope data
'Dataset' (default) | 'Structure With Time' | 'Structure' | 'Array'

Variable format for saving scope data to the MATLAB workspace, specified as one of
these values:

• 'Dataset' — Save data as a dataset object. This format does not support
variable-size data, MAT-file logging, or external mode archiving. See
Simulink.SimulationData.Dataset.

• 'StructureWithTime' — Save data as a structure with associated time
information. This format does not support single- or multiport frame-based data, or
multirate data.

5 Simulink Classes

5-692

• 'Structure' — Save data as a structure. This format does not support multi-rate
data.

• 'Array' — Save data as an array with associated time information. This format
does not support multiport sample-based data, single or multiport frame-based data,
variable-size data, or multi-rate data.

This property does not apply to floating scopes and scope viewers.

Dependency: Activate this property by setting DataLogging to true.

Block Configuration Property: Save format

DataLoggingLimitDataPoints — Limit buffered data
false (default) | true

Limit buffered data before plotting and saving data, specified as one of these values:

• false — Save all the data. Setting this parameter to false can cause an out-of-
memory error.

• true — Save signal data at the end of a simulation.

For simulations with Stop time set to inf, always set this parameter to true.

Dependency: If this property is set to true, also specify the number of data values to plot
and save with the property DataLoggingMaxPoints.

Block Configuration Property: Limit data points to last

DataLoggingMaxPoints — Maximum number of data values
'5000' (default) | positive integer string

Maximum number of data values to plot and save, specified as a positive integer string.
The data values are from the end of a simulation.

Dependency: Activate this property by setting DataLoggingLimitDataPoints to true.
Specifying this property limits the data values a scope plots and the data values saved in
the MATLAB variable specified in DataLoggingVariableName.

Block Configuration Property: Text box to the right of the Limit data points to last
check box.

DataLoggingDecimateData — Reduce scope data
false (default) | true

 Scope Configuration Properties

5-693

Reduce scope data before plotting and saving, specified as one of these values:

• false — Do not reduce buffered data.
• true — Reduce buffered data.

Dependency: If this property is set to true, also specify DataLoggingDecimation.

Block Configuration Property: Decimation

DataLoggingDecimation — How signal data is reduced
'1' (default) | positive integer string

How signal data is reduced before plotting and saving, specified as a positive integer
string. The scope buffers every Nth data point, where N is the decimation factor you
specify. A value of 1 buffers all data values.

Dependency: Activate this property by setting DataLoggingDecimateData to true.

Block Configuration Property: Text box to the right of the Decimation check box.

FrameBasedProcessing — Frame-based processing of signals
false (default for Time Scope block) | true (default for Scope block)

Frame-based processing of signals, specified as one of these values:

• false — Process signal values in a channel at each time interval (sample based).
• true — Process signal values in a channel as a group of values from multiple time

intervals (frame based). Frame-based processing is available only with discrete input
signals.

Block Configuration Property: Input processing

LayoutDimensions — Number of display rows and columns
[1 1] (default) | [numberOfRows numberOfColumns]

Number of display rows and columns, specified with as a two-element vector. The
maximum layout dimension is four rows by four columns.

• If the number of displays is equal to the number of ports, signals from each port
appear on separate displays.

• If the number of displays is less than the number of ports, signals from additional
ports appear on the last y-axis.

5 Simulink Classes

5-694

Block Configuration Property: Layout button to the right of the Number of input
ports text box

MaximizeAxes — Maximize size of signal plots
'Auto' (default) | 'On' | 'Off'

Maximize size of signal plots, specified as one of these values:

• 'Auto' — If Title and YLabel are not specified, maximize all plots.
• 'On' — Maximize all plots. Values in Title and YLabel are hidden.
• 'Off‘ — Do not maximize plots.

Each of the plots expands to fit the full display. Maximizing the size of signal plots
removes the background area around the plots.

Block Configuration Property: Maximize axes

MinimizeControls — Hide menu and toolbar
false (default) | true

Hide menu and toolbar, specified by one of these values:

• false — Display menu and toolbar.
• true — Hide menu and toolbar.

If you dock the scope, this property is inactive.

Name — Title on a scope window
'Scope' (default for Scope block) | 'Time Scope' (default for Time Scope block) |
character string

Title on a scope window, specified with a character string.

NumInputPorts — Number of input ports
'1' (default) | positive integer string

Number of input ports on a Scope block, specified by a positive integer string. Maximum
number of input ports is 96. This property does not apply to floating scopes and scope
viewers.

Block Configuration Property: Number of input ports

 Scope Configuration Properties

5-695

OpenAtSimulationStart — Open scope window
true (default for Time Scope block) | false (default for Scope block)

Open scope window, specified as one of these values:

• true — Open Scope when simulation starts.
• false — Do not open a closed Scope at the start of a simulation.

Block Configuration Property: Open at simulation start

PlotAsMagnitudePhase — Magnitude and phase plots
false (default) | true

Magnitude and phase plots, specified by one of these values:

• false — Display signal plot.

If the signal is complex, plot the real and imaginary parts on the same y-axis
(display).

• true — Display magnitude and phase plots.

If the signal is real, plot the absolute value of the signal for the magnitude. The phase
is 0 degrees for positive values and 180 degrees for negative values.

Dependency: Set ActiveDisplay before setting this property.

Block Configuration Property: Plot signals as magnitude and phase

Position — Size and location of Scope
[left bottom width height]

Size and location of Scope window, specified as a four-element vector consisting of the
left, bottom, width, and height positions, in pixels.

By default, a scope window appears in the center of your screen with a width of 560
pixels and height of 420 pixels.

ShowGrid — Vertical and horizontal grid lines
true (default) | false

Vertical and horizontal grid lines, specified as one of these values:

• true — Display grid lines.

5 Simulink Classes

5-696

• false — Hide grid lines.

Dependency: Set ActiveDisplay property before setting this property.

Block Configuration Property: Show grid

SampleTime — Time interval
'-1'for inherited | positive real string

Time interval between Scope block updates during a simulation, specified as a positive
real string. This property does not apply to floating scopes and scope viewers.

Block Configuration Property: Sample Time

ShowLegend — Signal legend
false (default) | true

Signal legend, specified as one of these values:

• false — Hide legend.
• true — Show legend on active display.

Names listed in the legend are the signal names from the model. For signals with
multiple channels, a channel index is appended after the signal name. See the Scope
block reference for an example.

Dependency: Set ActiveDisplay property before setting this property.

Block Configuration Property: Show legend

ShowTimeAxisLabel — Display or hide x-axis labels
true (default for Time Scope block) | false (default for Scope block)

Display or hide x-axis labels, specified as one of these values:

• true — Display x-axis labels for the active display.
• false — Hide x-axis labels.

Dependency: Set ActiveDisplay property before setting this property. If this property
is set to true, also set TimeAxisLabels. If TimeAxisLabels is set to 'None', this
property is inactive.

Block Configuration Property: Show time-axis label

 Scope Configuration Properties

5-697

TimeAxisLabels — How x-axis labels display
'All' (default for Time Scope block) | 'Bottom' (default for Scope block) | 'None'

How x-axis labels display, specified as one of these values:

• 'All' — Display x-axis labels on all y-axes.
• 'Bottom' — Display x-axis label only on the bottom y-axis.
• 'None' — Do not display labels and deactivate ShowTimeAxisLabel property.

Dependency: Set ActiveDisplay before specifying this property. Activate this property
by setting ShowTimeAxisLabel to true and setting Maximize axes to 'Off'.

Block Configuration Property: Time-axis labels

TimeDisplayOffset — X-axis range offset
'0' (default) | real number string | [real number string, real number string]

X-axis range offset, specified as a real number string or vector of real number strings. For
input signals with multiple channels, enter a scaler or vector of offsets.

• Scaler — Offset all channels of an input signal by the same value.
• Vector — Independently offset the channels.

Block Configuration Property: Time display offset

TimeSpan — Length of x-axis range to display
'0' (default) | positive real number string | 'Auto'

Length of x-axis range to display, specified as one of these values:

• Positive real number — Value less than the total simulation time.
• 'Auto' — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the x-axis range using the
TimeDisplayOffset and TimeSpan properties. For example, if you set TimeDisplay
to 10 and the TimeSpan to 20, the scope sets the x-axis range from 10 to 30.

Block Configuration Property: Time span

TimeSpanOverrunAction — How to display data
'Wrap' (default) | 'Scroll'

5 Simulink Classes

5-698

How to display data beyond the visible x-axis range, specified as one of these values:

• 'Wrap' — Draw a full screen of data from left to right, clear the screen, and then
restart drawing of data.

• 'Scroll' — Move data to the left as new data is drawn on the right. This mode is
graphically intensive and can affect run-time performance.

You can see the effects of this option only when plotting is slow with large models or
small step sizes.

Block Configuration Property: Time span overrun action

TimeUnits — Units to display on the x-axis
'Metric' (default for Time Scope block) | 'None' (default for Scope block) |
'Seconds'

Units to display on the x-axis, specified as one of these values:

• 'Metric' — Display time units based on the length of the TimeSpan property.
• 'None' — Display Time on the x-axis.
• 'Seconds' — Display Time (seconds) on the x-axis.

Block Configuration Property: Time units

Title — Title for display
'%<SignalLabel>' (default) | character string

Title for a display, specified as a character string. The default value %<SignalLabel>
uses the input signal name for the title.

Dependency: Set ActiveDisplay before setting this property.

Block Configuration Property: Title

Visible — Visibility of scope window
true (default) | false

Visibility of scope window, specified as one of these values:

• true — Scope window visible.
• false — Scope window hidden.

 Scope Configuration Properties

5-699

Block Configuration Property: No corresponding property

YLabel — Y-axis label
'' (default) | character string

Y-axis label for active display, specified as a character string.

Dependency: Set ActiveDisplay before setting this property. If
PlotAsMagnitudePhase is true, the value of YLabel is hidden and plots are labeled
Magnitude and Phase.

Block Configuration Property: Y-label

YLimits — Minimum and maximum values of y-axis
[-10 10] (default) | [ymin ymax]

Minimum and maximum values of y-axis, specified as a two-element numeric vector.

Dependency: Set ActiveDisplay before setting this property. When
PlotAsMagnitudePhase is true, this property specifies the y-axis limits for the
magnitude plot. The y-axis limits of the phase plot are always [-180 180].

Block Configuration Property: Y-limits (Minimum) and Y-limits (Maximum)

See Also
Floating Scope | Scope

Related Examples
• “Control Scopes Programmatically ”

6

Model and Block Parameters

• “Model Parameters” on page 6-2
• “Common Block Properties” on page 6-85
• “Block-Specific Parameters” on page 6-96
• “Mask Parameters” on page 6-227

6 Model and Block Parameters

6-2

Model Parameters

In this section...

“About Model Parameters” on page 6-2
“Examples of Setting Model Parameters” on page 6-83

About Model Parameters

You can query and/or modify the properties (parameters) of a Simulink diagram from
the command line. Parameters that describe a model are known as model parameters,
while parameters that describe a Simulink block are known as block parameters.
Block parameters that are common to Simulink blocks are described as common block
parameters. There are also block-specific parameters that are specific to particular
blocks. Finally, there are mask parameters, which are parameters that describe a
masked block.

The model and block properties also include callbacks, which are commands that execute
when a certain model or block event occurs. These events include opening a model,
simulating a model, copying a block, opening a block, etc.

Parameter values must be specified as quoted strings. The string contents depend on the
parameter and can be numeric (scalar, vector, or matrix), a variable name, a filename,
or a particular value. The Values column shows the type of value required, the possible
values (separated with a vertical line), and the default value enclosed in braces.

The following sections list parameters that you can set for Simulink models blocks, or
signals, using the set_param command.

This table lists and describes, in alphabetical order, parameters that describe a model.
The table also includes model callback parameters (see “Callbacks for Customized Model
Behavior”). The Description column indicates where you can set the value on a dialog
box. For examples, see “Examples of Setting Model Parameters” on page 6-83.

Model Parameters in Alphabetical Order

Parameter Description Values

AbsTol Specify the largest acceptable
solver error, as the value of
the measured state approaches
zero.

string — {'auto'}

 Model Parameters

6-3

Parameter Description Values

Set by Absolute tolerance
on the Solver pane of the
Configuration Parameters
dialog box.

AccelVerboseBuild Controls the verbosity level
during code generation for
Simulink Accelerator mode,
model reference Accelerator
mode, and Rapid Accelerator
mode.

Set by Verbose accelerator
builds on the Optimization
pane of the Configuration
Parameters dialog box.

string — {'off'} | 'on'

AlgebraicLoopMsg Specifies diagnostic action to
take when there is an algebraic
loop.

Set by Algebraic loop on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

ArrayBoundsChecking Select the diagnostic action to
take when blocks write data to
locations outside the memory
allocated to them.

Set by Array bounds
exceeded on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

ArtificialAlgebraic-

LoopMsg

Specifies diagnostic action
to take if algebraic loop
minimization cannot be
performed for a subsystem

string — 'none' |
{'warning'} | 'error'

6 Model and Block Parameters

6-4

Parameter Description Values

because an input port of
that subsystem has direct
feedthrough.

Set by Minimize algebraic
loop on the Solver
Diagnostics pane of the
Configuration Parameters
dialog box.

AssertControl Enable model verification
blocks in the current model
either globally or locally.

Set by Model Verification
block enabling on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

string —
{'UseLocalSettings'}

| 'EnableAll' |

'DisableAll'

AutoInsertRateTranBlk Specify whether Simulink
software inserts hidden Rate
Transition blocks between
blocks that have different
sample rates.

Set by Automatically handle
rate transition for data
transfer on the Solver pane of
the Configuration Parameters
dialog box.

string — 'on' | {'off'}

BlockDescription-

StringDataTip

Specifies whether to display
the user description string for a
block as a data tip.

In the Simulink Editor, set by
Description on the Display
> Blocks > Block Tool Tip
Options menu.

string — 'on' | {'off'}

 Model Parameters

6-5

Parameter Description Values

BlockNameDataTip Specifies whether to display
the block name as a data tip.
In the Simulink Editor, set by
Block Name on the Display
> Blocks > Block Tool Tip
Options menu.

string — 'on' | {'off'}

BlockParametersDataTip Specifies whether to display a
block parameter in a data tip.

In the Simulink Editor, set by
Parameter Names & Values
on the Display > Blocks >
Block Tool Tip Options
menu.

string — 'on' | {'off'}

BlockPriority-

ViolationMsg

Select the diagnostic action
to take if Simulink software
detects a block priority
specification error.

Set by Block priority
violation on the Solver
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'warning'} |
'error'

BlockReduction Enables block reduction
optimization.

Set by Block reduction on
the Optimization pane of
the Configuration Parameters
dialog box.

string — {'on'} | 'off'

BlockReductionOpt See BlockReduction
parameter for more
information.

BooleanDataType Enable Boolean mode. string — {'on'} | 'off'

6 Model and Block Parameters

6-6

Parameter Description Values

Set by Implement logic
signals as Boolean data (vs.
double) on the Optimization
pane of the Configuration
Parameters dialog box.

BrowserLookUnderMasks Show masked subsystems in
the Model Browser.

In the Simulink Editor, set by
Include Systems with Mask
Parameters on the View >
Model Browser menu.

string — 'on' | {'off'}

BrowserShowLibraryLinks Show library links in the Model
Browser.

In the Simulink Editor, set by
Include Library Links on the
View > Model Browser menu.

string — 'on' | {'off'}

BufferReusableBoundary For internal use.
BufferReuse Enable reuse of block I/O

buffers.

Set by Reuse block outputs
on the Optimization >
Signals and Parameters
pane of the Configuration
Parameters dialog box.

string — {'on'} | 'off'

BusNameAdapt Repair broken selections in
the Bus Selector and Bus
Assignment block parameters
dialog boxes that are due
to upstream bus hierarchy
changes.

Set by “Repair bus
selections” on the
Diagnostics > Connectivity

string — {'WarnAndRepair'}
| 'ErrorWithoutRepair'

 Model Parameters

6-7

Parameter Description Values

pane of the Configuration
Parameters dialog box.

BusObjectLabelMismatch Select the diagnostic action
to take if the name of a bus
element does not match
the name specified by the
corresponding bus object.

Set by Element name
mismatch on the Diagnostics
> Connectivity pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

CheckExecutionContext-

PreStartOutputMsg

Specify whether to display a
warning if Simulink software
detects potential initial output
differences from previous
releases.

Set by Check preactivation
output of execution
context on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'on' | {'off'}

CheckExecutionContext-

RuntimeOutputMsg

Specify whether to display a
warning if Simulink software
detects potential output
differences from previous
releases.

Set by Check runtime output
of execution context on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'on' | {'off'}

6 Model and Block Parameters

6-8

Parameter Description Values

CheckForMatrix-

Singularity

See
CheckMatrixSingularityMsg

parameter for more
information.

CheckMatrix-

SingularityMsg

Select the diagnostic action
to take if the Product block
detects a singular matrix while
inverting one of its inputs in
matrix multiplication mode.

Set by Division by singular
matrix on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

CheckModelReference-

TargetMessage

Select the diagnostic action
to take if Simulink software
detects a target that needs to
be rebuilt.

Set by “Never rebuild
diagnostic” on the Model
Referencing pane of the
Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

CheckSSInitialOutputMsg Enable checking for undefined
initial subsystem output.

Set by Check undefined
subsystem initial output
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'on'} | 'off'

CloseFcn Set the close callback function,
which can be a command or a
variable.

string — {''}

 Model Parameters

6-9

Parameter Description Values

Set by Model close function
on the Callbacks pane of the
Model Properties dialog box.

See “Create Model Callbacks”
for more information.

CompiledBusType Return information about
whether the signal connected to
a port is not a bus, or whether
it is a virtual or nonvirtual bus.

(Read-only) Get with the
get_param command. Specify
a port or line handle. See “View
Information about Buses”.

Return values are'NOT_BUS',
VIRTUAL_BUS, and
NON_VIRTUAL_BUS

CompiledModelBlockNormalModeVisibilityFor a top model that is
being simulated or that is
in a compiled state, return
information about which Model
blocks have Normal Mode
Visibility enabled.

Return values indicate which
Model blocks have Normal Mode
Visibility enabled.

ConditionallyExecute-

Inputs

Enable conditional input
branch execution optimization.

Set by Conditional input
branch execution on the
Optimization pane of the
Configuration Parameters
dialog box.

string — {'on'} | 'off'

ConfigurationManager Configuration manager for this
model.

string — {'None'}

ConsecutiveZCsStepRelTol Relative tolerance associated
with the time difference
between zero-crossing events.

Set by Time tolerance
on the Solver pane of the

string — {'10*128*eps'}

6 Model and Block Parameters

6-10

Parameter Description Values

Configuration Parameters
dialog box.

ConsistencyChecking Select the diagnostic action
to take if S-functions have
continuous sample times,
but do not produce consistent
results when executed multiple
times.

Set by Solver data
inconsistency on the Solver
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

ContinueFcn Continue simulation callback.

Set by Simulation continue
function on the Callbacks
pane of the Model Properties
dialog box.

string — {''}

CovCompData If CovHtmlReporting
is set to on and
CovCumulativeReport is set
to on, this parameter specifies
cvdata objects containing
additional model coverage
data to include in the model
coverage report.

Set by Additional data to
include in report (cvdata
objects) on the Reporting
pane of the Coverage Settings
dialog box.

string — {''}

CovCumulativeReport If CovHtmlReporting is set to
on, this parameter allows the
CovCumulativeReport and

string — 'on' | {'off'}

 Model Parameters

6-11

Parameter Description Values

CovCompData parameters to
specify the number of coverage
results displayed in the model
coverage report.

If set to on, the Simulink
Verification and Validation
software displays the coverage
results from successive
simulations in the report.

If set to off, the software
displays the coverage results
for the last simulation in the
report.

Set by the Cumulative runs
(on) / Last run (off) options
on the Reporting pane of the
Coverage Settings dialog box.

CovCumulativeVarName If CovSaveCumulativeTo-
WorkspaceVar is set to on,
the Simulink Verification and
Validation software saves
the results of successive
simulations in the workspace
variable specified by this
property.

Set by cvdata object name
below the selected Save
cumulative results in
workspace variable check
box on the Results pane of the
Coverage Settings dialog box.

string —
{'covCumulativeData'}

CovExternalEMLEnable Enables coverage for any
external MATLAB functions
that MATLAB functions for

string — 'on' | {'off'}

6 Model and Block Parameters

6-12

Parameter Description Values

code generation call in your
model. The functions can be
defined in a MATLAB Function
block or in a Stateflow chart.
Enable this feature by checking
Coverage for MATLAB Files
on the Coverage Settings dialog
box.

CovForceBlockReductionOff If
CovForceBlockReductionOff

is set to on, the Simulink
Verification and Validation
software ignores the value of
the Simulink Block reduction
parameter. The software
provides coverage data for
every block in the model that
collects coverage.

string — {'on'} | 'off'

CovHTMLOptions If CovHtmlReporting is set to
on, use this parameter to select
from a set of display options for
the resulting model coverage
report.

Select these options in the
Reporting tab of the Coverage
Settings dialog box.

String of appended character
sets separated by a space.
HTML options are enabled or
disabled through a value of 1 or
0, respectively, in the following
character sets (default values
shown):

• '-sRT=1' — Show report
• '-sVT=0' — Web view mode
• '-aTS=1' — Include each

test in the model summary
• '-bRG=1' — Produce

bar graphs in the model
summary

• '-bTC=0' — Use two color
bar graphs (red, blue)

 Model Parameters

6-13

Parameter Description Values

• '-hTR=0' — Display hit/
count ratio in the model
summary

• '-nFC=0' — Do not report
fully covered model objects

• '-scm=1' — Include
cyclomatic complexity
numbers in summary

• '-bcm=1' — Include
cyclomatic complexity
numbers in block details

• '-xEv=0' — Filter Stateflow
events from report

CovHtmlReporting Set to on to tell the Simulink
Verification and Validation
software to create an HTML
report containing the coverage
data at the end of simulation.

Set by Generate HTML
report on the Reporting pane
of the Coverage Settings dialog
box.

string — {'on'} | 'off'

CovMetricSettings Selects coverage metrics for a
coverage report.

Coverage metrics are enabled
by selecting the check boxes
for individual coverages in the
Coverage metrics section
of the Coverage pane of the
Coverage Settings dialog box.

Enable options 's' and 'w'
by selecting Treat Simulink
Logic blocks as short-
circuited and Warn when

string — {'dw'}

Each order-independent
character in the string enables
a coverage metric or option as
follows:

• 'd' — Enable decision
coverage

• 'c' — Enable condition
coverage

• 'm' — Enable MCDC
coverage

6 Model and Block Parameters

6-14

Parameter Description Values

unsupported blocks exist
in model, respectively, on the
Options pane of the Coverage
Settings dialog box.

Disable option 'e' by selecting
Display coverage results
using model coloring on the
Results pane of the Coverage
Settings dialog box.

• 't' — Enable lookup table
coverage

• 'r' — Enable signal range
coverage

• 'z' — Enable signal size
coverage

• 'o' — Enable coverage for
Simulink Design Verifier
blocks

• 'i' — Enable saturation on
integer overflow coverage

• 'b' — Enable relational
boundary coverage

• 's' — Treat Simulink logic
blocks as short-circuited

• 'w' — Warn when
unsupported blocks exist in
model

• 'e' — Eliminate model
coloring for coverage results

CovModelRefEnable If CovModelRefEnable is
set to on or all, the Simulink
Verification and Validation
software generates coverage
data for all referenced models.
If CovModelRefEnable is
set to filtered, coverage
data is collected for all
referenced models except those
specified by the parameter
CovModelRefExcluded.

Set by Coverage for
referenced models on

string — 'on' | {'off'} |
'all' | 'filtered'

 Model Parameters

6-15

Parameter Description Values

the Coverage pane of the
Coverage Settings dialog box.

CovModelRefExcluded If CovModelRefEnable is set
to filtered, this parameter
stores a comma-separated list
of referenced models for which
coverage is disabled.

Set by selecting Coverage
for referenced models on
the Coverage pane of the
Coverage Settings dialog
box and then clicking Select
Models.

string — {''}

CovNameIncrementing If
CovSaveSingleToWorkspace-

Var is set to on, setting
CovNameIncrementing

to on causes the Simulink
Verification and Validation
software to append numerals to
the workspace variable names
for results so that earlier
results are not overwritten
(for example, covdata1,
covdata2, etc.)

Set by Increment variable
name with each simulation
below the selected Save last
run in workspace variable
check box on the Results pane
of the Coverage Settings dialog
box.

string — 'on' | {'off'}

CovPath Model path of the subsystem
for which the Simulink
Verification and Validation

string — {'/'}

6 Model and Block Parameters

6-16

Parameter Description Values

software gathers and reports
coverage data.

Set by selecting Coverage for
this model: <model name>
on the Coverage pane of
the Coverage Settings dialog
box and then clicking Select
Subsystem.

CovReportOnPause Specifies that when you pause
during simulation, the model
coverage report appears in
updated form, with coverage
results up to the current pause
or stop time.

Set by Update results on
pause on the Results pane of
the Coverage Settings dialog
box.

string — {'on'} | 'off'

CovSaveCumulativeTo-

WorkspaceVar

If set to on, the Simulink
Verification and Validation
software accumulates
and saves the results of
successive simulations in the
workspace variable specified by
CovCumulativeVarName.

Set by Save cumulative
results in workspace
variable on the Results pane
of the Coverage Settings dialog
box.

string — {'on'} | 'off'

CovSaveName If
CovSaveSingleToWorkspace-

Var is set to on, the Simulink
Verification and Validation
software saves the results of

string — {'covdata'}

 Model Parameters

6-17

Parameter Description Values

the last simulation run in the
workspace variable specified by
this property.

Set by cvdata object name
below the selected Save last
run in workspace variable
check box on the Results pane
of the Coverage Settings dialog
box.

CovSaveSingleTo-

WorkspaceVar

If set to on, the Simulink
Verification and Validation
software saves the results of
the last simulation run in the
workspace variable specified by
CovSaveName.

Set by Save last run in
workspace variable on the
Results pane of the Coverage
Settings dialog box.

string — {'on'} | 'off'

CovSFcnEnable Enables coverage for C/C++
S-Function blocks in your
model. Enable this feature
by checking Coverage for
C/C++ S-Functions on the
Coverage Settings dialog box.
For more information, see
“Model Coverage for C and C
++ S-Functions” in Simulink
Verification and Validation
documentation.

string — 'on' | {'off'}

Created Date and time model was
created.

Set by Created on on the
History pane of the Model
Properties dialog box.

string

6 Model and Block Parameters

6-18

Parameter Description Values

See “Viewing and Editing the
Model History Log” for more
information.

Creator Name of model creator.

Set by Created by on the
History pane of the Model
Properties dialog box.

See “Viewing and Editing the
Model History Log” for more
information.

string

CurrentBlock For internal use.
CurrentOutputPort For internal use.
DataLoggingOverride A

Simulink.SimulationData.ModelLoggingInfo

object that specifies the signal
logging override settings for a
model.

See “Override Signal Logging
Settings”.

Simulink.SimulationData.ModelLoggingInfo

— {'OverrideSignals'} |
'LogAllAsSpecifiedInModel'

DataTransfer future reA
Simulink.GlobalDataTransfer
object that configures data
transfers for models configured
for concurrent execution.

string — 'on' | {'off'}

DataTypeOverride Specifies data type used to
override fixed-point data types.

Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

Decimation Specify that Simulink software
output only every N points,
where N is the specified
decimation factor.

string — {'1'}

 Model Parameters

6-19

Parameter Description Values

Set by “Decimation” on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

DefaultParameterBehavior Enable inlining of block
parameters in generated code.

Set by Default parameter
behavior on the
Optimization > Signals
and Parameters pane of the
Configuration Parameters
dialog box. For more
information, see Default
parameter behavior.

string — 'Inlined' |
{'Tunable'}

DefaultUnderspecifiedDataTypeSpecify data type to use if
Simulink cannot infer the type
of a signal during data type
propagation.

Set by “Default for
underspecified data type”
on the Optimization pane of
the Configuration Parameters
dialog box.

string — {'double'} |
'single'

DeleteChildFcn Delete child callback function.

Created on the Callbacks pane
of the Block Properties dialog
box.

See “Create Block Callbacks”
for more information.

string — {''}

Description Description of this model. string — {''}

6 Model and Block Parameters

6-20

Parameter Description Values

Set by Model description on
the Description pane of the
Model Properties dialog box.

Dirty If the parameter is on, the
model has unsaved changes.

string — 'on' | {'off'}

DiscreteInherit-

ContinuousMsg

For internal use.

DisplayBdSearchResults For internal use.
DisplayBlockIO For internal use.
DisplayCallgraph-

Dominators

For internal use

DisplayCompileStats For internal use.
DisplayCondInputTree For internal use.
DisplayCondStIdTree For internal use.
DisplayErrorDirections For internal use.
DisplayInvisibleSources For internal use.
DisplaySortedLists For internal use.
DisplayVectorAnd-

FunctionCounts

For internal use.

DisplayVect-

PropagationResults

For internal use.

ExecutionContextIcon Show execution context bars
on conditional subsystems that
do not propagate execution
context across the subsystem
boundaries.

In the Simulink Editor, set
by Execution Context
Indicator on the Display >
Signals & Ports menu.

string — 'on' | {'off'}

ExplicitPartitioning Specifies whether or not to
manually map tasks (explicit

string — 'on' | {'off'}

 Model Parameters

6-21

Parameter Description Values

mapping) or use the rate-based
tasks.

ExpressionFolding Enables expression folding.

Set by Eliminate superfluous
local variables (Expression
folding) on the Optimization
> Signals and Parameters
pane of the Configuration
Parameters dialog box.

string — {'on'} | 'off'

ExternalInput Names of MATLAB workspace
variables used to designate
data and times to be loaded
from the workspace.

Set by the Input field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string — {'[t, u]'}

ExtMode... Parameters whose names
start with ExtMode apply to
Simulink External Mode.

For more information, see
External Mode.

ExtrapolationOrder Extrapolation order of the
ode14x implicit fixed-step
solver.

Set by Extrapolation order
on the Solver pane of the
Configuration Parameters
dialog box.

integer — 1 | 2 | 3 | {4}

FastRestart Enable or disable fast restart
mode.

string — {'on'} | 'off'

6 Model and Block Parameters

6-22

Parameter Description Values

In the Simulink Editor toolbar,
click the Fast restart button
on or off.

FcnCallInpInside-

ContextMsg

Specifies diagnostic action to
take when Simulink software
must compute any function-
call subsystem inputs directly
or indirectly during execution
of a call to a function-call
subsystem.

Set by Context-dependent
inputs on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

string —
{'EnableAllAsError'}

| 'EnableAllAsWarning'

| 'UseLocalSettings' |

'DisableAll'

Note: The Use local
settings and Disable all
settings are maintained for
backward compatibility, but
may be deprecated in a future
release.

FileName For internal use.
FinalStateName Names of final states to save

to the workspace after a
simulation ends.

Set by the Final states field
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string — {'xFinal'}

FixedStep Fixed-step size.

Set by Fixed step size
(fundamental sample time)
on the Solver pane of the
Configuration Parameters
dialog box.

string — {'auto'}

FixptConstOverflowMsg Specifies diagnostic action
to take when a fixed-point
constant underflow occurs
during simulation.

string — {'none'} |
'warning' | 'error'

 Model Parameters

6-23

Parameter Description Values

Set by Detect overflow
on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

FixptConstPrecisionLossMsgSpecifies diagnostic action
to take when a fixed-point
constant precision loss occurs
during simulation.

Set by Detect precision loss
on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

FixptConstUnderflowMsg Specifies diagnostic action
to take when a fixed-point
constant underflow occurs
during simulation.

Set by Detect underflow
on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

FixPtInfo For internal use.
FollowLinksWhen-

OpeningFromGotoBlocks

Specifies whether to search
for Goto tags in libraries
referenced by the model when
opening the From block dialog
box.

string — 'on' | {'off'}

ForceArrayBoundsChecking For internal use.
ForceConsistencyChecking For internal use.
ForceModelCoverage For internal use.
ForwardingTable Specifies the forwarding table

for this library.
string — {{'old_path_1',
'new_path_1'} ...

6 Model and Block Parameters

6-24

Parameter Description Values

See “Forwarding Tables” for
more information.

{'old_path_n',

'new_path_n'}}

ForwardingTableString For internal use.
GeneratePreprocessorConditionalsWhen generating code for an

ERT target, this parameter
determines whether variant
choices are enclosed within
C preprocessor conditional
statements (#if).

When you select this option,
Simulink analyzes all variant
choices during an update
diagram or simulation.
This analysis provides
early validation of the code
generation readiness of all
variant choices.

string — {'off'} | 'on'

GridSpacing Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

integer — {20}

Handle Handle of the block diagram for
this model.

double

HiliteAncestors For internal use.
IgnoreBidirectionalLines For internal use.
IgnoredZcDiagnostic Specify the diagnostic action

to take for warnings related to
zero crossing.

string — 'none' |
{'warning'} | 'error'

InheritedTsInSrcMsg Message behavior when the
sample time is inherited.

Set by Source block specifies
-1 sample time on the Sample
Time Diagnostics pane of

string — 'none' |
{'warning'} | 'error'

 Model Parameters

6-25

Parameter Description Values

the Configuration Parameters
dialog box.

InitFcn Function that is called when
this model is first compiled for
simulation.

Set by Model initialization
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

string — {''}

InitialState Initial state name or values.

Set by the Initial state field
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

variable or vector —
{'xInitial'}

InitialStep Initial step size.

Set by Initial step size
on the Solver pane of the
Configuration Parameters
dialog box.

string — {'auto'}

InsertRTBMode Control whether the Rate
Transition block parameter
Ensure deterministic data
transfer (maximum delay)
is set for auto-inserted Rate
Transition blocks.

Set by Deterministic data
transfer on the Solver pane of
the Configuration Parameters
dialog box.

string — 'Always' |
{'Whenever possible'} |

'Never (minimum delay)'

6 Model and Block Parameters

6-26

Parameter Description Values

InspectSignalLogs Enable Simulink software to
display logged signals in the
Simulation Data Inspector
tool at the end of a simulation
or whenever you pause the
simulation.

Set by “Record logged
workspace data in
Simulation Data Inspector”
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string — 'on' | {'off'}

Int32ToFloatConvMsg Specify message behavior when
a 32-bit integer is converted to
a single-precision float.

Set by 32-bit integer to
single precision float
conversion on the Type
Conversion Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'}

IntegerOverflowMsg Specify message behavior when
an integer overflow occurs.

Set by “Wrap on overflow”
in the Signals section on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

IntegerSaturationMsg Specify message behavior when
an integer saturation occurs.

Set by “Saturate on
overflow” in the Signals
section on the Data Validity
Diagnostics pane of the

string — 'none' |
{'warning'} | 'error'

 Model Parameters

6-27

Parameter Description Values

Configuration Parameters
dialog box.

InvalidFcnCallConnMsg Specify message behavior
when an invalid function-call
connection exists.

Set by Invalid function-
call connection on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' | 'warning'
| {'error'}

Jacobian For internal use.
LastModifiedBy User name of the person who

last modified this model.
string

LastModifiedDate Date when the model was last
saved.

string

LibraryLinkDisplay Displays the blocks in the
model that are linked or have
disabled or modified links.

In the Simulink Editor, set by
Library Links on the Display
menu.

can’t

string — 'none'|
{'disabled'} |'user' |

'all'

Set to none, does not display the
link badge on the block.

Set to disabled, displays the
disabled link badge on the block.

Set to user, displays only links
to the user libraries.

Set to all, displays all links.
LibraryType For internal use.
LifeSpan Specify how long (in days)

an application that contains
blocks depending on elapsed or

string — {'inf'} | any
positive, nonzero scalar value

6 Model and Block Parameters

6-28

Parameter Description Values

absolute time should be able to
execute before timer overflow.

Set by Application lifespan
(days) on the Optimization
pane of the Configuration
Parameters dialog box.

LimitDataPoints Specify that the number of
data points exported to the
MATLAB workspace be limited
to the number specified.

Set by the Limit data points
to last check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — {'on'} | 'off'

LinearizationMsg For internal use.
Lines For internal use.
LoadExternalInput Load input from workspace.

Set by the Input check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string — 'on' | {'off'}

LoadInitialState Load initial state from
workspace.

Set by the Initial state
check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — 'on' | {'off'}

Location For internal use.
Lock Lock or unlock a block library.

Setting this parameter to
string — 'on' | {'off'}

 Model Parameters

6-29

Parameter Description Values

on prevents a user from
inadvertently changing a
library.

LockLinksToLibrary Lock or unlock links to a
library. Setting this parameter
to on prevents a user from
inadvertently changing linked
blocks from the Simulink
Editor.

string — 'on' | {'off'}

MAModelExclusionFile Specifies the location of the
Model Advisor exclusion file.

Set by the File Name field on
the Model Advisor Exclusion
Editor dialog box.

string — {' '}

MaxConsecutiveMinStep Maximum number of minimum
step size violations allowed
during simulation. This option
appears when the solver type is
Variable-step and the solver
is an ode one.

Set by Number of
consecutive min steps
on the Solver pane of the
Configuration Parameters
dialog box.

string — {'1'}

MaxConsecutiveZCs Maximum number of
consecutive zero crossings
allowed during simulation. This
option appears when the solver
type is Variable-step and
the solver is an ode one.

Set by Number of
consecutive zero crossings
on the Solver pane of the

string — {'1000'}

6 Model and Block Parameters

6-30

Parameter Description Values

Configuration Parameters
dialog box.

MaxConsecutiveZCsMsg Specifies diagnostic action to
take when Simulink software
detects the maximum number
of consecutive zero crossings
allowed. This option appears
when the solver type is
Variable-step and the solver
is an ode one.

Set by Consecutive zero
crossings violation on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

MaxDataPoints Maximum number of output
data points to save.

Set by the Limit data points
to last field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — {'1000'}

MaxMDLFileLineLength Controls the line lengths in the
model file. Use this to avoid
line-wrapping, which can be
important for source control
tools.

Specifies the maximum length
in bytes, which may different
from the number of characters
in Japanese, and is different
from the number of columns
when tabs are present.

integer — -1 (unlimited) or >=
80.

Default is 120.

 Model Parameters

6-31

Parameter Description Values

MaxNumMinSteps Maximum number of times the
solver uses the minimum step
size.

string — {'-1'}

MaxOrder Maximum order for ode15s.

Set by Maximum order
on the Solver pane of the
Configuration Parameters
dialog box.

string — '1' | '2' | '3' |
'4' | {'5'}

MaxStep Maximum step size.

Set by Max step size on
the Solver pane of the
Configuration Parameters
dialog box.

string — {'auto'}

MdlSubVersion For internal use
MergeDetectMultiDriving-

BlocksExec

Select the diagnostic action to
take when the software detects
a Merge block with more than
one driving block executing at
the same time step.

Set by Detect multiple
driving blocks executing at
the same time step on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

string — {'none'} |
'warning' | 'error'

Metadata Names and attributes of
arbitrary data associated
with the model. To extract
this metadata structure
without needing to load
the model, use the method
Simulink.MDLInfo.getMetadata.

Structure. Fields can be strings,
numeric matrices of type
"double", or more structures.

6 Model and Block Parameters

6-32

Parameter Description Values

MinMaxOverflow-

ArchiveData

For internal use

MinMaxOverflow-

ArchiveMode

Logging type for fixed-point
logging.

Set by Overwrite or merge
model simulation results in
the Fixed-Point Tool.

string — {'Overwrite'} |
'Merge'

MinMaxOverflowLogging Setting for fixed-point logging.

Set by Fixed-point
instrumentation mode in the
Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

MinStep Minimum step size for the
solver.

Set by Min step size on
the Solver pane of the
Configuration Parameters
dialog box.

string — {'auto'}

MinStepSizeMsg Message shown when minimum
step size is violated.

Set by Min step size
violation on the Solver
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'warning'} |
'error'

ModelBlockNormalModeVisibilityUse with set_param to set
Normal Mode Visibility on for
the specified Model blocks.

You can set this parameter
with the Model Block Normal
Mode Visibility dialog box.
For details, see “Model Block

With set_param, use an array
of Simulink.BlockPath
objects or cell array of cell arrays
of strings, with the strings being
paths to individual blocks or
models.

With set_param, an empty
array specifies to use the

 Model Parameters

6-33

Parameter Description Values

Normal Mode Visibility Dialog
Box”.

Simulink default selection for
the instance to have Normal
Mode Visibility enabled.

ModelBlockNormaModeVisiblityBlockPathReturn information about
which Model blocks have
Normal Mode Visibility
enabled. Use with a model that
you are editing.

Return values indicate which
Model blocks have Normal Mode
Visibility enabled. See “Normal
Mode Visibility”.

ModelBrowserVisibility Show the Model Browser.

In the Simulink Editor, set by
Model Browser on the View
menu.

string — 'on' | {'off'}

ModelBrowserWidth Width of the Model Browser
pane in the model window.
To display the Model
Browser pane, see the
ModelBrowserVisibility

parameter.

integer — {200}

ModelDataFile For internal use. string — {''}
ModelDependencies List of model dependencies.

Set by Model dependencies
on the Model Referencing
pane of the Configuration
Parameters dialog box.

string — {''}

ModelReferenceCS-

MismatchMessage

This parameter is maintained
for compatibility purposes only.
Do not use this parameter.

You can use the Model Advisor
to identify models referenced
in Accelerator mode for which
Simulink ignores certain
configuration parameters.

string — {'none'} |
'warning' | 'error'

Simulink ignores this parameter
if you set it to warning or
error.

6 Model and Block Parameters

6-34

Parameter Description Values

1 In the Simulink Editor,
select Analysis > Model
Advisor.

2 Select By Task.
3 Run the Check

diagnostic settings
ignored during
accelerated model
reference simulation
check.

For more information,
see “Certain Diagnostic
Configuration Parameters
Ignored for Models Referenced
in Accelerator Mode”.

ModelReferenceData-

LoggingMessage

Message shown when there is
unsupported data logging.

Set by Unsupported data
logging on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

ModelReferenceExtra-

NoncontSigs

Specifies diagnostic action to
take when a discrete signal
appears to pass through a
Model block to the input of a
block with continuous states.

Set by Extraneous discrete
derivative signals on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

ModelReferenceIO-

MismatchMessage

Message shown when there is a
port and parameter mismatch.

string — {'none'} |
'warning' | 'error'

 Model Parameters

6-35

Parameter Description Values

Set by Port and parameter
mismatch on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

ModelReferenceIOMsg Message shown when there
is an invalid root Inport or
Outport block connection.

Set by Invalid root Inport/
Outport block connection
on the Model Referencing
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

ModelReferenceMin-

AlgLoopOccurrences

Toggles the minimization of
algebraic loop occurrences.

Set by Minimize algebraic
loop occurrences on the
Model Referencing pane of
the Configuration Parameters
dialog box.

string — 'on' | {'off'}

ModelReferenceNum-

InstancesAllowed

Total number of model
reference instances allowed per
top model.

Set by Total number of
instances allowed per
top model on the Model
Referencing pane of the
Configuration Parameters
dialog box.

string — 'Zero' | 'Single'
| {'Multi'}

ModelReferencePass-

RootInputsByReference

Toggles the passing of scalar
root inputs by value.

string — {'on'} | 'off'

6 Model and Block Parameters

6-36

Parameter Description Values

Set by “Pass fixed-size scalar
root inputs by value for code
generation”on the Model
Referencing pane of the
Configuration Parameters
dialog box.

ModelReferenceSim-

TargetVerbose

This parameter is deprecated
and has no effect. Use
AccelVerboseBuild instead.

ModelReferenceSymbol-

NameMessage

For referenced models, specifies
diagnostic action to take when
the Maximum identifier
length does not provide enough
space to make global identifiers
unique across models.

string — 'none' |
{'warning'} | 'error'

ModelReferenceTargetType For internal use.
ModelReferenceVersion-

MismatchMessage

Message shown when there is a
model block version mismatch.

Set by Model block version
mismatch on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

string — {'none'} |
'warning' | 'error'

ModelVersion Version number of model. string — {'1.1'}
ModelVersionFormat Format of model's version

number.

Set by Model version on the
History pane of the Model
Properties dialog box.

See “Viewing and Editing the
Model History Log” for more
information.

string — {'1.
%<AutoIncrement: 0>'}

 Model Parameters

6-37

Parameter Description Values

ModelWorkspace References this model's model
workspace object.

an instance of the
Simulink.ModelWorkspace

class
ModifiedBy Last person to modify this

model.
string

ModifiedByFormat Format for the display of last
modifier.

Set by Last saved by on the
History pane of the Model
Properties dialog box.

See “Viewing and Editing the
Model History Log” for more
information.

Can also be set by Last saved
by on the Model history field
on the History pane of the
Model Explorer.

string — {'%<Auto>'}

ModifiedComment Field for user comments. string — {''}
ModifiedDateFormat Format string used to

generate the value of
the LastModifiedDate
parameter.

Set by Last saved on on the
History pane of the Model
Properties dialog box.

See “Viewing and Editing the
Model History Log” for more
information.

string — {'%<Auto>'}

ModifiedHistory Area for keeping notes about
the history of the model.

string — {''}

6 Model and Block Parameters

6-38

Parameter Description Values

Set by the Model history field
on the History pane of the
Model Properties dialog box.

See “Viewing and Editing the
Model History Log” for more
information.

Can also be set by the Model
history field on the History
pane of the Model Explorer.

MultiTaskCondExecSysMsg Select the diagnostic action
to take if Simulink software
detects a subsystem that
might cause data corruption or
nondeterministic behavior.

Set by Multitask
conditionally executed
subsystem on the Sample
Time Diagnostics pane of
the Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

MultiTaskDSMMsg Specifies diagnostic action to
take when one task reads data
from a Data Store Memory
block to which another task
writes data.

Set by Multitask data
store on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

MultiTaskRateTransMsg Specifies diagnostic action
to take when an invalid
rate transition takes place

string — 'warning' |
{'error'}

 Model Parameters

6-39

Parameter Description Values

between two blocks operating
in multitasking mode.

Set by Multitask rate
transition on the Sample
Time Diagnostics pane of
the Configuration Parameters
dialog box.

Name Model name. string
NonBusSignalsTreatedAsBusDetect when Simulink

implicitly converts a non-bus
signal to a bus signal to support
connecting the signal to a block
expecting a bus signal.

“Non-bus signals treated
as bus signals” on the
Diagnostics > Connectivity
pane of the Configuration
Parameters dialog box.

string — {'none'} |
'warning' | 'error'

NumberNewtonIterations Number of Newton's method
iterations performed by the
ode14x implicit fixed-step
solver.

Set by Number Newton's
iterations on the Solver
pane of the Configuration
Parameters dialog box.

integer — {1}

ObjectParameters Names and attributes of model
parameters.

structure

Open For internal use.
OptimizeBlockIOStorage Enables signal storage reuse

optimization.

Set by Signal storage reuse
on the Optimization >

string — {'on'} | 'off'

6 Model and Block Parameters

6-40

Parameter Description Values

Signals and Parameters
pane of the Configuration
Parameters dialog box.

OutputOption Time step output options for
variable-step solvers.

Set by Output options on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string —
'AdditionalOutputTimes' |

{'RefineOutputTimes'} |

'SpecifiedOutputTimes'

OutputSaveName Workspace variable to store the
model outputs.

Set by the Output field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string — {'yout'}

OutputTimes Output times set when
Output options on the Data
Import/Export pane of the
Configuration Parameters
dialog box is set to Produce
additional output.

Set by Output times on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string — {'[]'}

Note: If the value of Output
options is Produce
additional output or
Produce specified output

only, set to a value other than
the default value of '[]'.

PaperOrientation Printing paper orientation. string — 'portrait' |
{'landscape'}

PaperPosition When PaperPositionMode is
set to manual, this parameter
determines the position and
size of a diagram on paper
and the size of the diagram
exported as a graphic file in the
units specified by PaperUnits.

vector — [left, bottom,
width, height]

 Model Parameters

6-41

Parameter Description Values

PaperPositionMode Paper position mode.

• auto

When printing, Simulink
software sizes the diagram
to fit the printed page.
When exporting a diagram
as a graphic image,
Simulink software sizes the
exported image to be the
same size as the diagram's
normal size on screen.

• manual

When printing, Simulink
software positions and
sizes the diagram on
the page as indicated by
PaperPosition. When
exporting a diagram as a
graphic image, Simulink
software sizes the exported
graphic to have the height
and width specified by
PaperPosition.

• tiled

Enables tiled printing.

See “Tiled Printing” for
more information.

string — {'auto'} |
'manual' | 'tiled'

PaperSize Size of PaperType in
PaperUnits.

vector — [width height]
(read only)

PaperType Printing paper type. string — 'usletter' |
'uslegal' | 'a0' | 'a1'

| 'a2' | 'a3' | 'a4'

| 'a5' | 'b0' | 'b1' |

6 Model and Block Parameters

6-42

Parameter Description Values

'b2' | 'b3' | 'b4' |

'b5' | 'arch-A' | 'arch-

B' | 'arch-C' | 'arch-

D' | 'arch-E' | 'A' |

'B' | 'C' | 'D' | 'E' |

'tabloid'

PaperUnits Printing paper size units. string — 'normalized'
| {'inches'} |

'centimeters' | 'points'

ParallelModelReferenceErrorOnInvalidPoolSpecify if you want the
Simulink software to perform
a consistency check on the
parallel pool before starting a
parallel build.

If you set the parameter
to on, the client and the
remote workers must meet
the following criteria for the
parallel build to initiate:

• The parallel pool is open.
• The pool is spmd compatible.
• The platform is consistent

between workers and client.
• The workers have a

Simulink Real-Time license.
• A common compiler exists

across workers and client.

If you set the parameter to off,
the software displays a warning
for the first condition that fails
and then performs a sequential
build.

string — {'on'} | 'off'

 Model Parameters

6-43

Parameter Description Values

ParameterArgumentNames List of parameters used as
arguments when this model is
called as a reference.

Set by Model arguments (for
referencing this model) in
the Model Workspace pane of
the Model Explorer.

string — {''}

ParameterDowncastMsg Specifies diagnostic action
to take when a parameter
downcast occurs during
simulation.

Set by Detect downcast
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

ParameterOverflowMsg Specifies diagnostic action
to take when a parameter
overflow occurs during
simulation.

Set by Detect overflow on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' | 'warning'
| {'error'}

ParameterPrecision-

LossMsg

Specifies diagnostic action to
take when parameter precision
loss occurs during simulation.

Set by Detect precision
loss on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

6 Model and Block Parameters

6-44

Parameter Description Values

ParameterTunabilityLossMsgSpecifies diagnostic action
to take when a parameter
cannot be tuned because it
uses unsupported functions or
operators.

Set by Detect loss of
tunability on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

ParameterUnderflowMsg Specifies diagnostic action
to take when a parameter
underflow occurs during
simulation.

Set by Detect underflow
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

ParamWorkspaceSource For internal use.
Parent Name of the model or

subsystem that owns this
object. The value of this
parameter for a model is an
empty string.

string — {''}

Pause Pause simulation callback.

Set by Simulation pause
function on the Callbacks
pane of the Model Properties
dialog box.

string — {''}

PositivePriorityOrder Choose the appropriate priority
ordering for the real-time
system targeted by this model.
The Simulink Coder software

string — 'on' | {'off'}

 Model Parameters

6-45

Parameter Description Values

uses this information to
implement asynchronous data
transfers.

Set by Higher priority
value indicates higher task
priority on the Solver pane of
the Configuration Parameters
dialog box.

PostLoadFcn Function invoked just after this
model is loaded.

Set by Model post-load
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

string — {''}

PostSaveFcn Function invoked just after
this model is saved to disk.
Not executed for blocks inside
library links.

Set by Model post-save
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

string — {''}

PreLoadFcn Preload callback.

Set by Model pre-load
function on the Callbacks
pane of the Model Properties
dialog box.

string — {''}

6 Model and Block Parameters

6-46

Parameter Description Values

See “Create Model Callbacks”
for more information.

PreSaveFcn Function invoked just before
this model is saved to disk.
Not executed for blocks inside
library links, except when you
are breaking the link, e.g.,
with save_system(A, B,
'BreakUserLinks', 'on').

Set by Model pre-save
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

string — {''}

ProdBitPerChar Describes the length in bits of
the C char data type supported
by the hardware board to be
used by this model.

Set by Number of bits:
char on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {8}

ProdBitPerInt Describes the length in bits of
the C int data type supported
by the hardware board to be
used by this model.

Set by Number of bits:
int on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {32}

 Model Parameters

6-47

Parameter Description Values

ProdBitPerLong Describes the length in bits of
the C long data type supported
by the hardware board to be
used by this model.

Set by Number of bits:
long on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {32}

ProdBitPerLongLong Describes the length in bits of
the C long data type supported
by the hardware board to be
used by this model.

Set by “Number of bits:
long long” on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

The value of this parameter
must be greater than
or equal to the value of
ProdBitPerLong.

integer — {64}

ProdBitPerShort Describes the length in bits
of the C short data type
supported by the hardware
board to be used by this model.

Set by Number of bits:
short on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {16}

ProdEndianess Describes the significance of
the first byte of a data word of

string — {'Unspecified'}
| 'LittleEndian' |

'BigEndian'

6 Model and Block Parameters

6-48

Parameter Description Values

the hardware board to be used
by this model.

Set by Byte ordering on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

ProdEqTarget Specifies that the hardware
used to test the code generated
from this model is the same as
the production hardware or has
the same characteristics.

string — {'on'} | 'off'

ProdHWDeviceType Predefined hardware
device to specify the C
language constraints for your
microprocessor.

Set by “Device vendor” and
Device type on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

string — {'Generic-
>Unspecified (assume 32-

bit Generic)'}

ProdIntDivRoundTo Describes how the C compiler
that creates production code for
this model rounds the result
of dividing one signed integer
by another to produce a signed
integer quotient.

Set by Signed integer
division rounds to on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

string — 'Floor' | 'Zero' |
{'Undefined'}

ProdLargestAtomicFloat Specify the largest floating-
point data type that can be

string — 'Float' | 'Double'
| {'None'}

 Model Parameters

6-49

Parameter Description Values

atomically loaded and stored on
the hardware board.

Set by “Largest atomic
size: floating-point” on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

ProdLargestAtomicInteger Specify the largest integer data
type that can be atomically
loaded and stored on the
hardware board.

Set this parameter to
'LongLong' only if the
production hardware supports
the C long long data
type and you have set
ProdLongLongMode to 'on'.

Set by “Largest atomic size:
integer” on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

string — {'Char'} | 'Short'
| 'Int' | 'Long' |

'LongLong'

ProdLongLongMode Specify that your C compiler
supports the C long long
data type. Most C99 compilers
support long long.

Set by “Support long
long” on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

string — 'on' | {'off'}

ProdShiftRightIntArith Describes whether the
C compiler that creates
production code for this model

string — {'on'} | 'off'

6 Model and Block Parameters

6-50

Parameter Description Values

implements a signed integer
right shift as an arithmetic
right shift.

Set by Shift right on a
signed integer as arithmetic
shift on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

ProdWordSize Describes the word length in
bits of the hardware board to be
used by this model.

Set by Number of bits:
native on the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer — {32}

Profile Enables the simulation profiler
for this model.

In the Simulink Editor, set by
Show Profiler Report on the
Analysis menu.

string — 'on' | {'off'}

PropagateSignalLabelsOutOfModelPass propagated signal names
to output signals of Model
block.

Set by Propagate all signal
labels out of the model
on the Model Referencing
pane of the Configuration
Parameters dialog box.

See “Model Referencing
Pane”for more information.

string — 'on' | {'off'}

 Model Parameters

6-51

Parameter Description Values

PropagateVarSize Select how variable-size signals
propagate through referenced
models.

Set by Propagate sizes of
variable-size signals on the
Model Referencing pane of
the Configuration Parameters
dialog box.

See “Model Referencing
Pane” for more information.

string — | 'Infer from
blocks in model' | 'Only

when enabling' | 'During

execution'

ReadBeforeWriteMsg Specifies diagnostic action to
take when the model attempts
to read data from a data store
before it has stored data at the
current time step.

Set by Detect read before
write on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string —
{'UseLocalSettings'}

| 'DisableAll' |

'EnableAllAsWarning' |

'EnableAllAsError'

RecordCoverage If RecordCoverage is set
to on, Simulink collects and
reports model coverage data
during simulation. The format
of this report is controlled by
the values of the following
parameters:

CovCompData

CovCumulativeReport

CovCumulativeVarName

CovHTMLOptions

string — 'on' | {'off'}

6 Model and Block Parameters

6-52

Parameter Description Values

CovHtmlReporting

CovMetricSettings

CovModelRefEnable

CovModelRefExcluded

CovNameIncrementing

CovPath

CovReportOnPause

CovSaveCumulativeToWork-

SpaceVar

CovSaveName

CovSaveSingleToWorkspace-

Var

If set to off, no model coverage
data is collected or reported.

Set by Coverage for this
model: <model name> on
the Coverage pane of the
Coverage Settings dialog box.

Refine Refine factor.

Set by Refine factor on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string — {'1'}

RelTol Relative error tolerance.

Set by Relative tolerance
on the Solver pane of the

string — {'1e-3'}

 Model Parameters

6-53

Parameter Description Values

Configuration Parameters
dialog box.

ReportName Name of the associated file for
the Report Generator.

string — {'simulink-
default.rpt'}

ReqHilite Highlights all the blocks in the
Simulink diagram that have
requirements associated with
them.

In the Simulink Editor, set
by Highlight Model on the
Analysis > Requirements
menu.

string — 'on' | {'off'}

RequirementInfo For internal use.
RootOutportRequire-

BusObject

Specifies diagnostic action
to take when a bus enters a
root model Outport block for
which a bus object has not been
specified.

Set by Unspecified bus
object at root Outport
block on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

RTPrefix Specifies diagnostic action to
take when Simulink software
encounters an object name that
begins with rt.

Set by "rt" prefix for
identifiers on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

string — 'none' | 'warning'
| {'error'}

6 Model and Block Parameters

6-54

Parameter Description Values

RTW... For information about model
parameters beginning with
RTW, see Configuration
Parameters for Simulink
Models and Parameter
Reference in the Simulink
Coder documentation.

SampleTimeAnnotations In the Simulink Editor, set by
Annotations on the Display >
Sample Time menu.

string — 'on' | {'off'}

SampleTimeColors In the Simulink Editor, set
by Colors on the Display >
Sample Time Display menu.

string — 'on' | {'off'}

SampleTimeConstraint This option appears when the
solver type is Fixed-step.

Set by Periodic sample time
constraint on the Solver
pane of the Configuration
Parameters dialog box.

string — {'Unconstrained'}
| 'STIndependent' |

'Specified'

SampleTimeProperty Specifies and assigns
priorities to the sample
times implemented by the
model. This option appears
when Periodic sample
time constraint is set to
Specified.

Set by Sample time
properties on the Solver
pane of the Configuration
Parameters dialog box.

Structure containing the fields
SampleTime, Offset, and
Priority

SavedCharacterEncoding Specifies the character set
used to encode this model. See
the slCharacterEncoding
command for more information.

string

 Model Parameters

6-55

Parameter Description Values

SaveDefaultBlockParams For internal use.
SavedSinceLoaded Indicates whether the model

has been saved since it was
loaded. 'on' indicates the
model has been saved.

string — 'on' | 'off'

SaveFinalState Save final states to workspace.

Set by the Final states
check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — 'on' | {'off'}

SaveFormat Format used to save data to the
MATLAB workspace.

Set by Format on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — {'Dataset'}
| 'Structure' |

'StructureWithTime'|

'Array'

SaveOutput Save simulation output to
workspace.

Set by the Output check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string — {'on'} | 'off'

SaveState Save states to workspace.

Set by the States check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string — 'on' | {'off'}

SaveTime Save simulation time to
workspace.

Set by the Time check box
on the Data Import/Export

string — {'on'} | 'off'

6 Model and Block Parameters

6-56

Parameter Description Values

pane of the Configuration
Parameters dialog box.

SaveWithDisabledLinksMsg Specifies diagnostic action
to take when saving a block
diagram having disabled
library links.

Set by Block diagram
contains disabled library
links on the Saving
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

SaveWithParameterized-

LinksMsg

Specifies diagnostic action
to take when saving a block
diagram having parameterized
library links.

Set by Block diagram
contains parameterized
library links on the Saving
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

ScreenColor Background color of the model
window.

In the Simulink Editor, set
by Canvas Color on the
Diagram > Format menu.

string — 'black' |
{'white'} | 'red' |

'green' | 'blue' | 'cyan'

| 'magenta' | 'yellow' |

'gray' | 'lightBlue' |

'orange' | 'darkGreen' |

[r,g,b,a] where r, g, b,
and a are the red, green, blue,
and alpha values of the color
normalized to the range 0.0 to
1.0. The alpha value is ignored.

ScrollbarOffset For internal use.

 Model Parameters

6-57

Parameter Description Values

SFcnCompatibilityMsg Specifies diagnostic action to
take when S-function upgrades
are needed.

Set by S-function upgrades
needed on the Compatibility
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

SFInvalidInputDataAccess-

InChartInitDiag

Select the diagnostic action to
take when a chart:

• Has the
ExecuteAtInitialization

property set to true
• Accesses input data on

a default transition or
associated state entry
actions, which execute at
chart initialization

Set by Invalid input data
access in chart initialization
on the Diagnostics >
Stateflow pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

SFNoUnconditionalDefault-

TransitionDiag

Select the diagnostic action
to take when a chart does
not have an unconditional
default transition to a state or a
junction.

Set by No unconditional
default transitions on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

6 Model and Block Parameters

6-58

Parameter Description Values

SFSimEcho Enables output to appear
in the MATLAB Command
Window during simulation of a
model that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Echo expressions
without semicolons on the
Simulation Target pane of
the Configuration Parameters
dialog box.

string — {'on'} | 'off'

SFTransitionActionBeforeConditionDiagSelect the diagnostic action to
take when a transition action
is specified before a condition
action in a transition path
containing multiple segmented
transitions.

Set by “Transition action
specified before condition
action” on the Diagnostics
> Stateflow pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

SFTransitionOutsideNatural-

ParentDiag

Select the diagnostic action to
take when a chart contains a
transition that loops outside
the parent state or junction.

Set by Transition outside
natural parent on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

SFUnconditionalTransition-

ShadowingDiag

Select the diagnostic action
to take when a chart contains
multiple unconditional

string — 'none' |
{'warning'} | 'error'

 Model Parameters

6-59

Parameter Description Values

transitions that originate from
the same state or the same
junction.

Set by Transition shadowing
on the Diagnostics >
Stateflow pane of the
Configuration Parameters
dialog box.

SFUndirectedBroadcast-

EventsDiag

Select the diagnostic action
to take when a chart contains
undirected local event
broadcasts.

Set by Undirected
event broadcasts on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

SFUnexpectedBacktracking-

Diag

Select the diagnostic action to
take when a chart junction:

• Does not have an
unconditional transition
path to a state or a terminal
junction

• Has multiple transition
paths leading to it

Set by Unexpected
backtracking on the
Diagnostics > Stateflow
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

SFUnusedDataAndEventsDiag Select the diagnostic action to
take for detection of unused
data and events in a chart.

string — 'none' |
{'warning'} | 'error'

6 Model and Block Parameters

6-60

Parameter Description Values

Set by Unused data and
events on the Diagnostics
> Stateflow pane of the
Configuration Parameters
dialog box.

ShapePreserveControl At each time step, use
derivative information to
improve integration accuracy.

Set by Shape preservation
on the Solver pane of the
Configuration Parameters
dialog box.

string — 'EnableAll' |
{'DisableAll'}

ShowGrid Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

string — 'on' | {'off'}

ShowLinearization-

Annotations

Toggles linearization icons in
the model.

string — {'on'} | 'off'

ShowLineDimensions Show signal dimensions on this
model's block diagram.

In the Simulink Editor, set by
Signal Dimensions on the
Display > Signal & Ports
menu.

string — 'on' | {'off'}

ShowLineDimensions-

OnError

For internal use.

ShowLineWidths Deprecated. Use
ShowLineDimensions instead.

ShowLoopsOnError Highlight invalid loops
graphically.

string — {'on'} | 'off'

ShowModelReference-

BlockIO

Toggles display of I/O
mismatch on block.

In the Simulink Editor, set
by Block I/O Mismatch for

string — 'on' | {'off'}

 Model Parameters

6-61

Parameter Description Values

Referenced Model on the
Display > Blocks menu.

ShowModelReference-

BlockVersion

Toggles display of version on
block.

In the Simulink Editor,
set by Block Version for
Referenced Models on the
Display > Blocks menu.

string — 'on' | {'off'}

Shown For internal use.
ShowPageBoundaries Toggles display of page

boundaries on the Simulink
Editor canvas.

In the Simulink Editor, set by
Show Page Boundaries on
the File > Print menu.

string — 'on' | {'off'}

ShowPortDataTypes Show data types of ports on
this model's block diagram.

In the Simulink Editor, set
by Port Data Types on the
Display > Signals & Ports
menu.

string — 'on' | {'off'}

ShowPortDataTypesOnError For internal use.
ShowStorageClass Show storage classes of signals

on this model's block diagram.

In the Simulink Editor, set by
Storage Class on the Format
> Signals & Ports menu.

string — 'on' | {'off'}

ShowTestPointIcons Show test point icons on this
model's block diagram.

In the Simulink Editor, set
by Testpoint & Logging

string — {'on'} | 'off'

6 Model and Block Parameters

6-62

Parameter Description Values

Indicators on the Display >
Signals & Ports menu.

ShowViewerIcons Show viewer icons on this
model's block diagram.

In the Simulink Editor, set
by Viewer Indicator on the
Display > Signals & Ports
menu.

string — {'on'} | 'off'

SignalHierarchy If the signal is a bus, returns
the name and hierarchy of the
signals in the bus.

(Read-only) Get with the
get_param command. Specify
a port or line handle. See “View
Information about Buses”.

Return values reflect the
structure of the signal that you
specify.

SignalInfNanChecking Specifies diagnostic action to
take when the value of a block
output is Inf or NaN at the
current time step.

Set by Inf or NaN block
output on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

SignalLabelMismatchMsg Specifies diagnostic action
to take when a signal label
mismatch occurs.

Set by Signal label mismatch
on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

 Model Parameters

6-63

Parameter Description Values

SignalLogging Globally enable signal logging
for this model.

Set by the Signal logging
check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — {'on'} | 'off'

SignalLoggingName Name for saving signal logging
data to a workspace.

Set by the Signal logging field
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string — {'logsout'}

SignalLoggingSaveFormat Format for saving signal
logging data.

Set by the “Signal logging
format” field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string — {'ModelDataLogs'}|
'Dataset'

SignalNameFromLabel Propagate signal names
for Bus Creator block input
signals whenever you change
the name of an input signal
programmatically.

Set with the set_param
command, using either a port
or line handle and a string
specifying the signal name to
propagate.

string — {''}

SignalRangeChecking Select the diagnostic action
to take when signals exceed

string — {'none'} |
'warning' | 'error'

6 Model and Block Parameters

6-64

Parameter Description Values

specified minimum or
maximum values.

Set by Simulation range
checking on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

SignalResolutionControl Control which named states
and signals get resolved to
Simulink signal objects.

Set by Signal resolution
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string —
{'UseLocalSettings'} |

'TryResolveAll' |

'TryResolveAll-

WithWarning'

SigSpecEnsureSample-

TimeMsg

Specifies diagnostic action
to take when the sample
time of the source port of a
signal specified by a Signal
Specification block differs from
the signal's destination port.

Set by Enforce sample
times specified by Signal
Specification blocks on the
Sample Time Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

SimBuildMode Specifies how you build the
simulation target for a model
that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Simulation target
build mode on the

string —
{'sf_incremental_build'}

|

'sf_nonincremental_build'

| 'sf_make' |

'sf_make_clean' |

'sf_make_clean_objects'

 Model Parameters

6-65

Parameter Description Values

Simulation Target pane of
the Configuration Parameters
dialog box.

SimCompilerOptimization Specifies the compiler
optimization level during
acceleration code generation.

Set by Compiler
optimization level on the
Optimization pane of the
Configuration Parameters
dialog box.

string — 'on' | {'off'}

SimCtrlC Enables responsiveness checks
in code generated for MATLAB
Function blocks.

Set by “Ensure
responsiveness” on the
Simulation Target pane of
the Configuration Parameters
dialog box.

string — {'on'} | 'off'

SimCustomHeaderCode Enter code lines to appear near
the top of a generated header
file for a model that contains
MATLAB Function blocks,
Stateflow charts, or Truth
Table blocks.

Set by Header file on the
Simulation Target > Custom
Code pane of the Configuration
Parameters dialog box.

string — {''}

SimCustomInitializer Enter code statements that
execute once at the start of
simulation for a model that
contains MATLAB Function

string — {''}

6 Model and Block Parameters

6-66

Parameter Description Values

blocks, Stateflow charts, or
Truth Table blocks.

Set by Initialize function
on the Simulation Target
> Custom Code pane of the
Configuration Parameters
dialog box.

SimCustomSourceCode Enter code lines to appear
near the top of a generated
source code file for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Source file on the
Simulation Target > Custom
Code pane of the Configuration
Parameters dialog box.

string — {''}

SimCustomTerminator Enter code statements that
execute at the end of simulation
for a model that contains
MATLAB Function blocks,
Stateflow charts, or Truth
Table blocks.

Set by Terminate function
on the Simulation Target
> Custom Code pane of the
Configuration Parameters
dialog box.

string — {''}

SimIntegrity Detects violations of memory
integrity in code generated
for MATLAB Function blocks
and stops execution with a
diagnostic.

string — {'on'} | 'off'

 Model Parameters

6-67

Parameter Description Values

Set by “Ensure memory
integrity” on the Simulation
Target pane of the
Configuration Parameters
dialog box.

SimParseCustomCode Specify whether or not to parse
the custom code and report
unresolved symbols in the
model.

Set by Parse custom code
symbols on the Simulation
Target > Custom Code
pane of the Configuration
Parameters dialog box.

string — {'on'} | 'off'

SimReservedNameArray Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code. This action
prevents naming conflicts
between identifiers in the
generated code and in custom
code for a model that contains
MATLAB Function blocks,
Stateflow charts, or Truth
Table blocks.

Set by Reserved names
on the Simulation Target
> Symbols pane of the
Configuration Parameters
dialog box.

string array — {{}}

SimulationCommand Executes a simulation
command.

string — 'start' | 'stop'
| 'pause' | 'continue'

| 'step' | 'update'

| 'WriteDataLogs' |

6 Model and Block Parameters

6-68

Parameter Description Values

Note: You cannot use
set_param to run a simulation
in a MATLAB session that does
not have a display, i.e., if you
used matlab -nodisplay to
start the session.

'SimParamDialog' |

'connect' | 'disconnect'

| 'WriteExtModeParamVect'

| 'AccelBuild'

SimulationMode Indicates whether Simulink
software should run in Normal,
Accelerator, Rapid Accelerator,
SIL, PIL, or External mode.

In the Simulink Editor, set
by the Simulation > Mode
menu.

string — {'normal'} |
'accelerator' | 'rapid-

accelerator' | 'external'

| 'Software-in-the-loop

(SIL)' | 'Processor-in-

the-loop (PIL)'

SimulationStatus Indicates simulation status. string — {'stopped'}
| 'updating' |

'initializing' |

'running' | 'paused'

| 'terminating' |

'external'

SimulationTime Current time value for the
simulation.

double — {0}

SimStateInterfaceChecksumMismatchMsgCheck to ensure that the
interface checksum is identical
to the model checksum before
loading the SimState.

string — 'none'|'warning'|
error'

SimStateOlderReleaseMsg Check to report that the
SimState was generated by an
earlier version of Simulink.
In the Diagnostics pane of
the Configuration Parameters
dialog box, configure the
diagnostic to allow Simulink to
report the message as error or
warning.

string — 'error'|'warning'

 Model Parameters

6-69

Parameter Description Values

SimUserIncludeDirs Enter a space-separated
list of directory paths that
contain files you include in
the compiled target for a
model that contains MATLAB
Function blocks, Stateflow
charts, or Truth Table blocks.

Set by Include directories
on the Simulation Target
> Custom Code pane of the
Configuration Parameters
dialog box.

string — {''}

Note: If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,
'C:\Project "C:\Custom Files"'

SimUserLibraries Enter a space-separated list
of static libraries that contain
custom object code to link into
the target for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Libraries on the
Simulation Target > Custom
Code pane of the Configuration
Parameters dialog box.

string — {''}

SimUserSources Enter a space-separated list of
source files to compile and link
into the target for a model that
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.

Set by Source files on the
Simulation Target > Custom
Code pane of the Configuration
Parameters dialog box.

string — {''}

6 Model and Block Parameters

6-70

Parameter Description Values

SingleTaskRateTransMsg Specifies diagnostic action to
take when a rate transition
takes place between two blocks
operating in single-tasking
mode.

Set by Single task rate
transition on the Sample
Time Diagnostics pane of
the Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

Solver Solver used for the simulation.

Set by the Solver drop-down
list on the Solver pane of the
Configuration Parameters
dialog box.

string —
'VariableStepDiscrete'

| {'ode45'} |

'ode23' | 'ode113' |

'ode15s' | 'ode23s' |

'ode23t' | 'ode23tb'

| 'FixedStepDiscrete'

|'ode8'| 'ode5' | 'ode4'

| 'ode3' | 'ode2' |

'ode1' | 'ode14x'

SolverMode Solver mode for this model.
This option appears when the
solver type is Fixed-step.

Set by Tasking mode for
periodic sample times
on the Solver pane of the
Configuration Parameters
dialog box.

string — {'Auto'} |
'SingleTasking' |

'MultiTasking'

SolverName Solver used for the simulation.
See Solver parameter for
more information.

SolverPrmCheckMsg Enables diagnostics to control
when Simulink software
automatically selects solver

string — 'none' |
{'warning'} | 'error'

 Model Parameters

6-71

Parameter Description Values

parameters. This option notifies
you if:

• Simulink software changes
a user-modified parameter
to make it consistent with
other model settings

• Simulink software
automatically selects solver
parameters for the model,
such as FixedStepSize

Set by Automatic solver
parameter selection on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

SolverResetMethod This option appears when
the solver type is Variable-
step and the solver is ode15s
(stiff/NDF), ode23t (Mod.
stiff/Trapezoidal), or
ode23tb (stiff/TR-BDF2).

Set by Solver reset method
on the Solver pane of the
Configuration Parameters
dialog box.

string — {'Fast'} |
'Robust'

SolverType Solver type used for the
simulation.

Set by Type on the Solver
pane of the Configuration
Parameters dialog box.

string — {'Variable-step'}
| 'Fixed-step'

SortedOrder Show the sorted order of this
model's blocks on the block
diagram.

string — 'on' | {'off'}

6 Model and Block Parameters

6-72

Parameter Description Values

In the Simulink Editor, set by
Sorted Execution Order on
the Display > Blocks menu.

StartFcn Start simulation callback.

Set by Simulation start
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

string — {''}

StartTime Simulation start time.

Set by Start time on
the Solver pane of the
Configuration Parameters
dialog box.

string — {'0.0'}

StateNameClashWarn Select the diagnostic action
to take when a name is used
for more than one state in the
model.

Set by State name clash
on the Solver Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'}

StateSaveName State output name to be saved
to workspace.

Set by the States field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string — {'xout'}

StatusBar Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

string — {'on'} | 'off'

 Model Parameters

6-73

Parameter Description Values

In the Simulink Editor, set by
Status Bar on the View menu.

StopFcn Stop simulation callback.

Set by Simulation stop
function on the Callbacks
pane of the Model Properties
dialog box.

See “Create Model Callbacks”
for more information.

string — {''}

StopTime Simulation stop time.

Set by Stop time on
the Solver pane of the
Configuration Parameters
dialog box.

string — {'10.0'}

StrictBusMsg Specifies diagnostic action to
take when Simulink software
detects a signal that some
blocks treat as a mux or vector,
while other blocks treat the
signal as a bus.

Set by Mux blocks used
to create bus signals and
Bus signal treated as
vector on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

For more information, see
“Prevent Bus and Mux
Mixtures”.

string — {'ErrorLevel1'} |
'None' |

'Warning' |

'WarnOnBusTreatedAsVector'|

'ErrorOnBusTreatedAsVector'

SupportModelReferenceSimTargetCustomCodeFor SIM target Accelerator
mode code generation, include
Stateflow or MATLAB custom

string — {'off'} | 'on'

6 Model and Block Parameters

6-74

Parameter Description Values

code for code generation for
a referenced model. Select
this option for each referenced
model for which you want code
generation to include Stateflow
or MATLAB code for code
generation

Tag User-specified text that is
assigned to the model's Tag
parameter and saved with the
model.

string — {''}

TargetBitPerChar Describes the length in bits of
the C char data type supported
by the hardware used to test
generated code.

integer — {8}

TargetBitPerInt Describes the length in bits of
the C int data type supported
by the hardware used to test
generated code.

integer — {32}

TargetBitPerLong Describes the length in bits of
the C long data type supported
by the hardware used to test
generated code.

integer — {32}

TargetBitPerLongLong Describes the length in bits of
the C long long data type
supported by the hardware
used to test generated code.

The value of this parameter
must be greater than
or equal to the value of
TargetBitPerLong.

integer — {64}

TargetBitPerShort Describes the length in bits
of the C short data type
supported by the hardware
used to test generated code.

integer — {16}

 Model Parameters

6-75

Parameter Description Values

TargetEndianess Describes the significance of
the first byte of a data word
of the hardware used to test
generated code.

string — {'Unspecified'}
| 'LittleEndian' |

'BigEndian'

TargetFcnLib For internal use.
TargetHWDeviceType Describes the characteristics

of the hardware used to test
generated code.

string — {'Generic-
>Unspecified (assume 32-

bit Generic)'}

TargetIntDivRoundTo Describes how the C compiler
that creates test code for this
model rounds the result of
dividing one signed integer by
another to produce a signed
integer quotient.

string — 'Floor' | 'Zero' |
{'Undefined'}

TargetLargestAtomicFloat Specify the largest floating-
point data type that can be
atomically loaded and stored on
the hardware used to test code.

string — 'Float' | 'Double'
| {'None'}

TargetLargestAtomicIntegerSpecify the largest integer data
type that can be atomically
loaded and stored on the
hardware used to test code.

Set this parameter to
'LongLong' only if the test
hardware supports the C long
long data type and you have
set TargetLongLongMode to
'on'.

string — {'Char'} | 'Short'
| 'Int' | 'Long' |

'LongLong'

TargetLongLongMode Specify that your C compiler
supports the C long long data
type. Most C99 compilers
support long long.

string — 'on' | {'off'}

TargetShiftRightIntArith Describes whether the C
compiler that creates test code
for this model implements a

string — {'on'} | 'off'

6 Model and Block Parameters

6-76

Parameter Description Values

signed integer right shift as an
arithmetic right shift.

TargetTypeEmulation

WarnSuppressLevel

Specifies whether Simulink
Coder software displays or
suppresses warning messages
when emulating integer
sizes in rapid prototyping
environments.

integer — {0}

TargetWordSize Describes the word length in
bits of the hardware used to
test generated code.

integer — {32}

TasksWithSamePriorityMsg Specifies diagnostic action to
take when tasks have equal
priority.

Set by Tasks with equal
priority on the Sample Time
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

TiledPageScale Scales the size of the tiled page
relative to the model.

string — {'1'}

TiledPaperMargins Controls the size of the margins
associated with each tiled page.
Each element in the vector
represents a margin at the
particular edge.

vector — [left, top, right,
bottom]

TimeAdjustmentMsg Specifies diagnostic action
to take if Simulink software
makes a minor adjustment to a
sample hit time while running
the model.

Set by Sample hit time
adjusting on the Solver
Diagnostics pane of the

string — {'none'} |
'warning'

 Model Parameters

6-77

Parameter Description Values

Configuration Parameters
dialog box.

TimeSaveName Simulation time name.

Set by the Time field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

variable — {'tout'}

TLC... Parameters whose names begin
with TLC are used for code
generation. See the Simulink
Coder documentation for more
information.

ToolBar Has no effect in Simulink
Editor. This parameter will be
removed in a future release.

In the Simulink Editor, hide
or display all toolbars with
Toolbars on the View menu
or, hide or display specific
toolbars using File > Simulink
Preferences > Editor
Default toolbar options.

string — {'on'} | 'off'

TryForcingSFcnDF This flag is used for backward
compatibility with user S-
functions that were written
prior to R12.

string — 'on' | {'off'}

TunableVars List of global (tunable)
parameters.

Set in the Model Parameter
Configuration dialog box.

string — {''}

TunableVarsStorageClass List of storage classes for their
respective tunable parameters.

string — {''}

6 Model and Block Parameters

6-78

Parameter Description Values

Set in the Model Parameter
Configuration dialog box.

TunableVarsTypeQualifier List of storage type qualifiers
for their respective tunable
parameters.

Set in the Model Parameter
Configuration dialog box.

string — {''}

Type Simulink object type (read
only).

string — {'block_diagram'}

UnconnectedInputMsg Unconnected input ports
diagnostic.

Set by Unconnected
block input ports on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

UnconnectedLineMsg Unconnected lines diagnostic.

Set by Unconnected
line on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — 'none' |
{'warning'} | 'error'

UnconnectedOutputMsg Unconnected block output ports
diagnostic.

Set by Unconnected
block output ports on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

string — 'none' |
{'warning'} | 'error'

UnderSpecifiedData-

TypeMsg

Detect usage of heuristics to
assign signal data types.

string — {'none'} |
'warning' | 'error'

 Model Parameters

6-79

Parameter Description Values

Set by Underspecified data
types on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

UnderspecifiedInitial-

izationDetection

Select how Simulink software
handles initialization of initial
conditions for conditionally
executed subsystems, Merge
blocks, subsystem elapsed time,
and Discrete-Time Integrator
blocks.

Set by Underspecified
initialization detection
on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'classic'} |
'simplified'

UniqueDataStoreMsg Specifies diagnostic action to
take when the model contains
multiple Data Store Memory
blocks that specify the same
data store name.

Set by Duplicate data store
names on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

UnknownTsInhSupMsg Detect blocks that have not set
whether they allow the model
containing them to inherit a
sample time.

Set by Unspecified
inheritability of sample
time on the Solver

string — 'none' |
{'warning'} | 'error'

6 Model and Block Parameters

6-80

Parameter Description Values

Diagnostics pane of the
Configuration Parameters
dialog box.

UnnecessaryDatatype-

ConvMsg

Detect unnecessary data type
conversion blocks.

Set by Unnecessary type
conversions on the Type
Conversion Diagnostics
pane of the Configuration
Parameters dialog box.

string — {'none'} |
'warning'

UpdateHistory Specifies when to prompt the
user about updating the model
history.

Set by Prompt to update
model history on the History
pane of the Model Properties
dialog box or Prompt to
update model history on
the History pane of the Model
Explorer.

See “Viewing and Editing the
Model History Log” for more
information.

string —
{'UpdateHistoryNever'} |

'UpdateHistoryWhenSave'

UpdateModelReference-

Targets

Specify whether to rebuild
simulation and Simulink Coder
targets for referenced models
before updating, simulating, or
generating code for this model.

Set by Rebuild options on the
Model Referencing pane of
the Configuration Parameters
dialog box.

string — 'IfOutOfDate'
| 'Force' |

'AssumeUpToDate' |

{'IfOutOfDateOrStructuralChange'}

UseAnalysisPorts For internal use.

 Model Parameters

6-81

Parameter Description Values

UseDivisionForNetSlopeComputationUse division to handle net slope
computations when simplicity
and accuracy conditions are
met.

string — {'off'} | 'on' |
'UseDivisionForReciprocalsOfIntegersOnly'

VectorMatrix-

ConversionMsg

Detect vector-to-matrix or
matrix-to-vector conversions.

Set by Vector/matrix
block input conversion
on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

string — {'none'} |
'warning' | 'error'

Version Simulink version you are
currently running, e.g., '7.6'.
If you are using a service pack,
the ver function returns an
additional digit, e.g., 7.4.1
(R2009bSP1). To get version
information without loading the
block diagram into memory, see
Simulink.MDLInfo.

double (read only)

VersionLoaded Simulink version that last
saved the model, e.g., '7.6'.
If you are using a service
pack, the ver function returns
an additional digit, e.g.,
7.4.1 (R2009bSP1). See also
SavedSinceLoaded.

To get version information
without loading the block
diagram into memory, see
Simulink.MDLInfo.

double (read only)

WideLines Draws lines that carry vector or
matrix signals wider than lines
that carry scalar signals.

string — 'on' | {'off'}

6 Model and Block Parameters

6-82

Parameter Description Values

In the Simulink Editor, set by
Wide Nonscalar Lines on the
Display > Signals & Ports
menu.

WideVectorLines Deprecated. Use WideLines
instead.

WriteAfterReadMsg Specifies diagnostic action to
take when the model attempts
to store data in a data store
after previously reading data
from it in the current time step.

Set by Detect write after
read on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string —
{'UseLocalSettings'}

| 'DisableAll' |

'EnableAllAsWarning' |

'EnableAllAsError'

WriteAfterWriteMsg Specifies diagnostic action to
take when the model attempts
to store data in a data store
twice in succession in the
current time step.

Set by Detect write after
write on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

string —
{'UseLocalSettings'}

| 'DisableAll' |

'EnableAllAsWarning' |

'EnableAllAsError'

ZCThreshold Specifies the deadband region
used during the detection of
zero crossings. Signals falling
within this region are defined
as having crossed through zero.

Set by Signal threshold
on the Solver pane of the

string — {'auto'} | any real
number greater than or equal to
zero

 Model Parameters

6-83

Parameter Description Values

Configuration Parameters
dialog box.

ZeroCross For internal use.
ZeroCrossAlgorithm Specifies the algorithm to

detect zero crossings when you
select a variable-step solver.

Set by Algorithm on
the Solver pane of the
Configuration Parameters
dialog box.

string — {'Nonadaptive'} |
'Adaptive'

ZeroCrossControl Enable zero-crossing detection.

Set by Zero-crossing control
on the Solver pane of the
Configuration Parameters
dialog box.

string —
{'UseLocalSettings'}

| 'EnableAll' |

'DisableAll'

ZoomFactor Zoom factor of the Simulink
Editor window expressed as a
percentage of normal (100%) or
by the keywords FitSystem or
FitSelection.

In the Simulink Editor, set by
the zoom commands on the
View menu.

string — {'100'}
| 'FitSystem' |

'FitSelection'

Examples of Setting Model Parameters

These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

set_param('mymodel','StartTime','5','StopTime','100')

This command sets the solver to ode15s and changes the maximum order.

set_param('mymodel','Solver','ode15s','MaxOrder','3')

6 Model and Block Parameters

6-84

This command associates a PostSaveFcn callback.

set_param('mymodel','PostSaveFcn','my_save_cb')

 Common Block Properties

6-85

Common Block Properties

In this section...

“About Common Block Properties” on page 6-85
“Examples of Setting Block Properties” on page 6-95

About Common Block Properties

This table lists the properties common to all Simulink blocks, including block callback
properties (see “Callbacks for Customized Model Behavior”). Examples of commands that
change these properties follow this table (see “Examples of Setting Block Properties” on
page 6-95).

Common Block Properties

Property Description Values

AncestorBlock Name of the library block that
the block is linked to (for blocks
with a disabled link).

string

AttributesFormatString String format specified for
block annotations in the Block
Parameters dialog box.

string

BackgroundColor Block background color. RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue,
and alpha values of the color
normalized to the range 0.0 to
1.0. The alpha value is ignored.

BlockDescription Block description shown in the
Block Properties dialog box.

string

BlockType Block type (read only). string
ClipboardFcn Function called when block is

copied to the clipboard (Ctrl+C)
string

CloseFcn Function called when
close_system is run on block.

string

Commented Exclude block from simulation. {'off'} | 'on'

6 Model and Block Parameters

6-86

Property Description Values

CompiledPort-

ComplexSignals

Complexity of port signals after
updating diagram.

structure array

CompiledPortDataTypes Data types of port signals after
updating diagram.

structure array

CompiledPortDimensions Dimensions of port signals after
updating diagram.

structure array

CompiledPortFrameData Frame mode of port signals
after updating diagram.

structure array

CompiledPortWidths Structure of port widths after
updating diagram.

structure array

CompiledSampleTime Block sample time after
updating diagram.

vector [sample time, offset
time]

CopyFcn Function called when block is
copied.

string

DataTypeOverrideCompiled For internal use.
DeleteFcn Function called when block is

deleted. If a block is graphically
deleted, you can still undo the
operation and call the block's
UndoDeleteFcn. In addition,
for graphically deleted blocks,
the block's DestroyFcn is still
called when the model is closed
or any subsystem containing
the block is destroyed using
delete_block.

MATLAB expression

DestroyFcn Function called when block
is destroyed. If you run the
delete_block command
for a block, it first calls the
block'sDeleteFcn, then calls
the DestroyFcn for that
block; no undo is possible. The
DestroyFcn is also called
when you close the model or

MATLAB expression

 Common Block Properties

6-87

Property Description Values

invoke delete_block on a
subsystem containing the block.

Description Description of block. Set by
the Description field in the
General pane of the Block
Properties dialog box.

text and tokens

Diagnostics For internal use.
DialogParameters Names/attributes of

parameters in block parameter
dialog box.

structure

DropShadow Display drop shadow. {'off'} | 'on'

ExtModeLoggingSupported Enable a block to support
uploading of signal data in
external mode (for example,
with a scope block).

{'off'} | 'on'

ExtModeLoggingTrig Enable a block to act as the
trigger block for external mode
signal uploading.

{'off'} | 'on'

ExtModeUploadOption Enable a block to upload signal
data in external mode when
the Select all check box on the
External Signal & Triggering
dialog box is not selected. A
value of log indicates the
block uploads signals. A value
of none indicates the block
does not upload signals. The
value monitor is currently
not in use. If the Select all
check box on the External
Signal & Triggering dialog box
is selected, it overrides this
property setting.

{'none'} | 'log' |

'monitor'

FontAngle Font angle. 'normal' | 'italic' |

'oblique' | {'auto'}

6 Model and Block Parameters

6-88

Property Description Values

FontName Font. string
FontSize Font size. A value of -1 specifies

that this block inherits the
font size specified by the
DefaultBlockFontSize

model parameter.

real {'-1'}

FontWeight Font weight. 'light' | 'normal'

| 'demi' | 'bold' |

{'auto'}

ForegroundColor Foreground color of block's icon. string {'black'} |
[r,g,b,a] where r, g, b,
and a are the red, green, blue,
and alpha values of the color
normalized to the range 0.0 to
1.0. The alpha value is ignored.

Handle Block handle. real
HiliteAncestors For internal use.
InitFcn Initialization function for a

masked block. Created on the
Callbacks pane of the Model
Properties dialog box. See
“Create Model Callbacks” in the
Using Simulink documentation
for further information.

MATLAB expression

InputSignalNames Names of input signals. cell array
IOSignalStrings list
IOType Signal & Scope Manager type.

For internal use.

LineHandles Handles of lines connected to
block.

struct

LinkStatus Link status of block. Updates
out-of-date reference
blocks when queried using
get_param.

{'none'} | 'resolved' |

'unresolved' | 'implicit'

| 'inactive' | 'restore'

| 'propagate'

 Common Block Properties

6-89

Property Description Values

LoadFcn Function called when block is
loaded.

MATLAB expression

MinMaxOverflow-

Logging_Compiled

For internal use.

ModelCloseFcn Function called when model is
closed. The ModelCloseFcn
is called prior to the block's
DeleteFcn and DestroyFcn
callbacks, if either are set.

MATLAB expression

ModelParamTableInfo For internal use.
MoveFcn Function called when block is

moved.
MATLAB expression

Name Block name. string
NameChangeFcn Function called when block

name is changed.
MATLAB expression

NamePlacement Position of block name. {'normal'} | 'alternate'

ObjectParameters Names/attributes of block
parameters.

structure

OpenFcn Function called when this Block
Parameters dialog box opens.

MATLAB expression

Orientation Where block faces. {'right'} | 'left' | 'up'

| 'down'

OutputSignalNames Names of output signals. cell array
Parent Name of the system that owns

the block.
string {'untitled'}

ParentCloseFcn Function called when parent
subsystem is closed. The
ParentCloseFcn of blocks
at the root model level is not
called when the model is closed.

MATLAB expression

PortConnectivity The value of this property is
an array of structures, each
of which describes one of the

structure array

6 Model and Block Parameters

6-90

Property Description Values

block's input or output ports.
Each port structure has the
following fields:

• Type

Specifies the port's type and/
or number. The value of this
field can be:

• n, where n is the number
of the port for data ports

• 'enable' if the port is
an enable port

• 'trigger' if the port is
a trigger port

• 'state' for state ports
• 'ifaction' for action

ports
• 'LConn#' for a left

connection port where #
is the port's number

• 'RConn#' for a right
connection port where #
is the port's number

• Position

The value of this field is
a two-element vector, [x
y], that specifies the port's
position.

 • SrcBlock

Handle of the block
connected to this port. This
field is null for output ports.

 Common Block Properties

6-91

Property Description Values

• SrcPort

Number of the port
connected to this port. This
field is null for output ports.

• DstBlock

Handle of the block to which
this port is connected. This
field is null for input ports.

• DstPort

Number of the port to which
this port is connected. This
field is null for input ports.

PortHandles The value of this property is
a structure that specifies the
handles of the block's ports.
The structure has the following
fields:

• Inport

Handles of the block's input
ports.

• Outport

Handles of the block's
output ports.

• Enable

Handle of the block's enable
port.

• Trigger

Handle of the block's trigger
port.

structure array

6 Model and Block Parameters

6-92

Property Description Values

• State

Handle of the block's state
port.

• LConn

Handles of the block's left
connection ports.

• RConn

Handles of the block's right
connection ports.

• Ifaction

Handle of the block's action
port.

• Reset

Handle of the block’s reset
port.

Ports The value of this property
is a vector that specifies the
numbers of each kind of port.
The order of the vector's
elements corresponds to the
following port types:

• Inport

• Outport

• Enable

• Trigger

• State

• LConn

• RConn

• Ifaction

vector

 Common Block Properties

6-93

Property Description Values

• Reset

Position Position of block in model
window.

vector of coordinates (in pixels)
not enclosed in quotation marks:
[left top right bottom]

Note: The origin is located in the
upper left corner of the model
window. The maximum value for
a coordinate is 32767.

PostSaveFcn Function called after the
block is saved. Created on the
Callbacks pane of the Model
Properties dialog box. See
“Create Model Callbacks” in the
Using Simulink documentation
for further information.

MATLAB expression

PreCopyFcn Function called before the block
is copied. See “Block Callback
Parameters” in the Using
Simulink documentation for
details.

MATLAB expression

PreDeleteFcn Function called before the
block is deleted. See “Block
Callback Parameters” in the
Using Simulink documentation
for details.

MATLAB expression

PreSaveFcn Function called before the block
is saved.

MATLAB expression

Priority Specifies the block's order of
execution relative to other
blocks in the same model. Set
by the Priority field on the
General pane of the Block
Properties dialog box.

string {''}

6 Model and Block Parameters

6-94

Property Description Values

ReferenceBlock Name of the library block to
which this block links.

string {''}

RequirementInfo For internal use.
RTWData User specified data, used by

Simulink Coder software.

SampleTime Value of the sample time
parameter.

string

Selected Status of whether or not block
is selected.

{'on'} | 'off'

ShowName Display block name. {'on'} | 'off'

StartFcn Function called at the start of a
simulation.

MATLAB expression

StatePerturbation-

ForJacobian

State perturbation size to
use during linearization.
See “Perturbation Level of
Blocks Perturbed During
Linearization” in the Simulink
Control Design documentation
for details.

string

StaticLinkStatus Link status of block. Does not
update out-of-date reference
blocks when queried using
get_param.

{'none'} | 'resolved' |

'unresolved' | 'implicit'

| 'inactive' | 'restore'

| 'propagate'

StopFcn Function called at the
termination of a simulation.

MATLAB expression

Tag Text that appears in the block
label that Simulink software
generates. Set by the Tag field
on the General pane of the
Block Properties dialog box.

string {''}

Type Simulink object type (read
only).

'block'

 Common Block Properties

6-95

Property Description Values

UndoDeleteFcn Function called when block
deletion is undone.

MATLAB expression

UserData User-specified data that can
have any MATLAB data type.

{'[]'}

UserDataPersistent Status of whether or not
UserData will be saved in the
model file.

'on' | {'off'}

Examples of Setting Block Properties

These examples illustrate how to change common block properties.

This command changes the orientation of the Gain block in the mymodel system so it
faces the opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the mymodel
system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

This command sets the Position property of the Gain block in the mymodel system.
The block is 75 pixels wide by 25 pixels high. The position vector is not enclosed in
quotation marks.

set_param('mymodel/Gain','Position', [50 250 125 275])

6 Model and Block Parameters

6-96

Block-Specific Parameters

You can query and/or modify the properties (parameters) of a Simulink diagram from
the command line. Parameters that describe a model are known as model parameters,
while parameters that describe a Simulink block are known as block parameters.
Block parameters that are common to Simulink blocks are described as common block
parameters. There are also block-specific parameters that are specific to particular
blocks. Finally, there are mask parameters, which are parameters that describe a
masked block.

The model and block properties also include callbacks, which are commands that execute
when a certain model or block event occurs. These events include opening a model,
simulating a model, copying a block, opening a block, etc.

These tables list block-specific parameters for all Simulink blocks. The type of the block
appears in parentheses after the block name. Some Simulink blocks work as masked
subsystems. The tables indicate masked blocks by adding the designation "masked
subsystem" after the block type.

The type listed for nonmasked blocks is the value of the BlockType parameter (see
“Common Block Properties” on page 6-85). The type listed for masked blocks is the value
of the MaskType parameter (see “Mask Parameters” on page 6-227).

The Dialog Box Prompt column indicates the text of the prompt for the parameter
on the block dialog box. The Values column shows the type of value required (scalar,
vector, variable), the possible values (separated with a vertical line), and the default
value (enclosed in braces).

Tip For block parameters that accept array values, the number of elements in the array
cannot exceed what int_T can represent. This limitation applies to both simulation and
Simulink Coder code generation.

The maximum number of characters that a parameter edit field can contain is 49,000.

• Continuous Library Block Parameters
• Discontinuities Library Block Parameters
• Discrete Library Block Parameters
• Logic and Bit Operations Library Block Parameters

 Block-Specific Parameters

6-97

• Lookup Tables Block Parameters
• Math Operations Library Block Parameters
• Model Verification Library Block Parameters
• Model-Wide Utilities Library Block Parameters
• Ports & Subsystems Library Block Parameters
• Signal Attributes Library Block Parameters
• Signal Routing Library Block Parameters
• Sinks Library Block Parameters
• Sources Library Block Parameters
• User-Defined Functions Library Block Parameters
• Additional Discrete Block Library Parameters
• Additional Math: Increment - Decrement Block Parameters

Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Derivative (Derivative)
 CoefficientInTFapproximationCoefficient c in the transfer

function approximation s/(c*s
+1) used for linearization

string — {'inf'}

Integrator (Integrator)
 ExternalReset External reset string — {'none'} |

'rising' | 'falling'

| 'either' | 'level' |

'level hold'

 InitialConditionSource Initial condition source string — {'internal'} |
'external'

 InitialCondition Initial condition scalar or vector — {'0'}
 LimitOutput Limit output string — {'off'} | 'on'
 UpperSaturationLimit Upper saturation limit scalar or vector — {'inf'}
 LowerSaturationLimit Lower saturation limit scalar or vector — {'-inf'}
 ShowSaturationPort Show saturation port string — {'off'} | 'on'
 ShowStatePort Show state port string — {'off'} | 'on'

6 Model and Block Parameters

6-98

Block (Type)/Parameter Dialog Box Prompt Values

 AbsoluteTolerance Absolute tolerance string, scalar, or vector —
{'auto'} | {'–1'} | any real
scalar or vector

 IgnoreLimit Ignore limit and reset when
linearizing

string — {'off'} | 'on'

 ZeroCross Enable zero–crossing detection string — 'off' | {'on'}
 ContinuousStateAttributesState Name string — {''} | user-defined
 WrapState Enable wrapping of states string — {'off'} | 'on'
 WrappedStateUpperValue Upper value of wrapped state scalar or vector — {'pi'}
 WrappedStateLowerValue Lower value of wrapped state scalar or vector — {'-pi'}
Second-Order Integrator (SecondOrderIntegrator)
 ICSourceX Initial condition source x string — {'internal'} |

'external'

 ICX Initial condition x scalar or vector — {'0'}
 LimitX Limit x string — {'off'} | 'on'
 UpperLimitX Upper limit x scalar or vector — {'inf'}
 LowerLimitX Lower limit x scalar or vector — {'-inf'}
 AbsoluteToleranceX Absolute tolerance x string, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 StateNameX State name x string — {} | user-defined
 ICSourceDXDT Initial condition source dx/dt string — {'internal'} |

'external'

 ICDXDT Initial condition dx/dt scalar or vector — {'0'}
 LimitDXDT Limit dx/dt string — {'off'} | 'on'
 UpperLimitDXDT Upper limit dx/dt scalar or vector — {'inf'}
 LowerLimitDXDT Lower limit dx/dt scalar or vector — {'-inf'}
 AbsoluteToleranceDXDT Absolute tolerance dx/dt string, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 Block-Specific Parameters

6-99

Block (Type)/Parameter Dialog Box Prompt Values

 StateNameDXDT State name dx/dt string — {} | user-defined
 ExternalReset External reset string — {'none'} |

'rising' | 'falling' |
'either'

 ZeroCross Enable zero-crossing detection string — {'on'} | 'off'
 ReinitDXDTwhenXreachesSaturationReinitialize dx/dt when x

reaches saturation
string — {'off'} | 'on'

 IgnoreStateLimitsAndResetForLinearizationIgnore state limits and the
reset for linearization

string — {'off'} | 'on'

 ShowOutput Show output string — {'both'} | 'x' |
'dxdt'

State-Space (StateSpace)
 A A matrix — {'1'}
 B B matrix — {'1'}
 C C matrix — {'1'}
 D D matrix — {'1'}
 X0 Initial conditions vector — {'0'}
 AbsoluteTolerance Absolute tolerance string, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 ContinuousStateAttributesState Name string — {''} | user-defined
Transfer Fcn (TransferFcn)
 Numerator Numerator coefficients vector or matrix — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 1]'}
 AbsoluteTolerance Absolute tolerance string, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 ContinuousStateAttributesState Name string — {''} | user-defined
Transport Delay (TransportDelay)
 DelayTime Time delay scalar or vector — {'1'}

6 Model and Block Parameters

6-100

Block (Type)/Parameter Dialog Box Prompt Values

 InitialOutput Initial output scalar or vector — {'0'}
 BufferSize Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size string — {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input

during linearization
string — {'off'} | 'on'

 PadeOrder Pade order (for linearization) string — {'0'}
Variable Time Delay (VariableTimeDelay)
 VariableDelayType Select delay type string — 'Variable

transport delay' |

{'Variable time delay'}

 MaximumDelay Maximum delay scalar or vector — {'10'}
 InitialOutput Initial output scalar or vector — {'0'}
 MaximumPoints Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size string — {'off'} | 'on'
 ZeroDelay Handle zero delay string — {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input

during linearization
string — {'off'} | 'on'

 PadeOrder Pade order (for linearization) string — {'0'}
 ContinuousStateAttributesState Name string — {''} | user-defined
Variable Transport Delay (VariableTransportDelay)
 VariableDelayType Select delay type string — {'Variable

transport delay'} |

'Variable time delay'

 MaximumDelay Maximum delay scalar or vector — {'10'}
 InitialOutput Initial output scalar or vector — {'0'}
 MaximumPoints Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size string — {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input

during linearization
string — {'off'} | 'on'

 Block-Specific Parameters

6-101

Block (Type)/Parameter Dialog Box Prompt Values

 PadeOrder Pade order (for linearization) string — {'0'}
 AbsoluteTolerance Absolute tolerance string, scalar, or vector —

{'auto'} | {'–1'} | any
positive real scalar or vector

 ContinuousStateAttributesState Name string — {''} | user-defined
Zero-Pole (ZeroPole)
 Zeros Zeros vector — {'[1]'}
 Poles Poles vector — {'[0 -1]'}
 Gain Gain vector — {'[1]'}
 AbsoluteTolerance Absolute tolerance string, scalar, or vector —

{'auto'} | {'–1'} | any
positive real scalar or vector

 ContinuousStateAttributesState Name string — {''} | user-defined

Discontinuities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Backlash (Backlash)
 BacklashWidth Deadband width scalar or vector — {'1'}
 InitialOutput Initial output scalar or vector — {'0'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked subsystem)
 offset Coulomb friction value (Offset) string — {'[1 3 2 0]'}
 gain Coefficient of viscous friction

(Gain)
string — {'1'}

Dead Zone (DeadZone)
 LowerValue Start of dead zone scalar or vector — {'-0.5'}
 UpperValue End of dead zone scalar or vector — {'0.5'}
 SaturateOnIntegerOverflowSaturate on integer overflow string — 'off' | {'on'}

6 Model and Block Parameters

6-102

Block (Type)/Parameter Dialog Box Prompt Values

 LinearizeAsGain Treat as gain when linearizing string — 'off' | {'on'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Dead Zone Dynamic (Dead Zone Dynamic) (masked subsystem)
Hit Crossing (HitCross)
 HitCrossingOffset Hit crossing offset scalar or vector — {'0'}
 HitCrossingDirection Hit crossing direction string — 'rising' |

'falling' | {'either'}

 ShowOutputPort Show output port string — 'off' | {'on'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Quantizer (Quantizer)
 QuantizationInterval Quantization interval scalar or vector — {'0.5'}
 LinearizeAsGain Treat as gain when linearizing string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Rate Limiter (RateLimiter)
 RisingSlewLimit Rising slew rate string — {'1'}
 FallingSlewLimit Falling slew rate string — {'-1'}
 SampleTimeMode Sample time mode string — 'continuous' |

{'inherited'}

 InitialCondition Initial condition string — {'0'}
 LinearizeAsGain Treat as gain when linearizing string — 'off' | {'on'}
Rate Limiter Dynamic (Rate Limiter Dynamic) (masked subsystem)
Relay (Relay)
 OnSwitchValue Switch on point string — {'eps'}
 OffSwitchValue Switch off point string — {'eps'}
 OnOutputValue Output when on string — {'1'}
 OffOutputValue Output when off string — {'0'}

 Block-Specific Parameters

6-103

Block (Type)/Parameter Dialog Box Prompt Values

 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via back propagation' |

{'Inherit: All ports same

datatype'} | 'double'

| 'single' | 'int8'

| 'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

Saturation (Saturate)
 UpperLimit Upper limit scalar or vector — {'0.5'}
 LowerLimit Lower limit scalar or vector — {'-0.5'}
 LinearizeAsGain Treat as gain when linearizing string — 'off' | {'on'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit:

Inherit via back

propagation' | {'Inherit:

Same as input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

6 Model and Block Parameters

6-104

Block (Type)/Parameter Dialog Box Prompt Values

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

Saturation Dynamic (Saturation Dynamic) (masked subsystem)
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Same

as second input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingModeDeprecated in R2007b
 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate on integer overflow string — {'off'} | 'on'
Wrap To Zero (Wrap To Zero) (masked subsystem)

 Block-Specific Parameters

6-105

Block (Type)/Parameter Dialog Box Prompt Values

 Threshold Threshold string — {'255'}

Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Delay (Delay)
 DelayLengthSource Delay length > Source string — {'Dialog'} |

'Input port'

 DelayLength Delay length > Value string — {'2'}
 DelayLengthUpperLimit Delay length > Upper limit string — {'100'}
 InitialConditionSource Initial condition > Source string — {'Dialog'} |

'Input port'

 InitialCondition Initial condition > Value string — {'0.0'}
 ExternalReset External reset string — {'None'} |

'Rising' | 'Falling'

| 'Either' | 'Level' |

'Level hold'

 InputProcessing Input processing string — 'Columns as
channels (frame based)'

| {'Elements as channels

(sample based)'} |

'Inherited'

 UseCircularBuffer Use circular buffer for state string — {'off'} | 'on'
 PreventDirectFeedthroughPrevent direct feedthrough by

increasing delay length to lower
limit

string — {'off'} | 'on'

 RemoveProtectionDelay
 Length

Remove protection against
out-of-range delay length in
generated code

string — {'off'} | 'on'

 DiagnosticForOutOfRangeDelayLengthDiagnostic for out-of-range
delay length

string — {'None'} |
'Warning' | 'Error'

 SampleTime Sample time (–1 for inherited) string — {'-1'}
 StateName State name string — {''}

6 Model and Block Parameters

6-106

Block (Type)/Parameter Dialog Box Prompt Values

 StateMustResolveToSignalObjectState name must resolve to
Simulink signal object

string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 CodeGenStateStorageTypeQualifierCode generation storage type
qualifier

string — {''}

Difference (Difference) (masked subsystem)
 ICPrevInput Initial condition for previous

input
string — {'0.0'}

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingModeDeprecated in R2007b
 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 Block-Specific Parameters

6-107

Block (Type)/Parameter Dialog Box Prompt Values

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Discrete Derivative (Discrete Derivative) (masked subsystem)
 gainval Gain value string — {'1.0'}
 ICPrevScaledInput Initial condition for previous

weighted input K*u/Ts
string — {'0.0'}

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingModeDeprecated in R2007b
 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Discrete FIR Filter (Discrete FIR Filter)

6 Model and Block Parameters

6-108

Block (Type)/Parameter Dialog Box Prompt Values

 CoefSource Coefficient source string — {'Dialog
parameters'} | 'Input

port'

 FilterStructure Filter structure string — {'Direct
form'} | 'Direct form

symmetric' | 'Direct

form antisymmetric' |

'Direct form transposed'

| 'Lattice MA'

Note: You must have a DSP
System Toolbox license to use
a filter structure other than
Direct form.

 Coefficients Coefficients vector — {'[0.5 0.5]'}
 InputProcessing Input processing string — 'Columns as

channels (frame based)'

| {'Elements as channels

(sample based)'}

 InitialStates Initial states scalar or vector — {'0'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 CoefMin Coefficients minimum string — {'[]'}
 CoefMax Coefficients maximum string — {'[]'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 TapSumDataTypeStr Tap sum data type string — {'Inherit:

Same as input'} |

'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'fixdt(1,16,0)'

 CoefDataTypeStr Coefficients data type string — {'Inherit:
Same word length as

 Block-Specific Parameters

6-109

Block (Type)/Parameter Dialog Box Prompt Values

input'} | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)'

 ProductDataTypeStr Product output data type string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'fixdt(1,16,0)'

 AccumDataTypeStr Accumulator data type string — {'Inherit: Inherit
via internal rule'}

| 'Inherit: Same as

input' | 'Inherit:

Same as product output'

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'fixdt(1,16,0)'

 StateDataTypeStr State data type string — 'Inherit: Same
as input' | {'Inherit:

Same as accumulator'}

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'fixdt(1,16,0)'

 OutDataTypeStr Output data type string — 'Inherit: Same as
input' | {'Inherit: Same

as accumulator'} | 'int8'

| 'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)'

6 Model and Block Parameters

6-110

Block (Type)/Parameter Dialog Box Prompt Values

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnIntegerOverflowSaturate on integer overflow string — {'off'} | 'on'
Discrete Filter (DiscreteFilter)
 Numerator Numerator coefficients vector — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 0.5]'}
 IC Initial states string — {'0'}
 SampleTime Sample time (-1 for inherited) string — {'1'}
 a0EqualsOne Optimize by skipping divide by

leading denominator coefficient
(a0)

string — {'off'} | 'on'

 NumCoefMin Numerator coefficient
minimum

string — {'[]'}

 NumCoefMax Numerator coefficient
maximum

string — {'[]'}

 DenCoefMin Denominator coefficient
minimum

string — {'[]'}

 DenCoefMax Denominator coefficient
maximum

string — {'[]'}

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 StateDataTypeStr State data type string — {'Inherit: Same

as input'} | 'int8'

| 'int16' | 'int32' |

'fixdt(1,16,0)'

 NumCoefDataTypeStr Numerator coefficient data type string — {'Inherit: Inherit
via internal rule'}

| 'int8' | 'int16' |

 Block-Specific Parameters

6-111

Block (Type)/Parameter Dialog Box Prompt Values

'int32' | 'fixdt(1,16)' |

'fixdt(1,16,0)'

 DenCoefDataTypeStr Denominator coefficient data
type

string — {'Inherit: Inherit
via internal rule'}

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16)' |

'fixdt(1,16,0)'

 NumProductDataTypeStr Numerator product output data
type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 DenProductDataTypeStr Denominator product output
data type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 NumAccumDataTypeStr Numerator accumulator data
type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'Inherit: Same as

product output' | 'int8'

| 'int16' | 'int32' |

'fixdt(1,16,0)'

 DenAccumDataTypeStr Denominator accumulator data
type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'Inherit: Same as

product output' | 'int8'

| 'int16' | 'int32' |

'fixdt(1,16,0)'

 OutDataTypeStr Output data type string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

6 Model and Block Parameters

6-112

Block (Type)/Parameter Dialog Box Prompt Values

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnIntegerOverflowSaturate on integer overflow string — {'off'} | 'on'
 StateIdentifier State name string — {''}
 StateMustResolveToSignalObjectState name must resolve to

Simulink signal object
string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageTypeQualifierCode generation storage type
qualifier

string — {''}

Discrete State-Space (DiscreteStateSpace)
 A A matrix — {'1'}
 B B matrix — {'1'}
 C C matrix — {'1'}
 D D matrix — {'1'}
 X0 Initial conditions vector — {'0'}
 SampleTime Sample time (-1 for inherited) string — {'1'}
 StateIdentifier State name string — {''}
 StateMustResolveToSignalObjectState name must resolve to

Simulink signal object
string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

 Block-Specific Parameters

6-113

Block (Type)/Parameter Dialog Box Prompt Values

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageTypeQualifierCode generation storage type
qualifier

string — {''}

Discrete Transfer Fcn (DiscreteTransferFcn)
 Numerator Numerator coefficients vector — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 0.5]'}
 InitialStates Initial states string — {'0'}
 SampleTime Sample time (-1 for inherited) string — {'1'}
 a0EqualsOne Optimize by skipping divide by

leading denominator coefficient
(a0)

string — {'off'} | 'on'

 NumCoefMin Numerator coefficient
minimum

string — {'[]'}

 NumCoefMax Numerator coefficient
maximum

string — {'[]'}

 DenCoefMin Denominator coefficient
minimum

string — {'[]'}

 DenCoefMax Denominator coefficient
maximum

string — {'[]'}

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 StateDataTypeStr State data type string — {'Inherit: Same

as input'} | 'int8'

| 'int16' | 'int32' |

'fixdt(1,16,0)'

 NumCoefDataTypeStr Numerator coefficient data type string — {'Inherit: Inherit
via internal rule'}

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 DenCoefDataTypeStr Denominator coefficient data
type

string — {'Inherit: Inherit
via internal rule'}

6 Model and Block Parameters

6-114

Block (Type)/Parameter Dialog Box Prompt Values

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 NumProductDataTypeStr Numerator product output data
type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 DenProductDataTypeStr Denominator product output
data type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 NumAccumDataTypeStr Numerator accumulator data
type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'Inherit: Same as

product output' | 'int8'

| 'int16' | 'int32' |

'fixdt(1,16,0)'

 DenAccumDataTypeStr Denominator accumulator data
type

string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'Inherit: Same as

product output' | 'int8'

| 'int16' | 'int32' |

'fixdt(1,16,0)'

 OutDataTypeStr Output data type string — {'Inherit: Inherit
via internal rule'} |

'Inherit: Same as input'

| 'int8' | 'int16' |

'int32' | 'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

 Block-Specific Parameters

6-115

Block (Type)/Parameter Dialog Box Prompt Values

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnIntegerOverflowSaturate on integer overflow string — {'off'} | 'on'
 StateIdentifier State name string — {''}
 StateMustResolveToSignalObjectState name must resolve to

Simulink signal object
string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageTypeQualifierCode generation storage type
qualifier

string — {''}

Discrete Zero-Pole (DiscreteZeroPole)
 Zeros Zeros vector — {'[1]'}
 Poles Poles vector — {'[0 0.5]'}
 Gain Gain string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'1'}
 StateIdentifier State name string — {''}
 StateMustResolveToSignalObjectState name must resolve to

Simulink signal object
string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageType

 Qualifier

Code generation storage type
qualifier

string — {''}

Discrete-Time Integrator (DiscreteIntegrator)
 IntegratorMethod Integrator method string — {'Integration:

Forward Euler'} |

'Integration: Backward

Euler' | 'Integration:

Trapezoidal' |

6 Model and Block Parameters

6-116

Block (Type)/Parameter Dialog Box Prompt Values

'Accumulation: Forward

Euler' | 'Accumulation:

Backward Euler'

| 'Accumulation:

Trapezoidal'

 gainval Gain value string — {'1.0'}
 ExternalReset External reset string — {'none'} |

'rising' | 'falling'

| 'either' | 'level' |

'sampled level'

 InitialConditionSource Initial condition source string — {'internal'} |
'external'

 InitialCondition Initial condition scalar or vector — {'0'}
 InitialConditionSetting Initial condition setting string — {'State (most

efficient)'} | 'Output' |

'Compatibility'

 SampleTime Sample time (-1 for inherited) string — {'1'}
 LimitOutput Limit output string — {'off'} | 'on'
 UpperSaturationLimit Upper saturation limit scalar or vector — {'inf'}
 LowerSaturationLimit Lower saturation limit scalar or vector — {'-inf'}
 ShowSaturationPort Show saturation port string — {'off'} | 'on'
 ShowStatePort Show state port string — {'off'} | 'on'
 IgnoreLimit Ignore limit and reset when

linearizing
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'double' | 'single'

| 'int8' | 'uint8'

 Block-Specific Parameters

6-117

Block (Type)/Parameter Dialog Box Prompt Values

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 StateIdentifier State name string — {''}
 StateMustResolveTo

 SignalObject

State name must resolve to
Simulink signal object

string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageType

 Qualifier

Code generation storage type
qualifier

string — {''}

First-Order Hold (First-Order Hold) (masked subsystem)
 Ts Sample time string — {'1'}
Memory (Memory)
 X0 Initial condition scalar or vector — {'0'}
 InheritSampleTime Inherit sample time string — {'off'} | 'on'
 LinearizeMemory Direct feedthrough of input

during linearization
string — {'off'} | 'on'

 LinearizeAsDelay Treat as a unit delay when
linearizing with discrete
sample time

string — {'off'} | 'on'

6 Model and Block Parameters

6-118

Block (Type)/Parameter Dialog Box Prompt Values

 StateIdentifier State name string — {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

string — {''}

Tapped Delay (S-Function) (Tapped Delay Line) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 samptime Sample time string — {'-1'}
 NumDelays Number of delays string — {'4'}
 DelayOrder Order output vector starting

with
string — {'Oldest'} |
'Newest'

 includeCurrent Include current input in output
vector

string — {'off'} | 'on'

Transfer Fcn First Order (First Order Transfer Fcn) (masked subsystem)
 PoleZ Pole (in Z plane) string — {'0.95'}
 ICPrevOutput Initial condition for previous

output
string — {'0.0'}

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Transfer Fcn Lead or Lag (Lead or Lag Compensator) (masked subsystem)
 PoleZ Pole of compensator (in Z

plane)
string — {'0.95'}

 Block-Specific Parameters

6-119

Block (Type)/Parameter Dialog Box Prompt Values

 ZeroZ Zero of compensator (in Z
plane)

string — {'0.75'}

 ICPrevOutput Initial condition for previous
output

string — {'0.0'}

 ICPrevInput Initial condition for previous
input

string — {'0.0'}

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Transfer Fcn Real Zero (Transfer Fcn Real Zero) (masked subsystem)
 ZeroZ Zero (in Z plane) string — {'0.75'}
 ICPrevInput Initial condition for previous

input
string — {'0.0'}

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Unit Delay (UnitDelay)
 InitialCondition Initial condition scalar or vector — {'0'}
 InputProcessing Input processing string — 'Columns as

channels (frame based)'

| {'Elements as channels

(sample based)'} |

'Inherited'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 StateName State name string — {''}

6 Model and Block Parameters

6-120

Block (Type)/Parameter Dialog Box Prompt Values

 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

string — {'off'} | 'on'

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 CodeGenStateStorageType

 Qualifier

Code generation storage type
qualifier

string — {''}

Zero-Order Hold (ZeroOrderHold)
 SampleTime Sample time (-1 for inherited) string — {'1'}

Logic and Bit Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bit Clear (Bit Clear) (masked subsystem)
 iBit Index of bit (0 is least

significant)
string — {'0'}

Bit Set (Bit Set) (masked subsystem)
 iBit Index of bit (0 is least

significant)
string — {'0'}

Bitwise Operator (S-Function) (Bitwise Operator) (masked subsystem)
 logicop Operator string — {'AND'} | 'OR' |

'NAND' | 'NOR' | 'XOR' |

'NOT'

 UseBitMask Use bit mask ... string — 'off' | {'on'}
 NumInputPorts Number of input ports string — {'1'}
 BitMask Bit Mask string —

{'bin2dec('11011001')'}

 BitMaskRealWorld Treat mask as string — 'Real World Value'
| {'Stored Integer'}

Combinatorial Logic (CombinatorialLogic)

 Block-Specific Parameters

6-121

Block (Type)/Parameter Dialog Box Prompt Values

 TruthTable Truth table string — {'[0 0;0 1;0 1;1
0;0 1;1 0;1 0;1 1]'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Compare To Constant (Compare To Constant) (masked subsystem)
 relop Operator string — '==' | '~=' | '<'

| {'<='} | '>=' | '>'

 const Constant value string — {'3.0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
Compare To Zero (Compare To Zero) (masked subsystem)
 relop Operator string — '==' | '~=' | '<'

| {'<='} | '>=' | '>'

 OutDataTypeStr Output data type string — {'boolean'} |
'uint8'

 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
Detect Change (Detect Change) (masked subsystem)
 vinit Initial condition string — {'0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Detect Decrease (Detect Decrease) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Detect Fall Negative (Detect Fall Negative) (masked subsystem)
 vinit Initial condition string — {'0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Detect Fall Nonpositive (Detect Fall Nonpositive) (masked subsystem)
 vinit Initial condition string — {'0'}

6 Model and Block Parameters

6-122

Block (Type)/Parameter Dialog Box Prompt Values

 OutDataTypeStr Output data type string — {'boolean'} |
'uint8'

Detect Increase (Detect Increase) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Detect Rise Nonnegative (Detect Rise Nonnegative) (masked subsystem)
 vinit Initial condition string — {'0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Detect Rise Positive (Detect Rise Positive) (masked subsystem)
 vinit Initial condition string — {'0'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Extract Bits (Extract Bits) (masked subsystem)
 bitsToExtract Bits to extract string — {'Upper half'}

| 'Lower half' | 'Range

starting with most

significant bit' |

'Range ending with least

significant bit' | 'Range

of bits'

 numBits Number of bits string — {'8'}
 bitIdxRange Bit indices ([start end], 0-based

relative to LSB)
string — {'[0 7]'}

 outScalingMode Output scaling mode string — {'Preserve fixed-
point scaling'} | 'Treat

bit field as an integer'

Interval Test (Interval Test) (masked subsystem)
 IntervalClosedRight Interval closed on right string — 'off' | {'on'}
 uplimit Upper limit string — {'0.5'}

 Block-Specific Parameters

6-123

Block (Type)/Parameter Dialog Box Prompt Values

 IntervalClosedLeft Interval closed on left string — 'off' | {'on'}
 lowlimit Lower limit string — {'-0.5'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Interval Test Dynamic (Interval Test Dynamic) (masked subsystem)
 IntervalClosedRight Interval closed on right string — 'off' | {'on'}
 IntervalClosedLeft Interval closed on left string — 'off' | {'on'}
 OutDataTypeStr Output data type string — {'boolean'} |

'uint8'

Logical Operator (Logic)
 Operator Operator string — {'AND'} | 'OR' |

'NAND' | 'NOR' | 'XOR' |

'NXOR' | 'NOT'

 Inputs Number of input ports string — {'2'}
 IconShape Icon shape string — {'rectangular'} |

'distinctive'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 AllPortsSameDT Require all inputs and output

to have the same data type
string — {'off'} | 'on'

 OutDataTypeStr Output data type string — 'Inherit:
Logical (see

Configuration Parameters:

Optimization)'

| {'boolean'} |

'fixdt(1,16)'

Relational Operator (RelationalOperator)
 Operator Relational operator string — '==' | '~=' | '<'

| {'<='} | '>=' | '>'

| 'isInf' | 'isNaN' |

'isFinite'

 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}

6 Model and Block Parameters

6-124

Block (Type)/Parameter Dialog Box Prompt Values

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have the

same data type
string — {'off'} | 'on'

 OutDataTypeStr Output data type string — 'Inherit:
Logical (see

Configuration Parameters:

Optimization)'

| {'boolean'} |

'fixdt(1,16)'

Shift Arithmetic (ArithShift)
 BitShiftNumberSource Bits to shift > Source string — {'Dialog'} |

'Input port'

 BitShiftDirection Bits to shift > Direction string — 'Left' | 'Right' |
{'Bidirectional'}

 BitShiftNumber Bits to shift > Number string — {'8'}
 BinPtShiftNumber Binary points to shift >

Number
string — {'0'}

 DiagnosticForOORShift Diagnostic for out-of-range shift
value

string — {'None'} |
'Warning' | 'Error'

 CheckOORBitShift Check for out-of-range 'Bits to
shift' in generated code

string — {'off'} | 'on'

 nBitShiftRight Deprecated in R2011a
 nBinPtShiftRight Deprecated in R2011a

Lookup Tables Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Cosine (Cosine) (masked subsystem)
 Formula Output formula string — 'sin(2*pi*u)'

| {'cos(2*pi*u)'}

| 'exp(j*2*pi*u)' |

'sin(2*pi*u) and cos(2*pi*u)'

 Block-Specific Parameters

6-125

Block (Type)/Parameter Dialog Box Prompt Values

 NumDataPoints Number of data points for
lookup table

string — {'(2^5)+1'}

 OutputWordLength Output word length string — {'16'}
 InternalRulePriority Internal rule priority for

lookup table
string — {'Speed'} |
'Precision'

Direct Lookup Table (n-D) (LookupNDDirect)
 NumberOfTableDimensionsNumber of table

dimensions
string — '1' | {'2'} | '3' |
'4'

 InputsSelectThisObjectFromTableInputs select this object
from table

string — {'Element'} | 'Column'
| '2-D Matrix'

 TableIsInput Make table an input string — {'off'} | 'on'
 Table Table data string — {'[4 5 6;16 19 20;10

18 23]'}

 DiagnosticForOutOfRangeInputDiagnostic for out-of-range
input

string — 'None' | {'Warning'} |
'Error'

 SampleTime Sample time (-1 for
inherited)

string — {'-1'}

 TableMin Table minimum string — {'[]'}
 TableMax Table maximum string — {'[]'}
 TableDataTypeStr Table data type string — {'Inherit: Inherit

from 'Table data''} |

'double' | 'single' |

'int8' | 'uint8' | 'int16' |

'uint16' | 'int32' | 'uint32'

| 'boolean' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings
against changes by the
fixed-point tools

string — {'off'} | 'on'

 maskTabDims Deprecated in R2009b
 explicitNumDims Deprecated in R2009b

6 Model and Block Parameters

6-126

Block (Type)/Parameter Dialog Box Prompt Values

 outDims Deprecated in R2009b
 tabIsInput Deprecated in R2009b
 mxTable Deprecated in R2009b
 clipFlag Deprecated in R2009b
 samptime Deprecated in R2009b
Interpolation Using Prelookup (Interpolation_n-D)
 NumberOfTableDimensionsNumber of table

dimensions
string — '1' | {'2'} | '3' |
'4'

 Table Table data > Value string — {'sqrt([1:11]' *
[1:11])'}

 TableSource Table data > Source string — {'Dialog'} | 'Input
port'

 InterpMethod Interpolation method string — 'Flat' | {'Linear'}
 ExtrapMethod Extrapolation method string — 'Clip' | {'Linear'}
 ValidIndexMayReachLast Valid index input may

reach last index
string — {'off'} | 'on'

 DiagnosticForOutOfRange
 Input

Diagnostic for out-of-range
input

string — {'None'} | 'Warning' |
'Error'

 RemoveProtectionIndex Remove protection against
out-of-range index in
generated code

string — {'off'} | 'on'

 NumSelectionDims Number of sub-table
selection dimensions

string — {'0'}

 SampleTime Sample time (-1 for
inherited)

string — {'-1'}

 TableDataTypeStr Table data > Data Type string — 'Inherit: Inherit from
'Table data'' | {'Inherit:

Same as output'} | 'double' |

'single' | 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| 'uint32' | 'fixdt(1,16)'

 Block-Specific Parameters

6-127

Block (Type)/Parameter Dialog Box Prompt Values

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 TableMin Table data > Minimum string — {'[]'}
 TableMax Table data > Maximum string — {'[]'}
 IntermediateResultsDataTypeStrIntermediate results >

Data Type
string — {'Inherit: Inherit via
internal rule'} | 'Inherit:

Same as output' | 'double' |

'single' | 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| 'uint32' | 'fixdt(1,16,0)'

| 'fixdt(1,16,2^0,0)'

 OutDataTypeStr Output > Data Type string — 'Inherit: Inherit
via back propagation' |

{'Inherit: Inherit from

table data'} | 'double' |

'single' | 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| 'uint32' | 'fixdt(1,16,0)'

| 'fixdt(1,16,2^0,0)'

 OutMin Output > Minimum string — {'[]'}
 OutMax Output > Maximum string — {'[]'}
 InternalRulePriority Internal rule priority string — {'Speed'} |

'Precision'

 LockScale Lock data type settings
against changes by the
fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnIntegerOverflowSaturate on integer
overflow

string — {'off'} | 'on'

 CheckIndexInCode Deprecated in R2011a

6 Model and Block Parameters

6-128

Block (Type)/Parameter Dialog Box Prompt Values

n-D Lookup Table, 1-D Lookup Table, 2-D Lookup Table (Lookup_n-D)
 NumberOfTableDimensionsNumber of table

dimensions
string — '1' | '2' | '3' | '4'.
Default is ‘1’ for 1-D Lookup Table,
‘2’ for 2-D Lookup Table, ‘3’ for n-D
Lookup Table.

 Table Table data string — {'reshape(repmat([4
5 6;16 19 20;10 18 23],1,2),

[3,3,2])'}

 BreakpointsSpecificationBreakpoints specification string — {’Explicit values’} |
'Even spacing’

 BreakpointsForDimension1FirstPointFirst point string — {'1'}
 BreakpointsForDimension2FirstPointFirst point string — {'1'}
 BreakpointsForDimension3FirstPointFirst point string — {'1'}

 BreakpointsForDimension30FirstPointFirst point string — {'1'}
 BreakpointsForDimension1SpacingSpacing string — {'1'}
 BreakpointsForDimension2SpacingSpacing string — {'1'}
 BreakpointsForDimension3SpacingSpacing string — {'1'}

 BreakpointsForDimension30SpacingSpacing string — {'1'}
 BreakpointsForDimension1Breakpoints 1 string — {'[10,22,31]'}
 BreakpointsForDimension2Breakpoints 2 string — {'[10,22,31]'}
 BreakpointsForDimension3Breakpoints 3 string — {'[5, 7]'}

 BreakpointsForDimension30Breakpoints 30 string — {'[1:3]'}
 SampleTime Sample time (-1 for

inherited)
string — {'-1'}

 InterpMethod Interpolation method string — 'Flat' | {'Linear'} |
'Cubic spline'

 Block-Specific Parameters

6-129

Block (Type)/Parameter Dialog Box Prompt Values

 ExtrapMethod Extrapolation method string — 'Clip' | {'Linear'} |
'Cubic spline'

 UseLastTableValue Use last table value for
inputs at or above last
breakpoint

string — {'off'} | 'on'

 DiagnosticForOutOfRange
 Input

Diagnostic for out-of-range
input

string — {'None'} | 'Warning' |
'Error'

 RemoveProtectionInput Remove protection against
out-of-range input in
generated code

string — {'off'} | 'on'

 IndexSearchMethod Index search method string — 'Evenly spaced points'
| 'Linear search' | {'Binary

search'}

 BeginIndexSearchUsing
 PreviousIndexResult

Begin index search using
previous index result

string — {'off'} | 'on'

 UseOneInputPortForAll
 InputData

Use one input port for all
input data

string — {'off'} | 'on'

 SupportTunableTableSizeSupport tunable table size
in code generation

string — {'off'} | 'on'

 MaximumIndicesForEach
 Dimension

Maximum indices for each
dimension

string — {'[]'}

 TableDataTypeStr Table data > Data Type string — 'Inherit: Inherit from
'Table data'' | {'Inherit:

Same as output'} | 'double' |

'single' | 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| 'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 TableMin Table data > Minimum string — {'[]'}
 TableMax Table data > Maximum string — {'[]'}
 BreakpointsForDimension1
 DataTypeStr

Breakpoints 1 > Data Type string — {'Inherit: Same
as corresponding input'}

6 Model and Block Parameters

6-130

Block (Type)/Parameter Dialog Box Prompt Values

| 'Inherit: Inherit from

'Breakpoint data'' |

'double' | 'single' |

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 BreakpointsForDimension1
 Min

Breakpoints 1 > Minimum string — {'[]'}

 BreakpointsForDimension1
 Max

Breakpoints 1 > Maximum string — {'[]'}

 BreakpointsForDimension2
 DataTypeStr

Breakpoints 2 > Data Type string — {'Inherit: Same
as corresponding input'}

| 'Inherit: Inherit from

'Breakpoint data'' |

'double' | 'single' |

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 BreakpointsForDimension2
 Min

Breakpoints 2 > Minimum string — {'[]'}

 BreakpointsForDimension2
 Max

Breakpoints 2 > Maximum string — {'[]'}

 BreakpointsForDimension30
 DataTypeStr

Breakpoints 30 > Data
Type

string — {'Inherit: Same
as corresponding input'}

| 'Inherit: Inherit from

'Breakpoint data'' |

'double' | 'single' |

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

 Block-Specific Parameters

6-131

Block (Type)/Parameter Dialog Box Prompt Values

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 BreakpointsForDimension30
 Min

Breakpoints 30 > Minimum string — {'[]'}

 BreakpointsForDimension30
 Max

Breakpoints 30 > Maximum string — {'[]'}

 FractionDataTypeStr Fraction > Data Type string — {'Inherit: Inherit via
internal rule'} | 'double' |

'single' | 'fixdt(1,16,0)'

 IntermediateResults
 DataTypeStr

Intermediate results >
Data Type

string — 'Inherit: Inherit via
internal rule' | {'Inherit:

Same as output'} | 'double' |

'single' | 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| 'uint32' | 'fixdt(1,16,0)'

| 'fixdt(1,16,2^0,0)'

 OutDataTypeStr Output > Data Type string — 'Inherit: Inherit
via back propagation' |

'Inherit: Inherit from table

data' | {'Inherit: Same as

first input'} | 'double' |

'single' | 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| 'uint32' | 'fixdt(1,16,0)'

| 'fixdt(1,16,2^0,0)'

 OutMin Output > Minimum string — {'[]'}
 OutMax Output > Maximum string — {'[]'}
 InternalRulePriority Internal rule priority string — {'Speed'} |

'Precision'

 InputSameDT Require all inputs to have
the same data type

string — 'off' | {'on'}

 LockScale Lock data type settings
against changes by the
fixed-point tools

string — {'off'} | 'on'

6 Model and Block Parameters

6-132

Block (Type)/Parameter Dialog Box Prompt Values

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | 'Floor'

| 'Nearest' | 'Round' |

{'Simplest'} | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer
overflow

string — {'off'} | 'on'

 ProcessOutOfRangeInput Deprecated in R2009b
Lookup Table Dynamic (Lookup Table Dynamic) (masked subsystem)
 LookUpMeth Lookup Method string — 'Interpolation-

Extrapolation' |

{'Interpolation-Use End

Values'} | 'Use Input

Nearest' | 'Use Input Below'

| 'Use Input Above'

 OutDataTypeStr Output data type string — {'fixdt('double')'}
| 'Inherit: Inherit via

back propagation' | 'double'

| 'single' | 'int8' |

'uint8' | 'int16' | 'uint16'

| 'int32' | 'uint32' |

'boolean' | 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type

setting against changes by
the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round'|

'Simplest' | 'Zero'

 Block-Specific Parameters

6-133

Block (Type)/Parameter Dialog Box Prompt Values

 DoSatur Saturate to max or min
when overflows occur

string — {'off'} | 'on'

Prelookup (PreLookup)
 BreakpointsSpecificationSpecification string — {'Explicit values'} |

'Even spacing'

 BreakpointsFirstPoint First point string — {'10'}
 BreakpointsSpacing Spacing string — {'10'}
 BreakpointsNumPoints Number of points string — {'11'}
 BreakpointsData Value string — {'[10:10:110]'}
 BreakpointsDataSource Source string — {'Dialog'} | 'Input

port'

 IndexSearchMethod Index search method string — 'Evenly spaced points'
| 'Linear search' | {'Binary

search'}

 BeginIndexSearchUsing
 PreviousIndexResult

Begin index search using
previous index result

string — {'off'} | 'on'

 OutputOnlyTheIndex Output only the index string — {'off'} | 'on'
 ExtrapMethod Extrapolation method string — 'Clip' | {'Linear'}
 UseLastBreakpoint Use last breakpoint for

input at or above upper
limit

string — {'off'} | 'on'

 DiagnosticForOutOfRange
 Input

Diagnostic for out-of-range
input

string — {'None'} | 'Warning' |
'Error'

 RemoveProtectionInput Remove protection against
out-of-range input in
generated code

string — {'off'} | 'on'

 SampleTime Sample time (-1 for
inherited)

string — {'-1'}

 BreakpointDataTypeStr Breakpoint > Data Type string — {'Inherit: Same as
input'} | 'Inherit: Inherit

from 'Breakpoint data''

| 'double' | 'single' |

6 Model and Block Parameters

6-134

Block (Type)/Parameter Dialog Box Prompt Values

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 BreakpointMin Breakpoint > Minimum string — {'[]'}
 BreakpointMax Breakpoint > Maximum string — {'[]'}
 IndexDataTypeStr Index > Data Type string — 'int8' | 'uint8' |

'int16' | 'uint16' | 'int32'

| {'uint32'} | 'fixdt(1,16)'

 FractionDataTypeStr Fraction > Data Type string — {'Inherit: Inherit via
internal rule'} | 'double' |

'single' | 'fixdt(1,16,0)'

 LockScale Lock output data type
setting against changes by
the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 ProcessOutOfRangeInput Deprecated in R2011a
Sine (Sine) (masked subsystem)
 Formula Output formula string — {'sin(2*pi*u)'}

| 'cos(2*pi*u)' |

'exp(j*2*pi*u)' |

'sin(2*pi*u) and cos(2*pi*u)'

 NumDataPoints Number of data points for
lookup table

string — {'(2^5)+1'}

 OutputWordLength Output word length string — {'16'}
 InternalRulePriority Internal rule priority for

lookup table
string — {'Speed'} |
'Precision'

Math Operations Library Block Parameters

 Block-Specific Parameters

6-135

Block (Type)/Parameter Dialog Box Prompt Values

Abs (Abs)
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit:

Inherit via internal

rule' | 'Inherit:

Inherit via back

propagation' | {'Inherit:

Same as input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Add (Sum)
 IconShape Icon shape string — {'rectangular'} |

'round'

 Inputs List of signs string — {'++'}
 CollapseMode Sum over string — {'All dimensions'}

| 'Specified dimension'

 CollapseDim Dimension string — {'1'}

6 Model and Block Parameters

6-136

Block (Type)/Parameter Dialog Box Prompt Values

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have the

same data type
string — {'off'} | 'on'

 AccumDataTypeStr Accumulator data type string — {'Inherit:
Inherit via internal

rule'} | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'Inherit: Same as

first input' | 'Inherit:

Same as accumulator'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger Saturate on integer overflow string — {'off'} | 'on'

 Block-Specific Parameters

6-137

Block (Type)/Parameter Dialog Box Prompt Values

 Overflow

Algebraic Constraint (Algebraic Constraint) (masked subsystem)
 z0 Initial guess string — {'0'}
Assignment (Assignment)
 NumberOfDimensions Number of output dimensions string — {'1'}
 IndexMode Index mode string — 'Zero-based' |

{'One-based'}

 OutputInitialize Initialize output (Y) string — {'Initialize
using input port <Y0>'}

| 'Specify size for each

dimension in table'

 IndexOptionArray Index Option string — 'Assign all' |
{'Index vector (dialog)'}

| 'Index vector (port)' |

'Starting index (dialog)'

| 'Starting index (port)'

 IndexParamArray Index cell array
 OutputSizeArray Output Size cell array
 DiagnosticForDimensions Action if any output element is

not assigned
string — 'Error' |
'Warning' | {'None'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 IndexOptions See IndexOptionArray

parameter for more
information.

 Indices See IndexParamArray
parameter for more
information.

 OutputSizes See OutputSizeArray
parameter for more
information.

Bias (Bias)
 Bias Bias string — {'0.0'}

6 Model and Block Parameters

6-138

Block (Type)/Parameter Dialog Box Prompt Values

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Complex to Magnitude-Angle (ComplexToMagnitudeAngle)
 Output Output string — 'Magnitude' |

'Angle' | {'Magnitude and

angle'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Complex to Real-Imag (ComplexToRealImag)
 Output Output string — 'Real' | 'Imag' |

{'Real and imag'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Divide (Product)
 Inputs Number of inputs string — {'*/'}
 Multiplication Multiplication string — {'Element-

wise(.*)'} | 'Matrix(*)'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have same

data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit:

Inherit via internal

rule'} | 'Inherit:

Inherit via back

propagation' | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-139

Block (Type)/Parameter Dialog Box Prompt Values

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Dot Product (DotProduct)
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have same

data type
string — 'off' | {'on'}

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit:

Inherit via internal

rule'} | 'Inherit:

Inherit via back

propagation' | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b

6 Model and Block Parameters

6-140

Block (Type)/Parameter Dialog Box Prompt Values

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Find (Find)
 IndexOutputFormat Index output format string — {'Linear indices'}

| 'Subscripts'

NumberOfInputDimensions

Number of input dimensions integer — {'1'}

 IndexMode Index mode string — {'Zero-based'} |
'One-based'

 ShowOutputForNonzero
InputValues

Show output port for nonzero
input values

string — {'off'} | 'on'

 SampleTime Sample time (–1 for inherited) string — {'-1'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'fixdt(1,16)'

Gain (Gain)
 Gain Gain string — {'1'}
 Multiplication Multiplication string — {'Element-

wise(K.*u)'} |

'Matrix(K*u)' |

'Matrix(u*K)' |

'Matrix(K*u) (u vector)'

 SampleTime Sample time (-1 for inherited) string — {'-1'}

 Block-Specific Parameters

6-141

Block (Type)/Parameter Dialog Box Prompt Values

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'} |

'Inherit: Inherit via

back propagation' |

'Inherit: Same as input'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 ParamMin Parameter minimum string — {'[]'}
 ParamMax Parameter maximum string — {'[]'}
 ParamDataTypeStr Parameter data type string — {'Inherit: Inherit

via internal rule'} |

'Inherit: Same as input'

| 'Inherit: Inherit

from 'Gain'' | 'double'

| 'single' | 'int8'

| 'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-142

Block (Type)/Parameter Dialog Box Prompt Values

Magnitude-Angle to Complex (MagnitudeAngleToComplex)
 Input Input string — 'Magnitude' |

'Angle' | {'Magnitude and

angle'}

 ConstantPart Magnitude or Angle string — {'0'}
 ApproximationMethod Approximation method string — {'None'} |

'CORDIC'

 NumberOfIterations Number of iterations string — {'11'}
ScaleReciprocalGainFactor Scale output by reciprocal of

gain factor
string — 'off' | {'on'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Math Function (Math)
 Operator Function string — {'exp'} | 'log'

| '10^u' | 'log10' |

'magnitude^2' | 'square'

| 'pow' | 'conj' |

'reciprocal' | 'hypot'

| 'rem' | 'mod' |

'transpose' | 'hermitian'

 OutputSignalType Output signal type string — {'auto'} | 'real'
| 'complex'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via internal rule'

| 'Inherit: Inherit

via back propagation'

| {'Inherit: Same

as first input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

 Block-Specific Parameters

6-143

Block (Type)/Parameter Dialog Box Prompt Values

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — 'off' | {'on'}

Matrix Concatenate (Concatenate)
 NumInputs Number of inputs string — {'2'}
 Mode Mode string — 'Vector' |

{'Multidimensional

array'}

 ConcatenateDimension Concatenate dimension string — {'2'}
MinMax (MinMax)
 Function Function string — {'min'} | 'max'
 Inputs Number of input ports string — {'1'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have the

same data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'double' | 'single'

6 Model and Block Parameters

6-144

Block (Type)/Parameter Dialog Box Prompt Values

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

MinMax Running Resettable (MinMax Running Resettable) (masked subsystem)
 Function Function string — {'min'} | 'max'
 vinit Initial condition string — {'0.0'}
Permute Dimensions (PermuteDimensions)
 Order Order string — {'[2,1]'}
Polynomial (Polyval)
 coefs Polynomial Coefficients string —

{'[+2.081618890e-019,

-1.441693666e-014,

+4.719686976e-010,

-8.536869453e-006,

+1.621573104e-001,

-8.087801117e+001]'}

Product (Product)
 Inputs Number of inputs string — {'2'}
 Multiplication Multiplication string — {'Element-

wise(.*)'} | 'Matrix(*)'

 CollapseMode Multiply over string — {'All dimensions'}
| 'Specified dimension'

 Block-Specific Parameters

6-145

Block (Type)/Parameter Dialog Box Prompt Values

 CollapseDim Dimension string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have same

data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit:

Inherit via internal

rule'} | 'Inherit:

Inherit via back

propagation' | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | 'Floor'

| 'Nearest' | 'Round' |

'Simplest' | {'Zero'}

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Product of Elements (Product)
 Inputs Number of inputs string — {'*'}
 Multiplication Multiplication string — {'Element-

wise(.*)'} | 'Matrix(*)'

 CollapseMode Multiply over string — {'All dimensions'}
| 'Specified dimension'

6 Model and Block Parameters

6-146

Block (Type)/Parameter Dialog Box Prompt Values

 CollapseDim Dimension string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have same

data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit:

Inherit via internal

rule'} | 'Inherit:

Inherit via back

propagation' | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Real-Imag to Complex (RealImagToComplex)
 Input Input string — 'Real' | 'Imag' |

{'Real and imag'}

 ConstantPart Real part or Imag part string — {'0'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Reciprocal Sqrt (Sqrt)

 Block-Specific Parameters

6-147

Block (Type)/Parameter Dialog Box Prompt Values

 Operator Function string — 'sqrt' |
'signedSqrt' | {'rSqrt'}

 OutputSignalType Output signal type string — {'auto'} | 'real'
| 'complex'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via internal rule'

| 'Inherit: Inherit

via back propagation'

| {'Inherit: Same

as first input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type string — {'Inherit: Inherit
via internal rule'}

| 'Inherit: Inherit

from input' | 'Inherit:

Inherit from output'

| 'double' | 'single'

6 Model and Block Parameters

6-148

Block (Type)/Parameter Dialog Box Prompt Values

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 AlgorithmType Method string — 'Exact' |
{'Newton-Raphson'}

 Iterations Number of iterations string — {'3'}
Reshape (Reshape)
 OutputDimensionality Output dimensionality string — {'1-D array'} |

'Column vector (2-D)'

| 'Row vector (2-D)' |

'Customize' | 'Derive

from reference input

port'

 OutputDimensions Output dimensions string — {'[1,1]'}
Rounding Function (Rounding)
 Operator Function string — {'floor'} | 'ceil'

| 'round' | 'fix'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Sign (Signum)
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Signed Sqrt (Sqrt)
 Operator Function string — 'sqrt' |

{'signedSqrt'} | 'rSqrt'

 OutputSignalType Output signal type string — {'auto'} | 'real'
| 'complex'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}

 Block-Specific Parameters

6-149

Block (Type)/Parameter Dialog Box Prompt Values

 OutDataTypeStr Output data type string — 'Inherit: Inherit
via internal rule'

| 'Inherit: Inherit

via back propagation'

| {'Inherit: Same

as first input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type string — {'Inherit: Inherit
via internal rule'}

| 'Inherit: Inherit

from input' | 'Inherit:

Inherit from output'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 AlgorithmType Method string — {'Exact'} |
'Newton-Raphson'

 Iterations Number of iterations string — {'3'}

6 Model and Block Parameters

6-150

Block (Type)/Parameter Dialog Box Prompt Values

Sine Wave Function (Sin)
 SineType Sine type string — {'Time based'} |

'Sample based'

 TimeSource Time string — 'Use simulation
time' | {'Use external

signal'}

 Amplitude Amplitude string — {'1'}
 Bias Bias string — {'0'}
 Frequency Frequency string — {'1'}
 Phase Phase string — {'0'}
 Samples Samples per period string — {'10'}
 Offset Number of offset samples string — {'0'}
 SampleTime Sample time string — {'0'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

Slider Gain (Slider Gain) (masked subsystem)
 low Low string — {'0'}
 gain Gain string — {'1'}
 high High string — {'2'}
Sqrt (Sqrt)
 Operator Function string — {'sqrt'} |

'signedSqrt' | 'rSqrt'

 OutputSignalType Output signal type string — {'auto'} | 'real'
| 'complex'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via internal rule'

| 'Inherit: Inherit

 Block-Specific Parameters

6-151

Block (Type)/Parameter Dialog Box Prompt Values

via back propagation'

| {'Inherit: Same

as first input'} |

'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type string — {'Inherit: Inherit
via internal rule'}

| 'Inherit: Inherit

from input' | 'Inherit:

Inherit from output'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 AlgorithmType Method string — {'Exact'} |
'Newton-Raphson'

 Iterations Number of iterations string — {'3'}
Squeeze (Squeeze) (masked subsystem)
 None None None

6 Model and Block Parameters

6-152

Block (Type)/Parameter Dialog Box Prompt Values

Subtract (Sum)
 IconShape Icon shape string — {'rectangular'} |

'round'

 Inputs List of signs string — {'+-'}
 CollapseMode Sum over string — {'All dimensions'}

| 'Specified dimension'

 CollapseDim Dimension string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have the

same data type
string — {'off'} | 'on'

 AccumDataTypeStr Accumulator data type string — {'Inherit:
Inherit via internal

rule'} | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'Inherit: Same as

first input' | 'Inherit:

Same as accumulator'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

 Block-Specific Parameters

6-153

Block (Type)/Parameter Dialog Box Prompt Values

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Sum (Sum)
 IconShape Icon shape string — 'rectangular' |

{'round'}

 Inputs List of signs string — {'|++'}
 CollapseMode Sum over string — {'All dimensions'}

| 'Specified dimension'

 CollapseDim Dimension string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have the

same data type
string — {'off'} | 'on'

 AccumDataTypeStr Accumulator data type string — {'Inherit:
Inherit via internal

rule'} | 'Inherit:

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}

6 Model and Block Parameters

6-154

Block (Type)/Parameter Dialog Box Prompt Values

 OutDataTypeStr Output data type string — {'Inherit: Inherit
via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'Inherit: Same as

first input' | 'Inherit:

Same as accumulator'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Sum of Elements (Sum)
 IconShape Icon shape string — {'rectangular'} |

'round'

 Inputs List of signs string — {'+'}
 CollapseMode Sum over string — {'All dimensions'}

| 'Specified dimension'

 CollapseDim Dimension string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all inputs to have the

same data type
string — {'off'} | 'on'

 AccumDataTypeStr Accumulator data type string — {'Inherit:
Inherit via internal

rule'} | 'Inherit:

 Block-Specific Parameters

6-155

Block (Type)/Parameter Dialog Box Prompt Values

Same as first input'

| 'double' | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'}

| 'Inherit: Inherit

via back propagation'

| 'Inherit: Same as

first input' | 'Inherit:

Same as accumulator'

| 'double' | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Trigonometric Function (Trigonometry)
 Operator Function string — {'sin'} | 'cos' |

'tan' | 'asin' | 'acos'

| 'atan' | 'atan2' |

'sinh' | 'cosh' | 'tanh'

6 Model and Block Parameters

6-156

Block (Type)/Parameter Dialog Box Prompt Values

| 'asinh' | 'acosh' |

'atanh' | 'sincos' | 'cos

+ jsin'

 ApproximationMethod Approximation method string — {'None'} |
'CORDIC'

 NumberOfIterations Number of iterations string — {'11'}
 OutputSignalType Output signal type string — {'auto'} | 'real'

| 'complex'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Unary Minus (UnaryMinus)
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

Vector Concatenate (Concatenate)
 NumInputs Number of inputs string — {'2'}
 Mode Mode string — {'Vector'} |

'Multidimensional array'

Weighted Sample Time Math (SampleTimeMath)
 TsampMathOp Operation string — {'+'} | '-' | '*'

| '/' | 'Ts Only' | '1/Ts

Only'

 weightValue Weight value string — {'1.0'}
 TsampMathImp Implement using string — {'Online

Calculations'} | 'Offline

Scaling Adjustment'

 OutDataTypeStr Output data type string — {'Inherit via
internal rule'} |

'Inherit via back

propagation'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

 Block-Specific Parameters

6-157

Block (Type)/Parameter Dialog Box Prompt Values

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 OutputDataTypeScaling
 Mode

Deprecated in R2009b

 DoSatur Deprecated in R2009b

Model Verification Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Assertion (Assertion)
 Enabled Enable assertion string — 'off' | {'on'}
 AssertionFailFcn Simulation callback when

assertion fails
string — {''}

 StopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Check Dynamic Gap (Checks_DGap) (masked subsystem)
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

Check Dynamic Range (Checks_DRange) (masked subsystem)
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

6 Model and Block Parameters

6-158

Block (Type)/Parameter Dialog Box Prompt Values

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

Check Static Gap (Checks_SGap) (masked subsystem)
 max Upper bound string — {'100'}
 max_included Inclusive upper bound string — 'off' | {'on'}
 min Lower bound string — {'0'}
 min_included Inclusive lower bound string — 'off' | {'on'}
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

Check Static Range (Checks_SRange) (masked subsystem)
 max Upper bound string — {'100'}
 max_included Inclusive upper bound string — 'off' | {'on'}
 min Lower bound string — {'0'}
 min_included Inclusive lower bound string — 'off' | {'on'}
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'

 Block-Specific Parameters

6-159

Block (Type)/Parameter Dialog Box Prompt Values

 icon Select icon type string — {'graphic'} |
'text'

Check Discrete Gradient (Checks_Gradient) (masked subsystem)
 gradient Maximum gradient string — {'1'}
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

Check Dynamic Lower Bound (Checks_DMin) (masked subsystem)
 Enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

Check Dynamic Upper Bound (Checks_DMax) (masked subsystem)
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

6 Model and Block Parameters

6-160

Block (Type)/Parameter Dialog Box Prompt Values

Check Input Resolution (Checks_Resolution) (masked subsystem)
 resolution Resolution string — {'1'}
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
Check Static Lower Bound (Checks_SMin) (masked subsystem)
 min Lower bound string — {'0'}
 min_included Inclusive boundary string — 'off' | {'on'}
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

Check Static Upper Bound (Checks_SMax) (masked subsystem)
 max Upper bound string — {'0'}
 max_included Inclusive boundary string — 'off' | {'on'}
 enabled Enable assertion string — 'off' | {'on'}
 callback Simulation callback when

assertion fails (optional)
string — {''}

 stopWhenAssertionFail Stop simulation when assertion
fails

string — 'off' | {'on'}

 export Output assertion signal string — {'off'} | 'on'
 icon Select icon type string — {'graphic'} |

'text'

 Block-Specific Parameters

6-161

Model-Wide Utilities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Block Support Table (Block Support Table) (masked subsystem)
DocBlock (DocBlock) (masked subsystem)
 ECoderFlag Embedded Coder Flag string — {''}
 DocumentType Document Type string — {'Text'} | 'RTF' |

'HTML'

Model Info (CMBlock) (masked subsystem)
 InitialSaveTempField InitialSaveTempField string — {''}
 InitialBlockCM InitialBlockCM string — {'None'}
 BlockCM BlockCM string — {'None'}
 Frame Show block frame string — 'off' | {'on'}
 SaveTempField SaveTempField string — {''}
 DisplayStringWithTags DisplayStringWithTags string — {'Model Info'}
 MaskDisplayString MaskDisplayString string — {'Model Info'}
 HorizontalTextAlignment Horizontal text alignment string — {'Center'}
 LeftAlignmentValue LeftAlignmentValue string — {'0.5'}
 SourceBlockDiagram SourceBlockDiagram string — {'untitled'}
 TagMaxNumber TagMaxNumber string — {'20'}
 CMTag1 CMTag1 string — {''}
 CMTag2 CMTag2 string — {''}
 CMTag3 CMTag3 string — {''}
 CMTag4 CMTag4 string — {''}
 CMTag5 CMTag5 string — {''}
 CMTag6 CMTag6 string — {''}
 CMTag7 CMTag7 string — {''}
 CMTag8 CMTag8 string — {''}
 CMTag9 CMTag9 string — {''}
 CMTag10 CMTag10 string — {''}

6 Model and Block Parameters

6-162

Block (Type)/Parameter Dialog Box Prompt Values

 CMTag11 CMTag11 string — {''}
 CMTag12 CMTag12 string — {''}
 CMTag13 CMTag13 string — {''}
 CMTag14 CMTag14 string — {''}
 CMTag15 CMTag15 string — {''}
 CMTag16 CMTag16 string — {''}
 CMTag17 CMTag17 string — {''}
 CMTag18 CMTag18 string — {''}
 CMTag19 CMTag19 string — {''}
 CMTag20 CMTag20 string — {''}
Timed-Based Linearization (Timed Linearization) (masked subsystem)
 LinearizationTime Linearization time string — {'1'}
 SampleTime Sample time (of linearized

model)
string — {'0'}

Trigger-Based Linearization (Triggered Linearization) (masked subsystem)
 TriggerType Trigger type string — {'rising'} |

'falling' | 'either' |

'function-call'

 SampleTime Sample time (of linearized
model)

string — {'0'}

Ports & Subsystems Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Action Port (ActionPort)
 InitializeStates States when execution is

resumed
string — {'held'} | 'reset'

 PropagateVarSize Propagate sizes of variable-size
signals

string — {'Only when
execution is resumed'} |

'During execution'

Atomic Subsystem (SubSystem)

 Block-Specific Parameters

6-163

Block (Type)/Parameter Dialog Box Prompt Values

 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Function packaging string — {'Auto'} |

'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}

6 Model and Block Parameters

6-164

Block (Type)/Parameter Dialog Box Prompt Values

 RTWFileNameOpts File name options string — {'Auto'} | 'Use
subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 FunctionInterfaceSpec Function interface

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'void_void'} |
'Allow arguments'

 FunctionWithSeparateData“Function with separate data”
on page 1-1882

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'off'} | 'on'

 RTWMemSecFuncInitTerm “Memory section for initialize/
terminate functions” on page
1-1884

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 RTWMemSecFuncExecute “Memory section for execution
functions” on page 1-1885

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 RTWMemSecDataConstants “Memory section for constants”
on page 1-1886

string — {'Inherit from
model'} | 'Default' | list of

 Block-Specific Parameters

6-165

Block (Type)/Parameter Dialog Box Prompt Values

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

memory sections from model's
package

 RTWMemSecDataInternal “Memory section for internal
data” on page 1-1888

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 RTWMemSecDataParameters “Memory section for
parameters” on page 1-1890

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 SimViewingDevice No dialog box prompt

If set to 'on', designates the
block as a Signal Viewing
Subsystem — an atomic
subsystem that encapsulates
processing and viewing of

string — {'off'} | 'on'

6 Model and Block Parameters

6-166

Block (Type)/Parameter Dialog Box Prompt Values

signals received from the target
system in External mode. For
more information, see “Signal
Viewing Subsystems”.

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Code Reuse Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}

 Block-Specific Parameters

6-167

Block (Type)/Parameter Dialog Box Prompt Values

 RTWSystemCode Function packaging string — 'Auto' | 'Inline'
| 'Nonreusable function'

| {'Reusable function'}

 RTWFcnNameOpts Function name options string — 'Auto' | {'Use
subsystem name'} | 'User

specified'

 RTWFcnName Function name string — {''}
 RTWFileNameOpts File name options string — 'Auto' | {'Use

subsystem name'} | 'Use

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 RTWMemSecFuncInitTerm “Memory section for initialize/

terminate functions” on page
1-1884

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 RTWMemSecFuncExecute “Memory section for execution
functions” on page 1-1885

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 RTWMemSecDataConstants “Memory section for constants”
on page 1-1886

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

6 Model and Block Parameters

6-168

Block (Type)/Parameter Dialog Box Prompt Values

 RTWMemSecDataInternal “Memory section for internal
data” on page 1-1888

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 RTWMemSecDataParameters “Memory section for
parameters” on page 1-1890

This parameter requires a
license for Embedded Coder
software and an ERT-based
system target file.

string — {'Inherit from
model'} | 'Default' | list of
memory sections from model's
package

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Configurable Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 Block-Specific Parameters

6-169

Block (Type)/Parameter Dialog Box Prompt Values

not be used in new models or
when updating existing models.

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {'self'}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — {'off'} | 'on'
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Function packaging string — {'Auto'} |

'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}
 RTWFileNameOpts File name options string — {'Auto'} | 'Use

subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}

6 Model and Block Parameters

6-170

Block (Type)/Parameter Dialog Box Prompt Values

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 SimViewingDevice No dialog box prompt

If set to 'on', designates the
block as a Signal Viewing
Subsystem — an atomic
subsystem that encapsulates
processing and viewing of
signals received from the target
system in External mode. For
more information, see “Signal
Viewing Subsystems”.

string — {'off'} | 'on'

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual No dialog box prompt boolean — {'on'} | 'off'

 Block-Specific Parameters

6-171

Block (Type)/Parameter Dialog Box Prompt Values

Read-only
Enable (EnablePort)
 StatesWhenEnabling States when enabling string — {'held'} | 'reset'
 PropagateVarSize Propagate sizes of variable-size

signals
string — {'Only when
enabling'} | 'During

execution'

 ShowOutputPort Show output port string — {'off'} | 'on'
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
Enabled and Triggered Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

6 Model and Block Parameters

6-172

Block (Type)/Parameter Dialog Box Prompt Values

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Function packaging string — {'Auto'} |

'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}
 RTWFileNameOpts File name options string — {'Auto'} | 'Use

subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Enabled Subsystem (SubSystem)
 ShowPortLabels Show port labels string — 'none' |

{'FromPortIcon'} |

 Block-Specific Parameters

6-173

Block (Type)/Parameter Dialog Box Prompt Values

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Function packaging string — {'Auto'} |

'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}
 RTWFileNameOpts File name options string — {'Auto'} | 'Use

subsystem name' | 'Use

6 Model and Block Parameters

6-174

Block (Type)/Parameter Dialog Box Prompt Values

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
For Each(ForEach)
 InputPartition Partition cell array of strings
 InputPartitionDimension Partition dimension for input

signal
cell array of strings

 InputPartitionWidth Width of partition for input
signal

cell array of strings

 OutputConcatenationDimensionConcatenation dimension of
output signal

cell array of strings

For Iterator (ForIterator)
 ResetStates States when starting string — {'held'} | 'reset'
 IterationSource Iteration limit source string — {'internal'} |

'external'

 IterationLimit Iteration limit string — {'5'}
 ExternalIncrement Set next i (iteration variable)

externally
string — {'off'} | 'on'

 Block-Specific Parameters

6-175

Block (Type)/Parameter Dialog Box Prompt Values

 ShowIterationPort Show iteration variable string — 'off' | {'on'}
 IndexMode Index mode string — 'Zero-based' |

{'One-based'}

 IterationVariable
 DataType

Iteration variable data type string — {'int32'} |
'int16' | 'int8' |

'double'

For Iterator Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}

6 Model and Block Parameters

6-176

Block (Type)/Parameter Dialog Box Prompt Values

 RTWSystemCode Function packaging string — {'Auto'} |
'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}
 RTWFileNameOpts File name options string — {'Auto'} | 'Use

subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation .
Set by Fixed-point
instrumentation mode on the
Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Function-Call Generator (Function-Call Generator) (masked subsystem)
 sample_time Sample time string — {'1'}
 numberOfIterations Number of iterations string — {'1'}
Function-Call Subsystem (SubSystem)

 Block-Specific Parameters

6-177

Block (Type)/Parameter Dialog Box Prompt Values

 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Function packaging string — {'Auto'} |

'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}

6 Model and Block Parameters

6-178

Block (Type)/Parameter Dialog Box Prompt Values

 RTWFileNameOpts File name options string — {'Auto'} | 'Use
subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
If (If)
 NumInputs Number of inputs string — {'1'}
 IfExpression If expression (e.g., u1 ~= 0) string — {'u1 > 0'}
 ElseIfExpressions Elseif expressions (comma-

separated list, e.g., u2 ~= 0,
u3(2) < u2)

string — {''}

 ShowElse Show else condition string — 'off' | {'on'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
If Action Subsystem (SubSystem)
 ShowPortLabels Show port labels string — 'none' |

{'FromPortIcon'} |

'FromPortBlockName' |

 Block-Specific Parameters

6-179

Block (Type)/Parameter Dialog Box Prompt Values

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Function packaging string — {'Auto'} |

'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Function name options string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Function name string — {''}
 RTWFileNameOpts File name options string — {'Auto'} | 'Use

subsystem name' | 'Use

6 Model and Block Parameters

6-180

Block (Type)/Parameter Dialog Box Prompt Values

function name' | 'User

specified'

 RTWFileName File name (no extension) string — {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'MinMaxAndOverflow' |

'OverflowOnly' | 'Off'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
In1 (Inport)
 Port Port number string — {'1'}
 IconDisplay Icon display string — 'Signal name' |

{'Port number'} | 'Port

number and signal name'

 LatchByDelaying
 OutsideSignal

Latch input by delaying outside
signal

string — {'off'} | 'on'

 LatchInputFor
 FeedbackSignals

Latch input for feedback
signals of function-call
subsystem outputs

string — {'off'} | 'on'

 Interpolate Interpolate data string — 'off' | {'on'}
 UseBusObject Specify properties via bus

object
string — {'off'} | 'on'

 BusObject Bus object for specifying bus
properties

string — {'BusObject'}

 BusOutputAsStruct Output as nonvirtual bus string — {'off'} | 'on'

 Block-Specific Parameters

6-181

Block (Type)/Parameter Dialog Box Prompt Values

 PortDimensions Port dimensions (-1 for
inherited)

string — {'-1'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 SignalType Signal type string — {'auto'} | 'real'
| 'complex'

 SamplingMode Sampling mode string — {'auto'} | 'Sample
based' | 'Frame based'

Model (ModelReference)
 ModelNameDialog The name of the referenced

model exactly as you typed
it in, with any surrounding
whitespace removed. When
you set ModelNameDialog
programmatically or with the
GUI, Simulink automatically
sets the values of ModelName
and ModelFile based on the
value of ModelNameDialog.

string — {'<Enter Model
Name>'}

 ModelName The value of
ModelNameDialog stripped

string — Set automatically when
ModelNameDialog is set.

6 Model and Block Parameters

6-182

Block (Type)/Parameter Dialog Box Prompt Values

of any filename extension
that you provided. For
backward compatibility,
setting ModelName
programatically actually sets
ModelNameDialog, which then
sets ModelName as described.
You cannot use get_param
to obtain the ModelName of a
protected model, because the
name without a suffix would
be ambiguous. Use get_param
on ModelFile instead. You
can test ProtectedModel to
determine programmatically
whether a referenced model is
protected.

 ModelFile The value of
ModelNameDialog with
a filename extension. The
suffix of the first match
Simulink finds becomes
the suffix of ModelFile.
Setting ModelFile
programmatically actually sets
ModelNameDialog, which then
sets ModelFile as described.

string — Set automatically when
ModelNameDialog is set.

 ProtectedModel Read-only boolean indicating
whether the model referenced
by the block is protected (on) or
unprotected (off).

boolean — 'off' | 'on'
— Set automatically when
ModelNameDialog is set.

 ParameterArgumentNames Model arguments string — {''}
 ParameterArgumentValues Model argument values (for

this instance)
string — {''}

 SimulationMode Specifies whether to simulate
the model by generating

string — {'Normal'}
| 'Accelerator' |

 Block-Specific Parameters

6-183

Block (Type)/Parameter Dialog Box Prompt Values

and executing code or by
interpreting the model in
Simulink software.

'Software-in-the-loop

(SIL)' | 'Processor-in-

the-loop (PIL)'

 Variant Specifies whether the Model
block references variant
models.

string — {'off'} | 'on'

An array of variant structures
where each element specifies
one variant. The structure
fields are as follows:

array — []

variant.Name – The name of
the Simulink.Variant object
that represents the variant to
which this element applies.

string — {''}

variant.ModelName – The
name of the referenced model
associated with the specified
variant object in this Model
block.

string — {''}

variant.ParameterArgument

 Names – Noneditable string
containing the names of the
model arguments for which
the Model block must supply
values.

string — {''}

variant.ParameterArgument

 Values – The values to
supply for the model arguments
when this variant is the active
variant.

string — {''}

 Variants

variant.SimulationMode

– The execution mode to use
when this variant is the active
variant.

string — {'Accelerator'} |
'Normal' | 'Processor-in-

the-loop (PIL)'

6 Model and Block Parameters

6-184

Block (Type)/Parameter Dialog Box Prompt Values

 OverrideUsingVariant Whether to override the variant
conditions and make a specified
variant the active variant, and
if so, the name of that variant.

string — {''}
The value is the empty string
if no overriding variant object
is specified; or the name of the
overriding object.

 ActiveVariant The variant that is currently
active, either because its
variant condition is true or
OverrideUsingVariant

has overridden the variant
conditions and specified this
variant.

string — {''}
The value is the empty string if
no variant is active; or the name
of the active variant.

GeneratePreprocessor

 Conditionals

Locally controls whether
generated code contains
preprocessor conditionals.
This parameter applies
only to Simulink Coder code
generation and has no effect
on the behavior of a model in
Simulink.

The parameter is available
only for ERT targets. For more
information, see “Variant
Systems”.

string — {'off'} | 'on'

 AvailSigsInstanceProps handle vector — {''}
 AvailSigsDefaultProps handle vector — {''}
 DefaultDataLogging string — {'off'} | 'on'
Out1 (Outport)
 Port Port number string — {'1'}
 IconDisplay Icon display string — 'Signal name' |

{'Port number'} | 'Port

number and signal name'

 UseBusObject Specify properties via bus
object

string — {'off'} | 'on'

 Block-Specific Parameters

6-185

Block (Type)/Parameter Dialog Box Prompt Values

 BusObject Bus object for validating input
bus

string — {'BusObject'}

 BusOutputAsStruct Output as nonvirtual bus in
parent model

string — {'off'} | 'on'

 PortDimensions Port dimensions (-1 for
inherited)

string — {'-1'}

 VarSizeSig Variable-size signal string — {'Inherit'} | 'No'
| 'Yes'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>' |

'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 SignalType Signal type string — {'auto'} | 'real'
| 'complex'

 SamplingMode Sampling mode string — {'auto'} | 'Sample
based' | 'Frame based'

 OutputWhenDisabled Output when disabled string — {'held'} | 'reset'
 InitialOutput Initial output string — {'[]'}
Subsystem (SubSystem)
 ShowPortLabels Show port labels string — 'none' |

{'FromPortIcon'} |

6 Model and Block Parameters

6-186

Block (Type)/Parameter Dialog Box Prompt Values

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — {'off'} | 'on'
 VariantControl Variant control string — {'Variant'} |

'(default)'

 MinAlgLoopOccurrences Minimize algebraic loop
occurrences

string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Code generation function

packaging
string — {'Auto'} |
'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Code generation function name
options

string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Code generation function name string — {''}

 Block-Specific Parameters

6-187

Block (Type)/Parameter Dialog Box Prompt Values

 RTWFileNameOpts Code generation file name
options

string — {'Auto'} | 'Use
subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName Code generation file name (no
extension)

string — {''}

 DataTypeOverride Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'on'} | 'off'

Read-only
 Virtual For internal use
Switch Case (SwitchCase)
 CaseConditions Case conditions (e.g., {1,[2,3]}) string — {'{1}'}
 ShowDefaultCase Show default case string — 'off' | {'on'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 CaseShowDefault Deprecated in R2009b
Switch Case Action Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

6 Model and Block Parameters

6-188

Block (Type)/Parameter Dialog Box Prompt Values

not be used in new models or
when updating existing models.

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Code generation function

packaging
string — {'Auto'} |
'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Code generation function name
options

string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Code generation function name string — {''}
 RTWFileNameOpts Code generation file name

options
string — {'Auto'} | 'Use
subsystem name' | 'Use

function name' | 'User

specified'

 Block-Specific Parameters

6-189

Block (Type)/Parameter Dialog Box Prompt Values

 RTWFileName Code generation file name (no
extension)

string — {''}

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Trigger (TriggerPort)
 TriggerType Trigger type string — {'rising'} |

'falling' | 'either' |

'function-call'

 StatesWhenEnabling States when enabling string — {'held'} | 'reset'
| 'inherit'

 PropagateVarSize Propagate sizes of variable-size
signals

string — {'During
execution'} | 'Only when

enabling'

 ShowOutputPort Show output port string — {'off'} | 'on'
 OutputDataType Output data type string — {'auto'} |

'double' | 'int8'

 SampleTimeType Sample time type string — {'triggered'} |
'periodic'

 SampleTime Sample time string — {'1'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}

6 Model and Block Parameters

6-190

Block (Type)/Parameter Dialog Box Prompt Values

 PortDimensions Port dimensions (-1 for
inherited)

string — {'-1'}

 TriggerSignalSampleTime Trigger signal sample time string — {'-1'}
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>'

 Interpolate Interpolate data string — 'off' | {'on'}
Triggered Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 Block-Specific Parameters

6-191

Block (Type)/Parameter Dialog Box Prompt Values

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Code generation function

packaging
string — {'Auto'} |
'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Code generation function name
options

string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Code generation function name string — {''}
 RTWFileNameOpts Code generation file name

options
string — {'Auto'} | 'Use
subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName Code generation file name (no
extension)

string — {''}

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

6 Model and Block Parameters

6-192

Block (Type)/Parameter Dialog Box Prompt Values

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
While Iterator (WhileIterator)
 MaxIters Maximum number of iterations

(-1 for unlimited)
string — {'5'}

 WhileBlockType While loop type string — {'while'} | 'do-
while'

 ResetStates States when starting string — {'held'} | 'reset'
 ShowIterationPort Show iteration number port string — {'off'} | 'on'
 OutputDataType Output data type string — {'int32'} |

'int16' | 'int8' |

'double'

While Iterator Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note: The values 'off'
and 'on' are for backward
compatibility only and should
not be used in new models or
when updating existing models.

string — 'none' |
{'FromPortIcon'} |

'FromPortBlockName' |

'SignalName' | 'off' |

'on'

 BlockChoice Block choice string — {''}
 TemplateBlock Template block string — {''}
 MemberBlocks Member blocks string — {''}
 Permissions Read/Write permissions string — {'ReadWrite'}

| 'ReadOnly' |

'NoReadOrWrite'

 ErrorFcn Name of error callback function string — {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution string — {'All'} |
'ExplicitOnly' | 'None'

 TreatAsAtomicUnit Treat as atomic unit string — 'off' | {'on'}

 Block-Specific Parameters

6-193

Block (Type)/Parameter Dialog Box Prompt Values

 MinAlgLoopOccurrences Minimize algebraic loop
occurrences

string — {'off'} | 'on'

 PropExecContext
 OutsideSubsystem

Propagate execution context
across subsystem boundary

string — {'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

string — {'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) string — {'-1'}
 RTWSystemCode Code generation function

packaging
string — {'Auto'} |
'Inline' | 'Nonreusable

function' | 'Reusable

function'

 RTWFcnNameOpts Code generation function name
options

string — {'Auto'} | 'Use
subsystem name' | 'User

specified'

 RTWFcnName Code generation function name string — {''}
 RTWFileNameOpts Code generation file name

options
string — {'Auto'} | 'Use
subsystem name' | 'Use

function name' | 'User

specified'

 RTWFileName Code generation file name (no
extension)

string — {''}

 DataTypeOverride No dialog box prompt

Specifies data type used to
override fixed-point data types.
Set by Data type override on
the Fixed-Point Tool.

string —
{'UseLocalSettings'} |

'ScaledDouble' | 'Double'

| 'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode
on the Fixed-Point Tool.

string —
{'UseLocalSettings'}

| 'MinMaxAndOverflow'

| 'OverflowOnly' |

'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

6 Model and Block Parameters

6-194

Block (Type)/Parameter Dialog Box Prompt Values

Read-only

Signal Attributes Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bus to Vector (BusToVector)
Data Type Conversion (DataTypeConversion)
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit:

Inherit via back

propagation'} | 'double'

| 'single' | 'int8'

| 'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 ConvertRealWorld Input and output to have equal string — {'Real World Value
(RWV)'} | 'Stored Integer

(SI)'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Data Type Conversion Inherited (Conversion Inherited) (masked subsystem)

 Block-Specific Parameters

6-195

Block (Type)/Parameter Dialog Box Prompt Values

 ConvertRealWorld Input and Output to have equal string — {'Real World
Value'} | 'Stored

Integer'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Data Type Duplicate (DataTypeDuplicate)
 NumInputPorts Number of input ports string — {'2'}
Data Type Propagation (Data Type Propagation) (masked subsystem)
 PropDataTypeMode 1. Propagated data type string — 'Specify via

dialog' | {'Inherit via

propagation rule'}

 PropDataType 1.1. Propagated data
type (e.g., fixdt(1,16),
fixdt('single'))

string — {'fixdt(1,16)'}

 IfRefDouble 1.1. If any reference input is
double, output is

string — {'double'} |
'single'

 IfRefSingle 1.2. If any reference input is
single, output is

string — 'double' |
{'single'}

 IsSigned 1.3. Is-Signed string — 'IsSigned1' |
'IsSigned2' | {'IsSigned1

or IsSigned2'} | 'TRUE' |

'FALSE'

 NumBitsBase 1.4.1. Number-of-Bits: Base string — 'NumBits1'
| 'NumBits2' |

{'max([NumBits1

NumBits2])'} |

'min([NumBits1

NumBits2])' |

'NumBits1+NumBits2'

6 Model and Block Parameters

6-196

Block (Type)/Parameter Dialog Box Prompt Values

 NumBitsMult 1.4.2. Number-of-Bits:
Multiplicative adjustment

string — {'1'}

 NumBitsAdd 1.4.3. Number-of-Bits: Additive
adjustment

string — {'0'}

 NumBitsAllowFinal 1.4.4. Number-of-Bits:
Allowable final values

string — {'1:128'}

 PropScalingMode 2. Propagated scaling string — 'Specify via
dialog' | {'Inherit

via propagation rule'}

| 'Obtain via best

precision'

 PropScaling 2.1. Propagated scaling: Slope
or [Slope Bias] ex. 2^-9

string — {'2^-10'}

 ValuesUsedBestPrec 2.1. Values used to determine
best precision scaling

string — {'[5 -7]'}

 SlopeBase 2.1.1. Slope: Base string — 'Slope1' |
'Slope2' | 'max([Slope1

Slope2])' | {'min([Slope1

Slope2])'} |

'Slope1*Slope2' |

'Slope1/Slope2' |

'PosRange1' | 'PosRange2'

| 'max([PosRange1

PosRange2])' |

'min([PosRange1

PosRange2])' |

'PosRange1*PosRange2' |

'PosRange1/PosRange2'

 SlopeMult 2.1.2. Slope: Multiplicative
adjustment

string — {'1'}

 SlopeAdd 2.1.3. Slope: Additive
adjustment

string — {'0'}

 BiasBase 2.2.1. Bias: Base string — {'Bias1'} |
'Bias2' | 'max([Bias1

Bias2])' | 'min([Bias1

 Block-Specific Parameters

6-197

Block (Type)/Parameter Dialog Box Prompt Values

Bias2])' | 'Bias1*Bias2'

| 'Bias1/Bias2' |

'Bias1+Bias2' | 'Bias1-

Bias2'

 BiasMult 2.2.2. Bias: Multiplicative
adjustment

string — {'1'}

 BiasAdd 2.2.3. Bias: Additive
adjustment

string — {'0'}

Data Type Scaling Strip (Scaling Strip) (masked subsystem)
IC (InitialCondition)
 Value Initial value string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Probe (Probe)
 ProbeWidth Probe width string — 'off' | {'on'}
 ProbeSampleTime Probe sample time string — 'off' | {'on'}
 ProbeComplexSignal Detect complex signal string — 'off' | {'on'}
 ProbeSignalDimensions Probe signal dimensions string — 'off' | {'on'}
 ProbeFramedSignal Detect framed signal string — 'off' | {'on'}
 ProbeWidthDataType Data type for width string — {'double'} |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'Same as

input'

 ProbeSampleTimeDataType Data type for sample time string — {'double'} |
'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'Same as

input'

 ProbeComplexityDataType Data type for signal complexity string — {'double'} |
'single' | 'int8' |

6 Model and Block Parameters

6-198

Block (Type)/Parameter Dialog Box Prompt Values

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean' |

'Same as input'

 ProbeDimensionsDataType Data type for signal dimensions string — {'double'} |
'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'Same as

input'

 ProbeFrameDataType Data type for signal frames string — {'double'} |
'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean' |

'Same as input'

Rate Transition (RateTransition)
 Integrity Ensure data integrity during

data transfer
string — 'off' | {'on'}

 Deterministic Ensure deterministic data
transfer (maximum delay)

string — 'off' | {'on'}

 X0 Initial conditions string — {'0'}
 OutPortSampleTimeOpt Output port sample time

options
string — {'Specify'} |
'Inherit' | 'Multiple of

input port sample time'

 OutPortSampleTimeMultipleSample time multiple (>0) string — {'1'}
 OutPortSampleTime Output port sample time string — {'-1'}
Signal Conversion (SignalConversion)
 ConversionOutput Output string — {'Signal copy'}

| 'Virtual bus' |

'Nonvirtual bus'

 OutDataTypeStr Data type string — {'Inherit: auto'}
| 'Bus: <object name>'

 Block-Specific Parameters

6-199

Block (Type)/Parameter Dialog Box Prompt Values

 OverrideOpt Exclude this block from 'Block
reduction' optimization

string — {'off'} | 'on'

Signal Specification (SignalSpecification)
 Dimensions Dimensions (-1 for inherited) string — {'-1'}
 VarSizeSig Variable-size signal string — {'Inherit'} | 'No'

| 'Yes'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>' |

'Bus: <object name>'

 BusOutputAsStruct Require nonvirtual bus string — {'off'} | 'on'
 LockScale Lock output data type setting

against changes by the fixed-
point tools

string — {'off'} | 'on'

 SignalType Signal type string — {'auto'} | 'real'
| 'complex'

 SamplingMode Sampling mode string — {'auto'} | 'Sample
based' | 'Frame based'

Weighted Sample Time (SampleTimeMath)
 TsampMathOp Operation string — '+' | '-' | '*' |

'/' | {'Ts Only'} | '1/Ts

Only'

 weightValue Weight value string — {'1.0'}

6 Model and Block Parameters

6-200

Block (Type)/Parameter Dialog Box Prompt Values

 TsampMathImp Implement using string — {'Online
Calculations'} | 'Offline

Scaling Adjustment'

 OutDataTypeStr Output data type string — {'Inherit via
internal rule'} |

'Inherit via back

propagation'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 OutputDataTypeScaling
 Mode

Deprecated in R2009b

 DoSatur Deprecated in R2009b
Width (Width)
 OutputDataTypeScaling
 Mode

Output data type mode string — {'Choose intrinsic
data type'} | 'Inherit

via back propagation' |

'All ports same datatype'

 DataType Output data type string — {'double'} |
'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32'

Signal Routing Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bus Assignment (BusAssignment)
 AssignedSignals Signals that are being

assigned
string — {''}

 InputSignals Signals in the bus matrix — {'{}'}

 Block-Specific Parameters

6-201

Block (Type)/Parameter Dialog Box Prompt Values

Bus Creator (BusCreator)
 InheritFromInputs Override bus signal names

from inputs
string — {'on'} | 'off'

If set to 'on', overrides bus signal
names from inputs. Otherwise,
inherits bus signal names from a bus
object.

 Inputs Number of inputs string — {'2'}
 DisplayOption string — 'none' | 'signals' |

{'bar'}

 NonVirtualBus Output as nonvirtual bus string — {'off'} | 'on'
 OutDataTypeStr Data type string — {'Inherit: auto'}

| 'double' | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'boolean' | 'fixdt(1,16,0)'

| 'fixdt(1,16,2^0,0)' |

'Enum: <class name>' | 'Bus:

<object name>'

Bus Selector (BusSelector)
 OutputSignals Selected signals string — in the form

'signal1,signal2'

 OutputAsBus Output as bus string — {'off'} | 'on'
 InputSignals Signals in bus matrix — {'{}'}
Data Store Memory (DataStoreMemory)
 DataStoreName Data store name string — {'A'}
 ReadBeforeWriteMsg Detect read before write string — 'none' | {'warning'}

| 'error'

 WriteAfterWriteMsg Detect write after write string — 'none' | {'warning'}
| 'error'

 WriteAfterReadMsg Detect write after read string — 'none' | {'warning'}
| 'error'

6 Model and Block Parameters

6-202

Block (Type)/Parameter Dialog Box Prompt Values

 InitialValue Initial value string — {'0'}
 StateMustResolveTo
 SignalObject

Data store name must resolve
to Simulink signal object

string — {'off'} | 'on'

 DataLogging Log Signal Data string — 'off' | {'on'}
 DataLoggingNameMode Logging Name string — {'SignalName'} |

'Custom'

 DataLoggingName Logging Name string — {''}
 DataLoggingLimit
 DataPoints

Limit data points to last string — 'off' | {'on'}

 DataLoggingMaxPoints Limit data points to last non-zero integer {5000}
 DataLoggingDecimateDataDecimation string — 'off' | {'on'}
 DataLoggingLimit
 DataPoints

Decimation non-zero integer {2}

 StateStorageClass Code generation storage class string — {'Auto'} |
'ExportedGlobal' |

'ImportedExtern' |

'ImportedExternPointer'

 RTWStateStorageType
 Qualifier

Code generation type
qualifier

string — {''}

 VectorParams1D Interpret vector parameters
as 1-D

string — 'off' | {'on'}

 ShowAdditionalParam Show additional parameters string — {'off'} | 'on'
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit: auto'}

| 'double' | 'single' |

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32'

| 'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' | 'Enum:

<class name>'

 Block-Specific Parameters

6-203

Block (Type)/Parameter Dialog Box Prompt Values

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 SignalType Signal type string — {'auto'} | 'real' |
'complex'

Data Store Read (DataStoreRead)
 DataStoreName Data store name string — {'A'}
 SampleTime Sample time string — {'0'}
Data Store Write (DataStoreWrite)
 DataStoreName Data store name string — {'A'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Demux (Demux)
 Outputs Number of outputs string — {'2'}
 DisplayOption Display option string — 'none' | {'bar'}
 BusSelectionMode Bus selection mode string — {'off'} | 'on'
Environment Controller (Environment Controller) (masked subsystem)
From (From)
 GotoTag Goto tag string — {'A'}
 IconDisplay Icon display string — 'Signal name' |

{'Tag'} | 'Tag and signal

name'

Goto (Goto)
 GotoTag Tag string — {'A'}
 IconDisplay Icon display string — 'Signal name' |

{'Tag'} | 'Tag and signal

name'

 TagVisibility Tag visibility string — {'local'} | 'scoped'
| 'global'

Goto Tag Visibility (GotoTagVisibility)
 GotoTag Goto tag string — {'A'}

6 Model and Block Parameters

6-204

Block (Type)/Parameter Dialog Box Prompt Values

Index Vector (MultiPortSwitch)
 DataPortOrder Data port order string — {'Zero-based

contiguous'} | 'One-based

contiguous' | 'Specify

indices'

 Inputs Number of data ports string — {'1'}
 zeroidx Deprecated in R2010a
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all data port inputs

to have the same data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'} |

'Inherit: Inherit via

back propagation' |

'double' | 'single' |

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 AllowDiffInputSizes Allow different data input
sizes (Results in variable-size
output signal)

string — {'off'} | 'on'

 Block-Specific Parameters

6-205

Block (Type)/Parameter Dialog Box Prompt Values

Manual Switch (Manual Switch) (masked subsystem)
 varsize Allow different input sizes

(Results in variable-size
output signal)

string — {'off'} | 'on'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
Merge (Merge)
 Inputs Number of inputs string — {'2'}
 InitialOutput Initial output string — {'[]'}
 AllowUnequalInput
 PortWidths

Allow unequal port widths string — {'off'} | 'on'

 InputPortOffsets Input port offsets string — {'[]'}
Multiport Switch (MultiPortSwitch)
 DataPortOrder Data port order string — 'Zero-based

contiguous' | {'One-based

contiguous'} | 'Specify

indices'

 Inputs Number of data ports string — {'3'}
 zeroidx Deprecated in R2010a
 DataPortIndices Data port indices string — {'{1,2,3}'}
 DataPortForDefault Data port for default case string — {'Last data port'} |

'Additional data port'

 DiagnosticForDefault Diagnostic for default case string — 'None' | 'Warning' |
{'Error'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all data port inputs

to have the same data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'} |

'Inherit: Inherit via

6 Model and Block Parameters

6-206

Block (Type)/Parameter Dialog Box Prompt Values

back propagation' |

'double' | 'single' |

'int8' | 'uint8' | 'int16'

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 AllowDiffInputSizes Allow different data input
sizes (Results in variable-size
output signal)

string — {'off'} | 'on'

Mux (Mux)
 Inputs Number of inputs string — {'2'}
 DisplayOption Display option string — 'none' | 'signals' |

{'bar'}

 UseBusObject For internal use
 BusObject For internal use
 NonVirtualBus For internal use
Selector (Selector)
 NumberOfDimensions Number of input dimensions string — {'1'}
 IndexMode Index mode string — 'Zero-based' | {'One-

based'}

 IndexOptionArray Index Option string — 'Select all' |
{'Index vector (dialog)'}

| 'Index vector (port)' |

 Block-Specific Parameters

6-207

Block (Type)/Parameter Dialog Box Prompt Values

'Starting index (dialog)' |

'Starting index (port)'

 IndexParamArray Index cell array
 OutputSizeArray Output Size cell array
 InputPortWidth Input port size string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 IndexOptions See IndexOptionArray

parameter for more
information.

 Indices See IndexParamArray
parameter for more
information.

 OutputSizes See OutputSizeArray
parameter for more
information.

Switch (Switch)
 Criteria Criteria for passing first

input
string — {'u2 >= Threshold'} |
'u2 > Threshold' | 'u2 ~= 0'

 Threshold Threshold string — {'0'}
 ZeroCross Enable zero-crossing

detection
string — 'off' | {'on'}

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 InputSameDT Require all data port inputs

to have the same data type
string — {'off'} | 'on'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

via internal rule'} |

'Inherit: Inherit via

back propagation' |

'double' | 'single' |

'int8' | 'uint8' | 'int16'

6 Model and Block Parameters

6-208

Block (Type)/Parameter Dialog Box Prompt Values

| 'uint16' | 'int32' |

'uint32' | 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' | 'Enum:

<class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow string — {'off'} | 'on'

 AllowDiffInputSizes Allow different input sizes
(Results in variable-size
output signal)

string — {'off'} | 'on'

Vector Concatenate (Concatenate)
 NumInputs Number of inputs string — {'2'}
 Mode Mode string — {'Vector'} |

'Multidimensional array'

Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Display (Display)
 Format Format string — {'short'} |

'long' | 'short_e' |

'long_e' | 'bank' |

'hex (Stored Integer)' |

'binary (Stored Integer)'

| 'decimal (Stored

Integer)' | 'octal

(Stored Integer)'

 Decimation Decimation string — {'1'}

 Block-Specific Parameters

6-209

Block (Type)/Parameter Dialog Box Prompt Values

 Floating Floating display string — {'off'} | 'on'
 SampleTime Sample time (-1 for inherited) string — {'-1'}
Floating Scope (Scope)
 Floating string — 'off' | {'on'}
 Location vector — {'[376 294 700

533]'}

 Open string — {'off'} | 'on'
 NumInputPorts Do not change this parameter

with the command-line.
Instead, use the Number of
axes parameter in the Scope
parameters dialog.

 TickLabels string — 'on' | 'off' |
{'OneTimeTick'}

 ZoomMode string — {'on'} | 'xonly' |
'yonly'

 AxesTitles string
 Grid string — 'off' | {'on'} |

'xonly' | 'yonly'

 TimeRange string — {'auto'}
 YMin string — {'-5'}
 YMax string — {'5'}
 SaveToWorkspace string — {'off'} | 'on'
 SaveName string — {'ScopeData'}
 DataFormat string —

{'StructureWithTime'} |

'Structure' | 'Array'

 LimitDataPoints string — 'off' | {'on'}
 MaxDataPoints string — {'5000'}
 Decimation string — {'1'}

6 Model and Block Parameters

6-210

Block (Type)/Parameter Dialog Box Prompt Values

 SampleInput string — {'off'} | 'on'
 SampleTime string — {'0'}
Out1 (Outport)
 Port Port number string — {'1'}
 IconDisplay Icon display string — 'Signal name' |

{'Port number'} | 'Port

number and signal name'

 BusOutputAsStruct Output as nonvirtual bus in
parent model

string — {'off'} | 'on'

 PortDimensions Port dimensions (-1 for
inherited)

string — {'-1'}

 VarSizeSig Variable-size signal string — {'Inherit'} | 'No'
| 'Yes'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>' |

'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 SignalType Signal type string — {'auto'} | 'real'
| 'complex'

 Block-Specific Parameters

6-211

Block (Type)/Parameter Dialog Box Prompt Values

 SamplingMode Sampling mode string — {'auto'} | 'Sample
based' | 'Frame based'

 OutputWhenDisabled Output when disabled string — {'held'} | 'reset'
 InitialOutput Initial output string — {'[]'}
Scope (Scope)
 Floating string — {'off'} | 'on'
 Location vector — {'[188 390 512

629]'}

 Open string — {'off'} | 'on'
 NumInputPorts Do not change this parameter

with the command-line.
Instead, use the Number of
axes parameter in the Scope
parameters dialog.

 TickLabels string — 'on' | 'off' |
{'OneTimeTick'}

 ZoomMode string — {'on'} | 'xonly' |
'yonly'

 AxesTitles string
 Grid string — 'off' | {'on'} |

'xonly' | 'yonly'

 TimeRange string — {'auto'}
 YMin string — {'-5'}
 YMax string — {'5'}
 SaveToWorkspace string — {'off'} | 'on'
 SaveName string — {'ScopeData1'}
 DataFormat string —

{'StructureWithTime'} |

'Structure' | 'Array'

 LimitDataPoints string — 'off' | {'on'}
 MaxDataPoints string — {'5000'}

6 Model and Block Parameters

6-212

Block (Type)/Parameter Dialog Box Prompt Values

 Decimation string — {'1'}
 SampleInput string — {'off'} | 'on'
 SampleTime string — {'0'}
Stop Simulation
Terminator
To File (ToFile)
 FileName File name string — {'untitled.mat'}
 MatrixName Variable name string — {'ans'}
 SaveFormat Save format string — {'Timeseries'} |

'Array'

 Decimation Decimation string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
To Workspace (ToWorkspace)
 VariableName Variable name string — {'simout'}
 MaxDataPoints Limit data points to last string — {'inf'}
 Decimation Decimation string — {'1'}
 SampleTime Sample time (-1 for inherited) string — {'-1'}
 SaveFormat Save format string — {'Timeseries'} |

'Structure With Time' |

'Structure' | 'Array'

 FixptAsFi Log fixed-point data as an fi
object

string — {'off'} | 'on'

XY Graph (XY scope) (masked subsystem)
 xmin x-min string — {'-1'}
 xmax x-max string — {'1'}
 ymin y-min string — {'-1'}
 ymax y-max string — {'1'}
 st Sample time string — {'-1'}

 Block-Specific Parameters

6-213

Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Band-Limited White Noise (Band-Limited White Noise) (masked subsystem)
 Cov Noise power string — {'[0.1]'}
 Ts Sample time string — {'0.1'}
 seed Seed string — {'[23341]'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

Chirp Signal (chirp) (masked subsystem)
 f1 Initial frequency string — {'0.1'}
 T Target time string — {'100'}
 f2 Frequency at target time string — {'1'}
 VectorParams1D Interpret vectors parameters as

1-D
string — 'off' | {'on'}

Clock (Clock)
 DisplayTime Display time string — {'off'} | 'on'
 Decimation Decimation string — {'10'}
Constant (Constant)
 Value Constant value string — {'1'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

 SampleTime Sampling time string — {'Sample based'} |
'Frame based'

 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — {'Inherit: Inherit

from 'Constant value''}

| 'Inherit: Inherit

via back propagation'

| 'double' | 'single'

| 'int8' | 'uint8' |

6 Model and Block Parameters

6-214

Block (Type)/Parameter Dialog Box Prompt Values

'int16' | 'uint16' |

'int32' | 'uint32' |

'boolean' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 SampleTime Sample time string — {'inf'}
 FramePeriod Frame period string — {'inf'}
Counter Free-Running (Counter Free-Running) (masked subsystem)
 NumBits Number of Bits string — {'16'}
 tsamp Sample time string — {'-1'}
Counter Limited (Counter Limited) (masked subsystem)
 uplimit Upper limit string — {'7'}
 tsamp Sample time string — {'-1'}
Digital Clock (DigitalClock)
 SampleTime Sample time string — {'1'}
Enumerated Constant (EnumeratedConstant)
 OutDataTypeStr Output data type string — {'Enum:

SlDemoSign'}

 Value Value string —
{'SlDemoSign.Positive'}

| 'SlDemoSign.Zero' |

'SlDemoSign.Negative'

 SampleTime Sample time string — {'inf'}
From File (FromFile)
 FileName File name string — {'untitled.mat'}
 ExtrapolationBeforeFirstDataPointData extrapolation before first

data point
string — {'Linear
extrapolation'} | 'Hold

 Block-Specific Parameters

6-215

Block (Type)/Parameter Dialog Box Prompt Values

first value' | 'Ground

value'

 InterpolationWithinTimeRangeData interpolation within time
range

string — {'Linear
interpolation'} | 'Zero

order hold'

 ExtrapolationAfterLastDataPointData extrapolation after last
data point

string — {'Linear
extrapolation'} | 'Hold

last value' | 'Ground

value'

 SampleTime Sample time string — {'0'}
From Workspace (FromWorkspace)
 VariableName Data string — {'simin'}
 OutDataTypeStr Output Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>' |

'Bus: <object name>'

 SampleTime Sample time string — {'0'}
 Interpolate Interpolate data string — 'off' | {'on'}
 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
 OutputAfterFinalValue Form output after final data

value by
string — {'Extrapolation'}
| 'Setting to zero' |

'Holding final value' |

'Cyclic repetition'

Ground
In1 (Inport)
 Port Port number string — {'1'}

6 Model and Block Parameters

6-216

Block (Type)/Parameter Dialog Box Prompt Values

 IconDisplay Icon display string — 'Signal name' |
{'Port number'} | 'Port

number and signal name'

 BusOutputAsStruct Output as nonvirtual bus string — {'off'} | 'on'
 PortDimensions Port dimensions (-1 for

inherited)
string — {'-1'}

 VarSizeSig Variable-size signal string — {'Inherit'} | 'No'
| 'Yes'

 SampleTime Sample time (-1 for inherited) string — {'-1'}
 OutMin Minimum string — {'[]'}
 OutMax Maximum string — {'[]'}
 OutDataTypeStr Data type string — {'Inherit:

auto'} | 'double' |

'single' | 'int8' |

'uint8' | 'int16' |

'uint16' | 'int32' |

'uint32' | 'boolean'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>' |

'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 SignalType Signal type string — {'auto'} | 'real'
| 'complex'

 SamplingMode Sampling mode string — {'auto'} | 'Sample
based' | 'Frame based'

 LatchByDelaying
 OutsideSignal

Latch input by delaying outside
signal

string — {'off'} | 'on'

 LatchInputFor
 FeedbackSignals

Latch input for feedback
signals of function-call
subsystem outputs

string — {'off'} | 'on'

 Block-Specific Parameters

6-217

Block (Type)/Parameter Dialog Box Prompt Values

 OutputFunctionCall

Output a function-call trigger
signal

string — {'off'} | 'on'

 Interpolate Interpolate data string — 'off' | {'on'}
Pulse Generator (DiscretePulseGenerator)
 PulseType Pulse type string — {'Time based'} |

'Sample based'

 TimeSource Time (t) string — {'Use simulation
time'} | 'Use external

signal'

 Amplitude Amplitude string — {'1'}
 Period Period string — {'10'}
 PulseWidth Pulse width string — {'5'}
 PhaseDelay Phase delay string — {'0'}
 SampleTime Sample time string — {'1'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

Ramp (Ramp) (masked subsystem)
 slope Slope string — {'1'}
 start Start time string — {'0'}
 X0 Initial output string — {'0'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

Random Number (RandomNumber)
 Mean Mean string — {'0'}
 Variance Variance string — {'1'}
 Seed Seed string — {'0'}
 SampleTime Sample time string — {'0.1'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

6 Model and Block Parameters

6-218

Block (Type)/Parameter Dialog Box Prompt Values

Repeating Sequence (Repeating table) (masked subsystem)
 rep_seq_t Time values string — {'[0 2]'}
 rep_seq_y Output values string — {'[0 2]'}
Repeating Sequence Interpolated (Repeating Sequence Interpolated) (masked subsystem)
 OutValues Vector of output values string — {'[3 1 4 2 1].''}
 TimeValues Vector of time values string — {'[0 0.1 0.5 0.6

1].''}

 LookUpMeth Lookup Method string — {'Interpolation-
Use End Values'} | 'Use

Input Nearest' | 'Use

Input Below' | 'Use Input

Above'

 tsamp Sample time string — {'0.01'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via back propagation'

| {'double'} | 'single'

| 'int8' | 'uint8'

| 'int16' | 'uint16'

| 'int32' | 'uint32'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

string — {'off'} | 'on'

Repeating Sequence Stair (Repeating Sequence Stair) (masked subsystem)
 OutValues Vector of output values string — {'[3 1 4 2 1].''}

 Block-Specific Parameters

6-219

Block (Type)/Parameter Dialog Box Prompt Values

 tsamp Sample time string — {'-1'}
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via back propagation'

| {'double'} | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'boolean' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)' |

'Enum: <class name>'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 ConRadixGroup Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

string — {'off'} | 'on'

Signal Builder (Sigbuilder block) (masked subsystem)
Signal Generator (SignalGenerator)
 WaveForm Wave form string — {'sine'} |

'square' | 'sawtooth' |

'random'

 TimeSource Time (t) string — {'Use simulation
time'} | 'Use external

signal'

 Amplitude Amplitude string — {'1'}
 Frequency Frequency string — {'1'}

6 Model and Block Parameters

6-220

Block (Type)/Parameter Dialog Box Prompt Values

 Units Units string — 'rad/sec' |
{'Hertz'}

 VectorParams1D Interpret vector parameters as
1-D

string — 'off' | {'on'}

Sine Wave (Sin)
 SineType Sine type string — {'Time based'} |

'Sample based'

 TimeSource Time string — {'Use simulation
time'} | 'Use external

signal'

 Amplitude Amplitude string — {'1'}
 Bias Bias string — {'0'}
 Frequency Frequency string — {'1'}
 Phase Phase string — {'0'}
 Samples Samples per period string — {'10'}
 Offset Number of offset samples string — {'0'}
 SampleTime Sample time string — {'0'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

Step (Step)
 Time Step time string — {'1'}
 Before Initial value string — {'0'}
 After Final value string — {'1'}
 SampleTime Sample time string — {'0'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

 ZeroCross Enable zero-crossing detection string — 'off' | {'on'}
Uniform Random Number (UniformRandomNumber)
 Minimum Minimum string — {'-1'}

 Block-Specific Parameters

6-221

Block (Type)/Parameter Dialog Box Prompt Values

 Maximum Maximum string — {'1'}
 Seed Seed string — {'0'}
 SampleTime Sample time string — {'0.1'}
 VectorParams1D Interpret vector parameters as

1-D
string — 'off' | {'on'}

Waveform Generator (WaveformGenerator)
 OutMin Output minimum string — {'[]'}
 OutMax Output maximum string — {'[]'}
 OutDataTypeStr Output data type string — 'Inherit: Inherit

via back propagation'

| {'Inherit: Inherit

from table data'} |

'double' | 'single'

| 'int8' | 'uint8' |

'int16' | 'uint16' |

'int32' | 'uint32' |

'boolean' | 'fixdt(1,16)'

| 'fixdt(1,16,0)' |

'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | 'Floor' |

{'Nearest'} | 'Round' |

'Simplest' | 'Zero'

 SaturateOnIntegerOverflowSaturate on integer overflow string — {'off'} | 'on'
 SelectedSignal Output signal string — {'1'}
 SampleTime Sample time string — {'0'}

User-Defined Functions Library Block Parameters

6 Model and Block Parameters

6-222

Block (Type)/Parameter Dialog Box Prompt Values

MATLAB Function (Stateflow) (masked subsystem)
MATLAB System (MATLABSystem)
 System System object class name string — {''}
Fcn (Fcn)
 Expr Expression string — {'sin(u(1)*exp(2.3*(-

u(2))))'}

 SampleTime Sample time (-1 for
inherited)

string — {'-1'}

Level-2 MATLAB S-Function (M-S-Function)
 FunctionName S-function name string — {'mlfile'}
 Parameters Parameters string — {''}
Interpreted MATLAB Function (MATLABFcn)
 MATLABFcn MATLAB function string — {'sin'}
 OutputDimensions Output dimensions string — {'-1'}
 OutputSignalType Output signal type string — {'auto'} | 'real' |

'complex'

 Output1D Collapse 2-D results to 1-D string — 'off' | {'on'}
 SampleTime Sample time (-1 for

inherited)
string — {'-1'}

S-Function (S-Function)
 FunctionName S-function name string — {'system'}
 Parameters S-function parameters string — {''}
 SFunctionModules S-function modules string — {''}
S-Function Builder (S-Function Builder) (masked subsystem)
 FunctionName S-function name string — {'system'}
 Parameters S-function parameters string — {''}
 SFunctionModules S-function modules string — {''}

Additional Discrete Block Library Parameters

 Block-Specific Parameters

6-223

Block (Type)/Parameter Dialog Box Prompt Values

Fixed-Point State-Space (Fixed-Point State-Space) (masked subsystem)
 A State Matrix A string — {'[2.6020 -2.2793

0.6708; 1 0 0; 0 1 0]'}

 B Input Matrix B string — {'[1; 0; 0]'}
 C Output Matrix C string — {'[0.0184 0.0024

0.0055]'}

 D Direct Feedthrough Matrix D string — {'[0.0033]'}
 X0 Initial condition for state string — {'0.0'}
 InternalDataType Data type for internal

calculations
string —
{'fixdt('double')'}

 StateEqScaling Scaling for State Equation AX
+BU

string — {'2^0'}

 OutputEqScaling Scaling for Output Equation
CX+DU

string — {'2^0'}

 LockScale Lock output data type setting
against changes by the fixed-
point tools

string — {'off'} | 'on'

 RndMeth Integer rounding mode string — 'Ceiling' |
'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Transfer Fcn Direct Form II (Transfer Fcn Direct Form II) (masked subsystem)
 NumCoefVec Numerator coefficients string — {'[0.2 0.3 0.2]'}
 DenCoefVec Denominator coefficients

excluding lead (which must be
1.0)

string — {'[-0.9 0.6]'}

 vinit Initial condition string — {'0.0'}
 RndMeth Integer rounding mode string — 'Ceiling' |

'Convergent' | {'Floor'}

6 Model and Block Parameters

6-224

Block (Type)/Parameter Dialog Box Prompt Values

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Transfer Fcn Direct Form II Time Varying (Transfer Fcn Direct Form II Time Varying)
(masked subsystem)
 vinit Initial condition string — {'0.0'}
 RndMeth Integer rounding mode string — 'Ceiling' |

'Convergent' | {'Floor'}

| 'Nearest' | 'Round' |

'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

string — {'off'} | 'on'

Unit Delay Enabled (Unit Delay Enabled) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}
Unit Delay Enabled External IC (Unit Delay Enabled External Initial Condition)
(masked subsystem)
 tsamp Sample time string — {'-1'}
Unit Delay Enabled Resettable (Unit Delay Enabled Resettable) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}
Unit Delay Enabled Resettable External IC (Unit Delay Enabled Resettable External
Initial Condition) (masked subsystem)
 tsamp Sample time string — {'-1'}
Unit Delay External IC (Unit Delay External Initial Condition) (masked subsystem)
 tsamp Sample time string — {'-1'}
Unit Delay Resettable (Unit Delay Resettable) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}

 Block-Specific Parameters

6-225

Block (Type)/Parameter Dialog Box Prompt Values

Unit Delay Resettable External IC (Unit Delay Resettable External Initial
Condition) (masked subsystem)
 tsamp Sample time string — {'-1'}
Unit Delay With Preview Enabled (Unit Delay With Preview Enabled) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}
Unit Delay With Preview Enabled Resettable (Unit Delay With Preview Enabled
Resettable) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}
Unit Delay With Preview Enabled Resettable External RV (Unit Delay With Preview
Enabled Resettable External RV) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}
Unit Delay With Preview Resettable (Unit Delay With Preview Resettable) (masked
subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}
Unit Delay With Preview Resettable External RV (Unit Delay With Preview Resettable
External RV) (masked subsystem)
 vinit Initial condition string — {'0.0'}
 tsamp Sample time string — {'-1'}

Additional Math: Increment - Decrement Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Decrement Real World (Real World Value Decrement) (masked subsystem)
Decrement Stored Integer (Stored Integer Value Decrement) (masked subsystem)
Decrement Time To Zero (Decrement Time To Zero) (masked subsystem)
Decrement To Zero (Decrement To Zero) (masked subsystem)

6 Model and Block Parameters

6-226

Block (Type)/Parameter Dialog Box Prompt Values

Increment Real World (Real World Value Increment) (masked subsystem)
Increment Stored Integer (Stored Integer Value Increment) (masked subsystem)

 Mask Parameters

6-227

Mask Parameters

About Mask Parameters

This section lists parameters that describe masked blocks. You can use these descriptive
parameters with get_param and set_param to obtain and specify the properties of a
block mask.

The descriptive mask parameters listed in this section apply to all masks, and
provide access to all mask properties. Be careful not to confuse these descriptive mask
parameters with the mask-specific parameters defined for an individual mask in the
Mask Editor Parameters pane.

See “What Are Masks?” and “Mask Editor Overview” for information about block masks
and the Mask Editor.

Mask Parameters

Parameter Description/Prompt Values

Mask Turns mask on or off. {'on'} | 'off'

MaskCallbackString Mask parameter callbacks
that are executed when the
respective parameter is
changed on the dialog. Set by
the Dialog callback field on
the Parameters pane of the
Mask Editor dialog box.

pipe-delimited string {''}

MaskCallbacks Cell array version of
MaskCallbackString.

cell array {'[]'}

MaskDescription Block description. Set by the
Mask description field on the
Documentation pane of the
Mask Editor dialog box.

string {''}

MaskDisplay Drawing commands for the
block icon. Set by the Icon
Drawing commands field on
the Icon & Ports pane of the
Mask Editor dialog box.

string {''}

6 Model and Block Parameters

6-228

Parameter Description/Prompt Values

MaskEditorHandle For internal use only.
MaskEnableString Option that determines

whether a parameter is greyed
out in the dialog. Set by the
Enable parameter check box
on the Parameters pane of the
Mask Editor dialog box.

pipe-delimited string {''}

MaskEnables Cell array version of
MaskEnableString.

cell array of strings, each either
'on' or ''off' {'[]'}

MaskHelp Block help. Set by the
Mask help field on the
Documentation pane of the
Mask Editor dialog box.

string {''}

MaskIconFrame Set the visibility of the icon
frame (Visible is on, Invisible is
off). Set by the Block Frame
option on the Icon & Ports
pane of the Mask Editor dialog
box.

{'on'} | 'off'

MaskIconOpaque Set the transparency of the icon
(Opaque is on, Transparent
is off). Set by the Icon
Transparency option on the
Icon & Ports pane of the Mask
Editor dialog box.

{'on'} | 'off'

MaskIconRotate Set the rotation of the icon
(Rotates is on, Fixed is off).
Set by the Icon Rotation
option on the Icon & Ports
pane of the Mask Editor dialog
box.

'on' | {'off'}

MaskIconUnits Set the units for the drawing
commands. Set by the Icon
Units option on the Icon &

'pixel' | {'autoscale'} |

'normalized'

 Mask Parameters

6-229

Parameter Description/Prompt Values

Ports pane of the Mask Editor
dialog box.

MaskInitialization Initialization commands. Set by
the Initialization commands
field on the Initialization
pane of the Mask Editor dialog
box.

MATLAB command {''}

MaskNames Cell array of mask dialog
parameter names. Set inside
the Variable column in the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskPortRotate Specify the port rotation policy
for the masked block. Set in
the Port Rotation area on the
Icon & Ports pane of the Mask
Editor dialog box.

For more information, see
“Change the Appearance
of a Block” in the Simulink
documentation.

{'default} | 'physical'

MaskPrompts List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area
on the Parameters pane of the
Mask Editor dialog box.

cell array of strings {'[]'}

MaskPromptString List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area
on the Parameters pane of the
Mask Editor dialog box.

string {''}

MaskPropertyName

String

Pipe-delimited version of
MaskNames.

string {''}

MaskRunInitForIconRedraw For internal use only.

6 Model and Block Parameters

6-230

Parameter Description/Prompt Values

MaskSelfModifiable Indicates that the block can
modify itself. Set by the Allow
library block to modify its
contents check box on the
Initialization pane of the
Mask Editor dialog box.

'on' | {'off'}

MaskStyles Determines whether the dialog
parameter is a check box,
edit field, or pop-up list. Set
by the Type column in the
Parameters pane of the Mask
Editor dialog box.

cell array {'[]'}

MaskStyleString Comma-separated version of
MaskStyles.

string {''}

MaskTabNameString For internal use only.
MaskTabNames For internal use only.
MaskToolTipsDisplay Determines which mask dialog

parameters to display in the
tooltip for this masked block.
Specify as a cell array of 'on'
or 'off' values, each of which
indicates whether to display
the parameter named at the
corresponding position in
the cell array returned by
MaskNames.

cell array of 'on' and 'off'
{''}

MaskToolTipString Comma-delimited version of
MaskToolTipsDisplay.

string {''}

MaskTunableValues Allows the changing of
mask dialog values during
simulation. Set by the Tunable
column in the Parameters
pane of the Mask Editor dialog
box.

cell array of strings {'[]'}

 Mask Parameters

6-231

Parameter Description/Prompt Values

MaskTunableValueString Comma-delimited
string version of
MaskTunableValues.

delimited string {''}

MaskType Mask type. Set by the
Mask type field on the
Documentation pane of the
Mask Editor dialog box.

string {'Stateflow'}

MaskValues Dialog parameter values. cell array {'[]'}
MaskValueString Delimited string version of

MaskValues.
delimited string {''}

MaskVarAliases Specify aliases for a block's
mask parameters. The aliases
must appear in the same order
as the parameters appear
in the block's MaskValues
parameter.

cell array {'[]'}

MaskVarAliasString For internal use only.
MaskVariables List of the dialog parameters'

variables (see below). Set inside
the Dialog parameters area
on the Parameters pane of the
Mask Editor dialog box.

string {''}

MaskVisibilities Specifies visibility of
parameters. Set with the
Show parameter check box
in the Options for selected
parameter area on the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskVisibilityString Delimited string version of
MaskVisibilities.

string {''}

MaskWSVariables List of the variables defined
in the mask workspace (read
only).

matrix {'[]'}

6 Model and Block Parameters

6-232

See Control Masks Programmatically, for more information on setting the mask
parameters from the MATLAB command line.

7

Simulink Identifier

7 Simulink Identifier

7-2

Simulink Identifier

A Simulink Identifier (SID) is a unique identifier automatically assigned to a Simulink
block, model annotation, or a Stateflow object within a Stateflow chart. The SID has the
following characteristics:

• Persistent within the lifetime of a Simulink block, model annotation, or Stateflow
object.

• Saved in the model file.
• If the name of a block or object changes, the SID remains the same.
• You cannot modify the SID.

The SID format is

model_name:sid_number

where

• model_name is the name of the model where the block, annotation, or object resides
• sid_number is a unique number within the model, assigned by Simulink

8

==Fixed-Point Tool==

• “Fixed-Point Tool Parameters and Dialog Box” on page 8-2
• “Advanced Settings” on page 8-26

8 ==Fixed-Point Tool==

8-2

Fixed-Point Tool Parameters and Dialog Box

The Fixed-Point Tool includes the following components:

• Main toolbar
• Model Hierarchy pane
• Contents pane
• Dialog pane

Main Toolbar

The Fixed-Point Tool's main toolbar appears near the top of the Fixed-Point Tool window
under the Fixed-Point Tool's menu.

The toolbar contains the following buttons that execute commonly used Fixed-Point Tool
commands:

Button Usage

Open the Fixed-Point Advisor to prepare the model for conversion to
fixed point.
Simulate a model and store the run results.

Pause a simulation.

Stop a simulation.

Analyze model and store derived minimum and maximum results.

Propose data types. Propose fraction lengths for specified word lengths or
propose word lengths for specified fraction lengths.
Apply accepted data types.

Compare selected runs.

Create a difference plot for the selected signals.

Plot the selected signal.

 Fixed-Point Tool Parameters and Dialog Box

8-3

Button Usage

Create a histogram plot for the selected signal.

The toolbar also contains the Show option:

The Show option specifies the type of results to display in the Contents pane. The
Contents pane displays information only after you simulate a system or propose fraction
lengths. If there are no results that satisfy a particular filter option, the list will be
blank.

Show Option Result

All results Displays all results for the selected tree node.
Signal Logging results For the selected tree node, displays blocks whose output ports

have logged signal data. The Fixed-Point tool marks these

blocks with the logged signal icon .

Note: You can plot simulation results associated with logged
signal data using the Simulation Data Inspector.

Min/Max results For the selected tree node, displays blocks that record design
Min/Max, simulation Min/Max, and overflow data.

Prerequisites: Fixed-point instrumentation mode
should not be set to Force Off.

Overflows For the selected tree node, displays blocks that have non-zero
overflows recorded. If a block has its Saturate on integer
overflow option selected, overflow information appears
in the Saturations column, otherwise it appears in the
OverflowWraps column.

8 ==Fixed-Point Tool==

8-4

Show Option Result

Conflicts with proposed data
types

For the selected tree node, displays results that have
potential data typing or scaling issues.

Prerequisites: This information is available only after you
propose data types.

The Fixed-Point Tool marks these results with a yellow or red
icon, as shown here:

The proposed data type poses potential issues for this
object. Open the Result Details tab to review these
issues.
The proposed data type will introduce errors if applied
to this object. Open the Result Details tab for details
about how to resolve these issues.

Groups that must share the
same data type

For the selected tree node, displays blocks that must share
the same data type because of data type propagation rules.

Prerequisites: This information is available only after you
propose fraction lengths.

The Fixed-Point Tool allocates an identification tag to blocks
that must share the same data type. This identification tag is
displayed in the DTGroup column as follows:

• If the selected tree node is the model root

All results for the model are listed. The DTGroup column
is sorted by default so that you can easily view all blocks
in a group.

• If the selected tree node is a subsystem

The identification tags have a suffix that indicates the
total number of results in each group. For example, G2(2)
means group G2 has 2 members. This information enables
you to see how many members of a group belong to the
selected subsystem and which groups share data types
across subsystem boundaries.

 Fixed-Point Tool Parameters and Dialog Box

8-5

Model Hierarchy Pane

The Model Hierarchy pane displays a tree-structured view of the Simulink model
hierarchy. The first node in the pane represents a Simulink model. Expanding the root
node displays subnodes that represent the model's subsystems, MATLAB Function
blocks, Stateflow charts, and referenced models.

The Fixed-Point Tool's Contents pane displays elements that comprise the object
selected in the Model Hierarchy pane. The Dialog pane provides parameters for
specifying the selected object's data type override and fixed-point instrumentation mode.
You can also specify an object’s data type override and fixed-point instrumentation mode
by right-clicking on the object. The Model Hierarchy pane indicates the value of these
parameters by displaying the following abbreviations next to the object name:

Abbreviation Parameter Value

Fixed-point instrumentation mode
 mmo Minimums, maximums and overflows

 o Overflows only

 fo Force off

Data type override
 scl Scaled double

 dbl Double

 sgl Single

 off Off

Contents Pane

The Contents pane displays a tabular view of objects that log fixed-point data in the
system or subsystem selected in the Model Hierarchy pane. The table rows correspond
to model objects, such as blocks, block parameters, and Stateflow data. The table columns
correspond to attributes of those objects, such as the data type, design minimum and
maximum values, and simulation minimum and maximum values.

The Contents pane displays information only after you simulate a system, analyze the
model to derive minimum and maximum values, or propose fraction lengths.

8 ==Fixed-Point Tool==

8-6

You can control which of the following columns the Fixed-Point Tool displays in this
pane. For more information, see “Customizing the Contents Pane View” on page 8-8.

Column Label Description

Accept Check box that enables you to selectively accept the Fixed-
Point Tool's data type proposal.

CompiledDesignMax Compile-time information for DesignMax.
CompiledDesignMin Compile-time information for DesignMin.
CompiledDT Compile-time data type. This data type appears on the

signal line in sfix format. See “Fixed-Point Data Type
and Scaling Notation”.

DerivedMax Maximum value the Fixed-Point tool derives for this signal
from design ranges specified for blocks.

DerivedMin Minimum value the Fixed-Point tool derives for this signal
from design ranges specified for blocks.

DesignMax Maximum value the block specifies in its parameter dialog
box, for example, the value of its Output maximum
parameter.

DesignMin Minimum value the block specifies in its parameter dialog
box, for example, the value of its Output minimum
parameter.

DivByZero Number of divide-by-zero instances that occur during
simulation.

DTGroup Identification tag associated with objects that share data
types.

InitValueMax Maximum initial value for a signal or parameter. Some
model objects provide parameters that allow you to
specify the initial values of their signals. For example, the
Constant block includes a Constant value that initializes
the block output signal.

Note: The Fixed-Point Tool uses this parameter when it
proposes data types.

InitValueMin Minimum initial value for a signal or parameter. Some
model objects provide parameters that allow you to

 Fixed-Point Tool Parameters and Dialog Box

8-7

Column Label Description

specify the initial values of their signals. For example,
the Constant block includes a Constant value that
initializes the block output signal.

Note: The Fixed-Point Tool uses this parameter when it
proposes data types.

LogSignal Check box that allows you to enable or disable signal
logging for an object.

ModelRequiredMin Minimum value of a parameter used during simulation.
For example, the n-D Lookup Table block uses the
Breakpoints and Table data parameters to perform its
lookup operation and generate output. In this example,
the block uses more than one parameter so the Fixed-Point
Tool sets ModelRequiredMin to the minimum of the
minimum values of all these parameters.

Note: The Fixed-Point Tool uses this parameter when it
proposes data types.

ModelRequiredMax Maximum value of a parameter used during simulation.
For example, the n-D Lookup Table block uses the
Breakpoints and Table data parameters to perform its
lookup operation and generate output. In this example,
the block uses more than one parameter so the Fixed-Point
Tool sets ModelRequiredMax to the maximum of the
maximum values of all these parameters.

Note: The Fixed-Point Tool uses this parameter when it
proposes data types.

Name Identifies path and name of block.
OverflowWraps Number of overflows that wrap during simulation.
ProposedDT Data type that the Fixed-Point Tool proposes.
ProposedMax Maximum value that results from the data type the Fixed-

Point Tool proposes.

8 ==Fixed-Point Tool==

8-8

Column Label Description

ProposedMin Minimum value that results from the data type the Fixed-
Point Tool proposes.

Run Indicates the run name for these results.
Saturations Number of overflows that saturate during simulation.
SimDT Data type the block uses during simulation. This data type

appears on the signal line in sfix format. See “Fixed-
Point Data Type and Scaling Notation”.

SimMax Maximum value that occurs during simulation.
SimMin Minimum value that occurs during simulation.
SpecifiedDT Data type the block specifies in its parameter dialog

box, for example, the value of its Output data type
parameter.

Customizing the Contents Pane View

You can customize the Contents pane in the following ways:

• “Using Column Views” on page 8-8
• “Changing Column Order and Width” on page 8-10
• “Sorting by Columns” on page 8-10

Using Column Views

The Fixed-Point Tool provides the following standard Column Views:

View Name Columns Provided When Does the Fixed-Point Tool
Display this View?

Simulation View (default) Name, Run, CompiledDT,
SpecifiedDT, SimMin,
SimMax, DesignMin,
DesignMax, OverflowWraps,
Saturations

After a simulating minimum
and maximum values.

Automatic Data Typing

View

Name, Run, CompiledDT,
CompiledDesignMax,
CompiledDesignMin,Accept,

After proposing data types if
proposal is based on simulation,
derived, and design min/max.

 Fixed-Point Tool Parameters and Dialog Box

8-9

View Name Columns Provided When Does the Fixed-Point Tool
Display this View?

ProposedDT, SpecifiedDT,
DesignMin, DesignMax,
DerivedMin, DerivedMax,
SimMin, SimMax,
OverflowWraps,
Saturations, ProposedMin,
ProposedMax

Automatic Data Typing

With Simulation Min/Max

View

Name, Run, CompiledDT,
Accept, ProposedDT,
SpecifiedDT, SimMin,
SimMax, DesignMin,
DesignMax, OverflowWraps,
Saturations, ProposedMin,
ProposedMax

After proposing data types if the
proposal is based on simulation
and design min/max.

Automatic Data Typing

With Derived Min/Max

View

Name, Run,
CompiledDesignMax,
CompiledDesignMin,Accept,
ProposedDT, SpecifiedDT,
DerivedMin, DerivedMax,
ProposedMin, ProposedMax

After proposing data types if the
proposal is based on design min/
max and/or derived min/max.

Data Collection View Name, Run, CompiledDT,
SpecifiedDT, DerivedMin,
DerivedMax, SimMin,
SimMax, OverflowWraps,
Saturations

After simulating or deriving
minimum and maximum values
if the results have simulation
min/max, derived min/max, and
design min/max.

Derived Min/Max View Name, Run,
CompiledDesignMax,
CompiledDesignMin,
DerivedMin, DerivedMax

After deriving minimum and
maximum values.

By selecting Show Details, you can:

• Customize the standard column views
• Create your own column views
• Export and import column views saved in MAT-files, which you can share with other

users

8 ==Fixed-Point Tool==

8-10

• Reset views to factory settings

If you upgrade to a new release of Simulink, and the column views available in the
Fixed-Point Tool do not match the views described in the documentation, reset your
views to factory settings. When you reset all views, the Model Explorer removes all
the custom views you have created. Before you reset views to factory settings, export
any views that you will want to use in the future.

You can prevent the Fixed-Point Tool from automatically changing the column view
of the contents pane by selecting View > Lock Column View in the Fixed-Point Tool
menu. For more information on controlling views, see “Control Model Explorer Contents
Using Views”.

Changing Column Order and Width

You can alter the order and width of columns that appear in the Contents pane as
follows:

• To move a column, click and drag the head of a column to a new location among the
column headers.

• To make a column wider or narrower, click and drag the right edge of a column
header. If you double-click the right edge of a column header, the column width
changes to fit its contents.

Sorting by Columns

By default, the Contents pane displays its contents in ascending order of the Name
column. You can alter the order in which the Contents pane displays its rows as follows:

• To sort all the rows in ascending order of another column, click the head of that
column.

• To change the order from ascending to descending, simply click again on the head of
that column.

Dialog Pane

Use the Dialog pane to view and change properties associated with the system under
design.

 Fixed-Point Tool Parameters and Dialog Box

8-11

The Dialog pane includes the following components:

Component Description

System under design Displays the system under design for conversion.
You can change the selected system by clicking
Change.

8 ==Fixed-Point Tool==

8-12

Component Description

Fixed-point preparation Contains the Fixed-Point Advisor button. Use
this button to open the Fixed-Point Advisor to
guide you through the tasks to prepare your
floating-point model for conversion to fixed
point. For more information, see “Fixed-Point
Advisor” on page 8-13.

Configure model settings Contains default configurations that set up run
parameters, such as the run name and data type
override settings, by clicking a button. For more
information, see “Configure model settings” on
page 8-14.

Range collection Contains controls to collect simulation or derived
minimum and maximum data for your model.

Automatic data typing Contains controls to propose and, optionally,
accept data type proposals.

Result Details tab Use this tab to view data type information about
the object selected in the Contents pane.

Tips

From the Fixed-Point Tool View menu, you can customize the layout of the Dialog pane.
Select:

• Show Fixed-Point Preparation to show/hide the Fixed-Point Advisor button. By
default, the Fixed-Point Tool displays this button.

• Show Dialog View to show/hide the Dialog pane. By default, the Fixed-Point Tool
displays this pane.

• Settings for selected system to show/hide the Settings for selected system pane.
By default, the Fixed-Point Tool displays this pane.

 Fixed-Point Tool Parameters and Dialog Box

8-13

Fixed-Point Advisor

Open the Fixed-Point Advisor to guide you through the tasks to prepare a floating-point
model for conversion to fixed point. Use the Fixed-Point Advisor if your model contains
blocks that do not support fixed-point data types.

8 ==Fixed-Point Tool==

8-14

Configure model settings

Use the configurations to set up model-wide data type override and instrumentation
settings prior to simulation. The Fixed-Point Tool provides:

• Frequently-used factory default configurations
• The ability to add and edit custom configurations

Note: The factory default configurations apply to the whole model. You cannot use these
shortcuts to configure subsystems.

Factory Defaults

Factory Default Configuration Description

Range collection using double
override

Use this configuration to observe ideal numeric
behavior of the model and collect ranges for data
type proposals.

This configuration sets:

• Run name to DoubleOverride
• Fixed-point instrumentation mode to

Minimums, maximums and overflows

• Data type override to Double
• Data type override applies to to All

numeric types

By default, a button for this configuration appears
in the Configure model settings pane.

Range collection with specified
data types

Use this configuration to collect ranges of actual
model and to validate current behavior.

This configuration sets:

• Run name to NoOverride
• Fixed-point instrumentation mode to

Minimums, maximums and overflows

 Fixed-Point Tool Parameters and Dialog Box

8-15

Factory Default Configuration Description

• Data type override to Use local settings

By default, a button for this shortcut appears in
the Configure model settings pane.

Remove overrides and disable
range collection

Use this configuration to cleanup settings after
finishing fixed-point conversion and to restore
maximum simulation speed.

This configuration sets:

• Fixed-point instrumentation mode to Off
• Data type override to Use local settings

By default, a button for this shortcut appears in
the Configure model settings pane.

Advanced settings

Use Advanced settings to open the , which you use to add new configurations or edit
existing user-defined configurations.

8 ==Fixed-Point Tool==

8-16

Run name

Specifies the run name

If you use a default configuration to set up a run, the Fixed-Point Tool uses the run name
associated with this configuration. You can override the run name by entering a new
name in this field.

Tips

• To store data for multiple runs, provide a different run name for each run. Running
two simulations with the same run name overwrites the original run unless you select
Merge results from multiple simulations.

• You can edit the run name in the Contents pane Run column.

For more information, see “Run Management”.

 Fixed-Point Tool Parameters and Dialog Box

8-17

Simulate

Simulates model and stores results.

Action

Simulates the model and stores the results with the run name specified in Run name.
The Fixed-Point Tool displays the run name in the Run column of the Contents pane.

8 ==Fixed-Point Tool==

8-18

Merge instrumentation results from multiple simulations

Control how simulation results are stored

Settings

Default: Off

 On
Merges new simulation minimum and maximum results with existing simulation
results in the run specified by the run name parameter. Allows you to collect
complete range information from multiple test benches. Does not merge signal
logging results.

 Off
Clears all existing simulation results from the run specified by the run name
parameter before displaying new simulation results.

Command-Line Alternative
Parameter: 'MinMaxOverflowArchiveMode'
Type: string
Value: 'Overwrite' | 'Merge'
Default: 'Overwrite'

Tip

Select this parameter to log simulation minimum and maximum values captured over
multiple simulations. For more information, see “Propose Data Types Using Multiple
Simulations”.

 Fixed-Point Tool Parameters and Dialog Box

8-19

Derive ranges for selected system

Derive minimum and maximum values for signals for the selected system.

The Fixed-Point Tool analyzes the selected system to compute derived minimum and
maximum values based on design minimum and maximum values specified on blocks.
For example, using the Output minimum and Output maximum for block outputs.

Action

Analyzes the selected system to compute derived minimum and maximum information
based on the design minimum and maximum values specified on blocks.

By default, the Fixed-Point Tool displays the Derived Min/Max View with the
following information in the Contents pane.

Command-Line Alternative

No command line alternative available.

Dependencies

Range analysis:

• Requires a Fixed-Point Designer license.

8 ==Fixed-Point Tool==

8-20

Propose

Signedness

Select whether you want The Fixed-Point Tool to propose signedness for results in your
model. The Fixed-Point Tool proposes signedness based on collected range data and block
constraints. By default, the Signedness check box is selected.

When the check box is selected, signals that are always strictly positive get an unsigned
data type proposal. If you clear the check box, the Fixed-Point Tool proposes a signed
data type for all results that currently specify a floating-point or an inherited output
data type unless other constraints are present. If a result specifies a fixed-point output
data type, the Fixed-Point Tool will propose a data type with the same signedness as the
currently specified data type unless other constraints are present.

Word length or fraction length

Select whether you want the Fixed-Point Tool to propose word lengths or fraction lengths
for the objects in your system.

• If you select Word length, the Fixed-Point Tool proposes a data type with the
specified fraction length and the minimum word length to avoid overflows.

• If you select Fraction length, the Fixed-Point Tool proposes a data type with the
specified word length and best-precision fraction length while avoiding overflows.

If a result currently specifies a fixed-point data type, that information will be used in
the proposal. If a result specifies a floating-point or inherited output data type, and the
Inherited and Floating point check boxes are selected, the Fixed-Point Tool uses the
settings specified under Automatic data typing to make a data type proposal.

 Fixed-Point Tool Parameters and Dialog Box

8-21

Propose for

Inherited

Propose data types for results that specify one of the inherited output data types.

Floating-point

Propose data types for results that specify floating-point output data types.

8 ==Fixed-Point Tool==

8-22

Default fraction length

Specify the default fraction length for objects in your model. The Fixed-Point Tool
proposes a data type with the specified fraction length and the minimum word length
that avoids overflows.

Command-Line Alternative

No command line alternative available.

 Fixed-Point Tool Parameters and Dialog Box

8-23

Default word length

Specify the default word length for objects in your model. The Fixed-Point Tool will
propose best-precision fraction lengths based on the specified default word length.

Command-Line Alternative

No command line alternative available.

8 ==Fixed-Point Tool==

8-24

When proposing types use

Specify the types of ranges to use for data type proposals.

Design and derived ranges

The Fixed-Point Tool uses the design ranges in conjunction with derived ranges to
propose data types. Design ranges take precedence over derived ranges.

Design and simulation ranges

The Fixed-Point Tool uses the design ranges in conjunction with collected simulation
ranges to propose data types. Design ranges take precedence over simulation ranges.

The Safety margin for simulation min/max (%) parameter specifies a range that
differs from that defined by the simulation range. For more information, see “Safety
margin for simulation min/max (%)” on page 8-25

All collected ranges

The Fixed-Point Tool uses design ranges in addition to derived and simulation ranges to
propose data types.

Design minimum and maximum values take precedence over simulation and derived
ranges.

Command-Line Alternative

No command line alternative available.

 Fixed-Point Tool Parameters and Dialog Box

8-25

Safety margin for simulation min/max (%)

Specify safety factor for simulation minimum and maximum values.

Settings

Default: 0

The simulation minimum and maximum values are adjusted by the percentage
designated by this parameter, allowing you to specify a range different from that
obtained from the simulation run. The specified safety margin must be a real number
greater than -100. For example, a value of 55 specifies that a range at least 55 percent
larger is desired. A value of -15 specifies that a range up to 15 percent smaller is
acceptable.

Dependencies

Before performing automatic data typing, you must specify design minimum and
maximum values or run a simulation to collect simulation minimum and maximum data,
or collect derived minimum and maximum values.

Command-Line Alternative

No command line alternative available.

8 ==Fixed-Point Tool==

8-26

Advanced Settings

In this section...

“Advanced Settings Overview” on page 8-26
“Fixed-point instrumentation mode” on page 8-27
“Data type override” on page 8-28
“Data type override applies to” on page 8-31
“Name of shortcut” on page 8-33
“Allow modification of fixed-point instrumentation settings” on page 8-34
“Allow modification of data type override settings” on page 8-35
“Allow modification of run name” on page 8-36
“Run name” on page 8-37
“Capture system settings” on page 8-38
“Fixed-point instrumentation mode” on page 8-39
“Data type override” on page 8-40
“Data type override applies to” on page 8-41
“Manage shortcuts” on page 8-42

Advanced Settings Overview

Use the Advanced Settings dialog to control the fixed-point instrumentation mode, and
data type override settings. You can also use the Advanced Settings dialog to add or edit
user-defined configurations. You cannot modify the factory default configurations. If
you add a new configuration and want it to appear as a button on the Fixed-Point Tool
Configure model settings pane, use the controls in the Shortcuts tab.

 Advanced Settings

8-27

Fixed-point instrumentation mode

Control which objects log minimum, maximum and overflow data during simulation.

Settings

Default: Use local settings

Use local settings

Logs data according to the value of this parameter set for each subsystem. Otherwise,
settings for parent systems always override those of child systems.

Minimums, maximums and overflows

Logs minimum value, maximum value, and overflow data for all blocks in the current
system or subsystem during simulation.

Overflows only

Logs only overflow data for all blocks in the current system or subsystem.
Force off

Does not log data for any block in the current system or subsystem. Use this selection
to work with models containing fixed-point enabled blocks if you do not have a Fixed-
Point Designer license.

Tips

• You cannot change the instrumentation mode for linked subsystems or referenced
models.

Dependencies

The value of this parameter for parent systems controls min/max logging for all child
subsystems, unless Use local settings is selected.

Command-Line Alternative
Parameter: 'MinMaxOverflowLogging'
Type: string
Value: 'UseLocalSettings' | 'MinMaxAndOverflow' | 'OverflowOnly' |
'ForceOff'

Default: 'UseLocalSettings'

8 ==Fixed-Point Tool==

8-28

Data type override

Control data type override of objects that allow you to specify data types in their dialog
boxes.

Settings

Default: Use local settings

The value of this parameter for parent systems controls data type override for all child
subsystems, unless Use local settings is selected.

Use local settings

Overrides data types according to the setting of this parameter for each subsystem.
Scaled double

Overrides the data type of all blocks in the current system and subsystem with
doubles; however, the scaling and bias specified in the dialog box of each block is
maintained.

Double

Overrides the output data type of all blocks in the current system or subsystem with
doubles. The overridden values have no scaling or bias.

Single

Overrides the output data type of all blocks in the current system or subsystem with
singles. The overridden values have no scaling or bias.

Off

No data type override is performed on any block in the current system or subsystem.
The settings on the blocks are used.

Tips

• Set this parameter to Double or Single and the Data type override applies
to parameter to All numeric types to work with models containing fixed-point
enabled blocks if you do not have a Fixed-Point Designer license.

• You cannot change the Data type override setting on linked subsystems or
referenced models.

• Data type override never applies to boolean data types.
• When you set the Data type override parameter of a parent system to Double,

Single, Scaled double or Off, this setting also applies to all child subsystems and

 Advanced Settings

8-29

you cannot change the data type override setting for these child subsystems. When
the Data type override parameter of a parent system is Use local settings, you
can set the Data type override parameter for individual children.

• Use this parameter with the Data type override applies to parameter. The
following table details how these two parameters affect the data types in your model.

Fixed-Point Tool Settings Block Local Settings

Data type override Data type override
applies to

Floating-point types Fixed-point types

Use local settings/Off N/A Unchanged Unchanged
All numeric types Double Double

Floating-point Double Unchanged
Double

Fixed-point Unchanged Double
All numeric types Single Single

Floating-point Single Unchanged
Single

Fixed-point Unchanged Single
All numeric types Double Scaled double

equivalent of
fixed-point type

Floating-point Double Unchanged

Scaled double

Fixed-point Unchanged Scaled double
equivalent of

fixed-point type

Dependencies

• The following Simulink blocks allow you to set data types in their block masks, but
ignore the Data type override setting:

• Probe

• Trigger

• Width

Command-Line Alternative
Parameter: 'DataTypeOverride'
Type: string

8 ==Fixed-Point Tool==

8-30

Value: 'UseLocalSettings' | 'ScaledDouble' | 'Double' | 'Single' | 'Off'
Default: 'UseLocalSettings'

 Advanced Settings

8-31

Data type override applies to

Specifies which data types the Fixed-Point Tool overrides

Settings

Default: All numeric types

All numeric types

Data type override applies to all numeric types, floating-point and fixed-point. It does
not apply to boolean or enumerated data types.

Floating-point

Data type override applies only to floating-point data types, that is, double and
single.

Fixed-point

Data type override applies only to fixed-point data types, for example, uint8, fixdt.

Tips

• Use this parameter with the Data type override parameter.
• Data type override never applies to boolean or enumerated data types or to buses.
• When you set the Data type override parameter of a parent system to Double,

Single, Scaled double or Off, this setting also applies to all child subsystems and
you cannot change the data type override setting for these child subsystems. When
the Data type override parameter of a parent system is Use local setting, you
can set the Data type override parameter for individual children.

• The following table details how these two parameters affect the data types in your
model.

Fixed-Point Tool Settings Block Local Settings

Data type override Data type override
applies to

Floating-point types Fixed-point types

Use local settings/Off N/A Unchanged Unchanged
All numeric types Double Double

Floating-point Double Unchanged
Double

Fixed-point Unchanged Double

8 ==Fixed-Point Tool==

8-32

Fixed-Point Tool Settings Block Local Settings

Data type override Data type override
applies to

Floating-point types Fixed-point types

All numeric types Single Single
Floating-point Single Unchanged

Single

Fixed-point Unchanged Single
All numeric types Double Scaled double

equivalent of
fixed-point type

Floating-point Double Unchanged

Scaled double

Fixed-point Unchanged Scaled double
equivalent of

fixed-point type

Dependencies

This parameter is enabled only when Data type override is set to Scaled double,
Double or Single.

Command-Line Alternative
Parameter: 'DataTypeOverrideAppliesTo'
Type: string
Value: 'AllNumericTypes' | 'Floating-point' | 'Fixed-point'
Default: 'AllNumericTypes'

 Advanced Settings

8-33

Name of shortcut

Enter a unique name for your shortcut. By default, the Fixed-Point Tool uses this name
as the Run name for this shortcut.

If the shortcut name already exists, the new settings overwrite the existing settings.

See Also

• “Run Management”

8 ==Fixed-Point Tool==

8-34

Allow modification of fixed-point instrumentation settings

Select whether to change the model fixed-point instrumentation settings when you apply
this shortcut to the model.

Settings

Default: On

 On
When you apply this shortcut to the model, changes the fixed-point instrumentation
settings of the model and its subsystems to the setting defined in this shortcut.

 Off
Does not change the fixed-point instrumentation settings when you apply this
shortcut to the model.

Tip

If you want to control data type override settings without altering the fixed-point
instrumentation settings on your model, clear this option.

See Also

• “Run Management”

 Advanced Settings

8-35

Allow modification of data type override settings

Select whether to change the model data type override settings when you apply this
shortcut to the model

Settings

Default: On

 On
When you apply this shortcut to the model, changes the data type override settings of
the model and its subsystems to the settings defined in this shortcut .

 Off
Does not change the fixed-point instrumentation settings when you apply this
shortcut to the model.

8 ==Fixed-Point Tool==

8-36

Allow modification of run name

Select whether to change the run name on the model when you apply this shortcut to the
model

Settings

Default: On

 On
Changes the run name to the setting defined in this shortcut when you apply this
shortcut to the model.

 Off
Does not change the run name when you apply this shortcut to the model.

 Advanced Settings

8-37

Run name

Specify the run name to use when you apply this shortcut.

By default, the run name uses the name of the shortcut. Run names are case sensitive.

Dependency

Allow modification of run name enables this parameter.

8 ==Fixed-Point Tool==

8-38

Capture system settings

Copy the model and subsystem fixed-point instrumentation mode and data type override
settings into the Shortcut editor.

 Advanced Settings

8-39

Fixed-point instrumentation mode

Control which objects in the shortcut editor log minimum, maximum and overflow data
during simulation.

This information is stored in the shortcut. To use the current model setting, click
Capture system settings.

Settings

Default: Same as model setting

Use local settings

Logs data according to the value of this parameter set for each subsystem. Otherwise,
settings for parent systems always override those of child systems.

Minimums, maximums and overflows

Logs minimum value, maximum value, and overflow data for all blocks in the current
system or subsystem during simulation.

Overflows only

Logs only overflow data for all blocks in the current system or subsystem.
Force off

Does not log data for any block in the current system or subsystem. Use this selection
to work with models containing fixed-point enabled blocks if you do not have a Fixed-
Point Designer license.

Dependency

Allow modification of fixed-point instrumentation settings enables this
parameter.

8 ==Fixed-Point Tool==

8-40

Data type override

Control data type override of objects that allow you to specify data types in their dialog
boxes.

This information is stored in the shortcut. To use the current model settings, click
Capture system settings.

Settings

Default: Same as model

The value of this parameter for parent systems controls data type override for all child
subsystems, unless Use local settings is selected.

Use local settings

Overrides data types according to the setting of this parameter for each subsystem.
Scaled double

Overrides the data type of all blocks in the current system and subsystem with
doubles; however, the scaling and bias specified in the dialog box of each block is
maintained.

Double

Overrides the output data type of all blocks in the current system or subsystem with
doubles. The overridden values have no scaling or bias.

Single

Overrides the output data type of all blocks in the current system or subsystem with
singles. The overridden values have no scaling or bias.

Off

No data type override is performed on any block in the current system or subsystem.
The settings on the blocks are used.

Dependency

Allow modification of data type override settings enables this parameter.

 Advanced Settings

8-41

Data type override applies to

Specifies which data types to override when you apply this shortcut.

This information is stored in the shortcut. To use the current model setting, click
Capture system settings.

Settings

Default: All numeric types

All numeric types

Data type override applies to all numeric types, floating-point and fixed-point. It does
not apply to boolean or enumerated data types.

Floating-point

Data type override applies only to floating-point data types, that is, double and
single.

Fixed-point

Data type override applies only to fixed-point data types, for example, uint8, fixdt.

Dependency

Allow modification of data type override settings enables this parameter.

8 ==Fixed-Point Tool==

8-42

Manage shortcuts

Control which configurations appear as buttons on the Fixed-Point Tool Configure
model settings panel and the order in which they appear.

9

Model Advisor Checks

9 Model Advisor Checks

9-2

Simulink Checks

In this section...

“Simulink Check Overview” on page 9-5
“Migrating to Simplified Initialization Mode Overview” on page 9-5
“Identify unconnected lines, input ports, and output ports” on page 9-7
“Check root model Inport block specifications” on page 9-8
“Check optimization settings” on page 9-9
“Check diagnostic settings ignored during accelerated model reference simulation” on
page 9-11
“Check for parameter tunability information ignored for referenced models” on page
9-12
“Check for implicit signal resolution” on page 9-13
“Check for optimal bus virtuality” on page 9-14
“Check for Discrete-Time Integrator blocks with initial condition uncertainty” on page
9-15
“Identify disabled library links” on page 9-16
“Identify parameterized library links” on page 9-17
“Identify unresolved library links” on page 9-18
“Identify model reference variants and variant subsystems that override variant choice”
on page 9-19
“Identify configurable subsystem blocks for converting to variant subsystem blocks” on
page 9-20
“Check usage of function-call connections” on page 9-20
“Check model for upgradable Simulink Scope blocks” on page 9-21
“Check signal logging save format” on page 9-21
“Check Data Store Memory blocks for multitasking, strong typing, and shadowing
issues” on page 9-23
“Check if read/write diagnostics are enabled for data store blocks” on page 9-25
“Check data store block sample times for modeling errors” on page 9-27
“Check for potential ordering issues involving data store access” on page 9-28
“Check for partial structure parameter usage with bus signals” on page 9-30

 Simulink Checks

9-3

In this section...

“Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition” on page
9-31
“Check for calls to slDataTypeAndScale” on page 9-34
“Check bus usage” on page 9-36
“Check for potentially delayed function-call subsystem return values” on page 9-38
“Identify block output signals with continuous sample time and non-floating point data
type” on page 9-40
“Check usage of Merge blocks” on page 9-41
“Check usage of Outport blocks” on page 9-44
“Check usage of Discrete-Time Integrator blocks” on page 9-55
“Check model settings for migration to simplified initialization mode” on page 9-56
“Check for non-continuous signals driving derivative ports” on page 9-60
“Runtime diagnostics for S-functions” on page 9-62
“Check model for foreign characters” on page 9-64
“Check model for block upgrade issues” on page 9-69
“Check model for block upgrade issues requiring compile time information” on page
9-70
“Check that the model is saved in SLX format” on page 9-73
“Check model for SB2SL blocks” on page 9-75
“Check Model History properties” on page 9-77
“Identify Model Info blocks that can interact with external source control tools” on page
9-78
“Identify Model Info blocks that use the Configuration Manager” on page 9-79
“Check for Mux blocks used to create bus signals” on page 9-80
“Check bus usage” on page 9-81
“Check model for legacy 3DoF or 6DoF blocks” on page 9-83
“Check model and local libraries for legacy Aerospace Blockset blocks” on page 9-84
“Check and update masked blocks in library to use promoted parameters” on page
9-85

9 Model Advisor Checks

9-4

In this section...

“Check and update mask image display commands with unnecessary imread() function
calls” on page 9-85
“Identify masked blocks that specify tabs in mask dialog using MaskTabNames
parameter” on page 9-87
“Identify questionable operations for strict single-precision design” on page 9-88
“Check get_param calls for block CompiledSampleTime” on page 9-89
“Check model for parameter initialization and tuning issues” on page 9-91
“Check Rapid Accelerator signal logging” on page 9-92
“Check for root outports with constant sample time” on page 9-93
“Analyze model hierarchy and continue upgrade sequence” on page 9-95

 Simulink Checks

9-5

Simulink Check Overview

Use the Simulink Model Advisor checks to configure your model for simulation.

See Also

• “Run Model Checks”
• “Simulink Coder Checks”
• “Simulink Verification and Validation Checks”

Migrating to Simplified Initialization Mode Overview

Simplified initialization mode was introduced in R2008b to improve the consistency
of simulation results. This mode is especially important for models that do not specify
initial conditions for conditionally executed subsystem output ports. See “Address Classic
Mode Issues by Using Simplified Mode” for more information.

Use the Model Advisor checks in Migrating to Simplified Initialization Mode to help
migrate your model to simplified initialization mode.

See Also

• “Address Classic Mode Issues by Using Simplified Mode”
• “Underspecified initialization detection”
• “Check usage of Merge blocks” on page 9-41
• “Check usage of Outport blocks” on page 9-44
• “Check usage of Discrete-Time Integrator blocks” on page 9-55
• “Check model settings for migration to simplified initialization mode” on page 9-56

9 Model Advisor Checks

9-6

 Simulink Checks

9-7

Identify unconnected lines, input ports, and output ports

Check ID: mathworks.design.UnconnectedLinesPorts

Check for unconnected lines or ports.

Description

This check lists unconnected lines or ports. These can have difficulty propagating signal
attributes such as data type, sample time, and dimensions.

Note: Ports connected to ground/terminator blocks will pass this test.

Results and Recommended Actions

Condition Recommended Action

Lines, input ports, or output ports are
unconnected.

Connect the signals. Double-click
the list of unconnected items to
locate failure.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

Tips

Use the PortConnectivity command to obtain an array of structures describing block
input or output ports.

See Also

“Common Block Properties” on page 6-85 for information on the PortConnectivity
command.

“What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-8

Check root model Inport block specifications

Check ID: mathworks.design.RootInportSpec

Check that root model Inport blocks fully define dimensions, sample time, and data type.

Description

Using root model Inport blocks that do not fully define dimensions, sample time, or
data type can lead to undesired simulation results. Simulink software back-propagates
dimensions, sample times and data types from downstream blocks unless you explicitly
assign them values.

Results and Recommended Actions

Condition Recommended Action

Root-level Inport blocks have undefined attributes. Fully define the attributes of the
root-level Inport blocks.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

• “About Data Types in Simulink”.
• “Determine Output Signal Dimensions”.
• “ Specify Sample Time”.
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-9

Check optimization settings

Check ID: mathworks.design.OptimizationSettings

Check for optimizations that can lead to non-optimal code generation and simulation.

Description

This check reviews the status of optimizations that can improve code efficiency and
simulation time.

Results and Recommended Actions

Condition Recommended Action

The specified
optimizations are off.

Select the following optimization check boxes on the Optimization pane in
the Configuration Parameters dialog box:

• “Block reduction”
• “Conditional input branch execution”
• “Implement logic signals as Boolean data (vs. double) ”
• “Remove root level I/O zero initialization”
• “Remove internal data zero initialization”
• “Use memset to initialize floats and doubles to 0.0”
• “Remove code from floating-point to integer conversions that

wraps out-of-range values” (only if you have a Simulink Coder
license)

Enable the following optimizations on the Optimization > Signals and
Parameters pane in the Configuration Parameters dialog box:

• “Signal storage reuse ”
• “Enable local block outputs ”
• “Reuse local block outputs ”
• “Eliminate superfluous local variables (Expression folding) ”
• “Inline invariant signals ” (only if you have a Simulink Coder license)

Select the following optimization check boxes on the Optimization >
Stateflow pane in the Configuration Parameters dialog box:

9 Model Advisor Checks

9-10

Condition Recommended Action

• “Use bitsets for storing state configuration”
• “Use bitsets for storing Boolean data”

“Application
lifespan (days)”
is set as infinite.
This could lead to
expensive 64-bit
counter usage.

Choose a stop time if this is not intended.

The specified
diagnostics, which
can increase the time
it takes to simulate
your model, are set to
warning or error.

Select none for:

• Diagnostics > Solver > Solver data inconsistency
• Diagnostics > Data Validity > Array bounds exceeded
• Diagnostics > Data Validity > Simulation range checking

The specified
Embedded Coder
parameters are off.

If you have an Embedded Coder license and you are using an ERT-based
system target file:

• Select Code Generation > Interface > Single output/update
function. For details, see “Single output/update function”.

• Select Code Generation > General > Ignore test point signals. For
details, see “Ignore test point signals”.

• Set Optimization > Signals and Parameters > Pass reusable
subsystem outputs as to Individual argutments. For details, see
“Pass reusable subsystem outputs as”.

Tips

If the system contains Model blocks and the referenced model is in Accelerator mode,
simulating the model requires generating and compiling code.

See Also

• “Optimization Pane: General”.

 Simulink Checks

9-11

Check diagnostic settings ignored during accelerated model reference
simulation

Check ID: mathworks.design.ModelRefSIMConfigCompliance

Checks for referenced models for which Simulink changes configuration parameter
settings during accelerated simulation.

Description

For models referenced in Accelerator mode, Simulink ignores the settings of the following
Configuration Parameters > Diagnostics > Data Validity parameter settings you
set to a value other than None.

• Array bounds exceeded
• Inf or NaN block output
• Simulation range checking
• Division by singular matrix
• Wrap on overflow

Also, for models referenced in Accelerator mode, Simulink ignores the following
Configuration Parameters > Diagnostics > Data Validity > Data Store Memory
Block parameters if you set them to a value other than Disable all. For details, see
“Data Store Diagnostics”.

• Detect read before write
• Detect write after read
• Detect write after write

Results and Recommended Actions

Condition Recommended Action

You want to see the results of running the
identified diagnostics with settings to produce
warnings or errors.

Simulate the model in Normal mode
and resolve diagnostic warnings or
errors.

9 Model Advisor Checks

9-12

Check for parameter tunability information ignored for referenced models

Check ID: mathworks.design.ParamTunabilityIgnored

Checks if parameter tunability information is included in the Model Parameter
Configuration dialog box.

Description

Simulink software ignores tunability information specified in the Model Parameter
Configuration dialog box. This check identifies those models containing parameter
tunability information that Simulink software will ignore if the model is referenced by
other models.

Results and Recommended Actions

Condition Recommended Action

Model contains ignored parameter tunability
information.

Click the links to convert to
equivalent Simulink parameter
objects in the MATLAB workspace.

See Also

“Parameter Storage in the Generated Code”.

 Simulink Checks

9-13

Check for implicit signal resolution

Check ID: mathworks.design.ImplicitSignalResolution

Identify models that attempt to resolve named signals and states to Simulink.Signal
objects.

Description

Requiring Simulink software to resolve all named signals and states is inefficient and
slows incremental code generation and model reference. This check identifies those
signals and states for which you may turn off implicit signal resolution and enforce
resolution.

Results and Recommended Actions

Condition Recommended Action

Not all signals and states are resolved. Turn off implicit signal resolution
and enforce resolution for each
signal and state that does resolve.

See Also

“Resolve Signal Objects for Output Data”.

9 Model Advisor Checks

9-14

Check for optimal bus virtuality

Check ID: mathworks.design.OptBusVirtuality

Identify virtual buses that could be made nonvirtual. Making these buses nonvirtual
improves generated code efficiency.

Description

This check identifies blocks incorporating virtual buses that cross a subsystem boundary.
Changing these to nonvirtual improves generated code efficiency.

Results and Recommended Actions

Condition Recommended Action

Blocks that specify a virtual bus crossing a
subsystem boundary.

Change the highlighted bus to
nonvirtual.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

• “Signal Basics”.
• “Virtual and Nonvirtual Buses”.
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-15

Check for Discrete-Time Integrator blocks with initial condition uncertainty

Check ID: mathworks.design.DiscreteTimeIntegratorInitCondition

Identify Discrete-Time Integrator blocks with state ports and initial condition ports that
are fed by neither an Initial Condition nor a Constant block.

Description

Discrete-Time Integrator blocks with state port and initial condition ports might not be
suitably initialized unless they are fed from an Initial Condition or Constant block. This
is more likely to happen when Discrete-Time Integrator blocks are used to model second-
order or higher-order dynamic systems.

Results and Recommended Actions

Condition Recommended Action

Discrete-Time Integrator blocks are not initialized
during the model initialization phase.

Add a Constant or Initial Condition
block to feed the external Initial
Condition port.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

• IC block
• Discrete-Time Integrator block
• Constant block
• “What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-16

Identify disabled library links

Check ID: mathworks.design.DisabledLibLinks

Search model for disabled library links.

Description

Disabled library links can cause unexpected simulation results. Resolve disabled links
before saving a model.

Note: This check may overlap with “Check model for block upgrade issues” on page
9-69.

Results and Recommended Actions

Condition Recommended Action

Library links are disabled. Click the Library Link > Resolve
link option in the context menu.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

Tips

• Use the Model Browser to find library links.
• To enable a broken link, right-click a block in your model to display the context menu.

Select Library Link > Resolve link.

See Also

“Restore Disabled or Parameterized Links”.

“What Is a Model Advisor Exclusion?”

 Simulink Checks

9-17

Identify parameterized library links

Check ID: mathworks.design.ParameterizedLibLinks

Search model for parameterized library links.

Description

Parameterized library links that are unintentional can result in unexpected parameter
settings in your model. This can result in improper model operation.

Results and Recommended Actions

Condition Recommended Action

Parameterized links are listed. Verify that the links are intended to
be parameterized.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

Tips

• Right-click a block in your model to display the context menu. Choose Link Options
and click Go To Library Block to see the original block from the library.

• To parameterize a library link, choose Look Under Mask, from the context menu and
select the parameter.

See Also

“Restore Disabled or Parameterized Links”.

“What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-18

Identify unresolved library links

Check ID: mathworks.design.UnresolvedLibLinks

Search the model for unresolved library links, where the specified library block cannot be
found.

Description

Check for unresolved library links. Models do not simulate while there are unresolved
library links.

Results and Recommended Actions

Condition Recommended Action

Library links are unresolved. Locate missing library block or an
alternative.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

“Fix Unresolved Library Links”

“What Is a Model Advisor Exclusion?”

 Simulink Checks

9-19

Identify model reference variants and variant subsystems that override
variant choice

Check ID: mathworks.design.VariantOverride

Identify model or subsystem for model reference variants and variant subsystems that
specify variant choice using the override option instead of using the active variant object.

Results and Recommended Actions

Condition Recommended Action

Model reference variants or variant subsystems
that override variant choice are identified.

Specify variant choice using active
variant object.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

“Set and Open Active Variants”

“What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-20

Identify configurable subsystem blocks for converting to variant
subsystem blocks

Check ID: mathworks.design.CSStoVSSConvert

Search the model to identify configurable subsystem blocks at the model or subsystem
level.

Results and Recommended Actions

Condition Recommended Action

Configurable subsystem blocks are identified. Convert these blocks to variant
subsystem blocks to avoid
compatibility issues. See “Convert
Subsystem Blocks to Variant
Subsystem Blocks”

Capabilities and Limitations

You can run this check on your library models.

See Also

“Set Up Model Variants”

Check usage of function-call connections

Check ID: mathworks.design.CheckForProperFcnCallUsage

Check model diagnostic settings that apply to function-call connectivity and that might
impact model execution.

Description

Check for connectivity diagnostic settings that might lead to non-deterministic model
execution.

Results and Recommended Actions

Condition Recommended Action

Diagnostics > Connectivity > Invalid
function-call connection is set to none

Set Diagnostics > Connectivity >
Invalid function-call connection to
error.

 Simulink Checks

9-21

Condition Recommended Action

or warning. This might lead to non-
deterministic model execution.
Diagnostic > Connectivity > Context-
dependent inputs is set to Disable All
or Use local settings. This might lead
to non-deterministic model execution.

Set Diagnostics > Connectivity >
Context-dependent inputs to Enable
all as errors.

See Also

Function-Call Subsystem

Check model for upgradable Simulink Scope blocks

Check model for Simulink Scope blocks that you can upgrade to Simulink Time Scope
blocks

Description

In a future release, Simulink Scope blocks will be removed and replaced with Simulink
Time Scope blocks.

Results and Recommended Actions

Condition Recommended Action

Model does not have Simulink Scope
blocks.

No action required.

Model includes at least one Simulink Scope
block.

Select the Check model for upgradable
Simulink Scope blocks check, click the
Run This Check button, review the list of
scope blocks, and then click the Upgrade
button.

Check signal logging save format

Check ID: mathworks.design.SigLogSaveFormat

Check signal logging save format.

9 Model Advisor Checks

9-22

Description

Check signal logging save format. The signal logging save format ModelDataLogs will
be removed in a future release. To take advantage of new functionality, update models
using ModelDataLogs format to use Dataset format.

Results and Recommended Actions

Condition Recommended Action

The model has the signal logging format set
to Dataset.

No action required.

The model has the signal logging format set
to ModelDataLogs.

Use the Upgrade Advisor (with the
upgradeadvisor function) to upgrade
a model to use Dataset format. Enable
the Check signal logging save format
check, run the check, and click the Update
format button.

The model contains Model blocks. Models
in the model reference hierarchy require
the same signal logging save format.

Use the Upgrade Advisor (with the
upgradeadvisor function) to upgrade
a model to use Dataset format. Enable
the Check signal logging save format
check, run the check, and click the Update
format button.

See Also

“Specify the Signal Logging Data Format”

 Simulink Checks

9-23

Check Data Store Memory blocks for multitasking, strong typing, and
shadowing issues

Check ID: mathworks.design.DataStoreMemoryBlkIssue

Look for modeling issues related to Data Store Memory blocks.

Description

Checks for multitasking data integrity, strong typing, and shadowing of data stores of
higher scope.

Results and Recommended Actions

Condition Recommended Action

The Duplicate data store names
check is set to none or warning.

Consider setting the “Duplicate data store
names” check to error in the Configuration
Parameters dialog box, on the Diagnostics >
Data Validity pane.

The data store variable names are not
strongly typed in one of the following:

• Signal Attributes pane of the
Block Parameters dialog for the
Date Store Memory block

• Global data store name

Specify a data type other than auto by taking
one of the following actions:

• Choose a data type other than Inherit:
auto on the Signal Attributes pane of the
Block Parameters dialog for the Date Store
Memory block.

• If you are using a global data store
name, then specify its data type in the
Simulink.Signal object.

The Multitask data store check is
set to none or warning.

Consider setting the “Multitask data store”
check to error in the Configuration Parameters
dialog box, on the Diagnostics > Data
Validity pane.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

9 Model Advisor Checks

9-24

See Also

• “Local and Global Data Stores”
• “Storage Classes for Data Store Memory Blocks”
• Data Store Memory

• Data Store Read

• Data Store Write

• “Duplicate data store names”
• “Multitask data store”
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-25

Check if read/write diagnostics are enabled for data store blocks

Check ID: mathworks.design.DiagnosticDataStoreBlk

For data store blocks in the model, enable the read-and-write diagnostics order checking
to detect run-time issues.

Description

Check for the read-and-write diagnostics order checking. By enabling the read-and-write
diagnostics, you detect potential run-time issues.

Results and Recommended Actions

Condition Recommended Action

The Detect read before write check is
disabled.

Consider enabling “Detect read before
write” in the Configuration Parameter
dialog box Diagnostics> Data Validity
pane.

The Detect write after read check is
disabled.

Consider enabling “Detect write after read”
in the Configuration Parameter dialog box
Diagnostics> Data Validity pane.

The Detect write after write check is
disabled.

Consider enabling “Detect write after
write” in the Configuration Parameter
dialog box Diagnostics> Data Validity
pane.

Capabilities and Limitations

Exclude blocks and charts from this check if you have a Simulink Verification and
Validation license.

Tips

.

• The run-time diagnostics can slow simulations down considerably. Once you have
verified that Simulink does not generate warnings or errors during simulation, set
them to Disable all.

9 Model Advisor Checks

9-26

See Also

• “Local and Global Data Stores”
• Data Store Memory

• Data Store Read

• Data Store Write

• “Detect read before write”
• “Detect write after read”
• “Detect write after write”
• “Check for potential ordering issues involving data store access” on page 9-28
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-27

Check data store block sample times for modeling errors

Check ID: mathworks.design.DataStoreBlkSampleTime

Identify modeling errors due to the sample times of data store blocks.

Description

Check data store blocks for continuous or fixed-in-minor-step sample times.

Results and Recommended Actions

Condition Recommended Action

Data store blocks in your model have
continuous or fixed-in-minor-step sample
times.

Consider making the listed blocks discrete
or replacing them with either Memory or
Goto and From blocks.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

• “Local and Global Data Stores”
• Data Store Memory

• Data Store Read

• Data Store Write

• “Fixed-in-Minor-Step”
• “What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-28

Check for potential ordering issues involving data store access

Check ID: mathworks.design.OrderingDataStoreAccess

Look for read/write issues which may cause inaccuracies in the results.

Description

During an Update Diagram, identify potential issues relating to read-before-write,
write-after-read, and write-after-write conditions for data store blocks.

Results and Recommended Actions

Condition Recommended Action

Reading and writing (read-before-write
or write-after-read condition) occur out of
order.

Consider restructuring your model so that
the Data Store Read block executes before
the Data Store Write block.

Multiple writes occur within a single time
step.

Change the model to write data only once
per time step or refer to the following Tips
section.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

Tips

This check performs a static analysis which might not identify every instance of improper
usage. Specifically, Function-Call Subsystems, Stateflow Charts, MATLAB for code
generation, For Iterator Subsystems, and For Each Subsystems can cause both missed
detections and false positives. For a more comprehensive check, consider enabling the
following diagnostics on the Diagnostics > Data Validity pane in the Configuration
Parameters dialog box: “Detect read before write”, “Detect write after read”, and “Detect
write after write”.

See Also

• “Local and Global Data Stores”
• Data Store Memory

 Simulink Checks

9-29

• Data Store Read

• Data Store Write

• “Detect read before write”
• “Detect write after read”
• “Detect write after write”
• “What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-30

Check for partial structure parameter usage with bus signals

Check ID: mathworks.design.PartialBusParams

Identify blocks that use partial structures as parameter values for bus signals.

Description

This check compares structures that provide parameter values for bus signals, to identify
partial structures. This check returns a table listing the:

• Paths to blocks that use partial structures as parameter values for bus signals
• Names the block parameters that use the partial structure

For all data stores that you define with a Simulink.Signal object that uses a partial
structure for its Initial value parameter, this check lists the following information, in a
second table:

• Name of the signal object
• Workspace (MATLAB or model) of the signal object
• Name of the signal object parameter that uses the partial structure

Results and Recommended Actions

Condition Recommended Action

Block using partial
structure

Consider using the
Simulink.Bus.createMATLABStructure function to
convert a partial structure parameter to a full structure of
parameter values for the listed blocks.

Signal objects using partial
structure

Consider using the
Simulink.Bus.createMATLABStructure function to
convert a partial structure parameter to a full structure of
parameter values for the listed signals.

Tips

• Specifying partial structures for block parameter values can be useful during the
iterative process of creating a model. You can use partial structures to focus on a
subset of signals in a bus.

• Specifying full structures for code generation offers these advantages:

 Simulink Checks

9-31

• Generated code is more readable than the code generated for partial structures.
• Supports a modeling style that explicitly initializes unspecified signals. When you

use partial structures, Simulink initializes unspecified signals implicitly.

See Also

• “Specify Initial Conditions for Bus Signals”
• “Data Stores with Signal Objects”
• Simulink.Bus.createMATLABStruct

• Simulink.Signal

Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition

Check ID: mathworks.design.ReplaceZOHDelayByRTB

Identify Delay, Unit Delay, or Zero-Order Hold blocks that are used for rate transition.
Replace these blocks with actual Rate Transition blocks.

Description

If a model uses Delay, Unit Delay, or Zero-Order Hold blocks to provide rate transition
between input and output signals, Simulink makes a hidden replacement of these blocks
with built-in Rate Transition blocks. In the compiled block diagram, a yellow symbol and
the letters “RT” appear in the upper-left corner of a replacement block. This replacement
can affect the behavior of the model, as follows:

• These blocks lose their algorithmic design properties to delay a signal or implement
zero-order hold. Instead, they acquire rate transition behavior.

• This modeling technique works only in specific transition configurations (slow-to-fast
for Delay and Unit Delay blocks, and fast-to-slow for Zero-Order Hold block). Set the
block sample time to be equal to the slower rate (source for the Delay and Unit Delay
blocks and destination for the Zero-Order Hold block).

• When the block sample time of a downstream or upstream block changes, these
Delay, Unit Delay and Zero-Order Hold blocks might not perform rate transition. For
example, setting the source and destination sample times equal stops rate transition.
The blocks then assume their original algorithmic design properties.

• The block sample time shows incomplete information about sample time rates. The
block code runs at two different rates to handle data transfer. However, the block

9 Model Advisor Checks

9-32

sample time and sample time color show it as a single-rate block. Tools and MATLAB
scripts that use sample time information base their behavior on this information.

An alternative is to replace Delay, Unit Delay, or Zero-Order Hold blocks with actual
Rate Transition blocks.

• The technique ensures unambiguous results in block behavior. Delay, Unit Delay, or
Zero-Order Hold blocks act according to their algorithmic design to delay and hold
signals respectively. Only Rate Transition blocks perform actual rate transition.

• Using an actual Rate Transition block for rate transition offers a configurable solution
to handle data transfer if you want to specify deterministic behavior or the type of
memory buffers to implement.

Use this check to identify instances in your model where Delay, Unit Delay or Zero-Order
Hold blocks undergo hidden replacement to provide rate transition between signals. Click
Upgrade Model to replace these blocks with actual Rate Transition blocks.

Results and Recommended Actions

Condition Recommended Action

Model has no instances of
Delay, Unit Delay, or Zero-
Order Hold blocks used for
rate transition.

No action required.

Model has instances of
Delay, Unit Delay, or Zero-
Order Hold blocks used for
rate transition.

The check identifies these instances and allows you to
upgrade the model.

1 Click Upgrade Model to replace with actual Rate
Transition blocks.

2 Save changes to your model.

If you do not choose to replace the Delay, Unit Delay, and/or Zero-Order Hold blocks with
actual Rate Transition blocks, Simulink continues to perform a hidden replacement of
these blocks with built-in rate transition blocks.

Capabilities and Limitations

You can:

• Run this check on your library models.

 Simulink Checks

9-33

• Exclude blocks and charts from this check if you have a Simulink Verification and
Validation license.

See Also

• “Run Model Checks”
• “Model Upgrades”
• Rate Transition

• “What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-34

Check for calls to slDataTypeAndScale

Check ID: mathworks.design.CallslDataTypeAndScale

Identify calls to the internal function slDataTypeAndScale.

Description

In some previous versions of Simulink, opening a model that had been saved in an earlier
version triggers an automatic upgrade to code for data type handling. The automatic
upgrade inserts calls to the internal function slDataTypeAndScale. Although Simulink
continues to support some uses of the function, if you eliminate calls to it, you get cleaner
and faster code.

Simulink does not support calls to slDataTypeAndScale when:

• The first argument is a Simulink.AliasType object.
• The first argument is a Simulink.NumericType object with property IsAlias set to

true.

Running Check for calls to slDataTypeAndScale identifies calls to
slDataTypeAndScale that are required or recommended for replacement. In most
cases, running the check and following the recommended action removes the calls. You
can ignore calls that remain. Run the check unless you are sure there are not calls to
slDataTypeAndScale.

Results and Recommended Actions

Condition Recommended Action

Required Replacement Cases Manually or automatically replace calls to
slDataTypeAndScale. Cases listed require you to
replace calls to slDataTypeAndScale.

Recommended Replacement
Cases

For the listed cases, it is recommended that you manually
or automatically replace calls to slDataTypeAndScale.

Manual Inspection Cases Inspect each listed case to determine whether it should be
manually upgraded.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

 Simulink Checks

9-35

Tips

• Do not manually insert a call to slDataTypeAndScale into a model. The function
was for internal use only.

• Running Check for calls to slDataTypeAndScale calls the Simulink function
slRemoveDataTypeAndScale. Calling this function directly provides a wider range
of conversion options. However, you very rarely need more conversion options.

See Also

• For more information about upgrading data types and scales, in the MATLAB
Command Window, execute the following:

• help slDataTypeAndScale

• help slRemoveDataTypeAndScale

• “What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-36

Check bus usage

Check ID: mathworks.design.MuxBlkAsBusCreator

Identify Mux blocks used as a bus creator and bus signal that Simulink treats as a
vector.

Description

Models cannot contain bus signals that Simulink software implicitly converts to vectors.
Instead, either insert a Bus to Vector conversion block between the bus signal and the
block input port that it feeds, or use the Simulink.BlockDiagram.addBusToVector
command.

Results and Recommended Actions

Condition Recommended Action

Model uses Mux blocks to
create bus signals.

Replace Mux blocks with Bus Creator blocks.

Model is not configured to
identify Mux blocks used as
bus creators.

In the Configuration Parameters dialog box, on the
Diagnostics > Connectivity pane, set Mux blocks
used to create bus signals to error.

Bus signals are implicitly
converted to vectors.

Use Simulink.BlockDiagram.addBusToVector or
insert a Bus to Vector block.

Model is not configured to
identify bus signals Simulink
treats as vectors.

In the Configuration Parameters dialog box, on the
Diagnostics > Connectivity pane, set Bus signal
treated as vector to error.

Action Results

Clicking Modify causes one of the following:

• Replace Mux blocks with Bus Creator blocks.
• Insert a Bus to Vector block at the input ports of blocks that implicitly convert bus

signals to vectors.

Tips

• The Bus to Vector conversion block resides in the Simulink/Signal Attributes library.

 Simulink Checks

9-37

• Run this check before running Check consistency of initialization parameters
for Outport and Merge blocks.

• The “Non-bus signals treated as bus signals” diagnostic detects when Simulink
implicitly converts a non-bus signal to a bus signal to support connecting the signal
to a Bus Assignment or Bus Selector block. This diagnostic is in the Configuration
Parameters dialog box, on the Diagnostics> Connectivity pane.

See Also

• “Prevent Bus and Mux Mixtures”
• “Bus to Vector Block Compatibility Issues”
• Bus to Vector block
• “Mux blocks used to create bus signals”
• “Bus signal treated as vector”
• “Migrating to Simplified Initialization Mode Overview” on page 9-5
• Simulink.BlockDiagram.addBusToVector

9 Model Advisor Checks

9-38

Check for potentially delayed function-call subsystem return values

Check ID: mathworks.design.DelayedFcnCallSubsys

Identify function-call return values that might be delayed because Simulink software
inserted an implicit Signal Conversion block.

Description

So that signals reside in contiguous memory, Simulink software can automatically insert
an implicit Signal Conversion block in front of function-call initiator block input ports.
This can result in a one-step delay in returning signal values from calling function-call
subsystems. The delay can be avoided by ensuring the signal originates from a signal
block within the function-call system. Or, if the delay is acceptable, insert a Unit Delay
block in front of the affected input ports.

Results and Recommended Actions

Condition Recommended Action

The listed block input ports could have an implicit
Signal Conversion block.

Decide if a one-step delay in
returning signal values is
acceptable for the listed signals.

• If the delay is not acceptable,
rework your model so that the
input signal originates from
within the calling subsystem.

• If the delay is acceptable, insert
a Unit Delay block in front of
each listed input port.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

Signal Conversion block

Unit Delay block

 Simulink Checks

9-39

“What Is a Model Advisor Exclusion?”

9 Model Advisor Checks

9-40

Identify block output signals with continuous sample time and non-
floating point data type

Check ID: mathworks.design.OutputSignalSampleTime

Find continuous sample time, non-floating-point output signals.

Description

Non-floating-point signals might not represent continuous variables without loss of
information.

Results and Recommended Actions

Condition Recommended Action

Signals with continuous sample times have a non-
floating-point data type.

On the identified signals, either
change the sample time to be
discrete or fixed-in-minor-step ([0
1]).

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

“What Is Sample Time?”.

“What Is a Model Advisor Exclusion?”

 Simulink Checks

9-41

Check usage of Merge blocks

Check ID: mathworks.design.MergeBlkUsage

Identify Merge blocks with parameter settings that can lead to unexpected behavior, and
help migrate your model to simplified initialization mode.

Note: Run this check along with the other checks in the “Migrating to Simplified
Initialization Mode Overview” on page 9-5.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of
simulation results. For more information, see “Address Classic Mode Issues by Using
Simplified Mode”.

This Model Advisor check identifies settings in the Merge blocks in your model that
can cause problems if you use classic initialization mode. It also recommends settings
for consistent behavior of Merge blocks. The results of the subchecks contain two types
of statements: Failed and Warning. Failed statements identify issues that you must
address manually before you can migrate the model to the simplified initialization
mode. Warning statements identify issues or changes in behavior that can occur after
migration.

Results and Recommended Actions

Condition Recommended Action

Check the run-time diagnostic setting of
the Merge block.

1 In the Configuration Parameters
dialog box, on the Diagnostics > Data
Validity pane, set “Detect multiple
driving blocks executing at the same
time step” to error.

2 Verify that the model simulates
without errors before running this
check again.

Check for Model blocks that are using the
PIL simulation mode.

The simplified initialization mode does not
support the Processor-in-the-loop (PIL)
simulation for model references.

9 Model Advisor Checks

9-42

Condition Recommended Action

Check for library blocks with instances that
cannot be migrated.

Examine the failed subcheck results for
each block to determine the corrective
actions.

Check for single-input Merge blocks. Replace both the Mux block used to
produce the input signal and the Merge
block with one multi-input Merge block.

Single-input Merge blocks are not
supported in the simplified initialization
mode.

Check for root Merge blocks that have an
unspecified Initial output value.

If you do not specify an explicit value for
the Initial output parameter of root Merge
blocks, then Simulink uses the default
initial value of the output data type.

A root Merge block is a Merge block with
an output port that does not connect to
another Merge block. For information on
the default initial value, see “Initializing
Signal Values”.

Check for Merge blocks with nonzero input
port offsets.

Clear the Allow unequal port widths
parameter of the Merge block.

Note: Consider using Merge blocks only for
signal elements that require true merging.
You can combine other elements with
merged elements using the Concatenate
block.

 Simulink Checks

9-43

Condition Recommended Action

Check for Merge blocks that have
unconnected inputs or that have
inputs from non-conditionally executed
subsystems.

Set the Number of inputs parameter of
the Merge block to the number of Merge
block inputs. You must connect each input
to a signal.

Verify that each Merge block input
is driven by a conditionally executed
subsystem. Merge blocks cannot be driven
directly by an Iterator Subsystem or a
block that is not a conditionally executed
subsystem.

Check for Merge blocks with inputs that
are combined or reordered outside of
conditionally executed subsystems.

Verify that combinations or reordering
of Merge block input signals takes place
within a conditionally executed subsystem.
Such designs may use Mux, Bus Creator, or
Selector blocks.

Check for Merge blocks with inconsistent
input sample times.

Verify that input signals to each Merge
block have the same Sample time.

Failure to do so could result in
unpredictable behavior. Consequently,
the simplified initialization mode does not
allow inconsistent sample times.

Check for Merge blocks with multiple input
ports that are driven by a single source.

Verify that the Merge block does not have
multiple input signals that are driven by
the same conditionally executed subsystem
or conditionally executed Model block.

9 Model Advisor Checks

9-44

Condition Recommended Action

Check for Merge blocks that use signal
objects to specify the Initial output value.

Verify that the following behavior is
acceptable.

In the simplified initialization mode, signal
objects cannot specify the Initial output
parameter of the Merge block. While you
can still initialize the output signal for
a Merge block using a signal object, the
initialization result may be overwritten by
that of the Merge block.

Note: Simulink generates a warning that
the initial value of the signal object has
been ignored.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-5
• “What Is a Model Advisor Exclusion?”

Check usage of Outport blocks

Check ID: mathworks.design.InitParamOutportMergeBlk

Identify Outport blocks and conditional subsystems with parameter settings that can
lead to unexpected behavior, and help migrate your model to simplified initialization
mode.

Note: Run this check along with the other checks in the “Migrating to Simplified
Initialization Mode Overview” on page 9-5.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency
of simulation results. This mode is especially important for models that do not
specify initial conditions for conditionally executed subsystem output ports. For more
information, see “Address Classic Mode Issues by Using Simplified Mode”.

 Simulink Checks

9-45

This Model Advisor check identifies Outport blocks and conditional subsystems in
your model that can cause problems if you use the simplified initialization mode. It
also recommends settings for consistent behavior of Outport blocks. The results of the
subchecks contain two types of statements: Failed and Warning. Failed statements
identify issues that you must address manually before you can migrate the model to the
simplified initialization mode. Warning statements identify issues or changes in behavior
can might occur after migration.

Results and Recommended Actions

Condition Recommended Action

Check for blocks inside of the Iterator
Subsystem that require elapsed time.

Within an Iterator Subsystem hierarchy,
do not use blocks that require a service
that maintains the time that has elapsed
between two consecutive executions.

Since an Iterator Subsystem can execute
multiple times at a given time step, the
concept of elapsed time is not well-defined
between two such executions. Using these
blocks inside of an Iterator Subsystem can
cause unexpected behavior.

Check for Outport blocks that have
conflicting signal buffer requirements.

The Outport block has a function-call
trigger or function-call data dependency
signal passing through it, along with
standard data signals. Some of the
standard data signals require an explicit
signal buffer for the initialization of
the output signal of the corresponding
subsystem. However, buffering function-
call related signals leads to a function-call
data dependency violation.

Consider modifying the model to pass
function-call related signals through a
separate Outport block. For examples
of function-call data dependency
violations, see the example model
sl_subsys_semantics.

9 Model Advisor Checks

9-46

Condition Recommended Action

A standard data signal may require
an additional signal copy for one of the
following reasons:

• The Outport block is driven by a block
with output that cannot be overwritten.
The Ground block and the Constant
block are examples of such blocks.

• The Outport block shares the same
signal source with another Outport
block in the same subsystem or in one
nested within the current subsystem
but having a different initial output
value.

• The Outport block connects to the input
of a Merge block

• One of the input signals of the Outport
block is specifying a Simulink.Signal
object with an explicit initial value .

Check for Outport blocks that are driven
by a bus signal and whose Initial output
value is not scalar.

For Outport blocks driven by bus signals,
classic initialization mode does not support
Initial Condition (IC) structures, while
simplified initialization mode does. Hence,
when migrating a model from classic to
simplified mode, specify a scalar for the
Initial Output parameter. After migration
completes, to specify different initial values
for different elements of the bus signal, use
IC structures. For more information, see
“Create Initial Condition (IC) Structures”.

 Simulink Checks

9-47

Condition Recommended Action

Check for Outport blocks that require an
explicit signal copy.

An explicit copy of the bus signal driving
the Outport block is required for the
initialization of the output signal of the
corresponding subsystem.

Insert a Signal Conversion block before
the Outport block, then set the Output
parameter of the Signal Conversion block
to Bus copy.

A standard data signal may require an
additional signal copy for one or more of
the following reasons:

• A block with output that cannot be
overwritten is driving the Outport
block. The Ground block and the
Constant block are examples of such
blocks.

• The Outport block shares the same
signal source with another Outport
block in the same subsystem or in one
nested within the current subsystem
but having a different initial output
value.

• The Outport block connects to the input
of a Merge block

• One of the input signals of the Outport
block is specifying a Simulink.Signal
object with an explicit initial value.

Check for merged Outport blocks that
inherit the Initial Output value from
Outport blocks that have been configured
to reset when the blocks become disabled.

When Outport blocks are driving a Merge
block, do not set their Output when
disabled parameters to reset.

9 Model Advisor Checks

9-48

Condition Recommended Action

Check for merged Outport blocks that are
driven by nested conditionally executed
subsystems.

Determine if the new behavior of the
Outport blocks is acceptable. If it is not
acceptable, modify the model to account for
the new behavior before migrating to the
simplified initialization mode.

Check for merged Outport blocks that reset
when the blocks are disabled.

Set the Output when disabled parameter
of the Outport block to held. This setting
is required because the Outport block
connects to a Merge block.

For more information, see Outport.
Check for Outport blocks that have an
undefined Initial output value with
invalid initial condition sources.

Verify that the following behavior is
acceptable.

When the Initial output parameter is
unspecified ([]), it inherits the initial
output from the source blocks. If at least
one of the sources of the Outport block
is not a valid source to inherit the initial
value, the block uses the default initial
value for that data type.

For simplified initialization mode, valid
sources an Outport blocks can inherit the
Initial output value from are: Constant,
Initial Condition, Merge (with initial
output), Stateflow chart, function-call
model reference, or conditionally executed
subsystem blocks.

 Simulink Checks

9-49

Condition Recommended Action

Check Outport blocks that have automatic
rate transitions.

Simulink has inserted a Rate Transition
block at the input of the Outport block.
Specify the Initial output parameter for
each Outport block.

Otherwise, perform the following
procedure:

1 In the Configuration Parameters
dialog box, on the Solver pane, clear
the option “Automatically handle rate
transition for data transfer”.

2 Run this Model Advisor check again.
Check Outport blocks that have a special
signal storage requirement and have an
undefined Initial output value.

Verify that the following behavior is
acceptable.

Specify the Initial output parameter for
the Outport block. Set this value to []
(empty matrix) to use the default initial
value of the output data type.

Check the Initial output setting of
Outport blocks that reset when they are
disabled.

Specify the Initial output parameter of
the Outport block.

You must specify the Initial output value
for blocks that are configured to reset when
they become disabled.

Check the Initial output setting for
Outport blocks that pass through a
function-call data dependency signal.

You cannot specify an Initial output value
for the Outport block because function-
call data dependency signals are passing
through it. To set the Initial output value:

1 Set the Initial output parameter of
the Outport block to [].

2 Provide the initial value at the source
of the data dependency signal rather
than at the Outport block.

9 Model Advisor Checks

9-50

Condition Recommended Action

Check for Outport blocks that use signal
objects to specify the Initial output value.

Verify that the following behavior is
acceptable.

In the simplified initialization mode,
signal objects cannot specify the Initial
output parameter of an Outport block.
You can still initialize the input or output
signals for an Outport block using signal
objects, but the initialization results may
be overwritten by those of the Outport
block.

Note: If you are working with a
conditionally executed subsystem Outport
block, Simulink generates a warning that
the initial value of the signal object has
been ignored.

Check for library blocks with instances that
have warnings.

Examine the warning subcheck results
for each block before migrating to the
simplified initialization mode.

Check for merged Outport blocks that
are either unconnected or connected to a
Ground block.

Verify that the following behavior is
acceptable.

The Outport block is driving a Merge
block, but its inputs are either unconnected
or connected to Ground blocks. In the
classic initialization mode, unconnected or
grounded outports do not update the merge
signal even when their parent conditionally
executed subsystems are executing. In the
simplified initialization mode, however,
these outports will update the merge signal
with a value of zero when their parent
conditionally executed subsystems are
executing.

 Simulink Checks

9-51

Condition Recommended Action

Check for Outport blocks that obtain the
Initial output value from an input signal
when they are migrated.

Verify that the following behavior is
acceptable.

The Initial output parameter of the
Outport block is not specified. As a result,
the simplified initialization mode will
assume that the Initial output value
for the Outport block is derived from the
input signal. This assumption may result
in different initialization behavior.

If this behavior is not acceptable, modify
your model before you migrate to the
simplified initialization mode.

Check for outer Outport blocks that have
an explicit Initial output.

Verify that the following behavior is
acceptable.

In classic initialization mode, the Initial
output and Output when disabled
parameters of the Outport block must
match those of their source Outport blocks.

In simplified initialization mode, Simulink
sets the Initial output parameter of outer
Outport blocks to [] (empty matrix) and
Output when disabled parameter to
held.

Check for conditionally executed
subsystems that propagate execution
context across the output boundary.

Verify that the following behavior is
acceptable.

The Propagate execution context
across subsystem boundary parameter
is selected for the subsystem. Execution
context will still be propagated across input
boundaries; however, the propagation
will be disabled on the output side for the
initialization in the simplified initialization
mode.

9 Model Advisor Checks

9-52

Condition Recommended Action

Check for blocks that read input from
conditionally executed subsystems during
initialization.

Verify that the following behavior is
acceptable.

Some blocks, such as the Discrete-Time
Integrator block, read their inputs from
conditionally executed subsystems during
initialization in the classic initialization
mode. Simulink performs this step as an
optimization technique.

This optimization is not allowed in
the simplified initialization mode
because the output of a conditionally
executed subsystem at the first time
step after initialization may be different
than the initial value declared in the
corresponding Outport block. In particular,
this discrepancy occurs if the subsystem is
active at the first time step.

Check for a migration conflict for Outport
blocks that use a Dialog as the Source of
initial output value.

Other instances of Outport blocks with
the same library link either cannot be
migrated or are being migrated in a
different manner. Review the results from
the Check for library blocks with
instances that cannot be migrated to
learn about the different migration paths
for other instances of each Outport block.

The Outport block will maintain its current
settings and use its specified Initial
output value.

 Simulink Checks

9-53

Condition Recommended Action

Check for a migration conflict for Outport
blocks that use Input signal as the
Source of initial output value.

Other instances of Outport blocks with
the same library link either cannot be
migrated or are being migrated in a
different manner. Review the results from
the Check for library blocks with
instances that cannot be migrated to
learn about the different migration paths
for other instances of each Outport block.

The Outport block currently specifies an
Initial output of [] (empty matrix), and
the Output when disabled as held. This
means that each outport does not perform
initialization, but implicitly relies on source
blocks to initialize its input signal.

After migration, the parameter Source of
initial output value will be set to Input
signal to reflect this behavior.

Check for a migration conflict for Outport
blocks that have SimEvents® semantics.

Other instances of Outport blocks with
the same library link either cannot be
migrated or are being migrated in a
different manner. Review the results from
the Check for library blocks with
instances that cannot be migrated to
learn about the different migration paths
for other instances of each Outport block.

The Outport blocks will continue to use an
Initial output value of [] (empty matrix)
and an Output when disabled setting
of held. Simulink will maintain these
settings because their parent conditionally
executed subsystems are connected to
SimEvents blocks.

9 Model Advisor Checks

9-54

Condition Recommended Action

Check for a migration conflict for
innermost Outport blocks with variable-
size input and unspecified Initial output.

For these Outport blocks, the signal size
varies only when the parent subsystem
of the block is re-enabled. Therefore,
Simulink implicitly assumes that the
Initial output parameter is equal to 0,
even though the parameter is unspecified,
[]. Consequently, unless you specify
the parameter, the Model Advisor will
explicitly set the parameter to 0 when
the model is migrated to the simplified
initialization mode.

Other instances of Outport blocks with
the same library link either cannot be
migrated or are being migrated in a
different manner. Review the results from
the Check for library blocks with
instances that cannot be migrated to
learn about the different migration paths
for other instances of each Outport block.

Check for a migration conflict for Outport
blocks that use a default ground value as
the Initial output.

The parameter Initial output is set to
[] (empty matrix) and the source of the
Outport is an invalid initial condition
source. Thus, the block uses the default
initial value as the initial output in the
simplified initialization mode. Other
instances of Outport blocks with the same
library link either have errors or are being
migrated differently.

 Simulink Checks

9-55

Condition Recommended Action

Check for a migration conflict for
merged Outport blocks without explicit
specification of Initial output.

Review the results from the subcheck
Check for library blocks with
instances that cannot be migrated
to learn about different migration paths
for other instances of each Outport block.
For the remaining Outport blocks, Initial
output is set to [] (empty matrix) and
Output when disabled is set to held
respectively, in simplified initialization
mode.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-5
• “What Is a Model Advisor Exclusion?”

Check usage of Discrete-Time Integrator blocks

Check ID: mathworks.design.DiscreteBlock

Identify Discrete-Time Integrator blocks with parameter settings that can lead to
unexpected behavior, and help migrate your model to simplified initialization mode.

Note: Run this check along with the other checks in the “Migrating to Simplified
Initialization Mode Overview” on page 9-5.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of
simulation results. For more information, see “Address Classic Mode Issues by Using
Simplified Mode”.

This Model Advisor check identifies settings in Discrete-Time Integrator blocks in your
model that can cause problems if you use the simplified initialization mode. It also
recommends settings for consistent behavior of Discrete-Time Integrator blocks. The
results of the subchecks contain two types of statements: Failed and Warning. Failed
statements identify issues that you must address manually before you can migrate

9 Model Advisor Checks

9-56

the model to the simplified initialization mode. Warning statements identify issues or
changes in behavior that can occur after migration.

Results and Recommended Actions

Condition Recommended Action

Check for Discrete-Time Integrator blocks
whose parameter Initial condition
setting is set to Output.

Determine if the new behavior of the
Discrete-Time Integrator blocks is
acceptable. If it is not acceptable, modify
the model to account for the new behavior
before migrating to the simplified
initialization mode.

Check for Discrete-Time Integrator
blocks whose Initial condition setting
parameter is set to State (most
efficient) and are in a subsystem that
uses triggered sample time.

Use periodic sample time for the block, or
set Initial Condition setting to Output.

Check for blocks inside of the Iterator
Subsystem that require elapsed time.

Within an Iterator Subsystem hierarchy,
do not use blocks that require a service
that maintains the time that has elapsed
between two consecutive executions.

Since an Iterator Subsystem can execute
multiple times at a given time step, the
concept of elapsed time is not well-defined
between two such executions. Using these
blocks inside of an Iterator Subsystem can
cause unexpected behavior.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-5
• “What Is a Model Advisor Exclusion?”

Check model settings for migration to simplified initialization mode

Note: Do not run this check in isolation. Run this check along with the other checks in
the “Migrating to Simplified Initialization Mode Overview” on page 9-5.

 Simulink Checks

9-57

Check ID: mathworks.design.ModelLevelMessages

Identify settings in Model blocks and model configuration parameters that can lead to
unexpected behavior, and help migrate your model to simplified initialization mode.

Description

Simplified initialization mode was introduced in R2008b to improve consistency of
simulation results. For more information, see “Address Classic Mode Issues by Using
Simplified Mode”.

This Model Advisor check identifies issues in the model configuration parameters and
Model blocks in your model that can cause problems when you migrate to simplified
initialization mode. The results of the subchecks contain two types of statements: Failed
and Warning. Failed statements identify issues that you must address manually before
you can migrate the model to simplified initialization mode. Warning statements identify
issues or changes in behavior that can occur after migration.

Note: Before running this check, verify that your block diagram conforms to the modeling
standards set by this diagnostic.

1 Run Check bus usage in the Model Advisor to check your usage of Mux blocks.

2 In the model window, select Simulation >
Model Configuration Parameters >
Diagnostics > Connectivity.

3 Set Mux blocks used to create bus signals to error and click OK.
For more information, see “ Diagnostics Pane: Connectivity”.

After running this Model Advisor consistency check, if you click Explore Result button,
the messages pertain only to blocks that are not library-links.

Note: Because it is difficult to undo these changes, select File > Save Restore Point As
to back up your model before migrating to the simplified initialization mode.

9 Model Advisor Checks

9-58

Results and Recommended Actions

Condition Recommended Action

Verify that all Model blocks are using the
simplified initialization mode.

Migrate the model referenced by the Model
block to the simplified initialization mode,
then migrate the top model.

Verify simplified initialization mode setting Set Configuration Parameters
> Diagnostics > Data Validity >
Underspecified initialization detection
to Simplified.

Action Results

Clicking Modify Settings causes the following:

• The Model parameter is set to simplified
• If an Outport block has the Initial output parameter set to the empty string, [],

then the SourceOfInitialOutputValue parameter is set to Input signal.
• If an Outport has an empty Initial output and a variable-size signal, then the

Initial output is set to zero.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-5
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-59

9 Model Advisor Checks

9-60

Check for non-continuous signals driving derivative ports

Check ID: mathworks.design.NonContSigDerivPort

Identify noncontinuous signals that drive derivative ports.

Description

Noncontinuous signals that drive derivative ports cause the solver to reset every time the
signal changes value, which slows down simulation.

Results and Recommended Actions

Condition Recommended Action

There are noncontinuous signals in the
model driving derivative ports.

• Make the specified signals continuous.
• Replace the continuous blocks receiving

these signals with discrete state
versions of the blocks.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

• “ Modeling Dynamic Systems”
• “Simulation Phases in Dynamic Systems”
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-61

9 Model Advisor Checks

9-62

Runtime diagnostics for S-functions

Check ID: mathworks.design.DiagnosticSFcn

Check array bounds and solver consistency if S-Function blocks are in the model.

Description

Validates whether S-Function blocks adhere to the ODE solver consistency rules that
Simulink applies to its built-in blocks.

Results and Recommended Actions

Condition Recommended Action

Solver data inconsistency is set to none. In the Configuration Parameters dialog
box, on the Diagnostics pane, set Solver
data inconsistency to warning or error.

Array bounds exceeded is set to none. In the Configuration Parameters dialog
box, on the Diagnostics> Data Validity
pane, set Array bounds exceeded to
warning or error

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

• “What Is an S-Function?”
• “How S-Functions Work”
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-63

9 Model Advisor Checks

9-64

Check model for foreign characters

Check ID: mathworks.design.characterEncoding

Check for characters that are incompatible with the current encoding

Description

Check for characters in the model file that cannot be represented in the current encoding.
These can cause errors during simulation, and may be corrupted when saving the model.

Results and Recommended Actions

Condition Recommended Action

Incompatible characters found Change the current encoding to the
encoding specified in the model file,
using slCharacterEncoding. To
change the current encoding you
need to close the models, and this
closes the Model Advisor.

Tips

The Upgrade Advisor report shows the encoding you need, or you can retrieve the
encoding from the model using the command:

get_param(modelname,'SavedCharacterEncoding')

Use slCharacterEncoding to change the encoding. This setting applies to the current
MATLAB session, so if you restart MATLAB and want to open the same model, you will
need to make the same change to the current encoding again.

For more information see:

• slCharacterEncoding

• “Open a Model with Different Character Encoding”
• “Save Models with Different Character Encodings”

See Also

• “Consult the Upgrade Advisor”.

 Simulink Checks

9-65

• “Model Upgrades”

9 Model Advisor Checks

9-66

 Simulink Checks

9-67

9 Model Advisor Checks

9-68

 Simulink Checks

9-69

Check model for block upgrade issues

Check ID: mathworks.design.Update

Check for common block upgrade issues.

Description

Check blocks in the model for compatibility issues resulting from using a new version of
Simulink software.

Results and Recommended Actions

Condition Recommended Action

Blocks with compatibility issues found. Click Modify to fix the detected
block issues.

Check update status for the Level 2 API S-
functions.

Consider replacing Level 1 S-
functions with Level 2.

Action Results

Clicking Modify replaces blocks from a previous release of Simulink software with the
latest versions.

See Also

• “Write Level-2 MATLAB S-Functions”.
• “Consult the Upgrade Advisor”.
• “Model Upgrades”
•

9 Model Advisor Checks

9-70

Check model for block upgrade issues requiring compile time information

Check ID: mathworks.design.UpdateRequireCompile

Check for common block upgrade issues.

Description

Check blocks for compatibility issues resulting from upgrading to a new version of
Simulink software. Some block upgrades require the collection of information or data
when the model is in the compile mode. For this check, the model is set to compiled mode
and then checked for upgrades.

Results and Recommended Actions

Condition Recommended Action

Model contains Lookup Table or Lookup Table
(2-D) blocks and some of the blocks specify Use
Input Nearest or Use Input Above for a lookup
method.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. Do not apply
Use Input Nearest or Use Input
Above for lookup methods; select
another option.

Model contains Lookup Table or Lookup Table (2-
D) blocks and some blocks perform multiplication
first during interpolation.

Replace Lookup Table blocks
and Lookup Table (2-D) blocks
with n-D Lookup Table blocks.
However, because the n-D Lookup
Table block performs division first,
this replacement might cause a
numerical difference in the result.

Model contains Lookup Table or Lookup Table
(2-D) blocks. Some of these blocks specify
Interpolation-Extrapolation as the Lookup
method but their input and output are not the
same floating-point type.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. Then change
the extrapolation method or the port
data types for block replacement.

Model contains Unit Delay blocks with Sample
time set to -1 that inherit a continuous sample
time.

Replace Unit Delay blocks with
Memory blocks.

 Simulink Checks

9-71

Action Results

Clicking Modify replaces blocks from a previous release of Simulink software with the
latest versions.

See Also

• n-D Lookup Table
• Unit Delay

• “Consult the Upgrade Advisor”
• “Model Upgrades”

9 Model Advisor Checks

9-72

 Simulink Checks

9-73

Check that the model is saved in SLX format

Check ID: mathworks.design.UseSLXFile

Check that the model is saved in SLX format.

Description

Check whether the model is saved in SLX format.

Results and Recommended Actions

Condition Recommended Action

Model not saved in SLX format Consider upgrading to the SLX file
format to use the latest features in
Simulink.

Capabilities and Limitations

You can run this check on your library models.

Tips

Simulink Projects can help you upgrade models to SLX format and preserve file revision
history in source control. See “Upgrade Model Files to SLX and Preserve Revision
History”.

See Also

• “ Save Models in the SLX File Format”
• “Consult the Upgrade Advisor”.
• “Model Upgrades”

9 Model Advisor Checks

9-74

 Simulink Checks

9-75

Check model for SB2SL blocks

Check ID: mathworks.simulink.SB2SL.Check

Check that the model does not have outdated SB2SL blocks.

Description

Check if the model contains outdated SB2SL blocks.

Results and Recommended Actions

Condition Recommended Action

Model contains outdated SB2SL blocks Consider upgrading the model to
current SB2SL blocks.

Action Results

Clicking Update SB2SL Blocks replaces blocks with the latest versions.

See Also

• “Consult the Upgrade Advisor”.

9 Model Advisor Checks

9-76

 Simulink Checks

9-77

Check Model History properties

Check ID: mathworks.design.SLXModelProperties

Check for edited model history properties

Description

Check models for edited Model History property values that could be used with source
control tool keyword substitution. This keyword substitution is incompatible with SLX
file format.

In the MDL file format you can configure some model properties to make use of source
control tool keyword substitution. If you save your model in SLX format, source control
tools cannot perform keyword substitution. Information in the model file from such
keyword substitution is cached when you first save the MDL file as SLX, and is not
updated again. The Model Properties History pane and Model Info blocks in your model
show stale information from then on.

Results and Recommended Actions

Condition Recommended Action

Edited model history properties Manually or automatically reset
the properties to the default
values. Click the button to reset,
or to inspect and change these
properties manually, open the
Model Properties dialog and look in
the History pane.

Capabilities and Limitations

You can run this check on your library models.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

9 Model Advisor Checks

9-78

Identify Model Info blocks that can interact with external source control
tools

Check ID: mathworks.design.ModelInfoKeywordSubstitution

Use this check to find Model Info blocks that can be altered by external source control
tools through keyword substitution.

Description

This check searches for strings in the Model Info block enclosed within dollar signs that
can be overwritten by an external source control tool. Using third-party source control
tool keyword expansion might corrupt your model files when you submit them. Keyword
substitution is not available in SLX model file format.

For a more flexible interface to source control tools, use a Simulink project instead of the
Model Info block. See “About Source Control with Projects”.

Results and Recommended Actions

Condition Recommended Action

The Model Info block contains fields like this:
$keyword$

Review the list of fields in the
report, then remove the keyword
strings from the Model Info block.

See Also

• “Consult the Upgrade Advisor”.
• “About Source Control with Projects”

 Simulink Checks

9-79

Identify Model Info blocks that use the Configuration Manager

Check ID: mathworks.design.ModelInfoConfigurationManager

Use this check to find Model Info blocks that use the Configuration Manager.

Description

Model Info blocks using the Configuration Manager allow risky keyword substitution
using external source control tools. Using third-party source control tool keyword
expansion might corrupt your model files when you submit them. Keyword substitution
is not available in SLX model file format. The Configuration Manager for the Model Info
block will be removed in a future release.

For a more flexible interface to source control tools, use a Simulink project instead of the
Model Info block. See “About Source Control with Projects”.

Results and Recommended Actions

Condition Recommended Action

A Model Info block is using the Configuration
Manager.

Click Remove the Configuration
Manager.

See Also

• “Consult the Upgrade Advisor”.
• “About Source Control with Projects”

9 Model Advisor Checks

9-80

Check for Mux blocks used to create bus signals

Check ID: mathworks.design.SLXModelProperties

Identify Mux blocks used as a bus creator.

Description

Models cannot contain Mux blocks that output bus signals. Instead, replace those Mux
blocks with Bus Creator blocks.

Results and Recommended Actions

Condition Recommended Action

Model uses Mux blocks to
create bus signals.

Replace Mux blocks with Bus Creator blocks.

Model is not configured to
identify Mux blocks used as
bus creators.

In the Configuration Parameters dialog box, on the
Diagnostics > Connectivity pane, set Mux blocks
used to create bus signals to error.

Action Results

Clicking Modify replaces Mux blocks with Bus Creator blocks.

Tip

The “Non-bus signals treated as bus signals” diagnostic detects when Simulink implicitly
converts a non-bus signal to a bus signal to support connecting the signal to a Bus
Assignment or Bus Selector block. This diagnostic is in the Configuration Parameters
dialog box, on the Diagnostics> Connectivity pane.

See Also

• “Prevent Bus and Mux Mixtures”
• “Address Compatibility Issues After Running Upgrade Advisor”
• “Bus to Vector Block Compatibility Issues”
• Bus to Vector block
• “Mux blocks used to create bus signals”

 Simulink Checks

9-81

Check bus usage

Check virtual bus usage and for Mux blocks used to create bus signals.

Description

Models cannot contain bus signals that Simulink software implicitly converts to vectors.
Check bus usage checks virtual bus usage and for Mux blocks used to create bus
signals.

Results and Recommended Actions

Condition Recommended Action

Model uses Mux blocks to create bus
signals.

In the Upgrade Advisor, click Modify.

Model is not configured to identify
Mux blocks used as bus creators.

In the Configuration Parameters dialog box,
on the Diagnostics > Connectivity pane, set
Mux blocks used to create bus signals to
error.

Virtual bus signal input to these
blocks:

• • Assignment
• Delay (if you specify an initial

condition from the dialog that
is a MATLAB structure or zero
and the value for State name is
not empty)

• Permute Dimension
• Reshape
• Selector
• Unit Delay (if you specify

an initial condition that is a
MATLAB structure or zero and
the value for State name is not
empty)

• Vector Concatenate

In the Upgrade Advisor, click Modify.

The check inserts a Bus to Vector block to
attempt to convert virtual bus input signals
to vector signals. For issues that the Upgrade
Advisor identifies but cannot fix, modify the
model manually. For details, see “Correct Buses
Used as Muxes” and “Prevent Bus and Mux
Mixtures”.

9 Model Advisor Checks

9-82

Tips

• Run this check before running the Check consistency of initialization
parameters for Outport and Merge blocks check.

• Starting in R2015b, virtual bus signal inputs to blocks that require nonbus or
nonvirtual bus input can cause an error. An error occurs when a virtual bus input
signal is generated by a block that specifies a bus object as its output data type.
Examples of blocks that can specify a bus object as their output data type include a
Bus Creator block or a root Inport block. The blocks that cause an error when they
have a virtual bus input in this situation are:

• Assignment
• Delay

This block causes an error only if you set an initial condition from the dialog that
is a MATLAB structure or zero and you specify a value for State name.

• Permute Dimension
• Reshape
• Selector
• Unit Delay

This block causes an error only if you set an initial condition from the dialog that
is a MATLAB structure or zero and you specify a value for State name.

• Vector Concatenate

See Also

• “Prevent Bus and Mux Mixtures”
• “Bus to Vector Block Compatibility Issues”
• Bus to Vector block
• “Mux blocks used to create bus signals”
• “Bus signal treated as vector”
• Simulink.BlockDiagram.addBusToVector

 Simulink Checks

9-83

Check model for legacy 3DoF or 6DoF blocks

Check ID: mathworks.design.Aeroblks.CheckDOF

Lists 3DoF and 6DoF blocks are outdated.

Description

This check searches for 3DoF and 6DoF blocks from library versions prior to 3.13
(R2014a).

Results and Recommended Actions

Condition Recommended Action

Blocks configured with old
versions of 3DoF or 6DoF blocks
found.

Click Replace 3DoF and 6DoF Blocks to replace
the blocks with latest versions.

Action Results

Clicking Replace 3DoF and 6DoF Blocks replaces blocks with the latest versions.

See Also

• “Equations of Motion”

9 Model Advisor Checks

9-84

Check model and local libraries for legacy Aerospace Blockset blocks

Check ID: mathworks.design.Aeroblks.CheckFG

Lists blocks configured to use FlightGear versions that are outdated or not supported.

Description

This check searches and lists blocks configured to use FlightGear versions that are
outdated or not supported.

Results and Recommended Actions

Condition Recommended Action

Blocks configured with old
versions of FlightGear are found.

Click Update FlightGear blocks to change block
settings to latest supported version of FlightGear.
Then, download latest version of FlightGear that
MATLAB supports.

Action Results

Clicking Update FlightGear blocks changes block settings to the latest supported
version of FlightGear.

See Also

• “Flight Simulator Interfaces”

 Simulink Checks

9-85

Check and update masked blocks in library to use promoted parameters

Check ID: mathworks.design.CheckAndUpdateOldMaskedBuiltinBlocks

Check for libraries that should be updated to use promoted parameters.

Description

This check searches libraries created before R2011b for masked blocks that should
be updated to use promoted parameters. Since R2011b, if a block parameter is not
promoted, its value in the linked block is locked to its value in the library block. This
check excludes blocks of type Subsystem, Model reference, S-Function and M-S-Function.

Results and Recommended Actions

Condition Recommended Action

Libraries that need to be updated are found Click Update. Once the libraries
have been updated, run the check
again

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?”

Check and update mask image display commands with unnecessary
imread() function calls

Check ID: mathworks.design.CheckMaskDisplayImageFormat

9 Model Advisor Checks

9-86

Check identifies masks using image display commands with unnecessary calls to the
imread() function.

Description

This check searches for the mask display commands that make unnecessary calls to the
imread() function, and updates them with mask display commands that do not call the
imread() function. Since 2013a, a performance and memory optimization is available
for mask images specified using the image path instead of the RGB triple matrix.

Results and Recommended Actions

Condition Recommended Action

Mask display commands that make unnecessary
calls to the imread() function are found.

Click Update. Once the blocks have
been updated, run the check again.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?”

 Simulink Checks

9-87

Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter

Check ID: mathworks.design.CheckAndUpdateOldMaskTabnames

This check identifies masked blocks that specify tabs in mask dialog using the
MaskTabNames parameter.

Description

This check identifies masked blocks that use the MaskTabNames parameter to
programmatically create tabs in the mask dialog. Since R2013b, dialog controls are used
to group parameters in a tab on the mask dialog.

Results and Recommended Actions

Condition Recommended Action

Masked blocks commands that use the
MaskTabNames parameter to programmatically
create tabs in the mask dialog are found.

Click Upgrade. Once the blocks
have been updated, run the check
again.

Capabilities and Limitations

You can run this check on your library models.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

9 Model Advisor Checks

9-88

Identify questionable operations for strict single-precision design

Check ID: mathworks.design.StowawayDoubles

For a strict single-precision design, this check identifies the blocks that introduce double-
precision operations, and non-optimal model settings.

Description

For a strict single-precision design, this check identifies the blocks that introduce double-
precision operations, and non-optimal model settings.

Results and Recommended Actions

Condition Recommended Action

Double-precision floating-point operations found in
model.

Verify that:

• Block input and output data
types are set correctly.

• In the Configuration
Parameters dialog box, on the
Optimization pane, Default
for underspecified data type
is set to single.

Model uses a library standard that is not optimal
for strict-single designs.

Verify that:

• All target-specific math
libraries used by the model
support single-precision
implementations.

In the Configuration Parameters
dialog box, on the Code
Generation > Interface pane,
set Standard math library to
C99 (ISO).

Logic signals are not implemented as boolean
data.

Verify that:

• In the Configuration Parameters
dialog box, on the Optimization

 Simulink Checks

9-89

Condition Recommended Action

pane, Implement logic signals
as Boolean data is selected.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “What Is a Model Advisor Exclusion?”

Check get_param calls for block CompiledSampleTime

Check ID: mathworks.design.CallsGetParamCompiledSampleTime

Use this check to identify MATLAB files in your working environment that contain
get_param function calls to return the block CompiledSampleTime parameter.

Description

For multi-rate blocks (including subsystems), Simulink returns the block compiled
sample time as a cell array of the sample rates in the block. The return value is a cell
array of pairs of doubles. MATLAB code that accepts this return value only as pairs
of doubles can return an error when called with a multi-rate block. Use this check to
identify such code in your environment. Modify these instances of code to accept a cell
array of pairs of doubles instead.

For example, consider a variable blkTs, which has been assigned the compiled sample
time of a multi-rate block.

blkTs = get_param(block,'CompiledSampleTime');

Here are some examples in which the original code works only if blkTs is a pair of
doubles and the block is a single-rate block:

• Example 1

9 Model Advisor Checks

9-90

if isinf(blkTs(1))

 disp('found constant sample time')

end

Since blkTs is now a cell array, Simulink gives this error message:

Undefined function 'isinf' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [inf,0])

 disp('found constant sample time')

end

• Example 2

if all(blkTs == [-1,-1])

 disp('found triggered sample time')

end

For the above example, since blkTs is now a cell array, Simulink gives this error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [-1,-1])

 disp('found triggered sample time')

end

• Example 3

if (blkTs(1) == -1)

 disp('found a triggered context')

end

Again, since blkTs is now a cell array, Simulink gives this error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code.

if ~iscell(blkTs)

 blkTs = {blkTs};

end

for idx = 1:length(blkTs)

 thisTs = blkTs{idx};

 Simulink Checks

9-91

 if (thisTs(1) == -1)

 disp('found a triggered context')

 end

end

The above code checks for a triggered type sample time (triggered or async). In cases
in which a block has constant sample time ([inf,0]) in addition to triggered or async or
when a block has multiple async rates, this alternative property detects the triggered
type sample time.

This check scans MATLAB files in your environment. If the check finds instances of
MATLAB code that contain get_param calls to output the block compiled sample time,
Upgrade Advisor displays these results. It suggests that you modify code that accepts the
block compiled sample time from multi-rate blocks.

Results and Recommended Actions

Condition Recommended Action

No MATLAB files call
get_param(block,CompiledSampleTime)

None

Some MATLAB files call
get_param(block,CompiledSampleTime)

If files use the block
CompiledSampleTime parameter from
multi-rate blocks, modify these files to
accept the parameter as a cell array of
pairs of doubles.

See Also

• “Sample Times in Subsystems”
• “Block Compiled Sample Time”

Check model for parameter initialization and tuning issues

Check ID: mathworks.design.ParameterTuning

Use this check to identify issues in the model that occur when you initialize parameters
or tune them.

Description

This check scans your model for parameter initialization and tuning issues like:

9 Model Advisor Checks

9-92

• Rate mismatch between blocks
• Divide by zero issue in conditionally executed subsystems
• Invalid control port value in Index Vector blocks

Results and Recommended Actions

Condition Recommended Action

The model has rate transition issues. Select Automatically handle rate
transition for data transfer in the
Solver pane of the model configuration
parameters.

The model has a divide by zero issue in a
conditionally executed subsystem with a
control port.

At the command prompt, run

set_param(control_port,'DisallowConstTsAndPrmTs', 'on')

The model has an invalid control port value
in a conditionally executed subsystem.

At the command prompt, run

set_param(control_port,'DisallowConstTsAndPrmTs', 'on')

Action Results

Select Upgrade model to resolve issues in the model related to parameter initialization
and tuning.

See Also

• “Automatic Rate Transition”

Check Rapid Accelerator signal logging

Check ID: mathworks.design.CheckRapidAcceleratorSignalLogging

When simulating your model in Rapid Accelerator mode, use this check to find signals
logged in your model that are globally disabled. Rapid Accelerator mode supports signal
logging. Use this check to enable signal logging globally.

Description

This check scans your model to see if a simulation is in Rapid Accelerator mode and
whether the model contains signals with signal logging. If the check finds an instance

 Simulink Checks

9-93

and signal logging is globally disabled, an option to turn on signal logging globally
appears.

Results and Recommended Actions

Condition Recommended Action

Simulation mode is not Rapid Accelerator. None You can enable signal logging in
Rapid Accelerator mode.

Simulation mode is Rapid Accelerator.
Upgrade Advisor did not find signals with
signal logging enabled.

NoneThe model does not use signal logging.
Enable signal logging for signals and
globally if you want to log signals.

Simulation mode is Rapid Accelerator.
Upgrade Advisor found signals with signal
logging enabled. However, global setting for
signal logging was disabled.

Enable signal logging globally if you want
to log signals with signal logging enabled.

Signal logging was already globally
enabled.

None

Action Results

Selecting Modify enables signal logging globally in your model.

See Also

• “Signal Logging in Rapid Accelerator Mode”
• “Consult the Upgrade Advisor”.

Check for root outports with constant sample time

Check ID: mathworks.design.CheckConstRootOutportWithInterfaceUpgrade

Use this check to identify root outports with a constant sample time used with an
AUTOSAR target, Function Prototype Control, or the model C++ class interface.

Description

Root outports with constant sample time are not supported when using an AUTOSAR
target, Function Prototype Control, or the model C++ class interface. Use this check to
identify root Outport blocks with this condition and modify the blocks as recommended.

9 Model Advisor Checks

9-94

Results and Recommended Actions

Condition Recommended Action

Root outport with constant sample time used with
an AUTOSAR target, Function Prototype Control
or the model C++ class interface.

Consider one of the following:

• Set the sample time of the block
to the fundamental sample time.

• Identify the source of the
constant sample time and set its
sample time to the fundamental
sample time.

• Place a Rate Transition block
with inherited sample time (-1)
before the block.

See Also

• “Consult the Upgrade Advisor”.

 Simulink Checks

9-95

Analyze model hierarchy and continue upgrade sequence

Check ID: com.mathworks.Simulink.UpgradeAdvisor.UpgradeModelHierarchy

Check for child models and guide you through upgrade checks.

Description

This check identifies child models of this model, and guides you through upgrade checks
to run both non-compile and compile checks. The Advisor provides tools to help with
these tasks:

• If the check finds child models, it offers to run the Upgrade Advisor upon each child
model in turn and continue the upgrade sequence. If you have a model hierarchy you
need to check and update each child model in turn.

• If there are no child models, you still need to continue the check sequence until you
have run both non-compile and compile checks.

You must run upgrade checks in this order: first the checks that do not require compile
time information and do not trigger an Update Diagram, then the compile checks.

Click Continue Upgrade Sequence to run the next checks. If there are child models,
this will open the next model. Keep clicking Continue Upgrade Sequence until the
check passes.

Results and Recommended Actions

Condition Recommended Action

Child models found Click Continue Upgrade
Sequence to run the next checks.
If there are child models, this will
close the current Upgrade Advisor
session, and open Upgrade Advisor
for the next model in the hierarchy.

No child models, but more checks to run If there are no child models, click
Continue Upgrade Sequence to
refresh the Upgrade Advisor with
compilation checks selected. The
compile checks trigger an Update
Diagram (marked with ^). Run

9 Model Advisor Checks

9-96

Condition Recommended Action

the next checks and take advised
actions. When you return to this
check, click Continue Upgrade
Sequence until this check passes.

Tips

Best practice for upgrading a model hierarchy is to check and upgrade each model
starting at the leaf end and working up to the root model.

When you click Continue Upgrade Sequence, the Upgrade Advisor opens the leaf
model as far inside the hierarchy as it can find. Subsequent steps guide you through
upgrading your hierarchy from leaf to root model.

When you open the Upgrade Advisor, the checks that are selected do not require compile
time information and do not trigger an Update Diagram. Checks that trigger an Update
Diagram are not selected to run by default, and are marked with ^. When you use the
Upgrade Advisor on a hierarchy, keep clicking Continue Upgrade Sequence to move
through this sequence of analysis:

1 The Upgrade Advisor opens each model and library in turn, from leaf to root, and
selects the non-compile checks. Run the checks, take any advised actions, then click
Continue Upgrade Sequence to open the next model and continue.

2 When you reach the root end of the hierarchy, the Upgrade Advisor then opens
each model again in the same order (but not libraries) and selects only the checks
that require a model compile. Run the checks, take any advised actions, then click
Continue Upgrade Sequence to open the next model. Continue until you reach
the end of the hierarchy and this check passes.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

10

Model Reference Conversion Advisor

10 Model Reference Conversion Advisor

10-2

Model Reference Conversion Advisor

 Model Reference Conversion Advisor

10-3

Check Conversion Input Parameters

Use input parameters to configure the actions the advisor performs and the output it
produces.

You can use the default parameters to run the advisor without changing any parameters.

Input Parameter Description

New model name The advisor provides a model name that is based on the
Subsystem block name and is unique in the MATLAB path.

The model name cannot exceed 59 characters.

Tip If the advisor generates an error indicating that the target
referenced model already exists, then use the New model name
parameter to specify a new file name.

Conversion data
file name

The advisor creates a file for storing data created duringthe
conversion. By default, the advisor uses the model
name at the beginning of the file name and appending
_conversion_data.mat. For example, if the subsystem
is in a model named myModel, the conversion file name is
myModel_conversion_data.mat.

You can save the conversion data in a MAT-file (default) or
a MATLAB file. If you use a .m file extension, the advisor
serializes all variables to a MATLAB file.

Fix errors
automatically

By default, if an advisor check finds any errors and the advisor
can fix the error, the advisor provides a Fix button that you can
click to have the advisor fix the issue.

If you enable this parameter, the advisor fixes all conversion
errors that it can, without displaying the Fix button.

Replace subsystem
with a Model block

By default, the advisor updates the original model by inserting a
Model block where the Subsystem block that you converted was.

Clear this parameter to have the advisor open a new Simulink
Editor window that contains only a Model block that references
the newly created referenced model. The advisor does not update
the original model in the other Simulink Editor window.

10 Model Reference Conversion Advisor

10-4

Input Parameter Description

Note: If you are converting a variant subsystem, do not use this
option. See “Convert Each Variant Subsystem”.

Check simulation
results after
conversion

Compare the results of simulating the top model for the
referenced model to the results of simulating the baseline model
that has the subsystem.

To use this option, before performing the conversion, enable
signal logging for the subsystem output signals of interest in the
model. Set these advisor options:

• Model block simulation mode — Use the same simulation
mode as in the original model.

• Replace subsystem with a Model block — Enable this
option.

• Stop time — Specify when you want the simulations to end.
The default is 60 seconds.

• Absolute tolerance — Specify a value if you do not want to
use the default of '1e-06'.

• Relative tolerance — Specify a value if you do not want to
use the default of '1e-06'.

To see the results after the conversion is complete, click View
comparison results. The advisor displays the results of
the comparison in the Simulation Data Inspector. For more
information, see “Compare Simulation Results Before and After
Conversion”.

Stop time By default, the advisor runs the comparison simulations for 60
seconds. You can specify a different stop time. For details, see
“Specify Simulation Start and Stop Time”.

To use this option, select Check simulation results after
conversion.

 Model Reference Conversion Advisor

10-5

Input Parameter Description

Absolute tolerance The absolute signal tolerance for the simulation run comparison.
The default is 1e-06.

To use this option, select Check simulation results after
conversion.

Relative tolerance The relative signal tolerance for the simulation run comparison.
The default is 1e-06.

To use this option, select Check simulation results after
conversion.

Model block
simulation mode

Simulation mode for the new Model block that references the
referenced model.

• Normal (default)
• Accelerator

After you configure the advisor, to start the conversion checks, click Run this task.

11

Performance Advisor Checks

11 Performance Advisor Checks

11-2

Simulink Performance Advisor Checks

In this section...

“Simulink Performance Advisor Check Overview” on page 11-2
“Baseline” on page 11-3
“Checks that Require Update Diagram” on page 11-3
“Checks that Require Simulation to Run” on page 11-3
“Check Simulation Modes Settings” on page 11-3
“Check Compiler Optimization Settings” on page 11-3
“Create baseline” on page 11-4
“Identify resource-intensive diagnostic settings” on page 11-4
“Check optimization settings” on page 11-4
“Identify inefficient lookup table blocks” on page 11-5
“Check MATLAB System block simulation mode” on page 11-5
“Identify Interpreted MATLAB Function blocks” on page 11-6
“Identify simulation target settings” on page 11-6
“Check model reference rebuild setting” on page 11-6
“Identify Scope blocks” on page 11-7
“Check model reference parallel build” on page 11-7
“Check Delay block circular buffer setting” on page 11-9
“Check solver type selection” on page 11-9
“Select simulation mode” on page 11-10
“Select compiler optimizations on or off” on page 11-11
“Final Validation” on page 11-12

Simulink Performance Advisor Check Overview

Use Performance Advisor checks to improve model simulation time.

See Also

“How Performance Advisor Improves Simulation Performance”

 Simulink Performance Advisor Checks

11-3

Baseline

Establish a measurement to compare the performance of a simulation after Performance
Advisor implements improvements.

See Also

“Create a Performance Advisor Baseline Measurement”

Checks that Require Update Diagram

These checks require that Update Diagram occurs in order to run.

See Also

“How Performance Advisor Improves Simulation Performance”

Checks that Require Simulation to Run

These checks require simulation to run in order to collect sufficient performance data.
Performance Advisor reports the results after simulation completes.

See Also

“How Performance Advisor Improves Simulation Performance”

Check Simulation Modes Settings

These checks evaluate simulation modes (Normal, Accelerator, Rapid Accelerator, Rapid
Accelerator with up-to-date check off) and identify the optimal mode to achieve fastest
simulation.

See Also

“What Is Acceleration?”

Check Compiler Optimization Settings

Use these checks to select compiler optimization settings for improved performance.

11 Performance Advisor Checks

11-4

See Also

“Compiler optimization level”

Create baseline

Select this check to create a baseline when Performance Advisor runs. You can also
create a baseline manually. A baseline is the measurement of simulation performance
before you run checks in Performance Advisor. The baseline includes the time to run the
simulation and the simulation results (signals logged). Before you create a baseline for a
model, in the Data Import/Export pane of the Configuration Parameters dialog box:

• Select the States check box.
• Set the Format parameter to Structure with time.

See Also

“Create a Performance Advisor Baseline Measurement”

Identify resource-intensive diagnostic settings

To improve simulation speed, disable diagnostics where possible. For example, some
diagnostics, such as Solver data inconsistency or Array bounds exceeded, incur
run-time overheads during simulations.

See Also

• “Diagnostics”
• “How Performance Advisor Improves Simulation Performance”

Check optimization settings

To improve simulation speed, enable optimizations where possible. For example, if some
optimizations, such as Block Reduction, are disabled, enable these optimizations to
improve simulation speed.

You can also trade off compile-time speed for simulation speed by setting the compiler
optimization level. Compiler optimizations for accelerations are disabled by default.
Enabling them accelerates simulation runs but results in longer build times. The speed

 Simulink Performance Advisor Checks

11-5

and efficiency of the C compiler used for Accelerator and Rapid Accelerator modes also
affects the time required in the compile step.

See Also

• “Optimization Pane: General”
• “How Performance Advisor Improves Simulation Performance”

Identify inefficient lookup table blocks

To improve simulation speed, use properly configured lookup table blocks.

See Also

• “Lookup Tables”
• “Optimize Generated Code for Lookup Table Blocks”
• “Optimize Breakpoint Spacing in Lookup Tables”
• “How Performance Advisor Improves Simulation Performance”

Check MATLAB System block simulation mode

In general, to improve simulation speed, choose Code generation for the Simulate
using parameter of the MATLAB System block. Because data exchange between
MATLAB and Simulink passes through several software layers, Interpreted
execution usually slows simulations, particularly if the model needs many data
exchanges.

This check identifies which MATLAB System blocks can generate code and changes the
Simulate using parameter value to Code generation where possible.

While Code generation does not support all MATLAB functions, the subset of the
MATLAB language that it does support is extensive. By using this Code generation,
you can improve performance.

See Also

• MATLAB System

• “Simulation Modes”

11 Performance Advisor Checks

11-6

• “How Performance Advisor Improves Simulation Performance”

Identify Interpreted MATLAB Function blocks

To improve simulation speed, replace Interpreted MATLAB Function blocks with
MATLAB Function blocks where possible. Because data exchange between MATLAB
and Simulink passes through several software layers, Interpreted MATLAB Function
blocks usually slow simulations, particularly if the model needs many data exchanges.

Additionally, because you cannot compile an Interpreted MATLAB Function, an
Interpreted MATLAB Function block impedes attempts to use an acceleration mode
to speed up simulations.

While MATLAB Function blocks do not support all MATLAB functions, the subset of
the MATLAB language that it does support is extensive. By replacing your interpreted
MATLAB code with code that uses only this embeddable MATLAB subset, you can
improve performance.

See Also

• MATLAB Function

• “How Performance Advisor Improves Simulation Performance”

Identify simulation target settings

To improve simulation speed, disable simulation target settings where possible. For
example, in the Configuration Parameters dialog box, clear the Simulation Target >
Echo expression without semicolons check box to improve simulation speed.

See Also

• “Simulation Target Pane: General”
• “How Performance Advisor Improves Simulation Performance”

Check model reference rebuild setting

To improve simulation speed, in the Configuration Parameters dialog box, verify that
the Model Referencing > Rebuild parameter is set to If any changes in known
dependencies detected.

 Simulink Performance Advisor Checks

11-7

See Also

• “Rebuild”
• “How Performance Advisor Improves Simulation Performance”

Identify Scope blocks

Opened and uncommented Scope blocks can impact simulation performance. To improve
simulation performance, close and comment out Scope blocks. Right-click a scope block,
and then select Comment Out.

For opened Scopes, you can improve simulation speed by reducing updates. From the
Scope Simulation menu, select Reduce Updates to Improve Performance.

See Also

• “How Performance Advisor Improves Simulation Performance”

Check model reference parallel build

To improve simulation, verify the number of referenced models in the model. If there are
two or more referenced models, build the model in parallel if possible.

Performance Advisor analyzes the model and estimates the build time on the current
computer as if it were using several cores. It also estimates the parallel build time for the
model in the same way an estimation would be performed if Parallel Computing Toolbox
or MATLAB Distributed Computing Server™ software were installed on the computer.
Performance Advisor performs this estimate as follows:

1 Search the model for referenced models that do not refer to other referenced models.
2 Calculate the average number of blocks in each of the referenced models that do not

refer to other referenced models.
3 Of the list of referenced models that do not refer to others, select a referenced model

whose number of blocks is closest to the calculated average.
4 Build this model to obtain the build time.
5 Based on the number of blocks and the build time for this referenced model, estimate

the build time for all other referenced models.
6 Based on these build times, estimate the parallel build time for the top model.

11 Performance Advisor Checks

11-8

To calculate the overhead time introduced by the parallel build mechanism, set the
Parallel Build Overhead Time Estimation Factor. Performance Advisor calculates the
estimated build time with overhead as:

(1 + Parallel Build Overhead Time Estimation Factor)*(Build time on a single machine)

See Also

• “Enable parallel model reference builds”
• “How Performance Advisor Improves Simulation Performance”

 Simulink Performance Advisor Checks

11-9

Check Delay block circular buffer setting

To improve simulation, check that each Delay block in the model uses the appropriate
buffer type. By default, the block uses an array buffer (the Use circular buffer for
state option is not selected). However, when the delay length is large, a circular buffer
can improve execution speed by keeping the number of copy operations constant.

If the Delay block is currently using an array buffer, and all of the following conditions
are true, Performance Advisor selects a circular buffer:

• The Delay block is in sample-based mode, i.e,either the Input processing parameter
is set to Elements as channels (sample based), or the input signal type is set
to Sample based.

• The value or upper limit of the delay length is 10 or greater.
• The size of the state—equal to the delay length multiplied by the total of all output

signal widths—is 1000 or greater.

See Also

• Delay

• “How Performance Advisor Improves Simulation Performance”

Check solver type selection

To improve simulation, check that the model uses the appropriate solver type.

Explicit vs. Implicit Solvers

Selecting a solver depends on the approximation of the model stiffness at the beginning
of the simulation. A stiff system has both slowly and quickly varying continuous
dynamics. Implicit solvers are specifically designed for stiff problems, whereas explicit
solvers are designed for non-stiff problems. Using non-stiff solvers to solve stiff systems
is inefficient and can lead to incorrect results. If a non-stiff solver uses a very small step
size to solve your model, check to see if you have a stiff system.

Model Recommended Solver

Represents a stiff system ode15s
Does not represent a stiff system ode45

11 Performance Advisor Checks

11-10

Performance Advisor uses the heuristic shown in the table to choose between explicit and
implicit solvers.

Original Solver Performance Advisor Action

Variable step solver Calculates the system stiffness at 0 first. Then:

• If the stiffness is greater than 1000, Performance
Advisor chooses ode15s.

• If the stiffness is less than 1000, Performance
Advisor chooses ode45.

Fixed-step continuous solver • If the stiffness is greater than 1000, Performance
Advisor chooses ode14x.

• If the stiffness is less than 1000, Performance
Advisor chooses ode3.

This heuristic works best if the system stiffness does not vary during simulation. If the
system stiffness varies with time, choose the most appropriate solver for that system
rather than the one Performance Advisor suggests.

See Also

• “Solvers”
• “Speed Up Simulation”
• “How Performance Advisor Improves Simulation Performance”

Select simulation mode

To achieve fastest simulation time, use this check to evaluate the following modes and
identify the optimal selection:

• Normal
• Accelerator
• Rapid Accelerator
• Rapid Accelerator with up-to-date check off

In Normal mode,Simulink interprets your model during each simulation run. If you
change the model frequently, this is generally the preferred mode to use because it

 Simulink Performance Advisor Checks

11-11

requires no separate compilation step. It also offers the most flexibility to make changes
to your model.

In Accelerator mode,Simulink compiles a model into a binary shared library or DLL
where possible, eliminating the block-to-block overhead of an interpreted simulation in
Normal mode. Accelerator mode supports the debugger and profiler, but not runtime
diagnostics.

In Rapid Accelerator mode, simulation speeds are fastest but this mode only works with
models where C-code is available for all blocks in the model. Also, this mode does not
support the debugger or profiler.

When choosing Rapid Accelerator with up-to-date check off, Performance Advisor does
not perform an up-to-date check during simulation. You can run the Rapid Accelerator
executable repeatedly while tuning parameters without incurring the overhead of up-to-
date checks. For instance, if you have a large model or a model that makes extensive use
of model reference, this method of execution can increase efficiency.

For models with 3–D signals, Normal or Accelerator modes work best.

See Also

• “How Acceleration Modes Work”
• “Choosing a Simulation Mode”
• “Comparing Performance”
• “Run Simulation Using the sim Command”

Select compiler optimizations on or off

Use this check to determine whether performing compiler optimization can help improve
simulation speed. The optimization can only be performed in Accelerator or Rapid
Accelerator modes.

Note: This check will be skipped if MATLAB is not configured to use an optimizing
compiler.

See Also

• “How Acceleration Modes Work”

11 Performance Advisor Checks

11-12

• “Choosing a Simulation Mode”
• “Comparing Performance”
• “How Performance Advisor Improves Simulation Performance”

Final Validation

This check validates the overall performance improvement of simulation time and
accuracy in a model. If the performance is worse than the original model, Performance
Advisor discards all changes to the model and loads the original model.

Global settings for validation do not apply to this check. If you have not validated the
performance improvement from changes resulting from other checks, use this check to
perform a final validation of all changes to a model.

See Also

• “Comparing Performance”
• “How Performance Advisor Improves Simulation Performance”

12

Simulink Limits

12 Simulink Limits

12-2

Maximum Size Limits of Simulink Models

The following table documents some limits on the size and complexity of Simulink
models.

Model Feature Limit

Maximum number of levels in a block
diagram

1024

Maximum number of branches in a line 1024
Maximum length of a parameter name 63
Maximum length of a parameter string
value

32768

Maximum value of a model window
coordinate

32768

Maximum number of bytes of logged
simulation data

2^31-1 bytes on 32-bit systems, 2^48-1
bytes on 64-bit systems

Maximum number of bytes for the total
block I/O buffer length in a model

2^31-1 bytes on 32-bit systems and on 64-
bit systems

Maximum length of integer and fixed-point
data types

128 bits

