Simulink®

Reference

¢

MATLAB&SIMULINK

R2015b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Reference

© COPYRIGHT 2002-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002 Online only Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Online only Revised for Simulink 7.8 (Release 2011b)
March 2012 Online only Revised for Simulink 7.9 (Release 2012a)
September 2012 Online only Revised for Simulink 8.0 (Release 2012b)
March 2013 Online only Revised for Simulink 8.1 (Release 2013a)
September 2013 Online only Revised for Simulink 8.2 (Release 2013b)
March 2014 Online only Revised for Simulink 8.3 (Release 2014a)
October 2014 Online only Revised for Simulink 8.4 (Release 2014b)
March 2015 Online only Revised for Simulink 8.5 (Release 2015a)

September 2015 Online only Revised for Simulink 8.6 (Release 2015b)

Blocks — Alphabetical List

1

Functions — Alphabetical List

2|

Mask Icon Drawing Commands

3

Simulink Debugger Commands

4

Simulink Classes

S|

Model and Block Parameters

6/

Model Parameters 6-2
About Model Parameters 6-2

vi

Contents

7]

8

Examples of Setting Model Parameters 6-83
Common Block Properties 6-85
About Common Block Properties 6-85
Examples of Setting Block Properties 6-95
Block-Specific Parameters 6-96
Mask Parameters 6-227
About Mask Parameters 6-227
Simulink Identifier

Simulink Identifier 7-2
==Fixed-Point Tool==

Fixed-Point Tool Parameters and Dialog Box 8-2
Main Toolbar 8-2
Model Hierarchy Pane 8-5
Contents Pane 0. ... 8-5
Customizing the Contents Pane View 8-8
Dialog Pane 8-10
Fixed-Point Advisor 8-13
Configure model settings 8-14
Runname 8-16
Simulate 8-17
Merge instrumentation results from multiple simulations . . 8-18
Derive ranges for selected system 8-19
Propose 8-20
Propose for 8-21
Default fraction length 8-22
Default word length 8-23
When proposing types useiiiii... 8-24
Safety margin for simulation min/max (%) 8-25

Advanced Settings 8-26

Advanced Settings Overview 8-26
Fixed-point instrumentation mode 8-27
Data type override 8-28
Data type override appliesto 8-31
Name of shortcut 8-33
Allow modification of fixed-point instrumentation settings . 8-34
Allow modification of data type override settings 8-35
Allow modification of runname 8-36
Runname 8-37
Capture system settings 8-38
Fixed-point instrumentation mode 8-39
Data type override 8-40
Data type override appliesto 8-41
Manage shortcuts 8-42

Model Advisor Checks

9

Simulink Checks 9-2
Simulink Check Overview 9-5
Migrating to Simplified Initialization Mode Overview 9-5
Identify unconnected lines, input ports, and output ports . . . 9-7
Check root model Inport block specifications 9-8
Check optimization settings 9-9
Check diagnostic settings ignored during accelerated model

reference simulation 9-11
Check for parameter tunability information ignored for

referenced models 9-12
Check for implicit signal resolution 9-13
Check for optimal bus virtuality 9-14
Check for Discrete-Time Integrator blocks with initial condition

uncertainty e 9-15
Identify disabled library links 9-16
Identify parameterized library links 9-17
Identify unresolved library links 9-18
Identify model reference variants and variant subsystems that

override variant choice 9-19
Identify configurable subsystem blocks for converting to variant

subsystem blocks 9-20
Check usage of function-call connections 9-20

vii

viii

Contents

Check model for upgradable Simulink Scope blocks
Check signal logging save format
Check Data Store Memory blocks for multitasking, strong
typing, and shadowing issues
Check if read/write diagnostics are enabled for data store
blocks
Check data store block sample times for modeling errors . . .
Check for potential ordering issues involving data store
ACCESS & v et e et e e
Check for partial structure parameter usage with bus
signals
Check Delay, Unit Delay and Zero-Order Hold blocks for rate
transition
Check for calls to slDataTypeAndScale
Check bususage,
Check for potentially delayed function-call subsystem return
values . ..o e
Identify block output signals with continuous sample time and
non-floating point data type
Check usage of Merge blocks
Check usage of Outport blocks
Check usage of Discrete-Time Integrator blocks
Check model settings for migration to simplified initialization
mode
Check for non-continuous signals driving derivative ports . .
Runtime diagnostics for S-functions
Check model for foreign characters
Check model for block upgrade issues
Check model for block upgrade issues requiring compile time
informationt
Check that the model is saved in SLX format
Check model for SB2SL blocks
Check Model History properties
Identify Model Info blocks that can interact with external
source control tools
Identify Model Info blocks that use the Configuration
Manageri i e
Check for Mux blocks used to create bus signals
Check bus usage,
Check model for legacy 3DoF or 6DoF blocks
Check model and local libraries for legacy Aerospace Blockset
blocks
Check and update masked blocks in library to use promoted
parameters

9-21
9-21

9-23

9-25
9-27

9-28

9-30

9-31
9-34
9-36

9-38

9-40
9-41
9-44
9-55

9-56
9-60
9-62
9-64
9-69

9-70
9-73
9-75
9-77

9-78
9-79
9-80
9-81
9-83
9-84

9-85

Check and update mask image display commands with
unnecessary imread() function calls
Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter
Identify questionable operations for strict single-precision
design
Check get_param calls for block CompiledSampleTime
Check model for parameter initialization and tuning issues .
Check Rapid Accelerator signal logging
Check for root outports with constant sample time
Analyze model hierarchy and continue upgrade sequence . .

9-85

9-87

9-88
9-89
9-91
9-92
9-93
9-95

Model Reference Conversion Advisor

10|

Model Reference Conversion Advisor

Check Conversion Input Parameters

Performance Advisor Checks

11

Simulink Performance Advisor Checks

Simulink Performance Advisor Check Overview
Baseline
Checks that Require Update Diagram
Checks that Require Simulationto Run
Check Simulation Modes Settings
Check Compiler Optimization Settings
Create baseline,
Identify resource-intensive diagnostic settings
Check optimization settings
Identify inefficient lookup table blocks
Check MATLAB System block simulation mode
Identify Interpreted MATLAB Function blocks
Identify simulation target settings
Check model reference rebuild setting
Identify Scope blocks

11-2
11-2
11-3
11-3
11-3
11-3
11-3
11-4
114
114
11-5
11-5
11-6
11-6
11-6
11-7

ix

Check model reference parallel build 11-7

Check Delay block circular buffer setting 11-9
Check solver type selection 11-9
Select simulation mode 11-10
Select compiler optimizations onoroff 11-11
Final Validation 11-12

12

Maximum Size Limits of Simulink Models 12-2

X Contents

Blocks — Alphabetical List

1

Blocks — Alphabetical List

1-2

Abs

Output absolute value of input

Library

Math Operations

Description

[ul P

The Abs block outputs the absolute value of the input.

For signed-integer data types, the absolute value of the most negative value is not
representable by the data type. In this case, the Saturate on integer overflow check
box controls the behavior of the block:

integer data type

If you... The block... And...
Select this check Saturates to the most * For 8-bit signed integers, -128 maps to
box positive value of the 127.

* For 16-bit signed integers, -32768
maps to 32767.

For 32-bit signed integers,
-2147483648 maps to 2147483647.

Do not select this
check box

Wraps to the most
negative value of the
integer data type

* For 8-bit signed integers, -128
remains -128.

+ For 16-bit signed integers, -32768
remains -32768.

For 32-bit signed integers,
-2147483648 remains -2147483648.

Abs

The Abs block supports zero-crossing detection. However, when you select Enable zero-
crossing detection on the dialog box, the block does not report the simulation minimum
or maximum in the Fixed-Point Tool. If you want to use the Fixed-Point Tool to analyze a
model, disable zero-crossing detection for all Abs blocks in the model first.

Data Type Support

The Abs block accepts real signals of the following data types:

* Floating point
* Built-in integer

+ Fixed point

The block also accepts complex floating-point inputs. For more information, see “ Data
Types Supported by Simulink” in the Simulink® documentation.

Parameters and Dialog Box

The Main pane of the Abs block dialog box appears as follows:

1-3

1 Blocks — Alphabetical List

“& Function Block Parameters: Abs ﬁ

Abs
y = lul

Main | Signal Attributes

Enable zero-crossing detection

®) | ok || cancel || Help Apply

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

The Signal Attributes pane of the Abs block dialog box appears as follows:

1-4

Abs

E Function Block Pararneters: Shs @
Abs
y = [ul
Main | Signal Attributes
Cutput minimum: Cutput maximum:
(1 (]
Output data type: Inherit: Same asinput -

Data Type Assistant

Mode: [Inherit *] [Same as input ']

[Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: [Flcn:rr ']

["] saturate on integer overflow

[Ok][Cancel][Help Apply

Output minimum

Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

Simulation range checking (see “Signal Ranges”)

Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

Simulation range checking (see “Signal Ranges”)

Automatic scaling of fixed-point data types

1-5

1 Blocks — Alphabetical List

Output data type

Specify the output data type. You can set it to:

A rule that inherits a data type, for example, Inherit:

propagation

The name of a built-in data type, for example, single

Inherit via back

The name of a data type object, for example, a Simul ink.NumericType object

An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer™ documentation.

Saturate on integer overflow

Action Reason for Taking This What Happens Example

Action
Select this Your model has possible Overflows saturate to the |The number 130 does not
check box. overflow and you want maximum value that the |[fit in a signed 8-bit integer

explicit saturation
protection in the
generated code.

data type can represent.

and saturates to 127.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The number 130 does not
fit in a signed 8-bit integer
and wraps to -126.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can

1-6

Abs

detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Examples

Usage as an Input to a MinMax Block

The sldemo_hardstop model shows how you can use the Abs block as an input to the
MinMax block.

In the sldemo_hardstop model, the Abs block is in the Friction Model subsystem.

1-7

1 Blocks — Alphabetical List

. min
mu_static
| |u -
-
- A
Force »_— Product
Sign
Use direct state access to .
@ break algebraic loop -) i _
elocity_stateport P g
Crossing S itch
Stu-:.-:
(2) »——
“elocity N— I—b
Sign2 ¥

C—°> e
Fn2

mu_Einetic

Usage as an Input to a Switch Block

F_fr

The sldemo_zeroxing model shows how you can use the Abs block as an input to the

Switch block.

1-8

Abs

P b Il
=)

Sine Wave Abhs

Characteristics

Data Types

Double | Single | Base Integer | Fixed-Point

Sample Time

Inherited from driving block

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1-9

1 Blocks — Alphabetical List

Action Port

Implement Action subsystems used in i f and switch control flow statements

Library

Ports & Subsystems

it}

Description

Action Port blocks implement action subsystems used in i ¥ and switch control flow
statements. The 1f Action Subsystem and the Switch Case Action Subsystem
blocks each contain an Action Port block.

Data Type Support

Action Port blocks do not have data inputs or outputs.

1-10

Action Port

Parameters and Dialog Box

E Block Parameters: Action Port @
Action Port

Flace this block in @ subsystem to link to a signal from an If block or a Switch-
Case block.

Parameters

States when execution is resumed: |he|d - |

Propagate sizes of variable-size signals: |Dr1|1,r when execution is resumed - |

J oK]| Cancel || Help Apply

+ “States when execution is resumed” on page 1-11

+ “Propagate sizes of variable-size signals” on page 1-13

States when execution is resumed

Specify how to handle internal states when a subsystem with an Action Port block
reenables.

Settings
Default: held
held

When the subsystem reenables, retains the states of the Action subsystem with their
previous values. Retains the previous values of states between calls even if calling
other member Action subsystems of an if-else or switch control flow statement.

reset

Reinitializes the states of the Action subsystem to initial values when the subsystem
reenables.

1-11

1 Blocks — Alphabetical List

Reenablement of a subsystem occurs when called and the condition of the call is true
after having been previously false. In the following example, the Action Port blocks
for both Action subsystems A and B have the States when execution is resumed
parameter set to reset.

case[1]:
—f i i
defaut:
case {1
SwitchiGase
defaut: {3 4
E

If case[1] is true, call Action subsystem A. This result implies that the default
condition is false. When later calling B for the default condition, its states are reset.
In the same way, Action subsystem A states are reset when calling A right after
calling Action subsystem B.

Repeated calls to the Action subsystem of a case does not reset its states. If calling
A again right after a previous call to A, this action does not reset the states of A.
This behavior is because the condition of case[1] was not previously false. The same
applies to B.

Command-Line Information
Parameter: InitializeStates
Type: string

Value: "held” | "reset” |
Default: "held”

1-12

Action Port

Propagate sizes of variable-size signals
Specify when to propagate a variable-size signal.
Settings

Default: Only when execution is resumed

Only when execution is resumed

Propagates variable-size signals only when reenabling the subsystem containing the
Action Port block.

During execution

Propagates variable-size signals at each time step.

Command-Line Information

Parameter: PropagateVarSize

Type: string

Value: "Only when execution is resumed
Default: "Only when execution is resumed*”

During execution”

Characteristics

‘Sample Time Inherited from driving If or Switch Case block

See Also

If, IT Action Subsystem, Switch Case, Switch Case Action Subsystem

Introduced before R2006a

1-13

1 Blocks — Alphabetical List

1-14

Algebraic Constraint

Constrain input signal to zero

Library

Math Operations

Salve
2l)=

Description

The Algebraic Constraint block constrains the input signal f(2) to zero and outputs an
algebraic state z. The block outputs the value that produces a zero at the input. The
output must affect the input through a direct feedback path, that is, the feedback path

contains only blocks with direct feedthrough. For example, you can specify algebraic
equations for index 1 differential-algebraic systems (DAES).

Algorithm

The Algebraic Constraint block uses a dogleg trust-region algorithm to solve algebraic
loops [1], [2].

Data Type Support

The Algebraic Constraint block accepts and outputs real values of type double.

Algebraic Constraint

Parameters and Dialog Box

E Function Block Parameters: &lgebraic Constraint @
Algebraic Constraint (mask)

Constrains input signal f{z) to zero and outputs an algebraic state z.
This block outputs the value necessary to produce a zero at the input.
The output must affect the input through some feedback path.
Provide an initial guess of the output to improve algebraic loop solver
efficiency.

Farameters

Initial guess:

0

0K]| Cancel || Help Apply

Initial guess

An 1nitial guess for the solution value. The default is O.

Example

By default, the Initial guess parameter is zero. You can improve the efficiency of the
algebraic-loop solver by providing an Initial guess for the algebraic state z that is close
to the solution value.

For example, the following model solves these equations:

1
1

z2 + 71
z2 - 71

The solutionis z2 = 1,z1 = O, as the Display blocks show.

1-15

1 Blocks — Alphabetical List

z2
-+
'I - #_s
NN = i Sove G2 W[9
Ll Ll =y f{z:l = Ll
|- Algebraic Constraint Display =1
Sum
z1
Fi:- -
z2 z2z1-1 . z2
1 |- Algebraic Constraint Display z2
Constant Surm
Characteristics
Data Types Double
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation No

References

[1] Garbow, B. S., K. E. Hillstrom, and J. J. Moré. User Guide for MINPACK-1. Argonne,
IL: Argonne National Laboratory, 1980.

1-16

Algebraic Constraint

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic Equations. New York,
NY: Gordon and Breach, 1970.

Introduced before R2006a

1-17

1 Blocks — Alphabetical List

1-18

Argument Inport

Argument input port for Simulink Function block

Description

> v

This block is an input argument port for a function that you define in the Simulink
Function block.

Data Type Support

The Argument Inport block accepts complex or real signals of any data type that
Simulink supports, including fixed-point and enumerated data types. The Argument
Inport block also accepts a bus object as a data type.

The numeric and data types of the block output are the same as those of its input. You
can specify the signal type and data type of an input argument to an Argument Inport

block using the Signal type and Data type parameters. For more information, see “
Data Types Supported by Simulink”.

Parameters and Dialog Box

The Main pane of the Argument Inport block dialog box appears as follows:

Argument Inport

"k Source Block Parameters: u @
Argln

Provide an input port corresponding to an input argument.

Main | Signal Attributes

Port number:

Argument name:

L

[oK][Cancel H Help Apply

The Signal Attributes pane of the Argument Inport block dialog box appears as follows:

1-19

1 Blocks — Alphabetical List

1-20

“L Source Block Parameters: u

Argln

Provide an input port corresponding to an input argument.

Main Signal Attributes

Minimum: Maxirmum:

(] (]

Data type: double

o=

[Lock output data type setting against changes by the fixed-point tools

Port dimensions:

1

Signal type: [real

[OK][Cancel H Help

Apply

“Port number” on page 1-22
“Argument Name” on page 1-22
“Minimum” on page 1-23
“Maximum” on page 1-24

“Data type” on page 1-25

“Show data type assistant” on page 1-27
“Mode” on page 1-28

“Data type override” on page 1-30
“Signedness” on page 1-31

“Word length” on page 1-32
“Scaling” on page 1-33

“Fraction length” on page 1-34

Argument Inport

“Slope” on page 1-35

“Bias” on page 1-35

“Output as nonvirtual bus” on page 1-36

“Lock data type settings against changes by the fixed-point tools” on page 1-37
“Port dimensions” on page 1-37

“Signal type” on page 1-38

1-21

1 Blocks — Alphabetical List

Port number

Specify the port number of the block.
Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
in the parent subsystem or model block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Name
Settings
Default: u

This parameter provides the name of the input argument in the function prototype of the
Simulink Function block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-22

Argument Inport

Minimum

Specify the minimum value for the block to output.
Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simul ink.BusElement.

Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-23

1 Blocks — Alphabetical List

1-24

Maximum

Specify the maximum value for the block to output.
Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simul ink.BusElement.

Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

* Automatic scaling of fixed-point data types
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Inport

Data type

Specify the output data type of the argument input.
Settings
Default: double

double
Data type is double.
single
Data type is single.
int8
Data type is int8.
uint8
Data type is uints8.
intl6
Data type is Intl6.
uintl6
Data type is uintl6.
int32
Data type is int32.
uint32
Data type is uint32.
boolean
Data type 1s boolean.
fixdt(1,16,0)
Data type is fixed point Fixdt(1,16,0).
fixdt(1,16,270,0)
Data type is fixed point Fixdt(1,16,2"0,0).
Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.
Bus: <object name>

1-25

1 Blocks — Alphabetical List

Data type is a bus object.
<data type expression>
The name of a data type object, for example Simul ink_.NumericType

Do not specify a bus object as the expression.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-26

Argument Inport

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1-27

1 Blocks — Alphabetical List

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in

Built-in data types. Selecting Bui It 1n enables a second menu/text box to the right.
Select one of the following choices:

+ double (default)

+ single
+ Int8

* uint8

+ intl6

* uintl6
+ Int32

* uint32
* boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus
Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object

field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

1-28

Argument Inport

Expression

Expressions that evaluate to data types. Selecting EXpression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.
Dependency
Clicking the Show data type assistant button enables this parameter.
Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

For more information, see “Specify Data Types Using Data Type Assistant”.

1-29

1 Blocks — Alphabetical List

1-30

Data type override

Specify data type override mode for this signal.
Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow® chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built inor Fixed point.

Argument Inport

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings
Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies
Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-31

1 Blocks — Alphabetical List

Word length

Specify the bit size of the word that holds the quantized integer.
Settings

Default: 16

Minimum: O

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-32

Argument Inport

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings
Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.
Dependencies
Selecting Mode > Fixed point enables this parameter.
Selecting Binary point enables:

* Fraction length

+ Calculate Best-Precision Scaling
Selecting Slope and bias enables:

+ Slope
* Bias

+ Calculate Best-Precision Scaling
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-33

1 Blocks — Alphabetical List

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: O

Binary points can be positive or negative integers.
Dependencies

Selecting Scaling > Binary point enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-34

Argument Inport

Slope

Specify slope for the fixed-point data type.

Settings

Default: 20

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: O

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-35

1 Blocks — Alphabetical List

1-36

Output as nonvirtual bus
Output a nonvirtual bus.
Settings

Default: Off

Y1 On

Output a nonvirtual bus.

Off

Output a virtual bus.
Tips

* Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

+ All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals in the bus must have the same sample
time. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus, to allow the signal or bus to be included in
a nonvirtual bus.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Inport

Lock data type settings against changes by the fixed-point tools

Select to lock data type settings of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor.

Settings
Default: Off
Y10n
Locks all data type settings for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings
for this block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Port dimensions

Specify the dimensions of the input signal to the block.
Settings

Default: 1

Valid values are:

n Vector signal of width n accepted

[m n] Matrix signal having m rows and n columns accepted

1-37

1 Blocks — Alphabetical List

1-38

Signal type

Specify the numeric type of the argument input.
Settings

Default: real

real
Specify the numeric type as a real number.
complex

Specify the numeric type as a complex number.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Dimensionalized Yes
Multidimensionalized Yes
Zero-Crossing Detection No

See Also

Argument Outport

Simulink Function

Introduced in R2014b

Argument Outport

Argument Outport

Argument output port for Simulink Function block

Description

This block is an output argument port for a function that you define in the Simulink
Function block.

Data Type Support

The Argument Outport block accepts real or complex signals of any data type that
Simulink supports. An Argument Outport block can also accept fixed-point and
enumerated data types when the block is not a root-level output port. The complexity and
data type of the block output are the same as those of its input. The Argument Outport
block also accepts a bus object as a data type.

For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box

The Main pane of the Argument Outport block dialog box appears as follows:

1-39

1 Blocks — Alphabetical List

"l Sink Block Parameters: y
ArgOut

Provide an output port corresponding to an output argument.

Main | Signal Attributes

Port number:

1

Argument name:

¥

[OK H Cancel H Help Apply

The Signal Attributes pane of the Argument Outport block dialog box appears as
follows:

1-40

Argument Outport

"y Sink Block Parameters: y
ArgOut

5

Provide an output port corresponding to an output argument.

Main Signal Attributes

Minimum: Maximum:

(] (]

Data type: double -

["] Lock output data type setting against changes by the fixed-point tools
Port dimensions:

1

Signal type: [real -

[Ok][Cancel][Help Apply

“Port number” on page 1-42
“Argument Name” on page 1-42
“Minimum” on page 1-43
“Maximum” on page 1-44

“Data type” on page 1-44

“Show data type assistant” on page 1-46
“Mode” on page 1-46

“Data type override” on page 1-47
“Signedness” on page 1-49

“Word length” on page 1-49
“Scaling” on page 1-50

“Fraction length” on page 1-50

141

1

Blocks — Alphabetical List

1-42

+ “Slope” on page 1-51
+ “Bias” on page 1-52

* “Lock output data type setting against changes by the fixed-point tools” on page
1-52

* “Output as nonvirtual bus” on page 1-53
* “Port dimensions” on page 1-53

+ “Signal type” on page 1-54

Port number

Specify the port number of the block.
Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears
on the parent subsystem or model block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Name

Settings

Specify the name of the output argument.
Default: y

This parameter provides the name of the output argument in the function prototype of
the Simulink Function block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Argument Outport

Minimum

Specify the minimum value for the block to output.
Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum property of a bus element, see Simul ink.BusElement.

Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

* Automatic scaling of fixed-point data types
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-43

1 Blocks — Alphabetical List

1-44

Maximum

Specify the maximum value for the block to output.
Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum property of a bus element, see Simul ink.BusElement.

Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Data type

Specify the output data type of the external input.
Settings
Default: double

double

Data type 1s double.
single

Data type is single.
int8

Data type is int8.

Argument Outport

uints
Data type is uint8.
intl6
Data type is intl16.
uintl6
Data type is uintl6.
int32
Data type is int32.
uint32
Data type is uint32.
boolean
Data type is boolean.
fixdt(1,16,0)
Data type is fixed point Fixdt(1,16,0).
fixdt(1,16,270,0)
Data type is fixed point Fixdt(1,16,270,0).
Enum: <class name>
Data type is enumerated, for example, Enum: BasicColors.
Bus: <object name>
Data type is a bus object.
<data type expression>
The name of a data type object, for example Simul ink_NumericType

Do not specify a bus object as the expression.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-45

1 Blocks — Alphabetical List

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Built in

Built-in data types. Selecting Bui It 1n enables a second menu/text box to the right.
Select one of the following choices:

+ double (default)

+ single
+ Int8

* uint8

+ Intl6

* uintl6
¢ Int32

* uint32
* boolean

Fixed point
Fixed-point data types.

1-46

Argument Outport

Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

Expressions that evaluate to data types. Selecting EXxpression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.
Dependency
Clicking the Show data type assistant button enables this parameter.
Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

See “Specify Data Types Using Data Type Assistant”.

Data type override

Specify data type override mode for this signal.
Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

1-47

1 Blocks — Alphabetical List

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built inor Fixed point.

1-48

Argument Outport

Signedness

Specify whether you want the fixed-point data as signed or unsigned.
Settings

Default: Signed

Signed
Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.
Dependencies
Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Word length

Specify the bit size of the word that holds the quantized integer.
Settings

Default: 16

Minimum: O

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-49

1 Blocks — Alphabetical List

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings
Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.
Dependencies
Selecting Mode > Fixed point enables this parameter.
Selecting Binary point enables:

* Fraction length

+ Calculate Best-Precision Scaling

Selecting Slope and bias enables:

+ Slope
+ Bias

+ Calculate Best-Precision Scaling
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Fraction length

Specify fraction length for fixed-point data type.

1-50

Argument Outport

Settings

Default: O

Binary points can be positive or negative integers.
Dependencies

Selecting Scaling > Binary point enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Slope

Specify slope for the fixed-point data type.

Settings

Default: 20

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-51

1 Blocks — Alphabetical List

Bias

Specify bias for the fixed-point data type.

Settings

Default: O

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

Y On

Locks the output data type setting for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string

Value: "off" | "on*
Default: "off"

1-52

Argument Outport

See Also

For more information, see “Use Lock Output Data Type Setting”.

Output as nonvirtual bus
Output a nonvirtual bus.
Settings
Default: Off
41 On
Output a nonvirtual bus.

Off

Output a virtual bus.
Tips

+ Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

+ All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals in the bus must have the same sample
time. You can use a Rate Transition block to change the sample time of an
individual signal, or of all signals in a bus, to allow the signal or bus to be included in
a nonvirtual bus.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Port dimensions

Specify the dimensions that a signal must have to connect to this Outport block.
Settings

Default: 1

1-53

1 Blocks — Alphabetical List

1-54

Valid values are:

N The signal connected to this port must be a vector of size N.

[R C] The signal connected to this port must be a matrix having R rows
and C columns.

Dependency
Clearing via bus object enables this parameter.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Signal type

Specify the numeric type of the signal output by this block.
Settings

Default: real

real

Output a real-valued signal. The signal connected to this block must be real. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

complex
Output a complex signal. The signal connected to this block must be complex. If it is
not, Simulink software displays an error if you try to update the diagram or simulate
the model that contains this block.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

‘ Dimensionalized Yes

Argument Outport

Multidimensionalized

Yes

Zero-Crossing Detection

See Also

Argument Inport

Simulink Function

Introduced in R2014b

1-55

1 Blocks — Alphabetical List

1-56

Assertion

Check whether signal is zero

Library

Model Verification

9

Description

The Assertion block checks whether any of the elements of the input signal is zero. If all
elements are nonzero, the block does nothing. If any element is zero, the block halts the
simulation, by default, and displays an error message. Use the block parameter dialog
box to:

+ Specify that the block should display an error message when the assertion fails but
allow the simulation to continue.

Specify a MATLAB® expression to evaluate when the assertion fails.

* Enable or disable the assertion.

You can also use the Model Verification block enabling setting on the Data Validity
diagnostics pane of the Configuration Parameters dialog box to enable or disable all
Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification library are
intended to facilitate creation of self-validating models. For example, you can use model
verification blocks to test that signals do not exceed specified limits during simulation.
When you are satisfied that a model is correct, you can turn error checking off by
disabling the verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Assertion

Note: For information about how Simulink Coder™ generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Assertion block accepts input signals of any dimensions and any numeric data type
that Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

" Sink Block Parameters: Assertion I&

Assertion

Assert that the input signal is non-zero. The default behavior in the
absence of a callback is to output an error message when the assertion
fails.

Parameters
Enable assertion

Simulation callback when assertion fails:

Stop simulation when assertion fails

J OK H Cancel H Help Apply

Enable assertion

Clearing this check box disables the Assertion block, that is, causes the model to
behave as if the Assertion block did not exist. The Model Verification block

1-57

1 Blocks — Alphabetical List

1-58

enabling setting under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box lets you enable or disable all Assertion blocks in
a model regardless of the setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Assertion block to halt the simulation when the
block input is zero and display an error in the Diagnostic Viewer. Otherwise, the
block displays a warning message in the MATLAB Command Window and continues
the simulation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not

Recommended”.
Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-
Point
Sample Time Inherited from driving block
Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Assignment

Assignment

Assign values to specified elements of signal

Library

Math Operations

=

Description

The Assignment block assigns values to specified elements of the signal. You can specify
the indices of the elements to be assigned values either by entering the indices in the
block's dialog box or by connecting an external indices source or sources to the block. The
signal at the block's data port, labeled U, specifies values to be assigned to Y. The block
replaces the specified elements of Y with elements from the data signal.

Based on the value you enter for the Number of output dimensions parameter, a
table of index options is displayed. Each row of the table corresponds to one of the output
dimensions in Number of output dimensions. For each dimension, you can define the
elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Assignment block for multidimensional
signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The table in the

Assignment block dialog changes to include one row for each dimension. If you define
each dimension with the following entries:

-1

Index Option, select Assign all
. 2

Index Option, select Index vector (dialog)

1-59

1 Blocks — Alphabetical List

1-60

Index, enter [1 3 5]
- 3

Index Option, select Starting index (dialog)

Index, enter 4
- 4

Index Option, select Starting index (port)
b

Index Option, select Index vector (port)

The assigned values will be Y(1:end,[1 3
5].,4:3+size(U,3), 1dx4: 1dx4+size(U,4)-1, 1dx5)=U, where 1dx4 and 1dx5 are
the input ports for dimensions 4 and 5.

The Assignment block's data port is labeled U. The rest of this section refers to the data
port as U to simplify the explanation of the block's usage.

When using the Assignment block in Normal mode, Simulink initializes block outputs to
zero even if the model does not explicitly initialize them. In Accelerator mode, Simulink
converts the model into an S-Function. This involves code generation. The code generated
may not do implicit initialization of block outputs. In such cases, you must explicitly
initialize the model outputs.

You can use the block to assign values to vector, matrix, or multidimensional signals.

You can use an array of buses as an input signal to an Assignment block. For details
about defining and using an array of buses, see “Combine Buses into an Array of Buses”.

lterated Assignment

You can use the Assignment block to assign values computed in a For or While Iterator
loop to successive elements of a vector, matrix, or multidimensional signal in a single
time step. For example, the following model uses a For Iterator block to create a vector
signal each of whose elements equals 3*1 where i is the index of the element.

Assignment

doiuble
[Q 00 o 0
Constant doubils
TR il
For double :
[terator I 1 Display
For [terator Assignment

Iterated assignment uses an iterator (For or While) block to generate indices for the
Assignment block. On the first iteration of an iterated assignment, the Assignment block
copies the first input (Y0) to the output (Y) and assigns the second input (U) to the output
Y(E1). On successive iterations, the Assignment block assigns the current value of U to
Y(E)), that is, without first copying YO to Y. These actions occur in a single time step.

Data Type Support

The data and initialization ports of the Assignment block accept signals of any data
type that Simulink supports, including fixed-point, enumerated, and nonvirtual bus
data types. The external indices port accepts any built-in data type, except Boolean data

types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-61

1 Blocks — Alphabetical List

Parameters and Dialog Box

“& Function Block Parameters: Assignment ﬁ
Assignment
Assign values to specified elements of a multidimensional output signal.
The index to each element is identified from an input port or this dialog.
You can choose the indexing method for each dimension by using the
"Index Option" parameter.
FParameters
Number of output dimensions: 1
Index mode: [Dne—bas&d -
Index Option Index Output Size
1 l[ndexvectnr (dialog) |1 Inherit from ...
9 [0K] [Cancel] [Help Apply

Number of output dimensions
Enter the number of dimensions of the output signal.

Index mode

1-62

Assignment

Select the indexing mode: One-based or Zero-based. If One-based is selected, an
index of 1 specifies the first element of the input vector, 2, the second element, and
so on. If Zero-based is selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be indexed. From the list,
select:

+ Assign all

This is the default. All elements are assigned.
+ Index vector (dialog)

Enables the Index column. Enter the indices of elements.
+ Index vector (port)

Disables the Index column. The index port defines the indices of elements.

+ Starting index (dialog)
Enables the Index column. Enter the starting index of the range of elements to be
assigned values.

+ Starting index (port)

Disables the Index column. The index port defines the starting index of the range
of elements to be assigned values.

If you choose Index vector (port) or Starting index (port) for any
dimension in the table, you can specify the value for the Initialize output (Y)
parameter to be one of the following:

+ Initialize using input port <YO>

+ Specify size for each dimension in table

Otherwise, YO always initializes output port Y.

The Index and Output Size columns are displayed as relevant.
Index

If the Index Option is Index vector (dialog), enter the index of each element
you are interested in.

1-63

1 Blocks — Alphabetical List

If the Index Option is Starting index (dialog), enter the starting index of the
range of elements to be selected. The number of elements from the starting point is
determined by the size of this dimension at U.

Output Size

Enter the width of the block output signal. If you select Specify size for each
dimension in table for the Initialize output (Y) parameter, this column is
enabled.

Initialize output (Y)

Specify how to initialize the output signal. The Initialize output parameter appears
when you set Index Option to Index vector (port) or Starting index

(port).

+ Initialize using input port <YO>

The signal at the input port YO initializes the output.
* Specify size for each dimension in table

The block requires you to specify the width of the block's output signal in the
Output Size parameter. If the output has unassigned elements, the value of
those elements is undefined.

Action if any output element is not assigned

Specify whether to produce a warning or error if you have not assigned all output
elements. Options include:

* Error
+ Warning
* None

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1-64

Assignment

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

Direct Feedthrough Yes

Multidimensional Signals Yes

Variable-Size Signals Yes

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

1-65

1 Blocks — Alphabetical List

1-66

Backlash

Model behavior of system with play

Library

Discontinuities

Description

The Backlash block implements a system in which a change in input causes an equal
change in output. However, when the input changes direction, an initial change in input
has no effect on the output. The amount of side-to-side play in the system is referred to as
the deadband. The deadband is centered about the output. This figure shows the block's
initial state, with the default deadband width of 1 and initial output of 0.

008 0 08 10 ot

\ S 4

‘¢ deadband -»

A system with play can be in one of three modes:

* Disengaged — In this mode, the input does not drive the output and the output
remains constant.

+ Engaged in a positive direction — In this mode, the input is increasing (has a positive
slope) and the output is equal to the input minus half the deadband width.

* Engaged in a negative direction — In this mode, the input is decreasing (has a
negative slope) and the output is equal to the input plus half the deadband width.

If the initial input is outside the deadband, the Initial output parameter value
determines whether the block is engaged in a positive or negative direction, and the
output at the start of the simulation is the input plus or minus half the deadband width.

Backlash

For example, the Backlash block can be used to model the meshing of two gears. The
input and output are both shafts with a gear on one end, and the output shaft is driven
by the input shaft. Extra space between the gear teeth introduces play. The width of this
spacing is the Deadband width parameter. If the system is disengaged initially, the
output (the position of the driven gear) is defined by the Initial output parameter.

The following figures illustrate the block's operation when the initial input is within the
deadband. The first figure shows the relationship between the input and the output while

the system is in disengaged mode (and the default parameter values are not changed).
-10 05 0 05 10

i Input within deadband

The next figure shows the state of the block when the input has reached the end of the
deadband and engaged the output. The output remains at its previous value.
-10 05 0 05 10

i Input reaches end of deadband (engaged)

The final figure shows how a change in input affects the output while they are engaged.
-10 05 0 05 10

i Input moves in positive direction.

Output = Input - [deadband width/2)

If the input reverses its direction, it disengages from the output. The output remains
constant until the input either reaches the opposite end of the deadband or reverses its
direction again and engages at the same end of the deadband. Now, as before, movement
in the input causes equal movement in the output.

For example, if the deadband width is 2 and the initial output is 5, the output, y, at the
start of the simulation is as follows:

+ 51if the input, u, is between 4 and 6
c u+lifu<4

c u—-1ifu>6

1-67

1 Blocks — Alphabetical List

Data Type Support

The Backlash block accepts and outputs real values of single, double, and built-in
integer data types.

Parameters and Dialog Box

“i Function Block Parameters: Backlash Iﬁ
Backlash
Model backlash where the deadband width specifies the amount of play in
the system.
FParameters

Deadband width:
1

Initial output:

0

Input processing: [Elements as channels (sample based) -

Enable zero-crossing detection

_} [Ok H Cancel H Help Apply

Deadband width
Specify the width of the deadband. The default is 1.
Initial output

Specify the initial output value. The default value is 0. This parameter is tunable.
Simulink does not allow the initial output of this block to be inF or NaN.

Input processing

Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

1-68

Backlash

*+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox™ license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

* Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v

Input Processing Mode

Block Works?

Sample based

Frame based

Sample based

Yes

No, produces an error

Sample based

Frame based

Yes

Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

1-69

1 Blocks — Alphabetical List

1-70

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

The following model shows the effect of a sine wave passing through a Backlash block.

L
T

|'n'; Badklash Mux > simout

To Workspace

Sine Wave

The Backlash block uses default parameter values: the deadband width is 1 and the
initial output is 0. The following plot shows that the Backlash block output is zero
until the input reaches the end of the deadband (at 0.5). Now the input and output are
engaged and the output moves as the input does until the input changes direction (at
1.0). When the input reaches 0, it again engages the output at the opposite end of the
deadband.

Backlash

' ' ' ' ' ' A Input engages in positive
nal Input] direction. Change in input
causes equal change in
0Er 1 output.
04F 17 B Input disengages. Change
0l | in input does not affect
output.
or—
sl Output | C Input engages in negative
' direction. Change in input
0.4l i causes equal change in
output.
0&f .
D .
el 1 D Input disengages. Change
in input does not affect
' 2 3 3 5 : E 5 10 output.
Characteristics
Data Types Double | Single | Base Integer
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1-71

1 Blocks — Alphabetical List

Unresolved Link

Indicate unresolved reference to library block

Unresclved
Link

This block indicates an unresolved reference to a library block (see “Create a Linked
Block”). You can use this block's parameter dialog box to fix the reference to point to the
actual location of the library block.

1-72

Unresolved Link

Parameters and Dialog Box

“& Source Block Parameters: Reference Block Mame @
Reference
Unresolved library link, Specify valid library block path as the source
bilock,
Details

Failed o find 'prod' in library 'mlibhested3’ referenced by
'mlibhested4 fop/Reference Black Marme'

Parameters
Source block:
mlibrnested3,/prod
Source type:

SubSystem

]9 H Cancel || Help Apply

Details

1-73

1 Blocks — Alphabetical List

Description of the cause of the unresolved link. You can customize this description to
include URLs as follows:

set_param(libraryl, "libraryinfo®, "https://www.mathworks.com®);
Here, libraryl is the name of the library for which you want to change the

description, and Iibraryinfo is the property that provides the description of the
unresolved link.

Source block

Path of the library block that this link represents. To fix a bad link, edit this field to
reflect the actual path of the library block. Then select Apply or OK to apply the fix
and close the dialog box.

Source type

Type of library block that this link represents.

Introduced in R2014a

1-74

Band-Limited White Noise

Band-Limited White Noise

Introduce white noise into continuous system

Library

Sources

A

Description

Simulation of White Noise

The Band-Limited White Noise block generates normally distributed random numbers
that are suitable for use in continuous or hybrid systems.

Theoretically, continuous white noise has a correlation time of 0, a flat power spectral
density (PSD), and a total energy of infinity. In practice, physical systems are never
disturbed by white noise, although white noise is a useful theoretical approximation
when the noise disturbance has a correlation time that is very small relative to the
natural bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by using a random
sequence with a correlation time much smaller than the shortest time constant of the
system. The Band-Limited White Noise block produces such a sequence. The correlation
time of the noise is the sample rate of the block. For accurate simulations, use a
correlation time much smaller than the fastest dynamics of the system. You can get good
results by specifying

tomil 2
100 £

1-75

1 Blocks — Alphabetical List

1-76

where f,,.. is the bandwidth of the system in rad/sec.

Comparison with the Random Number Block

The primary difference between this block and the Random Number block is that the
Band-Limited White Noise block produces output at a specific sample rate. This rate is
related to the correlation time of the noise.

Usage with the Averaging Power Spectral Density Block

The Band-Limited White Noise block specifies a two-sided spectrum, where the units are
Hz. The Averaging Power Spectral Density block specifies a one-sided spectrum, where
the units are the square of the magnitude per unit radial frequency: Mag”2/(rad/sec).
When you feed the output of a Band-Limited White Noise block into an Averaging Power
Spectral Density block, the average PSD value is i times smaller than the Noise power
of the Band-Limited White Noise block. This difference is the result of converting the
units of one block to the units of the other: 1/(1/2)(2m) = 1/11, where:

+ 1/2 is the factor for converting from a two-sided to one-sided spectrum

+ 2m is the factor for converting from Hz to rad/sec

Algorithm

To produce the correct intensity of this noise, the covariance of the noise is scaled to
reflect the implicit conversion from a continuous PSD to a discrete noise covariance. The
appropriate scale factor is 1/tc, where tc is the correlation time of the noise. This scaling
ensures that the response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because of this scaling,
the covariance of the signal from the Band-Limited White Noise block is not the same

as the Noise power (intensity) parameter. This parameter is actually the height of the
PSD of the white noise. This block approximates the covariance of white noise as the
Noise power divided by tc.

Data Type Support

The Band-Limited White Noise block outputs real values of type double.

Band-Limited White Noise

Parameters and Dialog Box

e

-

E Source Block Parameters: Band-Limited White MNoise @
Band-Limited White Noise. (mask)

The Band-Lirmited White Moise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

Parameters

Moise powver:

[0.1]

Sample time:

0.1

Seed:
[23341]

¥| Interpret vector parameters as 1-0

Ok]| Cancel || Help dpphy

Noise power
Specify the height of the PSD of the white noise. The default value is 0.1.
Sample time

Specify the correlation time of the noise. The default value is 0.1. For more
information, see “ Specify Sample Time” in the Simulink documentation.

Seed

Specify the starting seed for the random number generator. The default value is
23341.

Interpret vector parameters as 1-D

1-77

1 Blocks — Alphabetical List

Select to output a 1-D array when the block parameters are vectors. Otherwise,
output a 2-D array one of whose dimensions is 1. See “Determining the Output
Dimensions of Source Blocks” in the Simulink documentation.

Examples

The following Simulink examples show how to use the Band-Limited White Noise block:

+ slexAircraftExample
+ sldemo_radar_eml

Characteristics

Data Types Double

Sample Time Specified in the Sample time parameter
Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

See Also

Random Number

Introduced before R2006a

1-78

Bias

Bias

Add bias to input

Library

Math Operations

Description

The Bias block adds a bias, or offset, to the input signal according to

Y=U + bias,

where U is the block input and Y is the output.

Data Type Support

u+0.0

The Bias block accepts and outputs real or complex values of the following data types:

* Floating point
* Built-in integer

+ Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink

documentation.

1-79

1 Blocks — Alphabetical List

Parameters and Dialog Box

E Furction Block Pararmeters: Bias
Bias

Add bias to input,
Y = U + Bias.

Parameters

Bias:

0.0

Saturate on integer overflow

oK]| Cancel || Help

Bias

Specify the value of the offset to add to the input signal.

Saturate on integer overflow

Apply

Action Reasons for Taking This What Happens for Example

Action Overflows
Select this Your model has possible Overflows saturate to The maximum value
check box. overflow, and you want either the minimum or that the Int8 (signed,

explicit saturation
protection in the
generated code.

maximum value that the
data type can represent.

8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

1-80

Bias

Action

Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a

block handles out-of-

range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as Int8, is -126.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals Yes

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

1-81

1 Blocks — Alphabetical List

Bit Clear

Set specified bit of stored integer to zero

Library

Logic and Bit Operations

Clear
bitQ

Description

The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero.
Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where bit zero
1s the least significant bit.

Data Type Support

The Bit Clear block supports Simulink integer, fixed-point, and Boolean data types. The
block does not support true floating-point data types or enumerated data types.

1-82

Bit Clear

Parameters and Dialog Box

E Function Block Pararneters: Bit Clear @

Bit Clear (mask)

Clear ith bit of the stored integer to 0. Scaling is ignored.

Parameters

Index of bit (0 is least significant):

0

oK

H Cancel || Help Apply

Index of bit

Index of bit where bit 0 is the least significant bit.

Examples

If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of constants 2.2[0 1
2 3 4] is represented in binary as [00001 00010 00100 01000 10000]. With bit 2 set to O,
the result is [00001 00010 00000 01000 10000], which is represented in decimal as [1 2

0 8 16].

Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals No

Code Generation Yes

1-83

1 Blocks — Alphabetical List

See Also

Bit Set

Introduced before R2006a

1-84

Bit Concat

Bit Concat

Concatenates up to 128 input words into single output

Library

HDL Coder / HDL Operations

Concat h

Bit Concat

Description

The Bit Concat block concatenates up to 128 input words into a single output. The input
port labeled L designates the lowest-order input word. The port labeled H designates the
highest-order input word. The right-to-left ordering of words in the output follows the
low-to-high ordering of input signals.

How the block operates depends on the number and dimensions of the inputs, as follows:

+ Single input: The input is a scalar or a vector. When the input is a vector, the coder
concatenates the individual vector elements.

* Two inputs: Inputs are any combination of scalar and vector. When one input is scalar
and the other is a vector, the coder performs scalar expansion. Each vector element is
concatenated with the scalar, and the output has the same dimension as the vector.
When both inputs are vectors, they must have the same size.

* Three or more inputs (up to a maximum of 128 inputs): Inputs are uniformly scalar or
vector. All vector inputs must have the same size.

1-85

1 Blocks — Alphabetical List

Dialog Box and Parameters

P "

"4 Function Block Parameters: Bit Concat @
Bit Concat (mask) (link)

Concatenate the input words. For scalar inputs, two or more input
signals should be connected to the block. For vector inputs, at least
one input should be connected to the block. The left-right ordering of
words in the output follows the ordering of input signals. The L input
is the lowest-order word and the H input is the highest order word.

Parameters

Humber of Inputs

2

oK]| Cancel || Help Apply

Number of Inputs: Enter an integer specifying the number of input signals. The
number of block input ports updates when you change Number of Inputs.

* Default: 2
* Minimum: 1

* Maximum: 128

Caution Make sure that the Number of Inputs is equal to the number of signals
you connect to the block. If the block has unconnected inputs, an error occurs at code
generation time.

1-86

Bit Concat

Ports

The block has up to 128 input ports, with H representing the highest-order input word,
and L representing the lowest-order input word. The maximum concatenated output
word size is 128 bits.

Supported Data Types

* Input: Fixed-point, integer (signed or unsigned), Boolean

* Output: Unsigned fixed-point or integer

See Also
Bit Shift | Bit Reduce | Bit Rotate | Bit Slice

Introduced in R2014a

1-87

1 Blocks — Alphabetical List

Bit Reduce

AND, OR, or XOR bit reduction on all input signal bits to single bit

Library

HDL Coder / HDL Operations

Bit Reduce
(AND)

W

Bit Reduce
Description

The Bit Reduce block performs a selected bit-reduction operation (AND, OR, or XOR) on
all the bits of the input signal, for a single-bit result.

1-88

Bit Reduce

Dialog Box and Parameters

i =

Function Elock Parameters: Bit Reduce @

Bit Reduce (mask) (link)

Perform a bitwise AND, OR, or XOR reduction of the input signal, as

specified by the Reduction Mode parameter.

Farameters

Reduction Mode | AND -
oK] | Cancel | | Help Apply

Reduction Mode

Specifies the reduction operation:

* AND (default): Perform a bitwise AND reduction of the input signal.
* OR: Perform a bitwise OR reduction of the input signal.

+ XOR: Perform a bitwise XOR reduction of the input signal.

Ports

The block has the following ports:
Input

* Supported data types: Fixed-point, integer (signed or unsigned), Boolean
* Minimum bit width: 2
+ Maximum bit width: 128

1-89

1 Blocks — Alphabetical List

Output
Supported data type: uFixl

See Also
Bit Shift | Bit Concat | Bit Rotate | Bit Slice

Introduced in R2014a

1-90

Bit Rotate

Bit Rotate

Rotate input signal by bit positions

Library

HDL Coder / HDL Operations

Fotate Left
Length : 0

LY.
7

Bit Rotate
Description

The Bit Rotate block rotates the input signal left or right by the specified number of bit
positions.

1-91

1 Blocks — Alphabetical List

Dialog Box and Parameters

i "

Function Elock Parameters: Bit Rotate @
Bit Rotate (mask) (link)

Rotate the input signal left or right as specified by the Rotate Mode
parameter. The Rotate Length specifies the number of bits to be
rotated.

Parameters

Rotate Mode |Rntate Left -

Rotate Length (must be greater than or equal to zero)

0

Ok]| Cancel || Help Apply

Rotate Mode: Specifies direction of rotation, left or right. The default is Rotate Left.

Rotate Length: Specifies the number of bits to rotate. Specify a value greater than or
equal to zero. The default is 0.

Ports
The block has the following ports:
Input

* Supported data types: Fixed-point, integer (signed or unsigned), Boolean
* Minimum bit width: 2
* Maximum bit width: 128

Output
Has the same data type as the input signal.

1-92

Bit Rotate

See Also
Bit Shift | Bit Concat | Bit Reduce | Bit Slice

Introduced in R2014a

1-93

1 Blocks — Alphabetical List

Bit Set

Set specified bit of stored integer to one

Library

Logic and Bit Operations

Set
bitD

Description
The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where bit zero is
the least significant bit.

Data Type Support

The Bit Set block supports Simulink integer, fixed-point, and Boolean data types. The
block does not support true floating-point data types or enumerated data types.

1-94

Bit Set

Parameters and Dialog Box

E Function Block Parameters: Bit Set

Bit Set (mask)

Set ith bit of the stored integer to 1. Scaling is ignored.

Parameters

Index of bit (0 is least significant):

0

oK

H Cancel || Help Apply

Index of bit

Index of bit where bit 0 is the least significant bit.

Examples

If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of constants 2.A[0 1
2 3 4] is represented in binary as [00001 00010 00100 01000 10000]. With bit 2 set to 1,
the result is [00101 00110 00100 01100 10100], which is represented in decimal as [5 6

4 12 20].

Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals No

Code Generation Yes

1-95

1 Blocks — Alphabetical List

See Also

Bit Clear

Introduced before R2006a

1-96

Bit Shift

Bit Shift

Logical or arithmetic shift of input signal

Library

HDL Coder / HDL Operations

Shift Left
Logical 3
Length : 0

b Y.

Bit Snif
Description

The Bit Shift block performs a logical or arithmetic shift on the input signal.

1-97

1 Blocks — Alphabetical List

1-98

Dialog Box and Parameters

Function Block Parameters: Bit Shift @
Bit Shift (mask) (link)

Perform a logical or arithmetic shift on the input signal, as specified
by the Shift Mode parameter. The Shift Length specifies the number
of bits shifted.

Parameters

Shift Mode | Shift Left Logical -

Shift Length (must be greater than or equal to zero)
]

OK]| Cancel || Help Apply

Shift Mode
Default: Shift Left Logical

Specifies the type and direction of shift:

Shift Left Logical (default)
Shift Right Logical
Shift Right Arithmetic

Shift Length

Specifies the number of bits to be shifted. Specify a value greater than or equal to zero.
The default is 0.

Ports

The block has the following ports:

Bit Shift

Input

* Supported data types: Fixed-point, integer (signed or unsigned), Boolean
* Minimum bit width: 2
* Maximum bit width: 128

Output
Has the same data type and bit width as the input signal.

See Also
Bit Rotate | Bit Concat | Bit Reduce | Bit Slice

Introduced in R2014a

1-99

1 Blocks — Alphabetical List

Bit Slice

Return field of consecutive bits from input signal

Library

HDL Coder / HDL Operations

Slice
) (7 downto 0) 4

Bit Slice

Description

The Bit Slice block returns a field of consecutive bits from the input signal. Specify
the lower and upper boundaries of the bit field by using zero-based indices in the LSB
Position and MSB Position parameters.

1-100

Bit Slice

Dialog Box and Parameters

i =

"L Function Block Parameters: Bit Slice @
Bit Slice (mask) (link)

Return a consecutive field of bits from the input signal. The field is
indexed (0-based relative to LSB) by the LSB Position and MSB
Position.

Parameters

MSB Position
7

L5B Position
0

oK]| Cancel || Help Apply

MSB Position

Specifies the bit position (zero-based) of the most significant bit (MSB) of the field to
extract. The default is 7.

For an input word size WS, LSB Position and MSB Position must satisfy the following
constraints:

WS > MSB Position >= LSB Position >= 0;

The word length of the output is computed as (MSB Position - LSB Position) +
1.

LSB Position

1-101

1 Blocks — Alphabetical List

Specifies the bit position (zero-based) of the least significant bit (LSB) of the field to
extract. The default is 0.

Ports

The block has the following ports:
Input

* Supported data types: Fixed-point, integer (signed or unsigned), Boolean
* Maximum bit width: 128

Output

Supported data types: unsigned fixed-point or unsigned integer.

See Also
Bit Rotate | Bit Concat | Bit Reduce | Bit Shift

Introduced in R2014a

1-102

Bitwise Operator

Bitwise Operator

Specified bitwise operation on inputs

Library

Logic and Bit Operations

Bitwise
AMD B
[uPe]

Description

Bitwise Operations

The Bitwise Operator block performs the bitwise operation that you specify on one
or more operands. Unlike logic operations of the Logical Operator block, bitwise
operations treat the operands as a vector of bits rather than a single value.

You can select one of the following bitwise operations:

Bitwise Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is TRUE
NAND TRUE if at least one of the corresponding bits is FALSE
NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are TRUE
NOT TRUE if the input is FALSE (available only for single input)

Restrictions on Block Operations

The Bitwise Operator block does not support shift operations. For shift operations, use
the Shift Arithmetic block.

1-103

1 Blocks — Alphabetical List

When configured as a multi-input XOR gate, this block performs modulo-2 addition
according to the IEEE"™ Standard for Logic Elements.

Behavior of Inputs and Outputs

The output data type, which the block inherits from the driving block, must represent
zero exactly. Data types that satisfy this condition include signed and unsigned integer
data types.

The size of the block output depends on the number of inputs, the vector size, and the
operator you select:

* The NOT operator accepts only one input, which can be a scalar or a vector. If the
input is a vector, the output is a vector of the same size containing the bitwise logical
complements of the input vector elements.

* For a single vector input, the block applies the operation (except the NOT operator) to
all elements of the vector.
+ If you do not specify a bit mask, the output is a scalar.
+ If you do specify a bit mask, the output is a vector.

* For two or more inputs, the block performs the operation between all of the inputs.
If the inputs are vectors, the block performs the operation between corresponding
elements of the vectors to produce a vector output.

Bit Mask Behavior

Block behavior changes depending on whether you use a bit mask.

If the Use bit mask The block accepts... | And you specify... By using...
check box is...

Selected One input Bit Mask Any valid MATLAB
expression, such

as 2"\5+272+27°0
for the bit mask

00100101
Not selected Multiple inputs, all |Number of input |Any positive integer
having the same ports greater than 1

base data type

1-104

Bitwise Operator

Tip You can also use strings to specify a hexadecimal bit mask such as
{"FE73","12AC"}.

Bit Set and Bit Clear Operations

You can use the bit mask to set or clear a bit on the input.

To perform a... Set the Operator parameter | And create a bit mask with...

fo...

Bit set OR A 1 for each corresponding
input bit that you want to set
tol

Bit clear AND A 0 for each corresponding
input bit that you want to set
to 0

Suppose you want to set the fourth bit of an 8-bit input vector. The bit mask
would be 00010000, which you can specify as 2”4 for the Bit Mask parameter.
To clear the bit, the bit mask would be 11101111, which you can specify as
2NT+2MN6+21N5+273+2/2+271+210 for the Bit Mask parameter.

Data Type Support

The Bitwise Operator block supports the following data types:

* Built-in integer
+ Fixed point

* Boolean

The block does not support floating-point data types or enumerated data types. For more
information, see “ Data Types Supported by Simulink” in the Simulink documentation.

1-105

1 Blocks — Alphabetical List

Parameters and Dialog Box

E Function Block Pararmeters: Bitwise Operatar @
Bitwise Cperator (mask)

Perform the specified bitwise operation on the inputs. The output
data type should represent zero exactly.

Farameters

Operator: IH.ND w7

Use bit mask ...
Number of input ports:
1

Bit Mask
bin2dec('11011001")

Treat mask as: IStored Integer -

OK H Cancel H Help Apply

Operator
Specify the bitwise logical operator for the block operands.
Use bit mask

Select to use the bit mask. Clearing this check box enables Number of input ports
and disables Bit Mask and Treat mask as.

Number of input ports

Specify the number of inputs. The default value is 1.

1-106

Bitwise Operator

Bit Mask
Specify the bit mask to associate with a single input. This parameter is available only

when you select Use bit mask.

Tip Do not use a mask greater than 53 bits. Otherwise, an error message appears

during simulation.

Treat mask as
Specify whether to treat the mask as a real-world value or a stored integer. This
parameter is available only when you select Use bit mask.

The encoding scheme is V = SQ + B, as described in “Scaling” in the Fixed-Point
Designer documentation. Real World Value treats the mask as V. Stored

Integer treats the mask as Q.

Examples

Unsigned Inputs for the Bitwise Operator Block

The following model shows how the Bitwise Operator block works for unsigned

inputs.

105
01101001
Constant
| Bitwise
188 »| AND > d”;ff"E w4
10111100 > e
Constant Bitwise Data Type Comversion Display
Oper ghor
a5
00101101
Constant2

1-107

1 Blocks — Alphabetical List

Each Constant block outputs an 8-bit unsigned integer (uint8). To determine the binary
value of each Constant block output, use the dec2bin function. The results for all logic
operations appear in the next table.

Operation Binary Value Decimal Value
AND 00101000 40

OR 11111101 253

NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

Signed Inputs for the Bitwise Operator Block

The following model shows how the Bitwise Operator block works for signed inputs.

Bitwise

Ty

105
01101001
Constant
120
01111000
Constant1
-4F
11010011
Constant2

double
A |-
AND I SN
Bitwise Data Type Comversion
Opeer gtor

Y

Display

Each Constant block outputs an 8-bit signed integer (int8). To determine the binary
value of each Constant block output, use the dec2bin function. The results for all logic
operations appear in the next table.

Operation

Binary Value

Decimal Value

AND

01000000

64

1-108

Bitwise Operator

Operation Binary Value Decimal Value
OR 11111011 -5

NAND 10111111 —65

NOR 00000100 4

XOR 11000010 —62

NOT N/A N/A
Characteristics

Data Types Boolean | Base Integer | Fixed-Point
Sample Time Inherited from driving block

Direct Feedthrough Yes

Multidimensional Signals Yes

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

See Also

Logical Operator

Introduced before R2006a

1-109

1 Blocks — Alphabetical List

1-110

Block Support Table

View data type support for Simulink blocks

Library
Model-Wide Utilities
Block Support
Table
Description

The Block Support Table block helps you access a table that lists the data types that
Simulink blocks support. Double-click the block to view the table.

Data Type Support

Not applicable

Parameters and Dialog Box

Not applicable

Characteristics

Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No

Code Generation Yes

Block Support Table

Alternatives

To access the information in the Block Support Table, you can enter
showblockdatatypetable at the MATLAB command prompt.

Introduced in R2007b

1-111

1 Blocks — Alphabetical List

1-112

Bus Assignment

Replace specified bus elements

Library

Signal Routing

Buzp
= =ignal

Description

The Bus Assignment block assigns signals (including buses and arrays of buses)
connected to its Assignment input ports (- =) to specified elements of the bus connected
to its Bus input port, replacing the signals previously assigned to those elements. The
change does not affect the signals themselves, it affects only the composition of the bus.
Signals not replaced are unaffected by the replacement of other signals. You cannot use
the Bus Assignment block to replace a bus that is nested within an array of buses.

For information about buses, see:

* “Composite Signals”

* “Create Bus Signals”

Connect the bus to be changed to the first input port. Use the block parameters dialog
box to specify the bus elements to be replaced. The block displays an assignment input
port for each such element. The signal connected to the assignment port must have the
same structure, data type, and numeric type as the bus element to which it corresponds.

All signals in a nonvirtual bus must have the same sample time, even if the elements

of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error. All
buses and signals input to a Bus Assignment block that modifies a nonvirtual bus must
therefore have the same sample time. You can use a Rate Transition block to change

Bus Assignment

the sample time of an individual signal, or of all signals in a bus, to allow the signal
or bus to be included in a nonvirtual bus. See “Virtual and Nonvirtual Buses” for more
information.

By default, Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block. To prevent Simulink
from performing that conversion, in the Model Configuration Parameters >
Diagnostics > Connectivity pane, set the “Non-bus signals treated as bus signals”
diagnostic to warning or error.

By default, Simulink repairs broken selections in the Bus Assignment and Bus Selector
block parameters dialog boxes that are due to upstream bus hierarchy changes. Simulink
generates a warning to highlight that it made changes. To prevent Simulink from
making these repairs automatically, in the Model Configuration Parameters >
Diagnostics > Connectivity pane, set the “Repair bus selections” diagnostic to Error
without repair.

For information about using this block in a library block, see “Buses and Libraries”.

The following limitations apply to working with arrays of buses, when using the Bus
Assignment block. For details about defining and using an array of buses, see “Combine
Buses into an Array of Buses”.

* You can assign or replace a sub-bus that is an array of buses. However, the nested bus
cannot be nested inside of an array of buses.

+ To replace a signal in an array of buses, use a Selector block to select the index for
the bus element that you want to use with the Bus Assignment block. Then use that
selected bus element with the Bus Assignment block.

Data Type Support

The bus input port of the Bus Assignment block accepts and outputs real or complex
values of any data type that Simulink supports, including fixed-point and enumerated
data types. The assignment input ports accept the same data types as the bus elements
to which they correspond.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-113

1 Blocks — Alphabetical List

Parameters and Dialog Box

The Bus Assignment dialog box appears as follows:

E Function Block Pararneters: Bus Assignment @
BusAssignment

This block accepts a bus as input and allows signals in the bus to be assigned with new signal values.
The left listbox shows the signals in the input bus. Use the Select button to select the signals that are
to be assigned. The right listbox showrs the selections. Use the Up, Down, or Remove button to reorder

the selections.

Parameters

@J Find Signals that are being assigned Up

777 signall
g Dhowen

m

Signals in the bus Select>>

Refresh Remove

0K H Cancel || Help Apply

Signals in the bus

Displays the names of the signals contained by the bus at the block's Bus input
port. Click any item in the list to select it. To find the source of the selected signal,
click the adjacent Find button. Simulink opens the subsystem containing the
signal source and highlights the source's icon. Use the Select>> button to move the
currently selected signal into the adjacent list of signals to be assigned values (see
Signals that are being assigned below). To refresh the display (e.g., to reflect
modifications to the bus connected to the block), click the adjacent Refresh button.

Signals that are being assigned

1-114

Bus Assignment

Lists the names of bus elements to be assigned values. This block displays

an assignment input port for each bus element in this list. The label of the
corresponding input port contains the name of the element. You can order the signals
by using the Up, Down, and Remove buttons. Port connectivity is maintained when
the signal order is changed.

Three question marks (???) before the name of a bus element indicate that the input
bus no longer contains an element of that name, for example, because the bus has
changed since the last time you refreshed the Bus Assignment block's input and bus
element assignment lists. You can fix the problem either by modifying the bus to
include a signal of the specified name or by removing the name from the list of bus
elements to be assigned values.

Enable regular expression
To display this parameter, select the Options button on the right-hand side of the
Filter by name edit box (&2)).

Enables the use of MATLAB regular expressions for filtering signal names. For
example, entering t$ in the Filter by name edit box displays all signals whose
names end with a lowercase t (and their immediate parents). For details, see
“Regular Expressions”.

The default is On. If you disable use of MATLAB regular expressions for filtering
signal names, filtering treats the text you enter in the Filter by name edit box as a
literal string.

Show filtered results as a flat list
To display this parameter, select the Options button on the right-hand side of the

Filter by name edit box (@I).
Uses a flat list format to display the list of filtered signals, based on the search text
in the Filter by name edit box. The flat list format uses dot notation to reflect the

hierarchy of bus signals. The following is an example of a flat list format for a filtered
set of nested bus signals.

1-115

1 Blocks — Alphabetical List

I rnakar ® @I

Filtering pkions

¥ Enable regular expression

¥ show filkered results as a Flat lisk

Signals in the bus (FILTERED WIEW as a flat lisk)

BusZ.maokarl
BusZ.makars
Busz.Bus3.mokar3
Busz.Bus3.mokar4
makars

The default 1s OFF, which displays the filtered list using a tree format.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

See Also

* “Composite Signals”
+ “Create Bus Signals”
* Bus Creator

* Bus Selector

* Bus to Vector

1-116

Bus Assignment

* Simulink.Bus

+ Simulink.Bus.cellToObject
+ Simulink.Bus.createObject
+ Simulink.BusElement

+ Simulink.Bus.objectToCell
* Simulink.Bus.save

Introduced before R2006a

1-117

1 Blocks — Alphabetical List

1-118

Bus Creator

Create signal bus

Library

Signal Routing

i

The Bus Creator block combines a set of signals into a bus. To bundle a group of signals

with a Bus Creator block, set the block parameter Number of inputs to the number of

signals in the group. The block displays the number of ports that you specify. Connect to
the resulting input ports those signals that you want to group.

Description

The signals in the bus are ordered from the top input port to the bottom input port.
See “How to Rotate a Block” in for a description of the port order for various block
orientations.

You can connect any type of signal to the inputs, including other bus signals. To ungroup
bus signals, connect the output port of the block to a Bus Selector block port.

Note: Simulink hides the name of a Bus Creator block when you copy it from the
Simulink library to a model.

For information about using this block in a library block, see “Buses and Libraries”.

You can use an array of buses as an input signal to a Bus Creator block. For details about
defining and using an array of buses, see “Combine Buses into an Array of Buses”.

Bus Creator

Bus Signal Naming

The Bus Creator block assigns a name to each signal on the bus that it creates. You can
then refer to signals by name when you are searching for their sources (see “Browse Bus
Signals” on page 1-120) or selecting signals for connection to other blocks.

Specify one of the following signal naming options:

+ Each signal on the bus inherits the name of the signal connected to the bus (the
default).

Inputs to a Bus Creator block must have unique names. If there are duplicate names,
the Bus Creator block appends (signal#) to all input signal names, where # is the
input port index.

The Bus Creator block generates names for bus signals whose corresponding inputs
do not have names. The names are in the form signaln, where n is the number of the
port the input signal connects to.

* Each input signal must have a specific name.

+ If the bus output data type is a bus object, bus signal names use the corresponding
bus object element names.

You can change the name of any signal by editing the name on the block diagram or in
the Signal Properties dialog box. If you change the signal name using either approach
while the Bus Creator block dialog box is open, to see the updated name in the dialog box,
click the Refresh button next to the Signals in the bus list.

Bus Object as the Output Data Type

You can use a bus object as the bus output data type for a Bus Creator block. Using a bus
object can provide strong data typing with an explicit signal interface. Model referencing
requires using bus objects for bus signals that cross model reference boundaries. For
more information, see “Bus Objects”.

To create a nonvirtual bus using a Bus Creator block, use the following settings.

* For the Output data type parameter, use a bus object.

+ Select Output as nonvirtual bus.

To use a bus object to enforce strong data typing, clear the Override bus signal names
from inputs check box.

1-119

1 Blocks — Alphabetical List

1-120

Browse Bus Signals

The Signals in the bus list on a Bus Creator Block Parameters dialog box displays a list
of the signals entering the block. An arrow next to a signal indicates that the signal is
itself a bus. To display the contents of the bus, click the arrow. In this way, you can view
all signals entering the block, including those entering via buses.

To find the source of any signal entering the block, select the signal in the Signals
in the bus list and click the adjacent Find button. Simulink opens the subsystem
containing the signal source, if necessary, and highlights the source's icon.

Reorder, Add, or Remove Signals

To rearrange the signals that the Bus Creator block includes in the bus signal that it
produces, use buttons such as Add.

You can select multiple contiguous signals in the Signals in the bus list to reorder or
remove. You cannot rearrange leaf signals within a bus. For example, you can move bus
signal Bus1 up or down in the list, but you cannot reorder any of the bus elements of
Busl.

After making your edits, click Apply.

Data Type Support

The Bus Creator block accepts and outputs real or complex values of any data type
supported by Simulink, including fixed-point and enumerated data types, as well as bus
objects.

For a discussion on the data types supported by Simulink, refer to “ Data Types
Supported by Simulink”.

If you change elements or the order of elements in the Bus Creator and the incoming
bus is a nonvirtual bus, Simulink reports any inconsistency errors when you compile the
model.

Bus Creator

Parameters and Dialog Box

"L Function Block Pararmeters: Bus Creatorl @
BusCreator

This block creates a bus signal from its inputs.

Parameters

Number of inputs: 2|

Filter by name @ Find
Signals in the bus
ool
signal2
|_||J
Down
Add
Remaove

Output data type: Inherit: auto -

["] Require input signal names to match signals above

5}' [OK][Cancel ” Help] Apply

+ “Number of inputs” on page 1-123
+ “Signals in the bus” on page 1-124
+ “Enable regular expression” on page 1-125

+ “Show filtered results as a flat list” on page 1-126

1-121

1 Blocks — Alphabetical List

* “Output data type” on page 1-127

+ “Show data type assistant” on page 1-128

+ “Mode” on page 1-129

* “Output as nonvirtual bus” on page 1-130

* “Override bus signal names from inputs” on page 1-131

+ “Require input signal names to match signals above” on page 1-131
* “Rename selected signal” on page 1-132

* “Output as nonvirtual bus” on page 1-133

1-122

Bus Creator

Number of inputs

Specify the number of input ports on this block.

Settings

Default: 2

To bundle a group of signals, enter the number of signals in the group.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-123

1 Blocks — Alphabetical List

1-124

Signals in the bus
Show the input signals for the bus.
Settings

When you modify the Number of inputs parameter, click Refresh to update the list of
signals.

Tips

* An arrow next to a signal name indicates that the signal is itself a bus. Click the
arrow to display the subsidiary bus signals.

+ Click the Refresh button to update the list after editing the name of an input signal.

+ Click the Find button to highlight the source of the currently selected signal.

* To rearrange signals in the bus, see “Reorder, Add, or Remove Signals” on page 1-120.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Bus Creator

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings
Default: On
Y1 On
Allow use of MATLAB regular expressions for filtering signal names.

Off

Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box (@I)
enables this parameter.

1-125

1 Blocks — Alphabetical List

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy

of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.

I rnakar X @

Filkering Dptions

¥ Enable regular expression

¥ show filkered results as a Flat lisk

Signals in the bus (FILTERED YIEW as a flat lisk)

Busz.makorl
Busz.makors
Busz,Bus3.mokar3
Busz,Bus3,. mokar4
rmakars

Settings
Default: Off
On

Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

1 ofr

Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box (@)
enables this parameter.

1-126

Bus Creator

Output data type

Specify the output data type of the external input.

Settings

Default: Inherit: auto

Inherit: auto

A rule that inherits a data type

Bus: <object name>

Data type is a bus object.

Tips

Determine whether you want the Bus Creator block to output a virtual or nonvirtual
bus.

* For a virtual bus, use the Output data type parameter default (Inherit: auto)
or set the parameter to specify a bus object using Bus: <object name>.

+ For a nonvirtual bus, set the Output data type parameter to specify a bus object
using Bus: <object name> and click Qutput as nonvirtual bus.

If you specify a bus object as the output data type, to have bus signal names match
the corresponding bus object element names, clear the Override bus signal names
from inputs check box (which is selected by default).

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-127

1 Blocks — Alphabetical List

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1-128

Bus Creator

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to
the right.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.
If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.
Tip
At the beginning of a simulation or when you update the model diagram, Simulink
checks whether the signals connected to this Bus Creator block have the specified
structure. If not, Simulink displays an error message.
Dependency
Clicking the Show data type assistant button enables this parameter.
Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1-129

1 Blocks — Alphabetical List

Output as nonvirtual bus
Output a nonvirtual bus.
Settings

Default: Off

Y1 On

Output a nonvirtual bus.

Off

Output a virtual bus.
Tips

* Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

+ All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals entering the Bus Creator block must
have the same sample time. You can use a Rate Transition block to change the
sample time of an individual signal, or of all signals in a bus, to allow the signal or
bus to be included in a nonvirtual bus.

Dependencies
The following Data type values enable this parameter:

* Bus: <object name>
+ <data type expression> that specifies a bus object

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-130

Bus Creator

Override bus signal names from inputs

Override bus signal names from input signals or inherit names from the bus object
elements.

Settings
Default:On

Y1 On

Override bus element names from input signal names.

Off

Inherit bus signal names from the corresponding element names in the bus object.
Tip

To inherit signal names from bus element names, clear the Override bus signal names
from inputs check box. This approach:

+ Enforces strong data typing.

* Avoids your having to enter a signal name multiple times. Without this option, you
need to enter the signal names in the bus object and in the model, which can lead to
accidentally creating signal name mismatches.

* Supports the array of buses requirement to have consistent signal names across array
elements.

Dependencies
The Output data type parameter must be set to a bus object.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Require input signal names to match signals above

Require that input signals have the names listed in the Signals in the bus list.

1-131

1 Blocks — Alphabetical List

1-132

Settings
Default: Off

Y1 On

Check that the input signal names match the signal names in the Bus Creator block
parameters dialog boxs.

Off

Does not check that the input signal names match the signal names in the Bus
Creator block parameters dialog box.

Tips

* The Require input signal names to match signals above option might be
removed in a future release. To enforce strict data typing, consider using a bus object
for the output data type and clear Override bus signal names from inputs.

+ If you select Override bus signal names from inputs, the Require input signal
names to match signals above setting is ignored.

Rename selected signal

List the name of the signal currently selected in the Signals in the bus list when you
select Require input signal names to match signals above.

Settings
Default: =~

Edit this field to change the name of the currently selected signal. See “Signal Names
and Labels ” for guidelines for signal names.

Dependencies

Selecting Require input signal names to match signals above enables this
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Bus Creator

Output as nonvirtual bus
Output a nonvirtual bus.
Settings
Default: Off
/1 On

Output a nonvirtual bus.

Off

Output a virtual bus.
Tips

* Select this option if you want code generated from this model to use a C structure to
define the structure of the bus signal output by this block.

+ All signals in a nonvirtual bus must have the same sample time, even if the elements
of the associated bus object specify inherited sample times. Any bus operation that
would result in a nonvirtual bus that violates this requirement generates an error.
Therefore, if you select this option all signals entering the Bus Creator block must
have the same sample time. You can use a Rate Transition block to change the
sample time of an individual signal, or of all signals in a bus, to allow the signal or
bus to be included in a nonvirtual bus.

Dependencies
The following Data type values enable this parameter:

* Bus: <object name>
+ <data type expression> that specifies a bus object

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Examples

For an example of how the Bus Creator block works, see the sldemo_househeat model.

1-133

1 Blocks — Alphabetical List

1-134

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

See Also

* “Composite Signals”
+ “Create Bus Signals”
* Bus Assignment

* Bus Selector

* Bus to Vector

* Simulink.Bus

+ Simulink.Bus.cellToObject

+ Simulink.Bus.createObject

+ Simulink.BusElement

+ Simulink.Bus.objectToCell

+ Simulink.Bus.save

Introduced before R2006a

Bus Selector

Bus Selector

Select signals from incoming bus

Library

Signal Routing

i

The Bus Selector block outputs a specified subset of the elements of the bus at its input.
The block can output the specified elements as separate signals or as a new bus. For
information about buses, see:

Description

+ “Composite Signals”
+ “Create Bus Signals”
When the block outputs separate elements, it outputs each element from a separate port

from top to bottom of the block. See “How to Rotate a Block” for a description of the port
order for various block orientations.

Note Simulink software hides the name of a Bus Selector block when you copy it from the
Simulink library to a model.

By default, Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block. To prevent Simulink
from performing that conversion, in the Model Configuration Parameters >
Diagnostics > Connectivity pane, set the “Non-bus signals treated as bus signals”
diagnostic to warning or error.

For information about using this block in a library block, see “Buses and Libraries”.

1-135

1 Blocks — Alphabetical List

1-136

Reorder or Remove Signals

To reorder the selected signals that the Bus Selector block includes in the bus signal that
it produces, click Up or Down.

You can select multiple contiguous signals in the Signals in the bus list to remove or
reorder.

You cannot rearrange leaf signals within a bus. For example, you can move bus signal
Bus1l up or down in the list, but you cannot reorder any of the bus elements of Busl.

After you click a button, click Apply.

Array of Buses Support

The following limitations apply to working with arrays of buses, when using the Bus
Selector block. For details about defining and using an array of buses, see “Combine
Buses into an Array of Buses”.

* You cannot connect an array of buses signal to a Bus Selector block. To work with an
array of buses signal, first use a Selector block to select the index for the bus element
that you want to use with the Bus Selector block. Then use that selected bus element
with the Bus Selector block.

* You cannot assign into a sub-bus that is an array of buses.

Data Type Support

A Bus Selector block accepts and outputs real or complex values of any data type
supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see “ Data

Types Supported by Simulink” in the “Working with Data” chapter of the Simulink
documentation.

Parameters and Dialog Box

The Bus Selector dialog box appears as follows:

Bus Selector

E Function Block Parameters: Bus Selectar

BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block
that defines its output using a bus object. The left listbox shows the signals in the input bus. Use the

Select button to select the output signals. The right listbox shows the selections. Use the Up, Down, or
Remaowve button to reorder the selections. Check 'Output as bus' to output a single bus signal.

Parameters

2] Find Selected signals Up

IR gj
Signals in the bus Select>> e s!gnall Down
777 signal2

Refresh Remaove

[] output as bus

&}- [oK H Cancel H Help

Apply

1-137

1 Blocks — Alphabetical List

Signals in the bus
Shows the signals in the input bus.
Settings

To refresh the display to reflect modifications to the bus connected to the block, click
Refresh.

Tips

+ Use Select>> to select signals to output.

+ To find the source of any signal entering the block, select the signal in the list and
click Find. The Simulink software opens the subsystem containing the signal source,
and highlights the source's icon.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-138

Bus Selector

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings
Default: On
Y1 On
Allow use of MATLAB regular expressions for filtering signal names.

Off

Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box (@I)
enables this parameter.

1-139

1 Blocks — Alphabetical List

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy

of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.

I rnakar X @

Filkering Dptions

¥ Enable regular expression

¥ show filkered results as a Flat lisk

Signals in the bus (FILTERED YIEW as a flat lisk)

Busz.makorl
Busz.makors
Busz,Bus3.mokar3
Busz,Bus3,. mokar4
rmakars

Settings
Default: Off
On

Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

1 ofr

Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box (@)
enables this parameter.

1-140

Bus Selector

Selected signals

Shows the signals to be output.

Settings

Default: signall,signal?2

You can change the list by using the Up, Down, and Remove buttons.
Tips

* Port connectivity is maintained when the signal order is changed.

+ If an output signal listed in the Selected signals list box is not an input to the Bus
Selector block, the signal name is preceded by three question marks (??7?).

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-141

1 Blocks — Alphabetical List

1-142

Output as bus
Output the selected elements as a bus.
Settings

Default: Off

Y1 On

Output the selected elements as a bus.

Off

Output the selected elements as standalone signals, each from an output port that is
labeled with the corresponding element's name.

Tips

* The output bus is virtual. To produce nonvirtual bus output, insert a Signal
Conversion block after the Bus Selector block. Set the Signal Conversion block
Output parameter to Nonvirtual bus and Data type parameter to use
a Simulink.Bus bus object. For an example, see the Signal Conversion
documentation.

+ If the Selected signals list box includes only one signal and you enable Output as
bus, then:

+ If the selected signal is a non-bus signal, it is treated as a non-bus signal (it is not
wrapped in a bus).

If the selected signal is a bus signal, then the output is that bus signal.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Examples

For an example of how the Bus Selector block works, see the sldemo_fuelsys model.
The Bus Selector block appears in the following subsystems:

Bus Selector

+ Ffuel _rate _control/airflow_calc
+ fuel _rate_control

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

See Also

* “Composite Signals”

* “Create Bus Signals”

* Bus Assignment

* Bus Creator

* Bus to Vector

+ Signal Conversion

+ Simulink.Bus

* Simulink.Bus.cellToObject
+ Simulink.Bus.createObject
* Simulink.BusElement

+ Simulink.Bus.objectToCell
* Simulink.Bus.save

Introduced before R2006a

1-143

1 Blocks — Alphabetical List

1-144

Bus to Vector

Convert virtual bus to vector

Library

Signal Attributes

s B

Description

The Bus to Vector block converts a virtual bus signal to a vector signal. The input bus
signal must consist of scalar, 1-D, or either row or column vectors having the same data
type, signal type, and sampling mode. If the input bus contains row or column vectors,
this block outputs a row or column vector, respectively; otherwise, it outputs a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector conversion with an
equivalent explicit conversion. See “Correct Buses Used as Muxes”.

Note Simulink hides the name of a Bus to Vector block when you copy it from the
Simulink library to a model.

Data Type Support

The Bus to Vector block accepts virtual bus signals and nonbus signals. If the input is a
nonbus signal, this block has no effect.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Bus to Vector

Parameters and Dialog Box

E Function Block Pararmeters: Bus to Wector @

Bus to Vector

Convert a virtual bus signal to a vector signal. The input bus signal
must consist of scalar, 1-D, or either row or column vectors having
the same data type, signal type, and sampling mode. If the input bus
contains row or column vectors, this block outputs a row or column
vector, respectively; otherwise, it outputs a 1-D array.

OK]| Cancel || Help Apply

This block has no user-accessible parameters.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals No

Variable-Size Signals No

Code Generation Yes

See Also

* “Composite Signals”

* “Create Bus Signals”

* Avoiding Mux/Bus Mixtures
* Bus Assignment

* Bus Creator

1-145

1 Blocks — Alphabetical List

* Bus Selector

+ Simulink.BlockDiagram.addBusToVector
* Simulink.Bus

+ Simulink.Bus.cellToObject

+ Simulink.Bus.createObject

* Simulink.BusElement

+ Simulink.Bus.objectToCell

* Simulink.Bus.save

Introduced in R2007a

1-146

Check Discrete Gradient

Check Discrete Gradient

Check that absolute value of difference between successive samples of discrete signal is
less than upper bound

Library

Model Verification

Y

The Check Discrete Gradient block checks each signal element at its input to determine
whether the absolute value of the difference between successive samples of the element
is less than an upper bound. Use the block parameter dialog box to specify the value

of the upper bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and displays an error in
the Diagnostic Viewer.

Description

The Model Verification block enabling setting under Debugging on the Data
Validity diagnostics pane of the Configuration Parameters dialog box lets you enable
or disable all model verification blocks, including Check Discrete Gradient blocks, in a
model.

The Check Discrete Gradient block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

1-147

1 Blocks — Alphabetical List

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Discrete Gradient block accepts single, double, int8, intl6, and Int32
input signals of any dimensions. This block also supports fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-148

Check Discrete Gradient

Parameters and Dialog Box

E Sink Block Parameters: Check Discrete Gradient @
Checks_Gradient (mask)

Assert that the absolute value of the difference between successive
samples of a discrete signal is less than an upper bound.

Parameters

Maximum gradient:

1

+| Enable assertion

Simulation callback when assertion fails (optional):

| Stop simulation when assertion fails

Output assertion signal

Select icon type: |graphic -

[OK]| Cancel || Help Apply

Maximum gradient

Specify the upper bound on the gradient of the discrete input signal.
Enable assertion

Clearing this check box disables the Check Discrete Gradient block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of

the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Discrete Gradient blocks, regardless
of the setting of this option.

1-149

1 Blocks — Alphabetical List

1-150

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Discrete Gradient block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Discrete Gradient block to output a
Boolean signal that is true (1) at each time step if the assertion succeeds and

false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block

Direct Feedthrough No

Multidimensional Signals Yes

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

Check Dynamic Gap

Check Dynamic Gap

Check that gap of possibly varying width occurs in range of signal's amplitudes

Library

Model Verification

Description

The Check Dynamic Gap block checks that a gap of possibly varying width occurs in the
range of a signal's amplitudes. The test signal is the signal connected to the input labeled
sig. The inputs labeled min and max specify the lower and upper bounds of the dynamic
gap, respectively. If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Gap block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Dynamic Gap block accepts input signals of any dimensions and of any
numeric data type that Simulink supports. All three input signals must have the same

1-151

1 Blocks — Alphabetical List

1-152

dimension and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Parareters: Check Dynarmic Gap @
Checks_DGap (mask)

Assert that the input signal 'sig' is always less than the lower bound
'min' or greater than the upper bound 'max’. The first input is the
upper-bound of the gap; the second input, the lower-bound; the third
input, the test signal.

Parameters
| Enable assertion

Simulation callback when assertion fails (optional):

| Stop simulation when assertion fails

Output assertion signal

Select icon type: |graphic -

[OK]| Cancel || Help Apply

Enable assertion

Clearing this check box disables the Check Dynamic Gap block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model

Check Dynamic Gap

verification blocks in a model, including Check Dynamic Gap blocks, regardless of the
setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Gap block to halt the simulation
when the block's output is zero and display an error in the Diagnostic Viewer.
Otherwise, the block displays a warning message in the MATLAB Command Window
and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Gap block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

Direct Feedthrough No

Multidimensional Signals Yes

Variable-Size Signals No

Zero-Crossing Detection No

1-153

1 Blocks — Alphabetical List

Code Generation Yes

Introduced before R2006a

1-154

Check Dynamic Lower Bound

Check Dynamic Lower Bound

Check that one signal is always less than another signal

Library

Model Verification

Description

The Check Dynamic Lower Bound block checks that the amplitude of a reference signal
1s less than the amplitude of a test signal at the current time step. The test signal is the
signal connected to the input labeled sig. If the verification condition is true, the block
does nothing. If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Lower Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you can turn
error checking off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Dynamic Lower Bound block accepts input signals of any numeric data
type that Simulink supports. The test and the reference signals must have the same

1-155

1 Blocks — Alphabetical List

1-156

dimensions and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signal.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararmeters: Check Dynamic Lower Bound @
Checks_DMin (mask)

Assert that one signal is always less than another signal. The first
input is the lower-bound signal. The second input is the test signal.

Parameters
| Enable assertion

Simulation callback when assertion fails (optional):

| Stop simulation when assertion fails

Output assertion signal

Select icon type: |graphic -

[OK]| Cancel || Help Apply

Enable assertion

Clearing this check box disables the Check Dynamic Lower Bound block, that is,
causes the model to behave as if the block did not exist. The Model Verification
block enabling setting under Debugging on the Data Validity diagnostics

pane of the Configuration Parameters dialog box allows you to enable or disable all
model verification blocks, including Check Dynamic Lower Bound blocks, in a model
regardless of the setting of this option.

Check Dynamic Lower Bound

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the

expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Lower Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Lower Bound block to output

a Boolean signal that is true (1) at each time step if the assertion succeeds and

false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types

Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time

Inherited from driving block

Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

1-157

1 Blocks — Alphabetical List

Introduced before R2006a

1-158

Check Dynamic Range

Check Dynamic Range

Check that signal falls inside range of amplitudes that varies from time step to time step

Library

Model Verification

Description

The Check Dynamic Range block checks that a test signal falls inside a range of
amplitudes at each time step. The width of the range can vary from time step to time
step. The input labeled sig is the test signal. The inputs labeled min and max are the
lower and upper bounds of the valid range at the current time step. If the verification
condition is true, the block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

1-159

1 Blocks — Alphabetical List

Data Type Support

The Check Dynamic Range block accepts input signals of any dimensions and of any
numeric data type that Simulink supports. All three input signals must have the same
dimension and data type. If the inputs are nonscalar, the block checks each element of
the input test signal to the corresponding elements of the reference signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Zink Block Parareters: Check Dynamic Range @
Checks_DRange (mask)

Assert that one signal always lies between two other signals. The
first input is the upper-bound signal; the second input, the lower-
bound; the third input, the test signal.

Parameters
| Enable assertion

Simulation callback when assertion fails (optional):

| Stop simulation when assertion fails

Output assertion signal

Select icon type: |graphic -

[0K]| Cancel || Help Apply

Enable assertion

1-160

Check Dynamic Range

Clearing this check box disables the Check Dynamic Range block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of

the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Dynamic Range blocks, regardless of
the setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Range block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Range block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

Direct Feedthrough No

1-161

1 Blocks — Alphabetical List

1-162

Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Check Dynamic Upper Bound

Check Dynamic Upper Bound

Check that one signal is always greater than another signal

Library

Model Verification

Description

The Check Dynamic Upper Bound block checks that the amplitude of a reference signal
1s greater than the amplitude of a test signal at the current time step. The test signal
1s the signal connected to the input labeled sig. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default, and displays an
error message.

The Check Dynamic Upper Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you can turn
error-checking off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Dynamic Upper Bound block accepts input signals of any dimensions and of
any numeric data type that Simulink supports. The test and the reference signals must

1-163

1 Blocks — Alphabetical List

have the same dimensions and data type. If the inputs are nonscalar, the block compares

each element of the input test signal to the corresponding elements of the reference
signal.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararmeters: Check Dynamic Upper Bound @
Checks_DMax (mask)

Assert that one signal is always greater than another signal. The first
input is the upper-bound signal. The second input is the test signal.

Parameters
¥| Enable assertion

Simulation callback when assertion fails (optional):

| Stop simulation when assertion fails

Output assertion signal

Select icon type: |graphic -

[oK]| Cancel || Help Apply

Enable assertion

Clearing this check box disables the Check Dynamic Upper Bound block, that is,
causes the model to behave as if the block did not exist. The Model Verification
block enabling setting under Debugging on the Data Validity diagnostics
pane of the Configuration Parameters dialog box allows you to enable or disable all

1-164

Check Dynamic Upper Bound

model verification blocks, including Check Dynamic Upper Bound blocks, in a model
regardless of the setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Upper Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Upper Bound block to output

a Boolean signal that is true (1) at each time step if the assertion succeeds and

false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

Direct Feedthrough No

Multidimensional Signals Yes

Variable-Size Signals No

Zero-Crossing Detection No

1-165

1 Blocks — Alphabetical List

Code Generation Yes

Introduced before R2006a

1-166

Check Input Resolution

Check Input Resolution

Check that input signal has specified resolution

Library

Model Verification

o

The Check Input Resolution block checks whether the input signal has a specified scalar
or vector resolution (see Resolution). If the resolution is a scalar, the input signal must
be a multiple of the resolution within a 10e-3 tolerance. If the resolution is a vector, the
input signal must equal an element of the resolution vector. If the verification condition
is true, the block does nothing. If not, the block halts the simulation, by default, and
displays an error message.

Description

The Check Input Resolution block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

1-167

1 Blocks — Alphabetical List

1-168

Data Type Support

The Check Input Resolution block accepts input signals of data type double and of
any dimension. If the input signal is nonscalar, the block checks the resolution of each
element of the input test signal.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararmeters: Check Input Resolution @
Checks_Resolution (mask)

Assert that the input signal has a specified resolution. If the
resolution is a scalar, the input signal must be a multiple of the
resolution within a 10e-3 tolerance. If the resolution is a vector, the
input signal must equal an element of the resolution vector.

Parameters

Resolution:

1

¥| Enable assertion

Simulation callback when assertion fails (optional):

| Stop simulation when assertion fails

Output assertion signal

OK]| Cancel || Help Apply

Check Input Resolution

Resolution
Specify the resolution that the input signal must have.
Enable assertion

Clearing this check box disables the Check Input Resolution block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of

the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Input Resolution blocks, regardless of
the setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Input Resolution block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Input Resolution block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Characteristics

Data Types Double

Sample Time Inherited from driving block
Direct Feedthrough No

Multidimensional Signals Yes

Variable-Size Signals No

Zero-Crossing Detection No

1-169

1 Blocks — Alphabetical List

Code Generation Yes

Introduced before R2006a

1-170

Check Static Gap

Check Static Gap

Check that gap exists in signal's range of amplitudes

Library

Model Verification

Description

The Check Static Gap block checks that each element of the input signal is less than (or
optionally equal to) a static lower bound or greater than (or optionally equal to) a static
upper bound at the current time step. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model Verification library
are intended to facilitate creation of self-validating models. For example, you can use
model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Static Gap block accepts input signals of any dimensions and of any numeric
data type that Simulink supports.

1-171

1 Blocks — Alphabetical List

1-172

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararneters: Check Static Gap @
Checks_SGap (mask)

Assert that the input signal is less than (or optionally equal to) a static
lower bound or greater than (or optionally equal to) a static upper
bound.

Parameters

Upper bound:

100

Inclusive upper bound
Lower bound:

a
Inclusive lowwer bound
Enable assertion

Simulation callback when assertion fails (optional):

Stop simulation when assertion fails

("] Output assertion signal

Select icon type: [graphic -

[OK H Cancel H Help Apply

Check Static Gap

Upper bound

Specify the upper bound of the gap in the input signal's range of amplitudes.
Inclusive upper bound

Selecting this check box specifies that the gap includes the upper bound.
Lower bound

Specify the lower bound of the gap in the input signal's range of amplitudes.
Inclusive lower bound

Selecting this check box specifies that the gap includes the lower bound.
Enable assertion

Clearing this check box disables the Check Static Gap block, that is, causes the
model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Gap blocks, regardless of the
setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Gap block to halt the simulation
when the block's output is zero and display an error in the Diagnostic Viewer.
Otherwise, the block displays a warning message in the MATLAB Command Window
and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Gap block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion

1-173

1 Blocks — Alphabetical List

1-174

condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types

Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time

Inherited from driving block

Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Check Static Lower Bound

Check Static Lower Bound

Check that signal is greater than (or optionally equal to) static lower bound

Library

Model Verification

Description

The Check Static Lower Bound block checks that each element of the input signal is
greater than (or optionally equal to) a specified lower bound at the current time step. Use
the block parameter dialog box to specify the value of the lower bound and whether the
lower bound is inclusive. If the verification condition is true, the block does nothing. If
not, the block halts the simulation, by default, and displays an error message.

The Check Static Lower Bound block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Static Lower Bound block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1-175

1 Blocks — Alphabetical List

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararmeters: Check Static Lowwer Bound @
Checks_SMin (mask)

Assert that the input signal is greater than (or optionally equal to) a
static lower bound.

Parameters

Lower bound:

0

Inclusive boundary
Enable assertion

Simulation callback when assertion fails (optional):

Stop simulation when assertion fails

("] Qutput assertion signal

Select icon type: Igraphic -

[OK H Cancel H Help Apply

Lower bound
Specify the lower bound on the range of amplitudes that the input signal can have.
Inclusive boundary

Selecting this check box makes the range of valid input amplitudes include the lower
bound.

1-176

Check Static Lower Bound

Enable assertion

Clearing this check box disables the Check Static Lower Bound block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of

the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Lower Bound blocks, regardless
of the setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Lower Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Lower Bound block to output

a Boolean signal that is true (1) at each time step if the assertion succeeds and

false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

1-177

1 Blocks — Alphabetical List

1-178

Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Check Static Range

Check Static Range

Check that signal falls inside fixed range of amplitudes

Library

Model Verification

Description

The Check Static Range block checks that each element of the input signal falls inside
the same range of amplitudes at each time step. Use the block parameter dialog box to
specify the upper and lower bounds of the valid amplitude range and whether the range
includes the bounds. If the verification condition is true, the block does nothing. If not,
the block halts the simulation, by default, and displays an error message.

The Check Static Range block and its companion blocks in the Model Verification

library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Static Range block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1-179

1 Blocks — Alphabetical List

1-180

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararmeters: Check Static Range @
Checks_SRange (mask)

Assert that the input signal lies between a static lower and upper
bound or optionally equals either bound.

Parameters

Upper bound:
100

Inclusive upper bound
Lower bound:

0

Inclusive lower bound
Enable assertion

Simulation callback when assertion fails (optional):

Stop simulation when assertion fails

("] Output assertion signal

Select icon type: [graphic -

[OK H Cancel H Help Apply

Check Static Range

Upper bound
Specify the upper bound of the range of valid input signal amplitudes.
Inclusive upper bound
Selecting this check box specifies that the valid signal range includes the upper
bound.
Lower bound
Specify the lower bound of the range of valid input signal amplitudes.
Inclusive lower bound
Selecting this check box specifies that the valid signal range includes the lower
bound.
Enable assertion

Clearing this check box disables the Check Static Range block, that is, causes

the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of

the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Range blocks, regardless of the
setting of this option.

Simulation callback when assertion fails

Specify a MATLAB expression to evaluate when the assertion fails. Because the
expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Range block to halt the simulation
when the block's output is zero and display an error in the Diagnostic Viewer.
Otherwise, the block displays a warning message in the MATLAB Command Window
and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Range block to output a Boolean
signal that is true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is Boolean if you have selected the
Implement logic signals as Boolean data check box on the Optimization pane
of the Configuration Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

1-181

1 Blocks — Alphabetical List

1-182

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Examples

The sldemo_fuelsys model shows how you can use the Check Static Range block to
verify that the sample time is consistent throughout the model.

The Check Static Range block appears in the sldemo_fuelsys/fuel _rate_control/
validate_sample_time subsystem.

I-.r-_\\ -
1Y) w|Convert %@I—DI e " _m,

Actual
Sample Time

Verify sample time: aspects of the design

assume a 0.01 second sample time.

Characteristics

CheckRange

0m

Expected
Sample Time

Data Types

Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time

Inherited from driving block

Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Check Static Upper Bound

Check Static Upper Bound

Check that signal is less than (or optionally equal to) static upper bound

Library

Model Verification

Description

The Check Static Upper Bound block checks that each element of the input signal is
less than (or optionally equal to) a specified upper bound at the current time step. Use
the block parameter dialog box to specify the value of the upper bound and whether the
bound is inclusive. If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For example, you can
use model verification blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically remove them from
the model. If you need to modify a model, you can temporarily turn the verification blocks
back on to ensure that your changes do not break the model.

Note: For information about how Simulink Coder generated code handles Model
Verification blocks, see “Debug”.

Data Type Support

The Check Static Upper Bound block accepts input signals of any dimensions and of any
numeric data type that Simulink supports.

1-183

1 Blocks — Alphabetical List

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Sink Block Pararmeters: Check Static Upper Bound @
Checks_SMax (mask)

Assert that the input signal is less than (or optionally equal to) a static
upper bound.

Parameters

Upper bound:
]

Inclusive boundary
Enable assertion

Simulation callback when assertion fails (optional):

Stop simulation when assertion fails

("] Qutput assertion signal

Select icon type: Igraphic -

[Ok H Cancel H Help Apply

Upper bound
Specify the upper bound on the range of amplitudes that the input signal can have.

Inclusive boundary

1-184

Check Static Upper Bound

Selecting this check box makes the range of valid input amplitudes include the upper
bound.

Enable assertion

Clearing this check box disables the Check Static Upper Bound block, that is, causes
the model to behave as if the block did not exist. The Model Verification block
enabling setting under Debugging on the Data Validity diagnostics pane of

the Configuration Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Upper Bound blocks, regardless
of the setting of this option.

Simulation callback when assertion fails
Specify a MATLAB expression to evaluate when the assertion fails. Because the

expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Upper Bound block to halt the
simulation when the block's output is zero and display an error in the Diagnostic
Viewer. Otherwise, the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Upper Bound block to output

a Boolean signal that is true (1) at each time step if the assertion succeeds and

false (0) if the assertion fails. The data type of the output signal is Boolean if you
have selected the Implement logic signals as Boolean data check box on the
Optimization pane of the Configuration Parameters dialog box. Otherwise the data
type of the output signal is double.

Select icon type

Specify the type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the assertion
condition on the icon. The text option displays a mathematical expression that
represents the assertion condition. If the icon is too small to display the expression,
the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

1-185

1 Blocks — Alphabetical List

1-186

Sample Time

Inherited from driving block

Direct Feedthrough No
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Chirp Signal

Chirp Signal

Generate sine wave with increasing frequency

Library

Sources

"N}

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate
with time. You can use this block for spectral analysis of nonlinear systems. The block
generates a scalar or vector output.

Description

The parameters, Initial frequency, Target time, and Frequency at target time,
determine the block's output. You can specify any or all of these variables as scalars or
arrays. All the parameters specified as arrays must have the same dimensions. The block
expands scalar parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you select the Interpret
vector parameters as 1-D check box. If you select this check box and the parameters
are row or column vectors, the block outputs a vector (1-D array) signal.

The following limitations apply to the Chirp Signal block:

* The start time of the simulation must be 0. To confirm this value, go to the Solver
pane in the Configuration Parameters dialog box and view the Start time field.

* Suppose that you use a Chirp Signal block in an enabled subsystem. Whenever the
subsystem is enabled, the block output matches what would appear if the subsystem
were enabled throughout the simulation.

Data Type Support

The Chirp Signal block outputs a real-valued signal of type double.

1-187

1 Blocks — Alphabetical List

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

i =

Source Block Parameters: Chirp Signal @
chirp (mask) (link)

Output a linear chirp signal (sine wave whose frequency varies
linearly with time).

Parameters
Initial frequency (Hz):
0.1

Target time (secs):

100

Frequency at target time (Hz):
1

¥| Interpret vector parameters as 1-D

0K]| Cancel || Help Apply

Initial frequency

The initial frequency of the signal, specified as a scalar or matrix value. The default
is 0.1 Hz.

Target time

The time at which the frequency reaches the Frequency at target time parameter
value, a scalar or matrix value. The frequency continues to change at the same rate
after this time. The default is 100 seconds.

1-188

Chirp Signal

Frequency at target time

The frequency of the signal at the target time, a scalar or matrix value. The default is
1 Hz.

Interpret vector parameters as 1-D

If selected, column or row matrix values for the Initial frequency, Target
time, and Frequency at target time parameters result in a vector output
whose elements are the elements of the row or column. For more information,
see “Determining the Output Dimensions of Source Blocks” in the Simulink

documentation.
Characteristics
Data Types Double
Sample Time Continuous
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1-189

1 Blocks — Alphabetical List

1-190

Clock

Display and provide simulation time

Library

Sources

C,

Description

The Clock block outputs the current simulation time at each simulation step. This block
is useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock
block.

Data Type Support

The Clock block outputs a real-valued signal of type double.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Clock

Parameters and Dialog Box

E Source Block Pararmeters: Clack @
Clock

Output the current simulation time.

Parameters
Display time
Decimation:

10

OK]| Cancel || Help Apply

Display time

Select this check box to display the current simulation time inside the Clock block
icon.

Decimation

Specify a positive integer for the interval at which Simulink updates the Clock icon
when you select Display time.

Suppose that the decimation is 1000. For a fixed integration step of 1 millisecond, the
Clock icon updates at 1 second, 2 seconds, and so on.

Examples

The following Simulink examples show how to use the Clock block:

+ sldemo_tonegen_fixpt
* penddemo

1-191

1

Blocks — Alphabetical List

1-192

Characteristics

Data Types Double
Sample Time Continuous
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No

Code Generation Yes

See Also

Digital Clock

Introduced before R2006a

Combinatorial Logic

Combinatorial Logic

Implement truth table

Library

Logic and Bit Operations

o

[ii]

Description

The Combinatorial Logic block implements a standard truth table for modeling
programmable logic arrays (PLAs), logic circuits, decision tables, and other Boolean
expressions. You can use this block in conjunction with Memory blocks to implement
finite-state machines or flip-flops.

You specify a matrix that defines all possible block outputs as the Truth table
parameter. Each row of the matrix contains the output for a different combination of
input elements. You must specify outputs for every combination of inputs. The number of
columns is the number of block outputs.

The relationship between the number of inputs and the number of rows is:

number of rows = 2 ~ (number of inputs)

Simulink returns a row of the matrix by computing the row's index from the input vector
elements. Simulink computes the index by building a binary number where input vector
elements having zero values are 0 and elements having nonzero values are 1, then
adding 1 to the result. For an input vector, u, of m elements:

row index = 1 + u(m)*2° + u(m-1)*2' + ... + u()*2™!

Two-Input AND Logic

This example builds a two-input AND function, which returns 1 when both input
elements are 1, and 0 otherwise. To implement this function, specify the Truth table

1-193

1 Blocks — Alphabetical List

parameter value as [0; 0; 0; 1]. The portion of the model that provides the inputs to
and the output from the Combinatorial Logic block might look like this:

Input [:::] b

— Input vecior "' @
] S
o Combinatorial

e Logic

The following table indicates the combination of inputs that generate each output. The
input signal labeled “Input 1” corresponds to the column in the table labeled Input 1.
Similarly, the input signal “Input 2” corresponds to the column with the same name. The
combination of these values determines the row of the Output column of the table that is
passed as block output.

For example, if the input vector is [1 0], the input references the third row:
@r1*1 + 1)

The output value is 0.

Row Input 1 Input 2 Output
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Circuit Logic

This sample circuit has three inputs: the two bits (a and b) to be summed and a carry-in
bit (¢). It has two outputs: the carry-out bit (¢') and the sum bit (s).

1-194

Combinatorial Logic

Input wecior |:' i ':| @
Output

Combinatorial
Logic

il

The truth table and corresponding outputs for each combination of input values for this
circuit appear in the following table.

Inputs Outputs
a b c c' S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

To implement this adder with the Combinatorial Logic block, you enter the 8-by-2 matrix
formed by columns c¢' and s as the Truth table parameter.

You can also implement sequential circuits (that is, circuits with states) with the

Combinatorial Logic block by including an additional input for the state of the block and
feeding the output of the block back into this state input.

Data Type Support

The type of signals accepted by a Combinatorial Logic block depends on whether you
selected the Boolean logic signals option (see “Implement logic signals as Boolean data

1-195

1 Blocks — Alphabetical List

(vs. double) 7). If this option is enabled, the block accepts real signals of type Boolean or
double. The Truth table parameter can have Boolean values (0 or 1) of any data type,
including fixed-point data types. If the table contains non-Boolean values, the data type
of the table must be double.

The type of the output is the same as that of the input except that the block outputs
double if the input is Boolean and the truth table contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic block accepts only
signals of type Boolean. The block outputs double if the truth table contains non-
Boolean values of type double. Otherwise, the output is Boolean.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

"k Function Block Parameters: Combinatorial Logic I&

CmbLogic

Look up the elements of the input vector (treated as boolean values) in the
truth table and output the corresponding row of the Truth table'
parameter. The input side of the truth table is implicit.

Parameters

Truth table:

[00;01;01;10;01;10;10;11]

J oK H Cancel H Help Apply

Truth table

1-196

Combinatorial Logic

Specify the matrix of outputs. Each column corresponds to an element of the output
vector and each row corresponds to a row of the truth table.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Examples

Usage with the Memory Block to Implement a Finite-State Machine

The sldemo_clutch model shows how you can use the Combinatorial Logic block with
the Memory block to implement a finite-state machine.

The finite-state machine appears in the Friction Mode Logic/Lockup FSM
subsystem.

lock
Mux E—w [13i] » ()
unlzck locked

Usage with a Stateflow Chart to Implement a Finite-State Machine

The powerwindow model shows how you can use two Combinatorial Logic blocks as
inputs to a Stateflow chart to implement a finite-state machine.

1-197

1 Blocks — Alphabetical List

1-198

T_""D\. pESSEnger ; 4
o] eutral, up "'? mag _.’-. j
11—
L paEssenger up — [. “] —
0w,
Mo] > A= maovel
1_ = eutral, up, d mag :
passenger down -
) [] | driver C]
[0 -}
Tl o R Y —-\D
i [0 . s—
- driver up |- endsfop O indo
L = 1 ——o comman
1_ *-o ohstacle v e Chomn
driver down H T
E— _D\‘D—I- obstacle
1 ——
A
comrol - LE:
Characteristics
Data Types Double | Boolean
Sample Time Inherited from driving block
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

Combinatorial Logic

Introduced before R2006a

1-199

1 Blocks — Alphabetical List

Compare To Constant

Determine how signal compares to specified constant

Library

Logic and Bit Operations

=32 P

Description

The Compare To Constant block compares an input signal to a constant. Specify the
constant in the Constant value parameter. Specify how the input is compared to the
constant value with the Operator parameter. The Operator parameter can have the
following values:

+ == — Determine whether the input is equal to the specified constant.

+ ~= — Determine whether the input is not equal to the specified constant.

*+ < — Determine whether the input is less than the specified constant.

+ <= — Determine whether the input is less than or equal to the specified constant.

+ > — Determine whether the input is greater than the specified constant.

+ >= — Determine whether the input is greater than or equal to the specified constant.

The output is O if the comparison is false, and 1 if it is true.

Data Type Support

The Compare To Constant block accepts inputs of any data type that Simulink supports,
including fixed-point and enumerated data types. The block first converts its Constant

value parameter to the input data type, and then performs the specified operation. The

block output is uint8 or boolean as specified by the Output data type parameter.

1-200

Compare To Constant

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

P

E Function Elock Parameters: Compare To Constant @
Compare To Constant (mask) (link)

Determine how a signal compares to a constant.

Parameters

Operator: | <= -

Constant value:

3.0

Output data type: Ibnulean -

Enable zero-crossing detection

0K H Cancel H Help Apply

Operator
Specify how the input is compared to the constant value, as discussed in Description.
Constant value
Specify the constant value to which the input is compared.
Output data type
Specify the data type of the output, boolean or uint8.
Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

1-201

1 Blocks — Alphabetical List

1-202

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes

Multidimensional Signals Yes

Variable-Size Signals Yes

Zero-Crossing Detection Yes, if enabled

Code Generation Yes

See Also

Compare To Zero

Introduced before R2006a

Compare To Zero

Compare To Zero

Determine how signal compares to zero

Library

Logic and Bit Operations

=0 p

Description

The Compare To Zero block compares an input signal to zero. Specify how the input is
compared to zero with the Operator parameter. The Operator parameter can have the
following values:

== — Determine whether the input is equal to zero.

~= — Determine whether the input is not equal to zero.

< — Determine whether the input is less than zero.

<= — Determine whether the input is less than or equal to zero.
> — Determine whether the input is greater than zero.

>= — Determine whether the input is greater than or equal to zero.

The output is O if the comparison is false, and 1 if it is true.

Data Type Support

The Compare To Zero block accepts inputs of the following data types:

Floating point
Built-in integer

Fixed point

1-203

1 Blocks — Alphabetical List

* Boolean

The block output is uint8 or boolean, depending on your selection for the Output data
type parameter. For more information, see “ Data Types Supported by Simulink” in the
Simulink documentation.

Tip If the input data type cannot represent zero, parameter overflow occurs. To detect
this overflow, go to the Diagnostics > Data Validity pane of the Configuration
Parameters dialog box and set Parameters > Detect overflow to warning or error.

In this case, the block compares the input signal to the ground value of the input data
type. For example, if you have an input signal of type Fixdt(0,8,270,10), the input
data type can represent unsigned 8-bit integers from 10 to 265 due to a bias of 10. The
ground value is 10, instead of 0.

Parameters and Dialog Box

E Functicn Block Parameters: Compare To Zero @
Compare To Zero (mask) (link)

Determine how a signal compares to zero.

Farameters
Operator: |-::= v|
Output data type: |hnnlean - |

¥| Enable zero-crossing detection

0K]| Cancel || Help Apply

Operator

Specify how the input is compared to zero, as discussed in Description.

1-204

Compare To Zero

Output data type
Specify the data type of the output, boolean or uint8.
Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

Multidimensional Signals Yes

Variable-Size Signals Yes

Zero-Crossing Detection Yes, if enabled

Code Generation Yes

See Also

Compare To Constant

Introduced before R2006a

1-205

1 Blocks — Alphabetical List

1-206

Complex to Magnitude-Angle

Compute magnitude and/or phase angle of complex signal

Library

Math Operations

[uf
fup

Description

The Complex to Magnitude-Angle block accepts a complex-valued signal of type double
or single. It outputs the magnitude and/or phase angle of the input signal, depending
on the setting of the Output parameter. The outputs are real values of the same data
type as the block input. The input can be an array of complex signals, in which case the
output signals are also arrays. The magnitude signal array contains the magnitudes

of the corresponding complex input elements. The angle output similarly contains the
angles of the input elements.

Data Type Support

See the preceding description.

Complex to Magnitude-Angle

Parameters and Dialog Box

“i Function Block Parameters: Complex to Magnitude-Angle Iﬁ

Complex to Magnitude-Angle

Compute magnitude and/or radian phase angle of the input.

Parameters

Output: |Magnitude and angle -

J OK H Cancel H Help Apply

Output

Determines the output of this block. Choose from the following values: Magnitude
and angle (outputs the input signal's magnitude and phase angle in radians),
Magnitude (outputs the input's magnitude), Angle (outputs the input's phase angle
in radians).

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not

Recommended”.
Characteristics
Data Types Double | Single
Sample Time Inherited from driving block
Direct Feedthrough Yes

1-207

1 Blocks — Alphabetical List

1-208

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

Complex to Real-lmag

Complex to Real-Imag

Output real and imaginary parts of complex input signal

Library

Math Operations

Fep
{Im

e

Description

The Complex to Real-Imag block accepts a complex-valued signal of any data type that
Simulink supports, including fixed-point data types. It outputs the real and/or imaginary
part of the input signal, depending on the setting of the Output parameter. The real
outputs are of the same data type as the complex input. The input can be an array (vector
or matrix) of complex signals, in which case the output signals are arrays of the same
dimensions. The real array contains the real parts of the corresponding complex input
elements. The imaginary output similarly contains the imaginary parts of the input
elements.

Data Type Support

See the preceding description. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

1-209

1 Blocks — Alphabetical List

Parameters and Dialog Box

*& Function Block Parameters: Complex to Real-Imag @
Complex to Real-Imag
Output the real and/or imaginary components of the input.
Farameters
Output: ’Real and imag -
J oK] [Cancel] [Help Apply
Output

Determines the output of this block. Choose from the following values: Real and
imag (outputs the input signal's real and imaginary parts), Real (outputs the input's
real part), Imag (outputs the input's imaginary part).

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not

Recommended”.
Characteristics
Data Types Double | Single | Boolean | Base Integer | Fixed-
Point
Sample Time Inherited from driving block

1-210

Complex to Real-lmag

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced before R2006a

1-211

1 Blocks — Alphabetical List

1-212

Configurable Subsystem

Represent any block selected from user-specified library of blocks

Library

Ports & Subsystems

Tamplate

Description

The Configurable Subsystem block represents one of a set of blocks contained in a
specified library of blocks. The block's context menu lets you choose which block the
configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that represent families of
designs. For example, suppose that you want to model an automobile that offers a choice
of engines. To model such a design, you would first create a library of models of the
engine types available with the car. You would then use a Configurable Subsystem block
in your car model to represent the choice of engines. To model a particular variant of the

basic car design, a user need only choose the engine type, using the configurable engine
block's dialog.

To create a configurable subsystem in a model, you must first create a library containing
a master configurable subsystem and the blocks that it represents. You can then

create configurable instances of the master subsystem by dragging copies of the master
subsystem from the library and dropping them into models.

You can add any type of block to a master configurable subsystem library. Simulink
derives the port names for the configurable subsystem by making a unique list from
the port names of all the choices. However, Simulink uses default port names for non-
subsystem block choices.

Note that you cannot break library links in a configurable subsystem because Simulink
uses those links to reconfigure the subsystem when you choose a new configuration.

Configurable Subsystem

Breaking links would be useful only if you do not intend to reconfigure the subsystem. In
this case, you can replace the configurable subsystem with a nonconfigurable subsystem
that implements the permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

1

Create a library of blocks representing the various configurations of the configurable
subsystem.

Save the library.

Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the Simulink Ports
& Subsystems library into the library you created in the previous step.

Display the Configurable Subsystem block dialog by double-clicking it. The dialog
displays a list of the other blocks in the library.

Under List of block choices in the dialog box, select the blocks that represent the
various configurations of the configurable subsystems you are creating.

Click the OK button to apply the changes and close the dialog box.
Select Block Choice from the Configurable Subsystem block's context menu.

The context menu displays a submenu listing the blocks that the subsystem can
represent.

Select the block that you want the subsystem to represent by default.
Save the library.

Note: If you add or remove blocks from a library, you must recreate any Configurable
Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a configurable subsystem,
the change does not immediately propagate to the configurable subsystem. To propagate
this change, do one of the following:

Change the default block choice to another block in the subsystem, then change the
default block choice back to the original block.

Recreate the configurable subsystem block, including the selection of the updated
block as the default block choice.

1-213

1 Blocks — Alphabetical List

1-214

If a configurable subsystem in your model contains a broken link to a library block,
editing the link and saving the model does not fix the broken link the next time you open
the model. To fix a broken library link in your configurable subsystem, use one of the
following approaches.

* Convert the configurable subsystem to a variant subsystem. Right-click the
configurable subsystem, and select Subsystem and Model Reference > Convert
Subsystem to > Variant Subsystem.

* Remove the library block from the master configurable subsystem library, add the
library block back to the master configurable subsystem library, and then resave the
master configurable subsystem library.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model:

Open the library containing the master configurable subsystem.
Drag a copy of the master into the model.

Select Block Choice from the copy's context menu.

AW —

Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog box of the
block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a configurable subsystem
instance to set the instance's parameters interactively and the set_param command

to set the parameters from the MATLAB command line or in a MATLAB file. If you use
set_param, you must specify the full path name of the configurable subsystem's current
block choice as the first argument of set_param, for example:

curr_choice = get_param("mymod/myconfigsys”, "BlockChoice");
curr_choice = ["mymod/myconfigsys/" curr_choice];
set_param(curr_choice, "MaskvValues®, ...);

Mapping 1/O Ports

A configurable subsystem displays a set of input and output ports corresponding to input
and output ports in the selected library. Simulink uses the following rules to map library
ports to Configurable Subsystem block ports:

Configurable Subsystem

* Map each uniquely named input/output port in the library to a separate input/output
port of the same name on the Configurable Subsystem block.

* Map all identically named input/output ports in the library to the same input/output
ports on the Configurable Subsystem block.

* Terminate any input/output port not used by the currently selected library block with
a Terminator/Ground block.

This mapping allows a user to change the library block represented by a Configurable
Subsystem block without having to rewire connections to the Configurable Subsystem
block.

For example, suppose that a library contains two blocks A and B and that block A has
input ports labeled a, b, and ¢ and an output port labeled d and that block B has input
ports labeled a and b and an output port labeled e. A Configurable Subsystem block
based on this library would have three input ports labeled a, b, and c, respectively, and
two output ports labeled d and e, respectively, as illustrated in the following figure.

a a a dk
bodp b ®F| #—— 0T
= B Configumble

A Subsystem

In this example, port a on the Configurable Subsystem block connects to port a of the
selected library block no matter which block is selected. On the other hand, port c on the
Configurable Subsystem block functions only if library block A is selected. Otherwise, it
simply terminates.

Note: A Configurable Subsystem block does not provide ports that correspond to non-1/0
ports, such as the trigger and enable ports on triggered and enabled subsystems. Thus,
you cannot use a Configurable Subsystem block directly to represent blocks that have
such ports. You can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-1/0 ports.

Convert to Variant Subsystem

Right-click a configurable subsystem and select Subsystems and Model Reference >
Convert Subsystem To > Variant Subsystem.

1-215

1 Blocks — Alphabetical List

1-216

Simulink copies the block choices of the configurable subsystem to a new variant
subsystem and adds the appropriate number of inports and outports to the variant
subsystem. The current block choice of the configurable subsystem is made the active
variant selection.

See Variant Subsystem for more information on variant choices.

Data Type Support

The Configurable Subsystem block accepts and outputs signals of the same types that are
accepted or output by the block that it currently represents. The data types can be any
that Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

ﬂConfiguration dialeg : Configurable Subsystem | = || (=] ||i&|
List of hlock choices Fort names
Block name Mernber Inports Outports
Chart]
Examples []
Truth Tahle]
]9 ” Zancel ” Help ” Apply

Configurable Subsystem

List of block choices

Select the blocks you want to include as members of the configurable subsystem. You
can include user-defined subsystems as blocks.

Port names

Lists of input and output ports of member blocks. In the case of multiports, you can
rearrange selected port positions by clicking the Up and Down buttons.

Characteristics

A Configurable Subsystem block has the characteristics of the block that it currently
represents. Double-clicking the block opens the dialog box for the block that it currently

represents.

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

Introduced before R2006a

1-217

1 Blocks — Alphabetical List

1-218

Constant

Generate constant value

Library

Sources

Description
The Constant block generates a real or complex constant value.

The block generates scalar, vector, or matrix output, depending on:

* The dimensionality of the Constant value parameter

+ The setting of the Interpret vector parameters as 1-D parameter

The output of the block has the same dimensions and elements as the Constant value
parameter. If you specify for this parameter a vector that you want the block to interpret
as a vector, select the Interpret vector parameters as 1-D parameter. Otherwise, if
you specify a vector for the Constant value parameter, the block treats that vector as a
matrix.

Data Type Support

By default, the Constant block outputs a signal whose data type and complexity are the
same as those of the Constant value parameter. However, you can specify the output
to be any data type that Simulink supports, including fixed-point and enumerated data
types. The Enumerated Constant block can be more convenient than the Constant
block for outputting a constant enumerated value. You can also use a bus object as the
output data type, which can help to simplify a model (see “Bus Support” on page 1-235
for details).

Constant

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information about data type support, see “ Data Types Supported by Simulink”
in the Simulink documentation.

Parameters and Dialog Box

i h
#k Source Block Parameters: Constant @

Constant

Output the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on,
treat the constant value as a 1-D array. Otherwise, output a matrix with the
same dimensions as the constant value.

Main | Signal Attributes

Constant value:
1
Interpret vector parameters as 1-D

Sample time:

inf

J OK H Cancel H Help Apply

1-219

1 Blocks — Alphabetical List

1-220

Constant value

Specify the constant value output of the block.

Settings

Default: 1

Minimum: value from the Output minimum parameter
Maximum: value from the Output maximum parameter

* You can enter any expression that MATLAB evaluates as a matrix, including the
Boolean keywords true and false.

+ If you set the Output data type to be a bus object, you can specify either:

A full MATLAB structure corresponding to the bus object

0 to indicate a structure corresponding to the ground value of the bus object

For details, see “Bus Support” on page 1-235.

* For non-bus data types, Simulink converts this parameter from its value data type to
the specified output data type offline, using round toward nearest and saturation.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Constant

Interpret vector parameters as 1-D

Select this check box to output a vector of length N if the Constant value parameter
evaluates to an N-element row or column vector.

Settings
Default: On

41 On

Outputs a vector of length N if the Constant value parameter evaluates to an N-
element row or column vector. For example, the block outputs a matrix of dimension
1-by-N or N-by-1.

Off

Does not output a vector of length N if the Constant value parameter evaluates to
an N-element row or column vector.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Specify the interval between times that the Constant block output can change during
simulation (for example, due to tuning the Constant value parameter).

Settings
Default: inf

This setting indicates that the block output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute the block output.

See “ Specify Sample Time” in the online documentation for more information.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-221

1 Blocks — Alphabetical List

1-222

Output minimum

Lower value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for this block, do not set the minimum
value for bus data on the block. Simulink ignores this setting. Instead, set the minimum
values for bus elements of the bus object specified as the data type. For information on
the Minimum parameter for a bus element, see Simul ink.BusElement.

Simulink uses the minimum to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

+ Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

+ Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string

Value: "[]1°

Default: []°

Constant

1-223

1 Blocks — Alphabetical List

1-224

Output maximum

Upper value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Note: If you specify a bus object as the data type for this block, do not set the maximum
value for bus data on the block. Simulink ignores this setting. Instead, set the maximum
values for bus elements of the bus object specified as the data type. For information on
the Maximum parameter for a bus element, see Simul ink.BusElement.

Simulink uses the maximum value to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

+ Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

+ Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string

Value: "[]1°

Default: []°

Constant

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings
Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.
Dependencies
Selecting Mode > Fixed point enables this parameter.
Selecting Binary point enables:

* Fraction length

+ Calculate Best-Precision Scaling

Selecting Slope and bias enables:

+ Slope
+ Bias

+ Calculate Best-Precision Scaling
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Output data type

Specify the output data type.

1-225

1 Blocks — Alphabetical List

Settings
Default: Inherit: Inherit from "Constant value-

Inherit: Inherit from "Constant value*®
Use data type of Constant value.
Inherit: Inherit via back propagation
Use data type of the driving block.
double
Output data type is double.
single
Output data type is single.
int8
Output data type is int8.
uintd
Output data type is uint8.
intl6
Output data type is intl6.
uintl6
Output data type is uintl6.
int32
Output data type is int32.
uint32
Output data type is uint32.
boolean
Output data type is boolean.
fixdt(1,16)
Output data type is fixed point Fixdt(1,16).
fixdt(1,16,0)
Output data type is fixed point Fixdt(1,16,0).
fixdt(1,16,270,0))

1-226

Constant

Output data type is fixed point Fixdt(1,16,270,0).
Enum: <class name>

Use an enumerated data type, for example, Enum: BasicColors.
Bus: <object name>

Data type is a bus object.
<data type expression>

Data type is data type object, for example Simul ink.NumericType.

Do not specify a bus object as the expression.
Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

See “Control Signal Data Types” for more information.

1-227

1 Blocks — Alphabetical List

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1-228

Constant

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

+ Inherit from "Constant value® (default)
+ Inherit via back propagation
Built in

Built-in data types. Selecting Bui It in enables a second menu/text box to the right.
Select one of the following choices:

+ double (default)

+ single
* Int8

* uint8

+ Intl6

* uiIntl6
¢ Int32

* uint32
* boolean

Fixed point
Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Bus

Bus object. Selecting Bus enables a Bus object parameter to the right, where you
enter the name of a bus object that you want to use to define the structure of the bus.

1-229

1 Blocks — Alphabetical List

1-230

If you need to create or change a bus object, click Edit to the right of the Bus object
field to open the Simulink Bus Editor. For details about the Bus Editor, see “Manage
Bus Objects with the Bus Editor”.

Expression

Expressions that evaluate to data types. Selecting EXxpression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Data type override

Specify data type override mode for this signal.
Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built inor Fixed point.

Constant

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings
Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies
Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-231

1 Blocks — Alphabetical List

Word length

Specify the bit size of the word that holds the quantized integer.
Settings

Default: 16

Minimum: O

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-232

Constant

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: O

Binary points can be positive or negative integers.
Dependencies

Selecting Scaling > Binary point enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-233

1 Blocks — Alphabetical List

1-234

Slope

Specify slope for the fixed-point data type.

Settings

Default: 20

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: O

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Constant

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings
Default: Off
Y1 On
Locks the output data type setting for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string

Value: "off" | "on"
Default: "off"

See Also

For more information, see “Use Lock Output Data Type Setting”.

Bus Support

Using Bus Objects as the Output Data Type
The Constant block supports nonvirtual buses as the output data type. If you use a bus

object as the data type, set Constant value to O or a MATLAB structure that matches
the bus object.

Using Structures for the Constant Value

The structure you specify must contain a value for every element of the bus represented
by the bus object.

1-235

1 Blocks — Alphabetical List

You can use the Simulink.Bus.createMATLABStruct to create a full structure that
corresponds to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB
structure.

If the signal elements in the output bus use numeric data types other than double,

you can specify the structure fields by using typed expressions such as uint16(37) or
untyped expressions such as 37. To decide whether to use typed or untyped expressions,
see “Decide Whether to Specify Data Types for Structure Fields”.

Example of Using a Bus Object for a Constant Block

The following example illustrates how using a bus object as an output data type for a
Constant block can help to simplify a model.

1 Open the ex_busic model and update it.

This model uses six Constant blocks. For details about the model, see “Examples of
Partial Structures”.

1-236

Constant

itz 2
repmat{int&{i},5,1)
Top
comstamtc
doublke
1
B
TopBus
Constant2
fint1e
int18{1) — -
Constants
subZBus
ouble
1 —|A—|..
Constant3 AZ o
iirtE- © sub1Bus2

repmat{int&{i},5,1)

Constant4

Open the ex_constantbus model and update it. This model uses one Constant block
that replaces the six Constant blocks in the ex_busic model.

1-237

1 Blocks — Alphabetical List

$ 1
constant_value struct —T-l;:'P ----- ‘.‘ s
= Out1
Constant Unit Oelay

3 Simulate the ex_constantbus model. To verify that the output from the Constant
block reflects the values from constant_value_struct, perform the next two
steps.

4 At the MATLAB command line, examine the constant_value_struct structure
that the Constant block uses for its Constant value parameter.

constant_value_struct
constant_value_struct =

A: [1x1 struct]
B: 5
C: [1x1 struct]
5 Examine the logged data in the logsout variable, focusing on the B element of the
Al bus signal. The constant_value_struct structure sets the B element to 5.

logsout.Al.B.Data

Group Constant Signals into an Array of Buses

You can use a Constant block to compactly represent multiple constant-valued signals
as an array of buses. You can use this technique to reduce the number of signal lines
in a model and the number of variables that the model uses, especially when the model
repeats an algorithm with different parameter values.

To generate a constant-valued array of bus signals, use an array of MATLAB structures
in a Constant block. The block output is an array of buses, and each field in the array of
structures provides the simulation value for the corresponding signal element.

1-238

Constant

You can also use an array of structures to specify the Value property of a
Simulink.Parameter object, and use the parameter object in a Constant block.

1 Open the example model ex_constantbus_array.

The variables ParamBus and const_param_struct appear in the base workspace.
The variable const_param_struct contains a structure whose field names match
the elements of the bus type that ParamBus defines.

2 Update the diagram to view the signal line widths.

The output of the Constant block is a single scalar bus of type ParamBus. The
structure variable const_param_struct specifies the constant value in the block.

3 At the command prompt, create an array of two structures by copying the structure
const_param_struct. Customize the field values by indexing into the individual
structures in the array.

const_struct_array =...
[const_param_struct const_param_struct];

const_struct_array(2) .0ffset = 158;
const_struct_array(2).Gain = 3.83;

const_struct_array(2).Threshold 1039.77

const_struct_array =
1x2 struct array with fields:
Offset

Gain
Threshold

In the Constant block dialog box, set Constant value to const_struct_array.
5 Add two Selector blocks to the model, and connect the Constant block as shown.

1-239

1

Blocks — Alphabetical List

1-240

congt_struct_amay

Constant

6
7

-

-

= ()

— g =Offset=

P O »> -
— i <Gain=
Selector «<Threshold=

|-
a
.,...—-I

Selectort

Relational Outt
Operator

In the Selector block dialog box, set Index to 1 and Input port size to 2.
In the Selectorl block dialog box, set Index to 2 and Input port size to 2.

8 Copy the block algorithm in the model, and connect the blocks as shown.

cond_dmct_amray

Constant

* -
In1 > <:
-
Product @
l\l » =Offset> Relational Out1
g 0 'i <Gain> Operator
Selector <Threshold=
s -
= == 2
Product1 = .-Out2
> ~Offset> Relational
I/,f‘l <Gain> Operatorf
Selectort <Threshold>

Constant

9 Update the diagram. The signal line width and style indicate that the output of the
Constant block is an array of buses. The Selector blocks each extract one of the buses

in the array.

cong_struct_amay

Constant

selectort =Threshold=

4 .
[L _
g o < (1)
Product
=0ffset= Relational Out
=Gain= Operator
=Threshold=
4 [
e g (el e L&D
. Product1 v
. 0 . =Offset> Relational out2
IE k”l » i pr— Operator‘]

Each copy of the algorithm uses the constant values provided by the corresponding

structure in the variable const_struct_array.

To create an array of structures for a bus that uses a large hierarchy of signal elements,
consider using the function Simul ink.Bus.createMATLABStruct. You can also use
this technique to create an array of structures if you do not have a scalar structure that

you can copy.

Setting Configuration Parameters to Support Using a Bus Object Data

Type

To enable the use of a bus object as an output data type, before you start a simulation,
set the following diagnostics as indicated:

* Inthe Diagnostics > Connectivity pane of the Configuration Parameters dialog

box, set “Mux blocks used to create bus signals” to error.

* Inthe Diagnostics > Data Validity pane of the Configuration Parameters dialog
box, set “Underspecified initialization detection” to simplified.

1-241

1 Blocks — Alphabetical List

The documentation for these diagnostics explains how to convert your model to handle
error messages the diagnostics generate.

Examples

The following Simulink examples show how to use the Constant block:

+ sldemo_auto_climatecontrol
+ sldemo_boiler
+ sldemo_bounce

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter

Direct Feedthrough N/A

Multidimensional Signals Yes

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

See Also

Enumerated Constant | Simulink.Parameter

More About
. “Bus Objects”

Introduced before R2006a

1-242

Coulomb and Viscous Friction

Coulomb and Viscous Friction

Model discontinuity at zero, with linear gain elsewhere

Library

Discontinuities

-

Description

The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic)
friction. The block models a discontinuity at zero and a linear gain otherwise.

The block output matches the MATLAB result for:
y = sign(x) .* (Gain .* abs(x) + Offset)

where y is the output, X is the input, Gain is the signal gain for nonzero input values,
and Offset is the Coulomb friction.

The block accepts one input and generates one output. The input can be a scalar, vector,
or matrix with real and complex elements.

* For a scalar input, Gain and OFfset can have dimensions that differ from the input.
The output is a scalar, vector, or matrix depending on the dimensions of Gain and
Offset.

* For a vector or matrix input, Gain and Offset must be scalar or have the same
dimensions as the input. The output is a vector or matrix of the same dimensions as
the input.

Data Type Support

The Coulomb and Viscous Friction block supports real inputs of the following data types:

1-243

1 Blocks — Alphabetical List

* Floating point
* Built-in integer

+ Fixed point

The block supports complex inputs only for floating-point data types, double and
single. The output uses the same data type as the input.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

i =

E Functicn Elock Parameters: Coulomb & Viscous Friction @
Coulombic and Viscous Friction (mask)

A discontinuity offset at zero models coulomb friction. Linear gain
models viscous friction.

y = sign(x) * (Gain * abs(x) + Offset)

Farameters

Coulomb friction value (Offset):
[1320]

Coefficient of viscous friction (Gain):

1

0K]| Cancel || Help Apply

Coulomb friction value
Specify the offset that applies to all input values.

Coefficient of viscous friction

1-244

Coulomb and Viscous Friction

Specify the signal gain for nonzero input values.

Examples

Scalar Input

Suppose that you have the following model:

[1]
= IEE
A [-3
Input x Offset =[13 2 0] E

Gain=2

o

.
-

Y

Output

In this model, block input X and Gain are scalar values, but OFfset is a vector.
Therefore, the block uses element-wise scalar expansion to compute the output.

Vector Input

Suppose that you have the following model:

1234 =
InpLt x Offset = [10 20 30 40] -2
Gain=-2

Output v

In this model, vector dimensions for block input x and OfFfset are the same.

Matrix Input

Suppose that you have the following model:

1-245

1 Blocks — Alphabetical List

Ea— R g o —T
I:ra -4 11 | ” | || -12| 21|
Input x Offset=F135,201]
Gain=3 Output v

In this model, matrix dimensions for block input X and Offset are the same.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection Yes

Code Generation Yes

Introduced before R2006a

1-246

Counter Free-Running

Counter Free-Running

Count up and overflow back to zero after reaching maximum value for specified number
of bits

Library

Sources

Ae

Description

The Counter Free-Running block counts up until reaching the maximum value, 2"
— 1, where Nbits is the number of bits. Then the counter overflows to zero and begins
counting up again.

After overflow, the counter always initializes to zero. However, if you select the global
doubles override, the Counter Free-Running block does not wrap back to zero.

Data Type Support

The Counter Free-Running block outputs an unsigned integer.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-247

1 Blocks — Alphabetical List

Parameters and Dialog Box

E source Block Pararmeters: Counter Free-Running

Counter Free-Running (mask)

This block is a free-running counter that overflows back to zero after
it has reached the maximum value possible for the specified number

of bits. The counter is always initialized to zero. The output is
normally an unsigned integer with the specified number of bits.

Parameters

Number of bits:

(]

16
Sample time:

-1

OK] | Cancel | | Help Apply
Number of Bits

Specify the number of bits.

When you use... Such as... The block counts up to... Which is...
A positive integer |8 28 _ 1 255

An unsigned uint8(8) uint8(248® _ 1) 254
integer expression

Sample time

Specify the time interval between samples. To inherit the sample time, set this
parameter to —1. See “ Specify Sample Time” in the Simulink documentation.

1-248

Counter Free-Running

Examples

Bit Specification Using a Positive Integer

Suppose that you have the following model:

B S —

Counter Dis play
Free-F unning

The block parameters are:

Parameter Setting

Number of Bits 8

Sample time -1

The solver options for the model are:

Parameter Setting

Stop time 255

Type Fixed-step

Solver discrete (no continuous states)
Fixed-step size 1

At t = 255, the counter reaches the maximum value:

281

If you change the stop time of the simulation to 256, the counter wraps to zero.

Bit Specification Using an Unsigned Integer Expression

Suppose that you have the following model:

1-249

1 Blocks — Alphabetical List

1-250

A4 > 254

Counter Diis play
Free-R unning

The block parameters are:

Parameter Setting
Number of Bits uint8(8)
Sample time -1

The solver options for the model are:

Parameter Setting

Stop time 254

Type Fixed-step

Solver discrete (no continuous states)
Fixed-step size 1

At t = 254, the counter reaches the maximum value:
uint8(24n*® _ 1)

If you change the stop time of the simulation to 255, the counter wraps to zero.

Characteristics

Data Types Base Integer | Fixed-Point

Sample Time Specified in the Sample time parameter
Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

Counter Free-Running

See Also

Counter Limited

Introduced before R2006a

1-251

1 Blocks — Alphabetical List

1-252

Counter Limited

Count up and wrap back to zero after outputting specified upper limit

Library

Sources

Iim}

Description

The Counter Limited block counts up until the specified upper limit is reached. Then the
counter wraps back to zero, and restarts counting up. The counter always initializes to
ZEro.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A Sample time of
-1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest number of bits
needed to represent the upper limit.

Data Type Support

The Counter Limited block outputs an unsigned integer.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Counter Limited

Parameters and Dialog Box

E Zource Block Pararmeters: Counter Limited @
Counter Limited (mask)

This block is a counter that wraps back to zero after it has output the
specified upper limit. The counter is always initialized to zero. The
output is normally an unsigned integer of 8, 16, or 32 bits. The
smallest number of bits needed to represent the upper limit is used.

Parameters
Upper limit:
7

Sample time:

-1

0K]| Cancel || Help Apply

Upper limit
Specify the upper limit.
Sample time

Specify the time interval between samples. To inherit the sample time, set this
parameter to —1. See “ Specify Sample Time” in the Simulink documentation.

Examples

The following Simulink examples show how to use the Counter Limited block:

+ sldemo_tonegen_Tixpt

1-253

1

Blocks — Alphabetical List

1-254

Characteristics

Data Types

Boolean | Base Integer | Fixed-Point

Sample Time

Specified in the Sample time parameter

Multidimensional Signals

No

Variable-Size Signals

No

Code Generation

Yes

See Also

Counter Free-Running

Introduced before R2006a

Dashboard Scope

Dashboard Scope

Trace signals during simulation

Library

Dashboard

Description AY

The Dashboard Scope block displays connected signals during simulation on a scope
display.

To view data from signals, double-click the Dashboard Scope block to open the dialog
box. Select signals in the model. The signals appear in the Connection table. Select the
check box next to each signal you want to display in the scope. Click Apply to connect
the signals.

You can also add data cursors to the Dashboard Scope to inspect signal data. To add a
data cursor, select the Dashboard Scope block and right-click. Select Data Cursors >

One from the menu.

To change zoom and pan modes, select the Dashboard Scope block, right-click, and select
the zoom or pan mode you want.

Limitations

The Dashboard Scope block has these limitations, which you can work around.

Limitation Workaround

You cannot save the block connections or Save the model file to SLX format to be able
properties in model files that use the MDL |to save connections and properties.
format.

1-255

1 Blocks — Alphabetical List

1-256

If you turn off streaming for a signal connected to the Dashboard Scope block, then signal
data does not stream to the block. To view signal data again, double-click the Dashboard
Scope block and reconnect the signal.

The External simulation mode is not supported for the Dashboard Scope block.

Data Type Support

The Dashboard Scope block accepts real (not complex) signals of any data type that
Simulink supports, including enumerated data types.

For more information on data types in Simulink, see “ Data Types Supported by
Simulink”.

Dashboard Scope

Parameters and Dialog Box

4 Block Parameters: Dashboard Scope
Dashboard Scope

Traces signals on the dashboard scope during simulation. Select

signals in the model to plot on the dashboard scope.

T-Axis Limits
Time Span: auto
Y-Axis Limits

Min: -3 Max: 3

[

Legend: |Top

¥| Scale axes limits at stop

¥| Show "Double-click to connect" message

oK]| Cancel ||

Help

Apply

.

1-257

1 Blocks — Alphabetical List

1-258

Connection
Select signals to connect and display.

To view data from signals, double-click the Dashboard Scope block to open the dialog
box. Select signals in the model. The signals appear in the Connection table. Select the
check box next to each signal you want to display in the scope. Click Apply to connect
the signals.

Settings

The table has a row for the signals connected to the block. If there are no signals selected
in the model or the block is not connected to any signals, then the table is empty.

T-Axis Limits
Horizontal axis time span.
Settings

Default: auto

Specify this number as a finite, real, double, scalar value. Specify auto for the
Dashboard Scope to set the time span to the model simulation stop time.

Y-Axis Limits

Vertical axis range.

Settings

Default: —3 and 3

Specify this number as a finite, real, double, scalar value.
Dependencies

The Min value must be less than the Max value.

Legend

Position of the line legend.

Dashboard Scope

Settings
Default: Top

Top

Show the legend at the top of the plot.
Right

Show the legend at the right of the plot.
Hide

Do not show the legend.

Scale axes limits at stop

Perform a fit-to-view on the data displayed in the scope when the simulation has stopped.
Settings

Default: On

Y1 On

Perform a fit-to-view on the data displayed in the scope when the simulation has
stopped.

Off

Do not perform a fit-to-view on the data displayed in the scope when the simulation
has stopped.

Show “Double-click to connect” message

Show instructional text if the block is not connected. You can clear the check box to hide
the text when the block is not connected.

Settings
Default: On

41 On

Show the instructional text if the block is not connected.

1-259

1 Blocks — Alphabetical List

Off

Do not show the instructional text when the block is not connected.

Examples

For more information on using blocks from the Dashboard library, see “Tune and
Visualize Your Model with Dashboard Blocks”.

Introduced in R2015a

1-260

Data Store Memory

Data Store Memory

Define data store

Library

Signal Routing

Description

The Data Store Memory block defines and initializes a named shared data store, which is
a memory region usable by Data Store Read and Data Store Write blocks that specify the
same data store name.

The location of the Data Store Memory block that defines a data store determines which
Data Store Read and Data Store Write blocks can access the data store:

+ If the Data Store Memory block is in the top-level system, Data Store Read and Data
Store Write blocks anywhere in the model can access the data store.

+ If the Data Store Memory block is in a subsystem, Data Store Read and Data Store
Write blocks in the same subsystem or in any subsystem below it in the model
hierarchy can access the data store.

Data Store Read or Data Store Write blocks cannot access a Data Store Memory block
that is either in a model that contains a Model block or in a referenced model.

Do not include a Data Store Memory block in a subsystem that a For Each Subsystem
block represents.

Use the Initial value parameter to initialize the data store. Specify a scalar value or an
array of values in the Initial value parameter. The dimensions of the array determine
the dimensionality of the data store. Any data written to the data store must have the
dimensions designated by the Initial value parameter. Otherwise, an error occurs.

1-261

1 Blocks — Alphabetical List

1-262

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. For details, see:

* “Order Data Store Access”

+ “Data Store Diagnostics”

* “Log Data Stores”

You can use Simul ink.Signal objects in addition to, or instead of, Data Store Memory
blocks to define data stores. A data store defined in the base workspace with a signal
object is a global data store. Global data stores are accessible to every model, including
all referenced models. See “Data Stores” for more information.

Data Type Support

The Data Store Memory block stores real or complex signals of these data types:

* Floating point

* Built-in integer
+ Fixed point

* Boolean

* Enumerated

* Bus

The block does not support variable-size signals.

Note: If you specify a bus object as the data type for this block, do not set the minimum
and maximum values for bus data on the block. Simulink ignores these settings. Instead,
set the minimum and maximum values for bus elements of the bus object specified as the
data type. The values should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Data Store Memory

You can use arrays of buses with a Data Store Memory block. For details about defining
and using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Main pane of the Data Store Memory block dialog box appears as follows:

1-263

1 Blocks — Alphabetical List

“# Block Parameters: Data Store Memory ﬁ
DataStoreMemaory
Define @ memory region for use by the Data Store Read and Data Store
Write blocks. All Read and Write blocks that are in the current
(sub)system level or below and have the same data store name will be
able to read from or write to this block.
Main | Signal Attributes | Diagnostics | Logging |
Data store name: A Rename All...
Corresponding Data Store Read/Write blocks: refresh
7] [oK] [Cancel] [Help Apply

Data store name
Specify a name for the data store you are defining with this block. Data Store Read
and Data Store Write blocks with the same name can read from, and write to, the

1-264

Data Store Memory

data store initialized by this block. The name can represent a Data Store Memory
block or a sign object defined to be a data store.

Rename All

Rename the data store everywhere the Data Store Read and Data Store Write blocks
use it in a model.

You cannot use Rename All to rename a data store if you:

Use a Simulink.Signal object in a workspace to control the code generated for
the data store

Use a Simulink.Signal object instead of a Data Store Memory block to define
the data store

You must instead rename the corresponding Simul ink.Signal object from Model
Explorer. For an example, see “Rename Data Store Defined by Signal Object”.

Corresponding Data Store Read/Write blocks
List all the Data Store Read and Data Store Write blocks that have the same
data store name as the current block, and that are in the current system or in

any subsystem below it in the model hierarchy. Double-click a block in this list to
highlight the block and bring it to the foreground.

The Signal Attributes pane of the Data Store Memory block dialog box appears as
follows:

1-265

1 Blocks — Alphabetical List

-

E Elock Parameters: Data Store Memory @

DataStoreMemaory

Define a memory region for use by the Data Store Read and Data Store
Write blocks. All Read and Write blocks that are in the current
(sub)system level or below and have the same data store name will be

able to read from or write to this block.

| Main | Signal Attributes | Diagnostics | Logging |

Initial value: 0

Minimum: [] Maximum: []

Data type: Inherit: auto -
["] Lock output data type setting against changes by the fixed-point tools
Dimensions (-1 to infer from Initial value): -1

Interpret vector parameters as 1-D

Signal type: [auto -
Code Generation
["] Data store name must resolve to Simulink signal object
Fackage: [——— Mone --- *] [Refresh]
Storage class: [huto *]
[OK] [Cancel] [Help] Apply

Initial value
Specify the initial value or values of the data store. The dimensions of this value
determine the dimensions of data that may be written to the data store. The

1-266

Data Store Memory

Minimum parameter specifies the minimum value for this parameter, and the
Maximum parameter specifies the maximum value.

Initial value dimensions must match the dimensions that you specify in the Signal
Attributes > Dimensions parameter, unless the initial value is a MATLAB
structure.

To use this block to initialize a nonvirtual bus signal, specify the initial value as
a MATLAB structure and set the model configuration parameter “Underspecified
initialization detection” to Simplified. For more information about initializing
nonvirtual bus signals using structures, see “Specify Initial Conditions for Bus
Signals”.

Minimum

Specify the minimum value that the block should output. The default value is []
(unspecified). This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set the
minimum value for bus data on the block. Simulink ignores this setting. Instead, set
the minimum values for bus elements of the bus object specified as the data type. For
information on the Minimum property of a bus element, see Simul ink.BusElement.

Simulink uses the minimum value to perform:

* Parameter range checking (see “Check Parameter Values”)
+ Simulation range checking (see “Signal Ranges”)

* Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value is []
(unspecified). This number must be a finite real double scalar value.

Note: If you specify a bus object as the data type for this block, do not set

the maximum value for bus data on the block. Simulink ignores this setting.
Instead, set the maximum values for bus elements of the bus object specified as
the data type. For information on the Maximum property of a bus element, see
Simulink.BusElement.

1-267

1 Blocks — Alphabetical List

Simulink uses the maximum value to perform:

* Parameter range checking (see “Check Parameter Values”)
* Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Data type
Specify the output data type. You can set it to:

* A rule that inherits a data type (for example, Inherit: auto)
* The name of a built-in data type (for example, single)
* The name of a data type object (for example, a Simul ink_NumericType object)

* An expression that evaluates to a data type (for example, Fixdt(1,16,0)). Do
not specify a bus object as the data type in an expression; use Bus: <object
name> to specify a bus data type.

* Bus: <object name>; enter the name of a bus object that you want to use to
define the structure of the bus. The bus must be a nonvirtual bus. If you need
to create or change a bus object, click the Show data type assistant button
and then click the Edit button to the right of the Bus object field to open the
Simulink Bus Editor. For details about the Bus Editor, see “Manage Bus Objects
with the Bus Editor”

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Data type parameter.

See “Control Signal Data Types”.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Signal type
Specify the numeric type, real or complex, of the values in the data store.
Dimensions (-1 to infer from Initial value)

Specify dimensions that match the dimensions of the Initial value dimensions,
unless you specify a MATLAB structure for the initial value. For example, if you use

1-268

Data Store Memory

a MATLAB structure for the initial value, then you need to specify dimensions to
initialize an array of buses with this MATLAB structure.

Interpret vector parameters as 1-D

If you enable this option and specify the Initial value parameter as a column or row
matrix, Simulink initializes the data store to a 1-D array whose elements are equal to
the elements of the row or column vector. See “Determining the Output Dimensions
of Source Blocks”.

Data store must resolve to Simulink signal object

Specify that Simulink software, when compiling the model, searches the model and
base workspace for a Simulink.Signal object having the same name, as described
in “Symbol Resolution”. If Simulink does not find such an object, the compilation
stops, with an error. Otherwise, Simulink compares the attributes of the signal object
to the corresponding attributes of the Data Store Memory block. If the block and the
object attributes are inconsistent, Simulink halts model compilation and displays an
error.

Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Storage class

Select a custom storage class for the signal object. When no Package is
selected, setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Storage type qualifier.

Storage type qualifier
Specify the Simulink Coder storage type qualifier.

See “Discrete Block State Naming in Generated Code” in the Simulink Coder
documentation for more information.

The Diagnostics pane of the Data Store Memory block dialog box appears as follows:

1-269

1 Blocks — Alphabetical List

-

E Elock Parameters: Data Store Memory @
DataStoreMemaory
Define a memory region for use by the Data Store Read and Data Store
Write blocks. All Read and Write blocks that are in the current
(sub)system level or below and have the same data store name will be
able to read from or write to this block.
| Main | Signal Attributes | Diagnostics | Logging
Detect read before write: [warning ']
Detect write after read: [warning ']
Detect write after write: [wa rning b]
OK] [Cancel] [Help Apply

Detect read before write
Select the diagnostic action to take if the model attempts to read data from a data
store to which it has not written data in this time step. See also the “Detect read

1-270

Data Store Memory

before write” diagnostic in the Data Store Memory Block section of the Model
Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

Take no action.
warning

Display a warning.
error

Terminate the simulation and display an error message.

Detect write after read

Select the diagnostic action to take if the model attempts to write data to the data
store after previously reading data from it in the current time step. See also the
“Detect write after read” diagnostic in the Data Store Memory Block section of the
Model Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

Take no action.
warning

Display a warning.
error

Terminate the simulation and display an error message.

Detect write after write

Select the diagnostic action to take if the model attempts to write data to the
data store twice in succession in the current time step. See also the “Detect write
after write” diagnostic in the Data Store Memory Block section of the Model
Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

1-271

1 Blocks — Alphabetical List

Take no action.
warning

Display a warning.
error

Terminate the simulation and display an error message.

The Logging pane of the Data Store Memory block dialog box appears as follows:

1-272

Data Store Memory

-

P

E Elock Parameters: Data Store Memory
DataStoreMemaory

able to read from or write to this block.

| Main | Signal Attributes | Diagnostics | Logging

[C] Log signal data
Logging name

Use signal name

Data
Limit data points to last: |5000

Decimation: 2

==

Define a memory region for use by the Data Store Read and Data Store
Write blocks. All Read and Write blocks that are in the current
(sub)system level or below and have the same data store name will be

0K][Cancel H

Help

Apply

Log signal data

Select this option to save the values of this signal to the MATLAB workspace during

simulation. See “Signal Logging” for details.

1-273

1 Blocks — Alphabetical List

1-274

Logging name

Use this pair of controls, consisting of a list box and an edit field, to specify the name
associated with logged signal data.

Simulink uses the signal name as its logging name by default. To specify a custom
logging name, select Custom from the list box and enter the custom name in the
adjacent edit field.

Data

Use this group of controls to limit the amount of data that Simulink logs for this
signal.

* Limit data points to last: Discard all but the last N data points, where N is the
number that you enter in the adjacent edit field.

* Decimation: Log every Nth data point, where N is the number that you enter in
the adjacent edit field. For example, suppose that your model uses a fixed-step
solver with a step size of 0.1 s. If you select this option and accept the default
decimation value (2), Simulink records data points for this signal at times 0.0,
0.2,0.4, and so on.

For more information, see “Log Data Stores”

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals No

Code Generation Yes

See Also

+ “Data Stores”
+ “Access Data Stores with Simulink Blocks”

- Data Store Read

Data Store Memory

+ Data Store Write
* “Log Data Stores”

Introduced before R2006a

1-275

1 Blocks — Alphabetical List

1-276

Data Store Read

Read data from data store

Library

Signal Routing

-
Description

The Data Store Read block copies data from the named data store to its output. More
than one Data Store Read block can read from the same data store.

The data store from which the data is read is determined by the location of the Data
Store Memory block or signal object that defines the data store. For more information,
see “Data Stores” and Data Store Memory.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. See “Order Data Store Access” and “Data Store
Diagnostics” for details.

Data Type Support

The Data Store Read block can output a real or complex signal of these data types:

* Floating point

* Built-in integer
+ Fixed point

* Boolean

* Enumerated

Data Store Read

* Bus
The block does not support variable-size signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

You can use arrays of buses with a Data Store Read block. For details about defining and
using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Parameters pane of the Data Store Read block dialog box appears as follows:

E Source Block Parameters: Data Store Read @
DataStoreRead

Read values from the specified data store. Use the 'Element Selection' tab to select specific elements to read. If you do
not select any elements, the entire memory region is read.

Farameters Element Selection

Data store name: A
Data store memory block: none

Corresponding Data Store Write blocks: refresh

Sample time: -1

OK H Cancel H Help

Data store name

Specifies the name of the data store from which this block reads data. The adjacent
pull-down list lists the names of Data Store Memory blocks that exist at the same
level in the model as the Data Store Read block or at higher levels. The pulldown list

1-277

1 Blocks — Alphabetical List

1-278

also includes all Simulink.Signal objects in the base and model workspaces. To
change the name, select a name from the pull-down list or enter the name directly in
the edit field.

When Simulink software compiles the model containing this block, Simulink
software searches the model upwards from this block's level for a Data Store Memory
block having the specified data store name. If Simulink software does not find

such a block, it searches the model workspace and the MATLAB workspace for a
Simulink.Signal object having the same name. See “Symbol Resolution” for more
information about the search path.

If Simulink software finds the signal object, it creates a hidden Data Store Memory
block at the model's root level having the properties specified by the signal object and
an initial value of 0. If Simulink software finds neither the Data Store Memory block
nor the signal object, it halts the compilation and displays an error.

Data store memory block

This field lists the Data Store Memory block that initialized the store from which this
block reads.

Data store write blocks

This parameter lists all the Data Store Write blocks with the same data store name
as this block that are in the same (sub)system or in any subsystem below it in the
model hierarchy. Double-click any entry on this list to highlight the block and bring it
to the foreground.

Sample time

The sample time, which controls when the block reads from the data store. A value of
-1 indicates that the sample time is inherited. See “ Specify Sample Time” for more
information.

The Element Selection pane of the Data Store Read block dialog box appears as
follows:

Data Store Read

ﬂ Source Block Parameters: Data Store Read @
DataStoreRead

Read values from the specified data store. Use the 'Element Selection' tab to select specific elements to read. If you do
not select any elements, the entire memory region is read.

Element Selection

Elements in the array Selected Element(s) Up
e

Down

Remove

Specify element(s) to select:

[oK H Cancel H Help]

Use the Element Selection pane to select a subset of the bus or matrix elements
defined for the associated data store. The Data Store Read block icon reflects the
elements that you specify. For details, see “Accessing Specific Bus and Matrix Elements”.
Elements in the array or Signals in the bus (Prompt is specific to the type of data.)

For bus signals, lists the elements in the associated data store. The list displays the
maximum dimensions for each element, in parentheses.

For data stores with a bus data type, you can expand the tree to view the bus
elements. For data stores with arrays, you can read the whole data store, or you can
specify one or more elements of the whole data store.

You can select an element and then use one of the following approaches:

* Click Select>> to display that element (and all its subelements) in the Selected
element(s) list.

* Use the Specify element(s) to select edit box to specify the bus or matrix
elements that you want to select for reading. Then click Select>>.

To refresh the display to reflect modifications to the bus or matrix used in the data
store, click Refresh.

1-279

1 Blocks — Alphabetical List

Specify element(s) to select
Enter a MATLAB expression to define the specific element that you want to read. For
example, for a data store named DSM that has maximum dimensions of [3,5], you

could enter expressions such as DSM(2, 4) or DSM([1 3], 2) in the edit box and
then click Select>>.

To apply the element selection, click OK.
Selected Element(s)
Displays the elements that you select. The Data Store Read block icon displays a port

for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the
list and click Up or Down. Changing the order of the elements in the list changes the
order of the ports. To remove an element, click Remove.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter

Multidimensional Signals Yes

Variable-Size Signals No

Code Generation Yes

See Also

* “Data Stores”

* “Rename Data Stores”

+ “Access Data Stores with Simulink Blocks”
+ Data Store Memory

+ Data Store Write

Introduced before R2006a

1-280

Data Store Write

Data Store Write

Write data to data store

Library

Signal Routing

Description

The Data Store Write block copies the value at its input to the named data store. Each
write operation performed by a Data Store Write block writes over the data store,
replacing the previous contents.

The data store to which this block writes is determined by the location of the Data Store
Memory block or signal object that defines the data store. For more information, see
“Data Stores” and Data Store Memory. The size of the data store is set by the signal
object or the Data Store Memory block that defines and initializes the data store. Each
Data Store Write block that writes to that data store must write the same amount of
data.

More than one Data Store Write block can write to the same data store. However, if
two Data Store Write blocks attempt to write to the same data store during the same
simulation step, results are unpredictable.

Obtaining correct results from data stores requires ensuring that data store reads and
writes occur in the expected order. For details, see “Order Data Store Access” and “Data

Store Diagnostics”.

You can log the values of a local or global data store data variable for all the steps in a
simulation. For details, see “Log Data Stores”.

1-281

1 Blocks — Alphabetical List

1-282

Data Type Support

The Data Store Write block accepts a real or complex signal of these data types:

Floating point
Built-in integer
Fixed point
Boolean
Enumerated
Bus

The block does not support variable-size signals.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

You can use an array of buses with a Data Store Write block. For details about defining
and using an array of buses, see “Combine Buses into an Array of Buses”.

Parameters and Dialog Box

The Parameters pane of the Data Store Write block dialog box appears as follows:

Data Store Write

E Sink Block Parameters: Data Store Write @
DataStoreWrite

Write values to the specified data store. Use the 'Element Assignment' tab to assign values to specific elements. If
you do not select any elements, the write operation is performed on the entire memaory region.

Parameters Element Assignment

Data store name: A -
Data store memory block: none

Corresponding Data Store Read blocks: refresh

Sample time: -1

[OK H Cancel H Help Apply

Data store name

Specifies the name of the data store to which this block writes data. The adjacent
pull-down list lists the names of Data Store Memory blocks that exist at the same
level in the model as the Data Store Write block or at higher levels. The pulldown list
also includes all Simulink.Signal objects in the base and model workspaces. To
change the name, select a name from the pull-down list or enter the name directly in
the edit field.

When Simulink software compiles the model containing this block, Simulink software
searches the model upwards from this block's level for a Data Store Memory block
having the specified data store name. If Simulink does not find such a block, it
searches the model workspace and the MATLAB workspace for a Simulink.Signal
object having the same name. If Simulink software finds neither the Data Store
Memory block nor the signal object, it halts the compilation and displays an error.
See “Symbol Resolution” for more information about the search path.

If Simulink finds a signal object, it creates a hidden Data Store Memory block at the
model's root level having the properties specified by the signal object and an initial
value set to a matrix of zeros. The dimensions of that matrix are inherited from the
Dimensions property of the signal object.

Data store memory block

1-283

1 Blocks — Alphabetical List

This field lists the Data Store Memory block that initialized the store to which this
block writes.

Data store read blocks

This parameter lists all the Data Store Read blocks with the same data store name as
this block that are in the same (sub)system or in any subsystem below it in the model
hierarchy. Double-click any entry on this list to highlight the block and bring it to the

foreground.
Sample time

Specify the sample time that controls when the block writes to the data store. A value
of -1 indicates that the sample time is inherited. See “ Specify Sample Time” for
more information.

The Element Assignment pane of the Data Store Write block dialog box appears as
follows:

W Sink Block Parameters: Data Store Write @
DataStoreWrite

Write values to the specified data store. Use the 'Element Assignment' tab to assign values to specific elements. If
you do not select any elements, the write operation is performed on the entire memory region.

Element Assignment

Elements in the array Assigned Element(s) up
Lp
Down
Remove
Specify element(s) to assign:
[oK] [Cancel] [Help] Apply

Use the Element Assignment pane to assign a subset of the bus or matrix elements
defined for writing to the associated data store. The Data Store Write block icon reflects
the elements that you specify. For details, see “Accessing Specific Bus and Matrix
Elements”.

1-284

Data Store Write

Elements in the array or Signals in the bus (Prompt is specific to the type of data.)

For bus signals, lists the elements in the associated data store. The list displays the
maximum dimensions for each element, in parentheses.

For data stores with a bus data type, you can expand the tree to view the bus
elements. For data stores with arrays, you can write the whole data store, or you can
assign one or more elements to the whole data store.

You can select an element and then use one of the following approaches:

* Click Select>> to display that element (and all its subelements) in the Assigned
element(s) list.

+ Use the Specify element(s) to assign edit box to specify the bus or matrix
elements that you want to select for reading. Then click Select>>.

To refresh the display to reflect modifications to the bus or matrix used in the data
store, click Refresh.
Specify element(s) to assign

Enter a MATLAB expression to define the specific element that you want to write.
For example, for a data store named DSM that has maximum dimensions of [3,5],
you could enter expressions such as DSM(2, 4) or DSM([1 3], 2) in the edit box.
Then click Select>>.

To apply the element selection, click OK.
Assigned Element(s)

Displays the elements that you selected for assignment. The Data Store Write block
icon displays a port for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the
list and click Up or Down. Changing the order of the elements in the list changes the
order of the ports. To remove an element, click Remove.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Specified in the Sample time parameter

1-285

1 Blocks — Alphabetical List

1-286

Multidimensional Signals Yes
Variable-Size Signals No
Code Generation Yes

See Also

“Data Stores”

“Rename Data Stores”

“Access Data Stores with Simulink Blocks”

Data Store Memory
Data Store Read
“Log Data Stores”

Introduced before R2006a

Data Type Conversion

Data Type Conversion

Convert input signal to specified data type

Library

Signal Attributes

Conwert o

Description

The Data Type Conversion block converts an input signal of any Simulink data type to
the data type that you specify.

The input can be any real- or complex-valued signal. If the input is real, the output is
real. If the input is complex, the output is complex.

Note To control the output data type by specifying block parameters, or to inherit a data
type from a downstream block, use the Data Type Conversion block. To inherit a data
type from a different signal in the model, use the Data Type Conversion Inherited
block.

Convert Fixed-Point Signals

When you convert between fixed-point data types, the Input and output to have equal
parameter controls block behavior. If neither input nor output use fixed-point scaling,
because they are not of a fixed-point data type or have trivial fixed-point scaling, this
parameter does not change the behavior of the block. For more information about fixed-
point numbers, see “Fixed-Point Numbers” in the Fixed-Point Designer documentation.

1-287

1 Blocks — Alphabetical List

1-288

To convert a signal from one data type to another by attempting to preserve the real-
world value of the input signal, select Real World Value (RWV), the default setting.
The block accounts for the scaling of the input and output and, within the limits of the
specified data types, attempts to generate an output of equal real-world value.

To change the real-world value of the input signal by performing a scaling
reinterpretation of the stored integer value, select Stored Integer (SI). Within the
limits of the specified data types, the block attempts to preserve the stored integer value
of the signal during conversion. A best practice is to specify input and output data types
using the same word length and signedness so that the block changes only the scaling
of the signal. Specifying a different signedness or word length for the input and output
could produce unexpected results such as range loss or unexpected sign extensions. For
an example, see “Reinterpret Signal Using a Fixed-Point Data Type” on page 1-313.

If you select Stored Integer (SI1), the block does not perform a lower-level bit
reinterpretation of a floating-point input signal. For example, if the input is of the data
type single and has value 5, the bits that store the input in memory are given in
hexadecimal by the following command.

num2hex(single(5))

40a00000

However, the Data Type Conversion block does not treat the stored integer value as
40a00000, but instead as the real-world value, 5. After conversion, the stored integer
value of the output is 5.

Cast Enumerated Signals

Use a Data Type Conversion block to cast enumerated signals as follows:

1 To cast a signal of enumerated type to a signal of any numeric type.

The underlying integers of all enumerated values input to the Data Type Conversion
block must be within the range of the numeric type. Otherwise, an error occurs
during simulation.

2 To cast a signal of any integer type to a signal of enumerated type.

The value input to the Data Type Conversion block must match the underlying value
of an enumerated value. Otherwise, an error occurs during simulation.

Data Type Conversion

You can enable the block’s Saturate on integer overflow parameter so that
Simulink uses the default value of the enumerated type when the value input to
the block does not match the underlying value of an enumerated value. See “T'ype
Casting for Enumerations”.

You cannot use a Data Type Conversion block in the following cases:

* To cast a non-integer numeric signal to an enumerated signal.

* To cast a complex signal to an enumerated signal, regardless of the data types of the
complex signal’s real and imaginary parts.

See “Simulink Enumerations” for information on working with enumerated types.

Data Type Support

The Data Type Conversion block handles any data type that Simulink supports,
including fixed-point and enumerated data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-289

1 Blocks — Alphabetical List

1-290

Parameters and Dialog Box

*& Function Block Parameters: Data Type Conversion ﬁ

Data Type Conversion

Convert the input to the data type and scaling of the output.

The conversion has two possible goals. One goal is to have the Real World
Values of the input and the output be equal. The other goal is to have the
Stored Integer Values of the input and the output be equal. Overflows and
guantization errors can prevent the goal from being fully achieved.

Farameters
Output minimum: Output maximum:
[[l

Output data type: Inherit: Inherit via back propagation -
Data Type Assistant

Mode: [Inherit *] [Inherit via back propagation *]

["] Lock output data type setting against changes by the fixed-point tools

Input and output to have equal: [Real World Value [RWW) ']

Integer rounding mode: [Flcn:-r ']

["] saturate on integer overflow

J OK H Cancel H Help Apply

Data Type Conversion

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1-291

1 Blocks — Alphabetical List

1-292

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

Y On
Locks the output data type setting for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string

Value: "off" | "on"
Default: "off"

See Also

For more information, see “Use Lock Output Data Type Setting”.

Data Type Conversion

Input and output to have equal

Specify which type of input and output must be equal, in the context of fixed point data
representation.

Settings
Default: Real World Value (RWV)

Real World Value (RWV)

Specifies the goal of making the Real World Value (RWV) of the input equal to
the Real World Value (RWV) of the output.

Stored Integer (SI)

Specifies the goal of making the Stored Integer (SI) value of the input equal to
the Stored Integer (SI) value of the output.

Command-Line Information

For the command-line information, see “Block-Specific Parameters” on page 6-96.

1-293

1 Blocks — Alphabetical List

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB cei l function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information

Parameter: RndMeth

Type: string

Value: "Ceiling” | "Convergent” | "Floor" | "Nearest” | "Round” |
Simplest” | "Zero

Default: "Floor*

1-294

Data Type Conversion

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1-295

1 Blocks — Alphabetical List

1-296

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

Y1 On

Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

Off

Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.

Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information

Parameter: SaturateOnlntegerOverflow
Type: string

Value: "off" | "on*

Default: "off"

Data Type Conversion

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

1-297

1 Blocks — Alphabetical List

1-298

Output minimum

Lower value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.
Simulink uses the minimum to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

* Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

+ Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string

Value: "[]1°

Default: []°

Data Type Conversion

Output maximum

Upper value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.
Simulink uses the maximum value to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

* Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

+ Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string

Value: "[]1°

Default: []°

1-299

1 Blocks — Alphabetical List

Output data type

Specify the output data type.
Settings
Default: Inherit: Inherit via back propagation

Inherit: Inherit via back propagation

Use data type of the driving block.
double

Output data type is double.
single

Output data type is single.
int8

Output data type is Int8.
uint8

Output data type is uint8.
intl6

Output data type is intl6.
uintl6

Output data type is uintl6.
int32

Output data type is int32.
uint32

Output data type is uint32.
boolean

Output data type is boolean. The Data Type Conversion block converts real, nonzero
numeric values (including NaN and Inf) to boolean true (1).

fixdt(1,16,0)

Output data type is fixed point Fixdt(1,16,0).
fixdt(1,16,270,0)

Output data type is fixed point Fixdt(1,16,270,0).

1-300

Data Type Conversion

Enum: <class name>

Use an enumerated data type, for example, Enum: BasicColors.
<data type expression>

Use a data type object, for example, Simul ink.NumericType.

Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

For more information, see “Control Signal Data Types”.

1-301

1 Blocks — Alphabetical List

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables Inherit via back
propagation.

Built in

Built-in data types. Selecting Bui It 1n enables a second menu/text box to the right.
Select one of the following choices:

+ double (default)

+ single
+ Int8

* uint8

+ Intlé

* uintl6
+ Int32

* uint32
* boolean

Fixed point
Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to
the right, where you can enter the class name.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

1-302

Data Type Conversion

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

See Also

See “Specify Data Types Using Data Type Assistant”.

1-303

1 Blocks — Alphabetical List

1-304

Data type override

Specify data type override mode for this signal.
Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off
Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built inor Fixed point.

Data Type Conversion

Signedness

Specify whether you want the fixed-point data as signed or unsigned.

Settings
Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies
Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-305

1 Blocks — Alphabetical List

Word length

Specify the bit size of the word that holds the quantized integer.
Settings

Default: 16

Minimum: O

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-306

Data Type Conversion

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings
Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.
Dependencies
Selecting Mode > Fixed point enables this parameter.
Selecting Binary point enables:

* Fraction length

+ Calculate Best-Precision Scaling
Selecting Slope and bias enables:

+ Slope
* Bias

+ Calculate Best-Precision Scaling
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-307

1 Blocks — Alphabetical List

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: O

Binary points can be positive or negative integers.
Dependencies

Selecting Scaling > Binary point enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-308

Data Type Conversion

Slope

Specify slope for the fixed-point data type.

Settings

Default: 20

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: O

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

Real-World Values and Stored Integers

The example model ex_data_type_conversion_rwv_si uses Data Type Conversion blocks
to show the meaning of the real-world value and the stored integer of a signal. For

1-309

1 Blocks — Alphabetical List

1-310

basic information about fixed-point scaling, see “Scaling” in the Fixed-Point Designer
documentation.

Conversion Between Fixed-Point Data Types

The Fixed-Point Constant block represents the real-world value 15 by using a fixed-point

data type with binary-point scaling 2°°. Due to the scaling, the output signal uses a stored
integer value of 480.

The model uses Data Type Conversion blocks to convert the signal to a fixed-point data
type with binary-point scaling 2.

* The Fixed to Fixed: Preserve RWV block converts the input signal by preserving the
real-world value, 15. The parameter Input and output to have equal is set to Real
World Value (RWV).

The output signal has the same real-world value as the input, that is, 15. Due to the
fixed-point scaling, the output uses a stored integer value of 60.

+ The Fixed to Fixed: Preserve SI block converts the input signal by preserving the
stored integer value, 480. The parameter Input and output to have equal is set to
Stored Integer (SI).

The output signal uses the same stored integer value as the input, that is, 480. Due to
the fixed-point scaling, the output has a real-world value of 120.

The figure shows the conversion mechanism for the two blocks.

Data Type Conversion

Scaling: 2 Scaling: 2

S|: 480 Sl: 60 +—
RWV: 15 RWV: 120 «—
Scaling: 2 Scaling: 2

SI: 480 — 3| sias0 B

Conversion Between Floating-Point and Fixed-Point Data Type

The Double Constant block represents the real-world value 15 by using the floating-point
data type double. The output signal does not use fixed-point scaling.

The model uses Data Type Conversion blocks to convert the double signal to a fixed-
point data type with binary-point scaling 2.

* The Float to Fixed: Preserve RWV block converts the input signal by preserving the

real-world value, 15. The output signal has the same real-world value. Due to the
fixed-point scaling, the output uses a stored integer value of 60.

1-311

1 Blocks — Alphabetical List

* The Float to Fixed: Preserve SI block converts the input signal by attempting to
preserve the stored integer value. However, the block does not use the underlying bits
that store the floating-point signal in memory. Instead, the block uses the real-world
value of the input, 15, as the stored integer of the output signal. Due to the fixed-
point scaling, the real-world value of the output is 3.75.

The figure shows the conversion mechanism for the two blocks. The blocks also use these
mechanisms if the input uses the floating-point data type single.

RWW: 15 —* RW\W 15
Scaling: 2
31: 60 +—

RWW: 15] RWW: 3.75 4—
Scaling: 2
SI: 15

Y

1-312

Data Type Conversion

Reinterpret Signal Using a Fixed-Point Data Type

Suppose your hardware uses the data type uint8 to store data from a temperature
sensor. Also suppose that the minimum stored integer value O represents —20 degrees
Celsius while the maximum 255 represents 60 degrees. The following model uses a Data
Type Conversion block to convert the stored integer value of the sensor data to degrees
Celsius.

In1

N
uintd input
Convert 1984
" e >
Data Type Conversion fixed-point output (Celsius)
8 bits
slope 80/255
bias-20

The Data Type Conversion block parameter Input and output to have equal is set to
Stored Integer (Sl). The block output signal is of a fixed-point data type with word
length 8, slope 80/255, and bias -20.

The Data Type Conversion block reinterprets the integer input, 127, as a Celsius output,
19.84 degrees. The block output uses the specified slope and bias to scale the stored
integer of the input.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Sample Time Inherited from driving block

Direct Feedthrough Yes

1-313

1 Blocks — Alphabetical List

1-314

Multidimensional Signals Yes
Variable-Size Signals Yes
Zero-Crossing Detection No

Code Generation Yes

See Also

Data Type Conversion Inherited

Related Examples
. “Control Signal Data Types”

More About

. “About Data Types in Simulink”

. “Fixed Point”

Introduced before R2006a

| Data Type Propagation

Data Type Conversion Inherited

Data Type Conversion Inherited

Convert from one data type to another using inherited data type and scaling

Library

Signal Attributes

Convert b

Description

The Data Type Conversion Inherited block forces dissimilar data types to be the same.
The first input is used as the reference signal and the second input is converted to the
reference type by inheriting the data type and scaling information. (See “How to Rotate a
Block” in the Simulink documentation for a description of the port order for various block
orientations.) Either input undergoes scalar expansion such that the output has the same
width as the widest input.

Inheriting the data type and scaling provides these advantages:

+ It makes reusing existing models easier.

+ It allows you to create new fixed-point models with less effort since you can avoid the
detail of specifying the associated parameters.

Data Type Support

The Data Type Conversion Inherited block accepts signals of the following data types:
* Floating point

* Built-in integer

* Fixed point

* Boolean

1-315

1 Blocks — Alphabetical List

* Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

-

“& Function Block Parameters: Data Type Conversion Inherited Iﬁ

Conversion Inherited (mask) (link)

Convert the second input to the data type and scaling of the first input.

The conversion has two possible goals. One goal is to have the Real World
Values of the input and the output be equal. The other goal is to have the

Stored Integer Values of the input and the output be equal. Cverflows and
quantization errors can prevent the goal from being fully achieved.

Farameters
Input and Output to have equal: [Real World Value ']
Integer rounding mode: [Floor ']

[saturate to max or min when overflows occur

J OK][Cancel H Help] Apply

Input and Output to have equal

Specify whether the Real World Value (RWV) or the Stored Integer (SI)
of the input and output should be the same. Refer to Description in the Data Type
Conversion block reference page for more information about these choices.

Integer rounding mode

1-316

Data Type Conversion Inherited

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur

Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

See Also

Data Type Conversion | Data Type Propagation

Related Examples
. “Control Signal Data Types”

More About

. “About Data Types in Simulink”
. “Fixed Point”

Introduced before R2006a

1-317

1 Blocks — Alphabetical List

1-318

Data Type Duplicate

Force all inputs to same data type

Library

Signal Attributes

Same
LT

Description

The Data Type Duplicate block forces all inputs to have exactly the same data type.
Other attributes of input signals, such as dimension, complexity, and sample time, are
completely independent.

You can use the Data Type Duplicate block to check for consistency of data types among
blocks. If all signals do not have the same data type, the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to the block controls
the data type for all other blocks. The other blocks are set to inherit their data types via
back propagation.

The block is also used in a user created library. These library blocks can be placed in any
model, and the data type for all library blocks are configured according to the usage in
the model. To create a library block with more complex data type rules than duplication,
use the Data Type Propagation block.

Data Type Support

The Data Type Duplicate block accepts signals of the following data types:

* Floating point

* Built-in integer

Data Type Duplicate

* Fixed point
* Boolean

* Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

e

E Sink Block Pararmeters: Data Type Duplicate @
DataTypeDuplicate

Force all inputs to have the exact same data type.

Parameters

Mumber of input ports:

2

0K]| Cancel || Help Apply

Number of input ports

Specify the number of inputs to this block.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time Inherited from driving block

Multidimensional Signals Yes

1-319

1 Blocks — Alphabetical List

Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes
See Also

Data Type Conversion | Data Type Propagation

Related Examples
“Control Signal Data Types”

More About

“About Data Types in Simulink”
“Fixed Point”

Introduced before R2006a

1-320

Data Type Propagation

Data Type Propagation

Set data type and scaling of propagated signal based on information from reference
signals

Library

Signal Attributes
Fefl
R efZ
Frop
Description

The Data Type Propagation block allows you to control the data type and scaling of
signals in your model. You can use this block in conjunction with fixed-point blocks that
have their Output data type parameter configured to Inherit: Inherit via back
propagation.

The block has three inputs: Refl and Ref2 are the reference inputs, while the Prop input
back propagates the data type and scaling information gathered from the reference
inputs. This information is then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type and scaling
information. For example, you can:

+ Use the number of bits from the Refl reference signal, or use the number of bits from
widest reference signal.

+ Use the range from the Ref2 reference signal, or use the range of the reference signal
with the greatest range.

+ Use a bias of zero, regardless of the biases used by the reference signals.

+ Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the Propagated data type
parameter list. If the parameter list is configured as Specify via dialog, then

1-321

1 Blocks — Alphabetical List

1-322

you manually specify the data type via the Propagated data type edit field. If the
parameter list is configured as Inherit via propagation rule, then you must use
the parameters described in “Parameters and Dialog Box” on page 1-323.

You specify how scaling information is propagated with the Propagated scaling
parameter list. If the parameter list is configured as Specify via dialog, then you
manually specify the scaling via the Propagated scaling edit field. If the parameter list
is configured as Inherit via propagation rule, then you must use the parameters
described in “Parameters and Dialog Box” on page 1-323.

After you use the information from the reference signals, you can apply a second level of
adjustments to the data type and scaling by using individual multiplicative and additive
adjustments. This flexibility has a variety of uses. For example, if you are targeting

a DSP, then you can configure the block so that the number of bits associated with a
MAC (multiply and accumulate) operation is twice as wide as the input signal, and has a
certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force the computed
number of bits to a useful value. For example, if you are targeting a 16-bit micro, then
the target C compiler is likely to support sizes of only 8 bits, 16 bits, and 32 bits. The
block will force these three choices to be used. For example, suppose the block computes a
data type size of 24 bits. Since 24 bits is not directly usable by the target chip, the signal
is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals. This makes it
easier to create designs that are easily retargeted from fixed-point chips to floating-point
chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful subsystems
that will be properly configured based on the connected signals. Without this data type
propagation process, a subsystem that you use from a library will almost certainly not
work as desired with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can eliminate the
manual intervention in many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to bottom. Additionally:

* Double-precision reference inputs have precedence over all other data types.

Data Type Propagation

+ Single-precision reference inputs have precedence over integer and fixed-point data
types.

* Multiplicative adjustments are carried out before additive adjustments.

* The number of bits is determined before the precision or positive range is inherited
from the reference inputs.

Data Type Support

The Data Type Propagation block accepts signals of the following data types:

* Floating-point
* Built-in integer
* Fixed-point

* Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Propagated type pane of the Data Type Propagation block dialog box appears as
follows:

1-323

1 Blocks — Alphabetical List

1-324

-

P

E Sink Block Pararmeters: Data Type Propagation @
Data Type Propagation (mask)

Set the Data Type and Scaling of the propagated signal based on information
from the reference signals.

MNotes:

1) tems closer to the top of the dialog have higher priority/precedence.

a) Reference inputs of type double have priority over all others.

b) Singles have priority over integer and fixed point data types.

c) Multiplicative adjustments are carried out before additive adjustments.

d) Number-of-Bits is determined before the precision or positive-range is
inherited from the reference signals.

2) PosRange is one bit higher than the exact maximum positive range of the
signal.

3) The computed Mumber-of-Bits is promoted to the smallest allowable value
that is greater than or equal. If none exists, then error.

Propagated type | Propagated scaling |

1. Propagated data type: [lnherit via propagation rule T]
1.1. If any reference input is double, output is: [dnuble T]
1.2. If any reference input is single, output is: [single T]
1.3. Is-Signed: |IsSignedl or IsSigned2 T]
1.4.1. Number-of-Bits: Base [max[[NurnE-itsl MNumBits2]) *]

1.4.2. Number-of-Bits: Multiplicative adjustment
1

1.4.3. Number-of-Bits: Additive adjustment

0

1.4.4. Number-of-Bits: Allowrable final values

1:128

DK][Cancel H Help Apply

Data Type Propagation

Propagated data type

Use the parameter list to propagate the data type via the dialog box, or inherit the
data type from the reference signals. Use the edit field to specify the data type via the

dialog box.
If any reference input is double, output is

Specify single or double. This parameter makes it easier to create designs that are
easily retargeted from fixed-point chips to floating-point chips or vice versa.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.
If any reference input is single, output is

Specify single or double. This parameter makes it easier to create designs that are
easily retargeted from fixed-point chips to floating-point chips or visa versa.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Is-Signed
Specify the sign of Prop as one of the following values:

Parameter Value Description

IsSignedl Prop is a signed data type if Refl is a signed data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed data type.

IsSignedl or Prop is a signed data type if either Refl or Ref2 are signed

IsSigned2 data types.

TRUE Refl and Ref2 are ignored, and Prop is always a signed data
type.

FALSE Refl and Ref2 are ignored, and Prop is always an unsigned
data type.

For example, if the Refl signal is uFix(16), the Ref2 signal is sFix(16), and the
Is-Signed parameter is 1sSignedl or IsSigned2, then Prop is forced to be a
signed data type.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

1-325

1 Blocks — Alphabetical List

Number-of-bits: Base
Specify the number of bits used by Prop for the base data type as one of the following

values:
Parameter Value Description
NumBitsl The number of bits for Prop is given by the number of
bits for Refl.
NumBits2 The number of bits for Prop is given by the number of
bits for Ref2.
max([NumBitsl The number of bits for Prop is given by the reference
NumBits2]) signal with largest number of bits.
min([NumBitsl The number of bits for Prop is given by the reference
NumBits2]) signal with smallest number of bits.
NumBitsl+NumBits2 The number of bits for Prop is given by the sum of the
reference signal bits.

For more information about the base data type, refer to Targeting an Embedded
Processor in the Simulink Fixed Point™ documentation.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Number-of-bits: Multiplicative adjustment

Specify the number of bits used by Prop by including a multiplicative adjustment
that uses a data type of double. For example, suppose you want to guarantee that
the number of bits associated with a multiply and accumulate (MAC) operation is
twice as wide as the input signal. To do this, you configure this parameter to the

value 2.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Number-of-bits: Additive adjustment

Specify the number of bits used by Prop by including an additive adjustment that
uses a data type of double. For example, if you are performing multiple additions
during a MAC operation, the result might overflow. To prevent overflow, you can
associate guard bits with the propagated data type. To associate four guard bits, you
specify the value 4.

1-326

Data Type Propagation

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

Number-of-bits: Allowable final values

Force the computed number of bits used by Prop to a useful value. For example, if
you are targeting a processor that supports only 8, 16, and 32 bits, then you configure
this parameter to [8,16,32]. The block always propagates the smallest specified
value that fits. If you want to allow all fixed-point data types, you would specify the
value 1:128.

This parameter is visible only when you set Propagated data type to Inherit
via propagation rule.

The Propagated scaling pane of the Data Type Propagation block dialog box appears as
follows:

1-327

1 Blocks — Alphabetical List

P

E Sink Block Pararmeters: Data Type Propagation @
Data Type Propagation (mask)

Set the Data Type and Scaling of the propagated signal based on information
from the reference signals.

MNotes:

1) tems closer to the top of the dialog have higher priority/precedence.

a) Reference inputs of type double have priority over all others.

b) Singles have priority over integer and fixed point data types.

c) Multiplicative adjustments are carried out before additive adjustments.

d) Number-of-Bits is determined before the precision or positive-range is
inherited from the reference signals.

2) PosRange is one bit higher than the exact maximum positive range of the
signal.

3) The computed Mumber-of-Bits is promoted to the smallest allowable value
that is greater than or equal. If none exists, then error.

| Propagated type | Propagated scaling

2. Propagated scaling: [Inherit via propagation rule T]

2.1.1. Slope: Base [min[[SIopel Slope2]) T]

2.1.2. Slope: Multiplicative adjustment
1

2.1.3. Slope: Additive adjustment
0

2.2.1. Bias: Base |Biasl -

2.2.2. Bias: Multiplicative adjustment:
1

2.2.3. Bias: Additive adjustment:
0

DK][Cancel H Help Apply

1-328

Data Type Propagation

Propagated scaling

Use the parameter list to propagate the scaling via the dialog box, inherit the scaling
from the reference signals, or calculate the scaling to obtain best precision.

Propagated scaling (Slope or [Slope Bias])

Specify the scaling as either a slope or a slope and bias.

This parameter is visible only when you set Propagated scaling to Specify via

dialog.

Values used to determine best precision scaling

Specify any values to be used to constrain the precision, such as the upper and lower
limits on the propagated input. Based on the data type, the scaling will automatically
be selected such that these values can be represented with no overflow error and

minimum quantization error.

This parameter is visible only when you set Propagated scaling to Obtain via

best precision.

Slope: Base

Specify the slope used by Prop for the base data type as one of the following values:

Parameter Value Description
Slopel The slope of Prop is given by the slope of Ref1.
Slope2 The slope of Prop is given by the slope of Ref2.

max([Slopel Slope?])

The slope of Prop is given by the maximum slope of
the reference signals.

min([Slopel Slope2])

The slope of Prop is given by the minimum slope of
the reference signals.

Slopel*Slope2 The slope of Prop is given by the product of the
reference signal slopes.

Slopel/Slope2 The slope of Prop is given by the ratio of the Refl
slope to the Ref2 slope.

PosRangel The range of Prop is given by the range of Refl.

PosRange?2 The range of Prop is given by the range of Ref2.

max([PosRangel The range of Prop is given by the maximum range of

PosRangeZ2]) the reference signals.

1-329

1 Blocks — Alphabetical List

1-330

Parameter Value Description

min([PosRangel The range of Prop is given by the minimum range of

PosRangeZ2]) the reference signals.

PosRangel*PosRange?2 The range of Prop is given by the product of the
reference signal ranges.

PosRangel/PosRange2 The range of Prop is given by the ratio of the Refl
range to the Ref2 range.

You control the precision of Prop with Slopel and Slope2, and you control the
range of Prop with PosRangel and PosRange2. Additionally, PosRangel and
PosRange2 are one bit higher than the maximum positive range of the associated
reference signal.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Slope: Multiplicative adjustment

Specify the slope used by Prop by including a multiplicative adjustment that uses a
data type of double. For example, if you want 3 bits of additional precision (with a
corresponding decrease in range), the multiplicative adjustment is 2°-3.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Slope: Additive adjustment

Specify the slope used by Prop by including an additive adjustment that uses a data
type of double. An additive slope adjustment is often not needed. The most likely
use 1s to set the multiplicative adjustment to O, and set the additive adjustment to
force the final slope to a specified value.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Base

Specify the bias used by Prop for the base data type. The parameter values are
described as follows:

Parameter Value Description
Biasl The bias of Prop is given by the bias of Ref1.
Bias2 The bias of Prop is given by the bias of Ref2.

Data Type Propagation

Parameter Value Description

max([Biasl Bias2]) |The bias of Prop is given by the maximum bias of the
reference signals.

min([Biasl Bias2]) |The bias of Prop is given by the minimum bias of the
reference signals.

Biasl*Bias2 The bias of Prop is given by the product of the reference
signal biases.

Biasl/Bias2 The bias of Prop is given by the ratio of the Refl bias to
the Ref2 bias.

Biasl+Bias2 The bias of Prop is given by the sum of the reference
biases.

Biasl-Bias2 The bias of Prop is given by the difference of the reference
biases.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative adjustment that uses a
data type of double.
This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Bias: Additive adjustment
Specify the bias used by Prop by including an additive adjustment that uses a data
type of double.

If you want to guarantee that the bias associated with Prop is zero, you should
configure both the multiplicative adjustment and the additive adjustment to O.

This parameter is visible only when you set Propagated scaling to Inherit via
propagation rule.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

1-331

1 Blocks — Alphabetical List

1-332

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals Ye
Zero-Crossing Detection No
Code Generation Yes
See Also

Data Type Conversion | Data Type Conversion Inherited
Duplicate

Related Examples
. “Control Signal Data Types”

More About

. “About Data Types in Simulink”
. “Fixed Point”

Introduced before R2006a

| Data Type

Data Type Scaling Strip

Data Type Scaling Strip

Remove scaling and map to built in integer

Library

Signal Attributes

Sealing
Strip

o

Description

The Scaling Strip block strips the scaling off a fixed point signal. It maps the input
data type to the smallest built in data type that has enough data bits to hold the input.
The stored integer value of the input is the value of the output. The output always has
nominal scaling (slope = 1.0 and bias = 0.0), so the output does not make a distinction
between real world value and stored integer value.

Data Type Support

The Data Type Scaling Strip block accepts signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-333

1 Blocks — Alphabetical List

Parameters and Dialog Box

i =

E Function Block Pararneters: Data Type Scaling Strip @
Scaling Strip (mask) (link)

This block strips the scaling off a fixed point signal. It maps the input
data type to the smallest built-in data type that has sufficient bits to
hold the input. The stored Integer Value of the input will be the value
of the output. The output always has nominal scaling (slope = 1.0
and bias = 0.0}, so the output does not have a distinction between
Real World Value and Stored Integer Value.

[0K] | Cancel | | Help Apply

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-

Point

Direct Feedthrough Yes

Multidimensional Signals Yes

Variable-Size Signals Yes

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

1-334

Dead Zone

Dead Zone

Provide region of zero output

Library

Discontinuities

Description

The Dead Zone block generates zero output within a specified region, called its dead zone.
You specify the lower limit (LL) and upper limit (UL) of the dead zone as the Start of
dead zone and End of dead zone parameters, respectively. The block output depends
on the input (U) and the values for the lower and upper limits:

Input Output
U >= LLandU <= UL Zero

U > UL U-UuL
U < LL U-LL

Data Type Support

The Dead Zone block accepts and outputs real signals of the following data types:

* Floating point
* Built-in integer

+ Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink

documentation.

1-335

1 Blocks — Alphabetical List

Parameters and Dialog Box

=28

*i Function Block Parameters: Dead Zone

Dead Zone

Output zero for inputs within the dead zone. Offset input signals by either
the Start or End value when outside of the dead zone.

Parameters

Start of dead zone:

-0.5

End of dead zone:

0.5
Saturate on integer overflow
Treat as gain when linearizing

Enable zero-crossing detection

J 0K] I Cancel I I Help Apply
Start of dead zone

Specify the lower limit of the dead zone. The default is -0.5.
End of dead zone

Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow

Action

What Happens for Example

Overflows

Reasons for Taking This
Action

Select this
check box.

Overflows saturate to The maximum value

either the minimum or

Your model has possible

1-336

overflow, and you want
explicit saturation

that the Int8 (signed,
8-bit integer) data type

Dead Zone

Action

Reasons for Taking This
Action

What Happens for
Overflows

Example

protection in the
generated code.

maximum value that the
data type can represent.

can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a

block handles out-of-

range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as Int8, is -126.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Treat as gain when linearizing

The linearization commands in Simulink software treat this block as a gain in state
space. Select this check box to cause the commands to treat the gain as 1; otherwise,
the commands treat the gain as 0.

1-337

1 Blocks — Alphabetical List

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see “Zero-Crossing
Detection” in the Simulink documentation.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not

Recommended”.
Examples
The following model uses lower and upper limits of -0.5 and 0.5, with a sine wave as
input.

o/
!
|'n'|. Dead Fone Mux B simout
To Workspace
Sine Wave

This plot shows the effect of the Dead Zone block on the sine wave. When the input sine
wave is between —0.5 and 0.5, the output is zero.

1-338

Dead Zone

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Sample Time Inherited from driving block

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection Yes, if enabled

Code Generation Yes

See Also

Dead Zone Dynamic

Introduced before R2006a

1-339

1 Blocks — Alphabetical List

1-340

Dead Zone Dynamic

Set inputs within bounds to zero

Library

Discontinuities

Description

The Dead Zone Dynamic block dynamically bounds the range of the input signal,
providing a region of zero output. The bounds change according to the upper and lower
limit input signals where

* The input within the bounds is set to zero.

* The input below the lower limit is shifted down by the lower limit.

* The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is the 1o
port.

Data Type Support

The Dead Zone Dynamic block accepts signals of the following data types:
* Floating point
* Built-in integer

+ Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Dead Zone Dynamic

Parameters and Dialog Box

-

E Functicn Block Pararmeters: Dead Zone Dynamic @
Dead Zone Dynamic (mask) (link)

Output zero for inputs within a dead zone. Offset input signals by
either the Start or End value when outside of the dead zone.

-

[oK] | Cancel | | Help Apply
Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Code Generation Yes

See Also

Dead Zone

Introduced before R2006a

1-341

1 Blocks — Alphabetical List

Decrement Real World

Decrease real world value of signal by one

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description

The Decrement Real World block decreases the real world value of the signal by one.
Overflows always wrap.

Data Type Support

The Decrement Real World block accepts signals of the following data types:

Floating point
Built-in integer

Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-342

Decrement Real World

Parameters and Dialog Box

-

E Function Block Pararneters: Decrernent Real Warld @
Real World Value Decrement {mask) (link)

Decrease the Real World Value of Signal by 1.0
Overflows will always wrap.

[oK] | Cancel | | Help Apply
Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Stored Integer, Decrement Time To Zero, Decrement To Zero,
Increment Real World

Introduced before R2006a

1-343

1 Blocks — Alphabetical List

1-344

Decrement Stored Integer

Decrease stored integer value of signal by one

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

Description
The Decrement Stored Integer block decreases the stored integer value of a signal by one.

Floating-point signals also decrease by one, and overflows always wrap.

Data Type Support

The Decrement Stored Integer block accepts signals of the following data types:
* Floating point
* Built-in integer

+ Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Decrement Stored Integer

Parameters and Dialog Box

-

E Function Block Pararneters: Decrernent Stored Integer @
Stored Integer Value Decrement (mask) (link)
Decrease the Stored Value of Signal by 1

Floating Foint signals are decreased by 1.0
Overflows will always wrap.

[oK] | Cancel | | Help Apply
Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Decrement Time To Zero, Decrement To Zero,
Increment Stored Integer

Introduced before R2006a

1-345

1 Blocks — Alphabetical List

1-346

Decrement Time To Zero

Decrease real-world value of signal by sample time, but only to zero

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

max WTs, 07

Description

The Decrement Time To Zero block decreases the real-world value of the signal by the
sample time, Ts. The output never goes below zero. This block works only with fixed
sample rates and does not work inside a triggered subsystem.

Data Type Support

The Decrement Time To Zero block accepts signals of the following data types:
Floating point
Built-in integer

Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Decrement Time To Zero

Parameters and Dialog Box

i =

E Function Block Pararneters: Decrernent Tirme To Zero @
Decrement Time To Zero (mask) (link)
Decrease the Real World Value of Signal by the Sample Time Ts,
but never go below zero.

This block only works with fixed sample rates, so it will not work
inside a triggered subsystem.

[oK] | Cancel | | Help Apply
Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Decrement Stored Integer, Decrement To Zero

Introduced before R2006a

1-347

1 Blocks — Alphabetical List

Decrement To Zero

Decrease real-world value of signal by one, but only to zero

Library

Additional Math & Discrete / Additional Math: Increment - Decrement

max -, 07 P

Description

The Decrement To Zero block decreases the real-world value of the signal by one. The
output never goes below zero.

Data Type Support

The Decrement To Zero block accepts signals of the following data types:

Floating point
Built-in integer

Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-348

Decrement To Zero

Parameters and Dialog Box

-

E Function Block Pararneters: Decrernent To Zero @
Decrement To Zero (mask) (link)

Decrease the Real World Value of Signal by 1.0,
but never go below zero.

[oK] | Cancel | | Help Apply
Characteristics
Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes
Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Decrement Real World, Decrement Stored Integer, Decrement Time To Zero

Introduced before R2006a

1-349

1 Blocks — Alphabetical List

Delay

Delay input signal by fixed or variable sample periods

Library

Discrete

Description

The Delay block outputs the input of the block after a delay. The block determines the
delay time based on the value of the Delay length parameter. The block supports:

* Variable delay length

* Specification of the initial condition from an input port

+ State storage

+ Using a circular buffer instead of an array buffer for state storage

+ Resetting the state to the initial condition with an external reset signal

* Controlling execution of the block at every time step with an external enable signal

The initial block output depends on a number of factors such as the Initial condition
parameter and the simulation start time. For more information, see “Initial Block
Output” on page 1-350. The External reset parameter determines if the block

output resets to the initial condition on triggering. The Show enable port parameter
determines if the block execution is controlled in every time step by an external enable
signal.

Initial Block Output

The output of the Delay block in the first few time steps of the simulation depends on the
block sample time, the delay length, and the simulation start time. The block supports
specifying or inheriting discrete sample times to determine the time interval between
samples. For more information, see “ Specify Sample Time”.

1-350

Delay

Suppose that the block inherits a discrete sample time as [Tsampling,Toffset],
where Tsampling is the sampling period and Toffset is the initial time offset. n is the
value of the block’s Delay length parameter and Tstart is the simulation start time for
the model.

The table shows the Delay block output for the first few time steps.

Simulation Time Range Block Output
(Tstart) to (Tstart + Toffset) Zero

(Tstart + Toffset) to (Tstart + Toffset + n * Initial condition
Tsampling) parameter

After (Tstart + Toffset + n * Tsampling) Input signal

Data Type Support

The block’s parameters have these dimensional requirements:

* Delay length and External reset must be scalar.

* Initial condition can be scalar or nonscalar.

* For frame-based processing, signal dimensions of the data input port u cannot be
larger than two.

The block supports input signals with these data types.

Input Signal Supported Data Types

Data input port u * Floating point

* Built-in integer
+ Fixed point

* Boolean

* Enumerated

Delay length d * Floating point
* Fixed-point integer

* Built-in integer

Enable port n * Floating point

* Built-in integer

1-351

1 Blocks — Alphabetical List

Input Signal Supported Data Types
* Fixed point Integer (only ufix1)
* Boolean
£ * Floating point

External reset port + Built-in integer

+ Fixed point Integer (only ufixl1)

+ Boolean

Initial condition X0 * Floating point
* Built-in integer
+ Fixed point

+ Boolean

* Enumerated

When u is Boolean, X0 must be Boolean. When u uses an enumerated type, XO must use
the same enumerated type. Otherwise, X0 can use a floating-point, built-in integer, or
fixed-point data type that fits in the data type of u. For example, when u uses int32, x0
can use Int8 but not double.

The data type of the output signal is the same as the input signal u.

For more information, see “ Data Types Supported by Simulink”.

Variable-Size Support

The Delay block provides the following support for variable-size signals:

* The data input port u accepts variable-size signals. The other input ports do not
accept variable-size signals.

* The output port has the same signal dimensions as the data input port u for variable-
size inputs.

The rules that apply to variable-size signals depend on the input processing mode of the
Delay block.

1-352

Delay

Input Processing Mode Rules for Variable-Size Signal Support

Elements as * The signal dimensions change only during state reset
channels (sample when the block is enabled.

based) * The initial condition must be scalar.

Columns as channels |+ No support

(frame based)

Inherited * The signal dimensions change only during state reset
(where input is a sample- when the block is enabled.

based signal) + The initial condition must be scalar.

Inherited * The channel size changes only during state reset when the
(where input is a frame- block is enabled.

based signal) - The initial condition must be scalar.

* The frame size must be constant.

Bus Support

The Delay block provides the following support for bus signals:

* The data input port u accepts virtual and nonvirtual bus signals. The other input
ports do not accept bus signals.

* The output port has the same bus type as the data input port u for bus inputs.

* Buses work with:

Sample-based and frame-based processing
+ Fixed and variable delay length
* Array and circular buffers
To use a bus signal as the input to a Delay block, you should specify the initial condition
on the dialog box. In other words, the initial condition cannot come from the input port

X0. Support for virtual and nonvirtual buses depends on the initial condition that you
specify and whether the State name parameter is empty or not.

1-353

1 Blocks — Alphabetical List

1-354

Initial Condition

State Name

Empty

Not Empty

Zero

Virtual and nonvirtual bus
support

Nonvirtual bus support only

Nonzero scalar

Virtual and nonvirtual bus
support

No bus support

Nonscalar

No bus support

No bus support

Structure

Virtual and nonvirtual bus
support

Nonvirtual bus support only

Partial structure

Virtual and nonvirtual bus
support

Nonvirtual bus support only

Delay

Parameters and Dialog Box

~

L5

"k Function Block Parameters: Delay

Delay
Delay input signal by a specified number of samples.
Main | State Attributes |
Data
Source Value Upper Limit
Delay length: 2
Initial condition: 0.0
Algorithm
Input processing: ’Elements as channels (sample based) *]
["] use circular buffer for state
Control
[”] Show enable port
External reset: ’None ~
Sample time (-1 for inherited): -1
J [oK J [Cancel] [Help Apply

Delay length
Specify whether to enter the delay length directly on the dialog box (fixed delay) or to

inherit the delay from an input port (variable delay).

1-355

1

Blocks — Alphabetical List

1-356

+ Ifyou set Source to Dialog, enter the delay length in the edit field under Value.

+ If you set Source to Input port, verify that an upstream signal supplies a delay
length for the d input port. You can also specify its maximum value by specifying
the parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or
non-integer value in the dialog box (fixed delay) returns an error. An out-of-range
value from an input port (variable delay) casts it into the range. A non-integer value
from an input port (variable delay) truncates it to the integer.

This parameter is not tunable for simulation or code generation.

Initial condition

Specify whether to enter the initial condition directly on the dialog box or to inherit
the initial condition from an input port.

+ If you set Source to Dialog, enter the initial condition in the edit field under
Value.

+ If you set Source to Input port, verify that an upstream signal supplies an
initial condition for the X0 input port.

Simulink converts offline the data type of Initial condition to the data type of the
input signal U using a round-to-nearest operation and saturation.

Note: When State name must resolve to Simulink signal object is selected on
the State Attributes pane, the block copies the initial value of the signal object to
the Initial condition parameter. However, when the source for Initial condition is
Input port, the block ignores the initial value of the signal object.

Input processing

Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Delay

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

* Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v Input Processing Mode Block Works?

Sample based Sample based Yes

Frame based No, produces an error
Sample based Frame based Yes

Frame based Yes

Sample based Inherited Yes

Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Use circular buffer for state

Select to use a circular buffer for storing the state in simulation and code generation.
Otherwise, an array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large.
For an array buffer, the number of copy operations increases as the delay length goes
up. For a circular buffer, the number of copy operations is constant for increasing
delay length.

1-357

1 Blocks — Alphabetical List

1-358

If one of the following conditions is true, an array buffer always stores the state
because a circular buffer does not improve execution speed:

* For sample-based signals, the delay length is 1.

* For frame-based signals, the delay length is no larger than the frame size.

Prevent direct feedthrough by increasing delay length to lower limit

Select to increase the delay length from zero to the lower limit for the Input

processing mode:

* For sample-based signals, increase the minimum delay length to 1.

+ For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the
output port. However, this check box cannot prevent direct feedthrough from the
initial condition port, X0, to the output port.

This check box is available when you set Delay length: Source to Input port.

Remove protection against out-of-range delay length in generated code

Select to remove code that checks for out-of-range delay length.

Check Box

Result

When to Use

Selected

Generated code does

not include conditional
statements to check for
out-of-range delay length.

For code efficiency

Cleared

Generated code includes
conditional statements
to check for out-of-range
delay length.

For safety-critical
applications

This check box is available when you set Delay length: Source to Input port.

Diagnostic for out-of-range delay length

Specify whether to produce a warning or error when the input d is less than the
lower limit or greater than the Delay length: Upper limit. The lower limit depends
on the setting for Prevent direct feedthrough by increasing delay length to

lower limit.

+ If the check box is cleared, the lower limit is zero.

Delay

+ If the check box is selected, the lower limit is 1 for sample-based signals and

frame length for frame-based signals.
Options for the diagnostic include:

* None — No warning or error appears.

* Warning — Display a warning in the MATLAB Command Window and continue

the simulation.

* Error — Stop the simulation and display an error in the Diagnostic Viewer.

This parameter is available when you set Delay length: Source to Input port.

Show enable port

Select to show an enable port for this block. This port can control execution of the
block. The block is considered enabled when the input to this port is nonzero, and is
disabled when the input is 0. The value of the input is checked at the same time step

as the block execution.

External reset

Specify the trigger event to use to reset the states. The reset trigger resets the state
to the initial condition and then copies it to the output at that time step.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:
when there is a nonzero at the current
time step
* when the time step value changes
from nonzero at the previous time
step to zero at the current time step
Level hold Reset when nonzero at the current time
step.

Sample time (-1 for inherited)

1-359

1

Blocks — Alphabetical List

Specify the time interval between samples. To inherit the sample time, set this
parameter to —1. This block supports discrete sample time, but not continuous
sample time.

State name

Use this parameter to assign a unique name to the block state. The default is *
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

+ A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.
State name must resolve to Simulink signal object

Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class

Select custom storage class for state.
Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

1-360

Delay

model P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.
State name enables this parameter.

The list of valid storage classes differs based on the Package selection.

1-361

1 Blocks — Alphabetical List

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier

Specify a Simulink Coder storage type qualifier. The default is

blank, no qualifier is assigned.

. When this field is

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

Examples

Variable-Size Signals for Sample-Based Processing

This model shows how the Delay block supports variable-size signals for sample-based

processing.

1
= T
[=
[T
| E— |

Constant1

i

N
\/

Sine WaveZ

-

\/

Sine Wawel

141 2; 45, 7 8]

Constant2

%h r 1351[

Churt 1

Out4

Subsystemn

The Switch block controls whether the input signal to the enabled subsystem is a 3-by-3
or 3-by-2 matrix. The Delay block appears inside the enabled subsystem.

1-362

Delay

Ensble
B=2] o |B
1) e T S
In1 Ot
Celay

The model follows the rules for variable-size signals when the Delay block uses sample-
based processing.

Rule How the Model Follows the Rule

The signal dimensions change only The Enable block sets Propagate sizes
during state reset when the block is |of variable-size signals to Only when
enabled. enabling.

The initial condition must be scalar. |The Delay block sets Initial condition to 0.0, a
scalar value.

Bus Signals for Frame-Based Processing

This model shows how the Delay block supports bus signals for frame-based processing.

P double [Zxd] double [Zxd]
cnes(2.4) <gignalt> @
) 238} Ot
Constant z
double [Swd) Delay double [Sxd)
' &y - ¥ - >
= =signalZ=
Cut2
Constantd

1-363

1

Blocks — Alphabetical List

Each Constant block supplies an input signal to the Bus Creator block, which outputs a
two-dimensional bus signal. After the Delay block delays the bus signal by three sample
periods, the Bus Selector block separates the bus back into the two original signals.

The model follows the rules for bus signals when the Delay block uses frame-based

processing.

Rule How the Model Follows the Rule

For the initial condition, set the value |The Delay block sets Initial condition to O, a
on the dialog box. scalar value.

For frame-based processing, signal The bus input to the Delay block has two
dimensions of the data input port u dimensions.

cannot be larger than two. (This rule

applies to all inputs for the port u, not

just bus signals.)

Enable or Disable Execution of the Delay Block

This example shows how you can enable or disable the execution of the Delay block
using the enable port of the block. Consider this model. A ramp input signal feeds into a
Delay block whose execution is controlled by an enabling signal. A Pulse Generator block
generates this enabling signal.

Ramp
/ ™"

Input

z =
Qutput
>
J_I_I_L Enabling n Scope
Pulse Signal
Generator Delay

1-364

Delay

The Scope block displays the output of the Delay block along with the enabling signal
and the ramp input. Simulating the model and viewing the scope output shows the
following graph.

The magenta marks show that the Delay block outputs the input signal delayed by one
time step only while the enabling signal is 1. At t=5 sec, the enabling signal becomes 0
and the Delay block does not execute. Hence, the output is held constant until the next
time the enabling signal becomes 1.

1-365

1 Blocks — Alphabetical List

1-366

Characteristics

Data Types

Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Sample Time

Specified in the Sample time parameter

Direct Feedthrough

Yes, when you clear Prevent direct feedthrough
by increasing delay length to lower limit

Multidimensional Signals

Yes

Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

See Also

Resettable Delay | Tapped Delay | Unit Delay | Variable Integer Delay

Demux

Demux

Extract and output elements of vector signal

Library

Signal Routing

!

The Demux block extracts the components of an input signal and outputs the components
as separate signals. The output signals are ordered from top to bottom output port. See
“How to Rotate a Block” for a description of the port order for various block orientations.
To avoid adding clutter to a model, Simulink hides the name of a Demux block when you
copy it from the Simulink library to a model. See “Mux Signals” for information about
creating and decomposing vectors.

Description

The Number of outputs parameter allows you to specify the number and, optionally,
the dimensionality of each output port. If you do not specify the dimensionality of the
outputs, the block determines the dimensionality of the outputs for you.

The Demux block operates in either vector mode or bus selection mode, depending on
whether you selected the Bus selection mode parameter. The two modes differ in the
types of signals they accept. Vector mode accepts only a vector-like signal, that is, either
a scalar (one-element array), vector (1-D array), or a column or row vector (one row or one
column 2-D array). Bus selection mode accepts only a bus signal.

Note: MathWorks discourages enabling Bus selection mode and using a Demux block
to extract elements of a bus signal. Muxes and buses should not be intermixed in new
models. See “Prevent Bus and Mux Mixtures” for more information.

1-367

1 Blocks — Alphabetical List

The Number of outputs parameter determines the number and dimensionality of the
block outputs, depending on the mode in which the block operates.

Specifying the Number of Outputs in Vector Mode

In vector mode, the value of the parameter can be a scalar specifying the number of
outputs or a vector whose elements specify the widths of the block's output ports. The
block determines the size of its outputs from the size of the input signal and the value of
the Number of outputs parameter.

The following table summarizes how the block determines the outputs for an input vector

of width n.

Parameter Value Block outputs... Comments

p=n p scalar signals For example, if the input is a
three-element vector and you
specify three outputs, the block
outputs three scalar signals.

p>n Error

p<n p vector signals each having n/ |If the input is a six-element

p elements vector and you specify three

nmod p =0 outputs, the block outputs three
two-element vectors.

p<n m vector signals each having If the input is a five-element

(n/p)+1 elements and p-m
signals having n/p elements

vector and you specify three
outputs, the block outputs two
two-element vector signals and
one scalar signal.

[P: P2 --- Pul

P1tP2t. .. +Pyp=N

m vector signals having widths
pl’ pZ’ pm

If the input is a five-element
vector and you specify [3, 2]
as the output, the block outputs
three of the input elements

pi >0 on one port and the other two
elements on the other port.
[P1 P2 --- Pl m vector signals If pi is greater than zero,

pP1tpet- - - +Pn=N

1-368

the corresponding output has
width p;. If p; is -1, the width

Demux

Parameter Value Block outputs... Comments

some or all of the corresponding output is
dynamically sized.

pi = -1

[P: P2 --- Pul Error

P1tPat. . .+pPnI=n

p; = >0

Note that you can specify the number of outputs as fewer than the number of input
elements, in which case the block distributes the elements as evenly as possible over the

outputs as illustrated in the following example:

You can use —1 in a vector expression to indicate that the block should dynamically size
the corresponding port. For example, the expression [-1, 3 -1] causes the block to
output three signals where the second signal always has three elements. The sizes of the
first and third signals depend on the size of the input signal.

If a vector expression comprises positive values and —1 values, the block assigns as many
elements as needed to the ports with positive values and distributes the remain elements
as evenly as possible over the ports with —1 values. For example, suppose that the block
input is seven elements wide and you specify the output as [-1, 3 -1]. In this case,
the block outputs two elements on the first port, three elements on the second, and two

elements on the third.

1-369

1 Blocks — Alphabetical List

U

Display3

I

Display2

Display1

Specifying the Number of Outputs in Bus Selection Mode
In bus selection mode, the value of the Number of outputs parameter can be a:
* Scalar specifying the number of output ports

The specified value must equal the number of input signals. For example, if the input
bus comprises two signals and the value of this parameter is a scalar, the value must

equal 2.
5 =
Mzass |l mw 1], 2|| 2 A .
Constant 218} Display
1 2 21 3_'. 1” E” 3
Constant1 Cis play1

+ Vector each of whose elements specifies the number of signals to output on the
corresponding port

For example, if the input bus contains five signals, you can specify the output as [3,
2], in which case the block outputs three of the input signals on one port and the
other two signals on a second port.

* Cell array each of whose elements is a cell array of vectors specifying the dimensions
of the signals output by the corresponding port

1-370

Demux

Constanti

[5 %]

Constant2

The cell array format constrains the Demux block to accept only signals of specified
dimensions. For example, the cell array {{[2 2], 3} {1}} tells the block to accept
only a bus signal comprising a 2-by-2 matrix, a three-element vector, and a scalar
signal. You can use the value —1 in a cell array expression to let the block determine
the dimensionality of a particular output based on the input. For example, the following
diagram uses the cell array expression {{—1}, {-1,—1}} to specify the output of the
leftmost Demux block.

o

3l 4l

Number of cutputs

={{-13. {-1.-1
LRl i wumber of outputs

={3 2

In bus selection mode, if you specify the dimensionality of an output port (that is, specify
any value other than —1), the corresponding input element must match the specified
dimensionality.

Note: MathWorks discourages enabling Bus selection mode and using a Demux block
to extract elements of a bus signal. Muxes and buses should not be intermixed in new
models. See “Prevent Bus and Mux Mixtures” for more information.

Data Type Support

The Demux block accepts and outputs complex or real signals of any data type that
Simulink supports, including fixed-point and enumerated data types.

1-371

1 Blocks — Alphabetical List

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

E Function Block Parameters: Dermuzx @

Demux

Split vector signals into scalars or smaller vectors. Check 'Bus Selection
Mode' to split bus signals.

Parameters

Mumber of outputs:

2

Display option: |bar -

[Bus selection mode

J oK H Cancel H Help Apply

1-372

Demux

Number of outputs

Specify the number and dimensions of outputs.
Settings

Default: 2

This block interprets this parameter depending on the Bus selection mode parameter.
See the block description for more information.

Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

See the Demux block reference page for more information.

1-373

1 Blocks — Alphabetical List

1-374

Display option

Select options to display the Demux block. The options are
Settings

Default: bar

bar

Display the icon as a solid bar of the block's foreground color.

none

Display the icon as a box containing the block's type name.

D mux

Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

See the Demux block reference page for more information.

Demux

Bus selection mode
Enable bus selection mode.
Settings
Default: Off
/I On

Enable bus selection mode.

Off

Disable bus selection mode.

Tips

MathWorks discourages enabling Bus selection mode and using a Demux block to
extract elements of a bus signal. Muxes and buses should not be intermixed in new
models. See “Prevent Bus and Mux Mixtures” for more information.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Multidimensional Signals No

Variable-Size Signals No

Code Generation Yes

See Also

Mux

Introduced before R2006a

1-375

1 Blocks — Alphabetical List

1-376

Derivative

Output time derivative of input

Library

Continuous

dufdtp

Description

The Derivative block approximates the derivative of the input signal u with respect to
the simulation time ¢. You obtain the approximation of

du
dt

ki

by computing a numerical difference Au/Af, where Au is the change in input value and

At 1s the change in time since the previous simulation (major) time step.

This block accepts one input and generates one output. The initial output for the block is
Zero.

The precise relationship between the input and output of this block is:

Au u(t)_u(Tprevious)|
A t-T

previous |

Tpre vious»

where ¢ is the current simulation time and T).y;0us 18 the time of the last output time of

the simulation. The latter is the same as the time of the last major time step.

Derivative

The Derivative block output might be very sensitive to the dynamics of the entire model.
The accuracy of the output signal depends on the size of the time steps taken in the
simulation. Smaller steps allow a smoother and more accurate output curve from this
block. However, unlike with blocks that have continuous states, the solver does not take
smaller steps when the input to this block changes rapidly. Depending on the dynamics
of the driving signal and model, the output signal of this block might contain unexpected
fluctuations. These fluctuations are primarily due to the driving signal output and solver
step size.

Because of these sensitivities, structure your models to use integrators (such as
Integrator blocks) instead of Derivative blocks. Integrator blocks have states that
allow solvers to adjust step size and improve accuracy of the simulation. See “Circuit
Model” for an example of choosing the best-form mathematical model to avoid using
Derivative blocks in your models,

If you must use the Derivative block with a variable step solver, set the solver maximum
step size settings to a value such that the Derivative block can generate answers with
adequate accuracy. To determine this value, you might need to repeatedly run the
simulation using different solver settings.

When the input to this block is a discrete signal, the continuous derivative of the
input exhibits an impulse when the value of the input changes. Otherwise, it is 0.

Alternatively, you can define the discrete derivative of a discrete signal using the
difference of the last two values of the signal, as follows:

(k) = L (k) = uk - 1))
At

Taking the z-transform of this equation results in:

Y _1-2"'_2-1
u(z) At Atz

The Discrete Derivative block models this behavior. Use this block instead of the
Derivative block to approximate the discrete-time derivative of a discrete signal.

Improved Linearization with Transfer Fcn Blocks

The Laplace domain transfer function for the operation of differentiation is:

1-377

1

Blocks — Alphabetical List

1-378

Y _
(s) Xs) =

This equation is not a proper transfer function, nor does it have a state-space
representation. As such, the Simulink software linearizes this block as an effective gain
of 0 unless you explicitly specify that a proper first-order transfer function should be
used to approximate the linear behavior of this block (see “Coefficient ¢ in the transfer
function approximation s/(c*s + 1) used for linearization” on page 1-380).

To improve linearization, you can also try to incorporate the derivative term in other

blocks. For example, if you have a Derivative block in series with a Transfer Fcn block,
try using a single Transfer Fcn block of the form

S

sta

For example, you can replace the first set of blocks in this figure with the blocks below
them.

1

' | it o L L Wl

Int 5*a

Derivative Transfer Fon Scope
5

= s

In2 s*a

Transfer Fon2 Scoped

Data Type Support

The Derivative block accepts and outputs a real signal of type double. For more
information, see “ Data Types Supported by Simulink”.

Derivative

Parameters and Dialog Box

E Function Block Pararmeters: Derivative @

Derivative
Mumerical derivative: du/dt.
Parameters

Coefficient c in the transfer function approximation s/(c*s + 1) used for linearization:

infl

J ok || cancel || Help Apply

1-379

1 Blocks — Alphabetical List

1-380

Coefficient c in the transfer function approximation s/(c*s + 1) used for
linearization

Specify the time constant ¢ to approximate the linearization of your system.
Settings
Default: inf

+ The exact linearization of the Derivative block is difficult, because the dynamic
equation for the block is ¥ =%, which you cannot represent as a state-space system.
However, you can approximate the linearization by adding a pole to the Derivative to
create a transfer function s/(c* s+1). The addition of a pole filters the signal before
differentiating it, which removes the effect of noise.

* The default value In¥ corresponds to a linearization of O.
Tips

A best practice is to change the value of ¢ to %, where f; is the break frequency for
b

the filter.

+ Coefficient ¢ in the transfer function approximation s/(c*s+1) used for
linearization must be a finite positive value. This value must be nonzero.

Command-Line Information

Parameter: CoefficientInTFapproximation
Type: string

Value: "inf"

Default: "inf"

Characteristics

Data Types Double
Sample Time Continuous
Direct Feedthrough Yes
Multidimensional Signals No

Derivative

Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Discrete Derivative

Introduced before R2006a

1-381

1 Blocks — Alphabetical List

1-382

Deserializer 1D

Convert scalar stream or smaller vectors to vector signal

Library

HDL Coder / HDL Operations

Js b

N startin

y\vaiian ValidOut
Descripﬁon DeserializeriD

The Deserializer1D block buffers a faster, scalar stream or vector signals into a larger,
slower vector signal. The faster input signal is converted to a slower signal based on
the Ratio and Idle Cycle values, the conversion changes sample time. Also, the output
signal is delayed one slow signal cycle because the serialized data needs to be collected
before it can be output as a vector. See the examples below for more details.

You can configure the deserialization to depend on a valid input signal ValidIn and a
start signal StartIn. If the ValidIn and StartIn block parameters are both selected, data
collection starts only if both ValidIn and StartIn signals are true. Consider this example:

Deserializer1D

> -

Input (AX g

Validln /

Startln /_\

Output(0)K AB

ValidOut :|'

Ratio is 2 and Idle Cycles is O, so each output cycle is two input signals long with all
data points considered.

CXD*EXF*GXHx.XJ)
—

.
Nac

ValidIln and StartIn are selected, so data collection can begin only when both StartIn
and ValidIn signals are true.

ValidOut is selected.

In the first cycle, ValidIn and StartIn are true, so data collection begins for A and B. The
block outputs the deserialized vector in the next valid cycle, so the AB vector is output in
the next cycle. This is also true in the second cycle for C and D.

In the third cycle, starting at E, StartIn is true, but ValidIn is not. E is dropped. At F,
Validln is true, but StartIn is not, so F is also dropped. Since it cannot collect data for E
or F, Deserializer1D outputs the previous cycle vector, CD, but ValidOut changes to false.

Another scenario to consider is when the StartIn signal arrives too early. If the length

between two StartIn signals is not long enough to collect a full ratio cycle, the insufficient
signal data is dropped. Consider this example:

1-383

1 Blocks — Alphabetical List

Input (A X B X ¢
Validin /

startin [__/ \

Output < 0 X 0):(CDE X FGH)
/

ValidOut

S __>.<____
W)
><
><
><
(0]
><
T
><
><
><
-~
><
L

* Ratio is 3, so each cycle is two sections long.
+ Idle Cycles is O, so all data inputs are considered.

+ ValidIn and StartIn are selected, so data collection can begin only when both StartIn
and ValidIn signals are true.

+ ValidOut is selected.

In the first cycle, ValidIn and StartIn are true, so data collection can begin for A

and B. However, at C another StartIn signal arrives before three signals can be
collected. Because the StartIn arrived early, A and B are dropped and no valid vector

is collected during the first cycle. Therefore, the output of the second cycle is still zero.
Deserialization begins at the StartIn at C, for C, D, and E. This vector is output at the
next valid cycle, which is cycle 3. Similarly, deserialization starts again at the StartIn at
F, and outputs the FGH vector in the fourth cycle.

You specify the block output for the first sampling period with the value of the Initial
condition parameter.

1-384

Dialog Box and Parameters

Deserializer1D {mask) {link)
Corwert from scalar to vector, or from smaller-size vector o larger-

size vector. The outputrate is S / (Ratio + Idle Cycles), where S is
the input rate.

Main | Signal Atributes
Parameters

Ratio (Output Yector Size,/Input Yector Size)
1

Idle Cycles
]

Initial condition
u]

Control Signal Ports

Startln
Yalidout
YalidIn

ok | [cancel J[el]| epply

“& Function Block Pararmeters: DeserializerlD @

Ratio

Enter the deserialization ratio. Default is 1.

Deserializer1D

The ratio is the output vector size, divided by the input vector size. The ratio must be

divisible by the input vector size.
Idle Cycles

Enter the number of idle cycles added to the end of each serialized input. Default is O

The value of Idle Cycles affects the deserialized output rate. For example, if Ratio

is 2 and the input signalis A, B, B, C, D, D,

- - -, without idle cycles the output

1-385

1 Blocks — Alphabetical List

would be AB, BC, DD.... However for the same input and ratio with Idle Cycles
set to 1, the output is AB, CD. ... The idle cycles, B and D, are dropped.

The Deserializer1D behavior changes if Idle Cycles is not zero, and ValidIn or
Startln are on. The idle cycles value affects only the output rate, while ValidIn and
Startln control what input data is deserialized.

Initial condition

Specify the initial output of the simulation. Default is 0.
Startln

Select to activate the StartIn port. Default is off.
ValidIn

Select to activate the ValidIn port. Default is off.
ValidOut

Select to activate ValidOut port. Default is off.

"4 Function Block Parameters: Deserializerl D @
Deserializer1D (mask) (link)

Convert from scalar to wector, or from smaller-size vector to larger-
size vector. The output rate is S / (Ratio + Idle Cycles), where 5 is
the input rate.

Signal Attributes

Input data port dimensions (-1 for inherited)

-1
Input sample time (-1 for inherited)

-1

Input signal type [auto -

OK H Cancel H Help Apply

1-386

Deserializer1D

Input data port dimensions (-1 for inherited)

Enter the size of the input data signal. The input size must be divisible by the ratio
plus the number of idle cycles. By default, the block inherits size based on context
within the model.

Input sample time (-1 for inherited)

Enter the time interval between sample time hits or specify another appropriate
sample time such as continuous. By default, the block inherits its sample time based
on context within the model. For more information, see “Sample Time”.

Input signal type
Specify the input signal type of the block as auto, real, or complex.

Ports

S
Input signal to deserialize. Bus data types are not supported.

Validln
Indicates valid input signal. Use with the Serial izer1D block. This port is
available when you select the ValidIn check box.

Data type: Boolean
StartOut

Indicates where to start deserialization. Use with the Serial izerl1D block. This port
is available when you select the StartOut check box.

Data type: Boolean

Deserialized output signal. Bus data types are not supported.
ValidOut

Indicates valid output signal. This port is available when you select the ValidOut
check box.

Data type: Boolean

See Also

SerializerlD

1-387

1 Blocks — Alphabetical List

Introduced in R2014b

1-388

Detect Change

Detect Change

Detect change in signal value

Library

Logic and Bit Operations

Un= iz 2

Description

The Detect Change block determines if an input does not equal its previous value.

* The output is true (equal to 1) when the input signal does not equal its previous
value.

* The output is false (equal to 0) when the input signal equals its previous value.

Data Type Support

The Detect Change block accepts signals of the following data types:

* Floating point

* Built-in integer
+ Fixed point

* Boolean

* Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-389

1 Blocks — Alphabetical List

1-390

Parameters and Dialog Box

e

E Function Block Parameters: Detect Change @
Detect Change (mask) (link)

If the input does not equal its previous value, then output TRUE,
otherwise output FALSE. The initial condition determines the initial
value of the previous input U/z.

Parameters

Initial condition:

]
Input processing: |1nherited - |
Output data type: |bunlean - |

[0K]| Cancel || Help Apply

.

Initial condition

Set the initial condition for the previous input U/z.

Input processing

Specify whether the block performs sample- or frame-based processing. You can

select one of the following options:

+ Elements as channels (sample based) — Treat each element of the input

as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a

separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP

System Toolbox documentation.

Detect Change

* Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v

Input Processing Mode

Block Works?

Sample based

Frame based

Sample based

Yes

No, produces an error

Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uints.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals Yes

1-391

1 Blocks — Alphabetical List

‘Code Generation Yes

See Also

Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

1-392

Detect Decrease

Detect Decrease

Detect decrease in signal value

Library

Logic and Bit Operations

U=z g

Description

The Detect Decrease block determines if an input is strictly less than its previous value.

The output is true (equal to 1) when the input signal is less than its previous value.

The output is false (equal to 0) when the input signal is greater than or equal to its
previous value.

Data Type Support

The Detect Decrease block accepts signals of the following data types:

Floating point
Built-in integer
Fixed point
Boolean

Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-393

] Blocks —

Alphabetical List

Parameters and Dialog Box

e

E Function Elock Parameters: Detect Decrease @
Detect Decrease (mask) (link)

If the input is strictly less than its previous value, then output TRUE,
otherwise output FALSE. The initial condition determines the initial
value of the previous input U/z.

Parameters

Initial condition:

0.0
Input processing: |1nherited - |
Output data type: |bunlean - |

[0K]| Cancel || Help Apply

.

Initial condition

Set the initial condition for the previous input U/z.

Input processing

1-394

Specify whether the block performs sample- or frame-based processing. You can

select one of the following options:

+ Elements as channels (sample based) — Treat each element of the input

as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a

separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP

System Toolbox documentation.

Detect Decrease

Inherited — Inherit the processing mode from the input signal and delay the

input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v

Input Processing Mode

Block Works?

Sample based

Frame based

Sample based

Yes

No, produces an error

Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uints.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals Yes

1-395

1 Blocks — Alphabetical List

‘ Code Generation Yes

See Also

Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

1-396

Detect Fall Negative

Detect Fall Negative

Detect falling edge when signal value decreases to strictly negative value, and its
previous value was nonnegative

Library

Logic and Bit Operations

=0
& NOT P
Wz <0

Description

The Detect Fall Negative block determines if the input is less than zero, and its previous
value was greater than or equal to zero.

* The output is true (equal to 1) when the input signal is less than zero, and its
previous value was greater than or equal to zero.

* The output is false (equal to 0) when the input signal is greater than or equal to zero,
or if the input signal is negative, its previous value was also negative.

Data Type Support

The Detect Fall Negative block accepts signals of the following data types:
* Floating point

* Built-in integer

+ Fixed point

* Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-397

1 Blocks — Alphabetical List

Parameters and Dialog Box

e

E Function Elock Parameters: Detect Fall Megative @
Detect Fall Negative (mask) (link)

If the input is strictly negative and its previous value was nonnegative,
then output TRUE, otherwise output FALSE. The initial condition
determines the initial value of the boolean expression (Ufz < 0).

Parameters

Initial condition:

]
Input processing: |1nherited - |
Output data type: |hnnlean - |

[0K]| Cancel || Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z < 0.
Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:
+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

1-398

Detect Fall Negative

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Inherited — Inherit the processing mode from the input signal and delay the

input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v Input Processing Mode Block Works?

Sample based Sample based Yes

Frame based No, produces an error
Sample based Frame based Yes

Frame based Yes

Sample based Inherited Yes

Frame based Yes

For more information about these two processing modes,

see “Sample- and Frame-

Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1-399

1 Blocks — Alphabetical List

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

1-400

Detect Fall Nonpositive

Detect Fall Nonpositive

Detect falling edge when signal value decreases to nonpositive value, and its previous
value was strictly positive

Library

Logic and Bit Operations

U==0
& NOT
Uiz <=0

Description

The Detect Fall Nonpositive block determines if the input is less than or equal to zero,
and its previous value was greater than zero.

* The output is true (equal to 1) when the input signal is less than or equal to zero, and
its previous value was greater than zero.

* The output is false (equal to 0) when the input signal is greater than zero, or if it is
nonpositive, its previous value was also nonpositive.

Data Type Support

The Detect Fall Nonpositive block accepts signals of the following data types:
* Floating point

* Built-in integer

+ Fixed point

* Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-401

1 Blocks — Alphabetical List

Parameters and Dialog Box

e

-

E Function Block Parameters: Detect Fall Nonpositive @
Detect Fall Nonpaositive (mask) (link)

If the input is nonpositive and its previous value was strictly positive,
then output TRUE, otherwise output FALSE. The initial condition
determines the initial value of the boolean expression (Ufz <= 0).

Parameters

Initial condition:

]
Input processing: |1nherited - |
Output data type: |hnnlean - |

[0K]| Cancel || Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z <= 0.
Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:
+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

1-402

Detect Fall Nonpositive

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Inherited — Inherit the processing mode from the input signal and delay the

input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v Input Processing Mode Block Works?

Sample based Sample based Yes

Frame based No, produces an error
Sample based Frame based Yes

Frame based Yes

Sample based Inherited Yes

Frame based Yes

For more information about these two processing modes,

see “Sample- and Frame-

Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1-403

1 Blocks — Alphabetical List

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase,
Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

1-404

Detect Increase

Detect Increase

Detect increase in signal value

Library

Logic and Bit Operations

ez R

Description

The Detect Increase block determines if an input is strictly greater than its previous
value.

* The output is true (equal to 1) when the input signal is greater than its previous
value.

* The output is false (equal to 0) when the input signal is less than or equal to its
previous value.

Data Type Support

The Detect Increase block accepts signals of the following data types:

* Floating point

* Built-in integer
* Fixed point

* Boolean

* Enumerated

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-405

1 Blocks — Alphabetical List

1-406

Parameters and Dialog Box

i

E Function Block Parameters: Detect Increase @
Detect Increase (mask) (link)

If the input is strictly greater than its previous value, then output
TRUE, otherwise output FALSE. The initial condition determines the
initial value of the previous input U/z.

Parameters

Initial condition:

0.0
Input processing: Ilnherited *I
Output data type: Ibnnlean *I

[0K H Cancel H Help Apply

.

Initial condition

Set the initial condition for the previous input U/z.

Input processing

Specify whether the block performs sample- or frame-based processing. You can

select one of the following options:

+ Elements as channels (sample based) — Treat each element of the input

as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a

separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP

System Toolbox documentation.

Detect Increase

Inherited — Inherit the processing mode from the input signal and delay the

input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v

Input Processing Mode

Block Works?

Sample based

Frame based

Sample based

Yes

No, produces an error

Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uints.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals Yes

1-407

1 Blocks — Alphabetical List

‘Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

Introduced before R2006a

1-408

Detect Rise Nonnegative

Detect Rise Nonnegative

Detect rising edge when signal value increases to nonnegative value, and its previous
value was strictly negative

Library

Logic and Bit Operations

U==0
& NOT P
Wiz ==10

Description

The Detect Rise Nonnegative block determines if the input is greater than or equal to
zero, and its previous value was less than zero.

* The output is true (equal to 1) when the input signal is greater than or equal to zero,
and its previous value was less than zero.

* The output is false (equal to 0) when the input signal is less than zero, or if the input
signal is nonnegative, its previous value was also nonnegative.

Data Type Support

The Detect Rise Nonnegative block accepts signals of the following data types:
* Floating point

* Built-in integer

+ Fixed point

* Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-409

1 Blocks — Alphabetical List

Parameters and Dialog Box

e

E Function Elock Parameters: Detect Rise Nonnegative @
Detect Rise Monnegative (mask) (link)

If the input is nonnegative and its previous value was strictly negative,
then output TRUE, otherwise output FALSE. The initial condition
determines the initial value of the boolean expression (Ufz == 0).

Parameters

Initial condition:

]
Input processing: |1nherited - |
Output data type: |hnnlean - |

[0K]| Cancel || Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.
Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:
+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

1-410

Detect Rise Nonnegative

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Inherited — Inherit the processing mode from the input signal and delay the

input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v Input Processing Mode Block Works?

Sample based Sample based Yes

Frame based No, produces an error
Sample based Frame based Yes

Frame based Yes

Sample based Inherited Yes

Frame based Yes

For more information about these two processing modes,

see “Sample- and Frame-

Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1-411

1 Blocks — Alphabetical List

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Positive

Introduced before R2006a

1-412

Detect Rise Positive

Detect Rise Positive

Detect rising edge when signal value increases to strictly positive value, and its previous
value was nonpositive

Library

Logic and Bit Operations

=0
& NOT P
Wz =0

Description

The Detect Rise Positive block determines if the input is strictly positive, and its previous
value was nonpositive.

* The output is true (equal to 1) when the input signal is greater than zero, and the
previous value was less than or equal to zero.

* The output is false (equal to 0) when the input is negative or zero, or if the input is
positive, the previous value was also positive.

Data Type Support

The Detect Rise Positive block accepts signals of the following data types:
* Floating point

* Built-in integer

+ Fixed point

* Boolean

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-413

1 Blocks — Alphabetical List

Parameters and Dialog Box

e

-

E Function Elock Parameters: Detect Rise Positive @
Detect Rise Positive (mask) (link)

If the input is strictly positive and its previous value was nonpositive,
then output TRUE, otherwise output FALSE. The initial condition
determines the initial value of the boolean expression (Ufz = 0).

Parameters

Initial condition:

]
Input processing: |1nherited - |
Output data type: Ibnnlean *]

[OK]| Cancel || Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z > 0.
Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:
+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

1-414

Detect Rise Positive

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Inherited — Inherit the processing mode from the input signal and delay the

input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v Input Processing Mode Block Works?

Sample based Sample based Yes

Frame based No, produces an error
Sample based Frame based Yes

Frame based Yes

Sample based Inherited Yes

Frame based Yes

For more information about these two processing modes,

see “Sample- and Frame-

Based Concepts” in the DSP System Toolbox documentation.

Output data type

Set the output data type to boolean or uint8.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

1-415

1 Blocks — Alphabetical List

Multidimensional Signals No
Variable-Size Signals Yes
Code Generation Yes

See Also

Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Nonnegative

Introduced before R2006a

1-416

Difference

Difference

Calculate change in signal over one time step

Library

Discrete

Description

The Difference block outputs the current input value minus the previous input value.

Data Type Support

The Difference block accepts signals of any numeric data type that Simulink supports,
including fixed-point data types. For more information, see “ Data Types Supported by
Simulink” in the Simulink documentation.

Parameters and Dialog Box

The Main pane of the Difference block dialog box appears as follows:

1-417

1 Blocks — Alphabetical List

E Function Block Parameters: Difference @
Difference (mask) (link) e

Output the current input value minus the previous input value.

Main | Signal Attributes |

Initial condition for previous input:

m

0.0

Input processing: |Inherited -

4 L 3

oK][Cancel H Help Apply

Initial condition for previous input
Set the initial condition for the previous input.
Input processing

Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

+ Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

* Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame

1-418

Difference

based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing
parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v

Input Processing Mode

Block Works?

Sample based

Frame based

Sample based

Yes

No, produces an error

Sample based Frame based Yes
Frame based Yes
Sample based Inherited Yes
Frame based Yes

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

The Signal Attributes pane of the Difference block dialog box appears as follows:

1-419

1

Blocks — Alphabetical List

E Function Block Parameters: Difference @

Difference (mask) (link)
Output the current input value minus the previous input value.

Main Signal Attributes

Output minimurm:

] (]

Output data type: Inherit: Inherit via internal rule -

["] Lock output data type setting against changes by the fixed-point tools

7)

Output maximum:

Integer rounding mode: [Floor

[] Saturate to max or min when overflows occur

OK H Cancel H Help Apply

Output minimum
Specify the minimum value that the block should output. The default value is []

(unspecified). Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is[]

(unspecified). Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

1-420

Difference

* A rule that inherits a data type, for example, Inherit: Inherit via back

propagation

* The name of a built-in data type, for example, single

* The name of a data type object, for example, a Simul ink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button #I to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output

Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur

Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce

saturation code.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point

Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals Yes

Code Generation Yes

1-421

1 Blocks — Alphabetical List

Introduced before R2006a

1-422

Digital Clock

Digital Clock

Output simulation time at specified sampling interval

Library

Sources

12:24 o

Description
The Digital Clock block outputs the simulation time only at the specified sampling
interval. At other times, the block holds the output at the previous value. To control the

precision of this block, set the Sample time parameter in the block dialog box.

Use this block rather than the Clock block (which outputs continuous time) when you
need the current simulation time within a discrete system.

Data Type Support

The Digital Clock block outputs a real signal of type double. For more information, see “
Data Types Supported by Simulink” in the Simulink documentation.

1-423

1 Blocks — Alphabetical List

Parameters and Dialog Box

E Source Block Pararmeters: Digital Clock @
Digital Clock

Output current simulation time at the specified rate.
Farameters

Sample time:

1

0K]| Cancel || Help Apply

Sample time

Specify the sampling interval. The default value is 1 second. For more information,
see Specifying Sample Time in the Simulink documentation.

Do not specify a continuous sample time, either O or [0,0]. Also, avoid specifying -1
(inheriting the sample time) because this block is a source.

Examples

In the following model, the Scope block shows the output of a Digital Clock block with a
Sample time of 0.2.

]

Scope

12:234

h

Digital Clodk

The Digital Clock block outputs the simulation time every 0.2 seconds. Otherwise, the
block holds the output at the previous value.

1-424

Digital Clock

Bl scope fo o s
Se|Hvd OFF BaF -

Characteristics

Data Types Double

Sample Time Specified in the Sample time parameter
Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

See Also

Clock

Introduced before R2006a

1-425

1 Blocks — Alphabetical List

1-426

Direct Lookup Table (n-D)

Index into N-dimensional table to retrieve element, column, or 2-D matrix

Library

Lookup Tables

D TH

[
Description :k

Block Inputs and Outputs

The Direct Lookup Table (n-D) block uses inputs as zero-based indices into an n-
dimensional table. The number of inputs varies with the shape of the output: an element,
column, or 2-D matrix.

You define a set of output values as the Table data parameter. The first input
specifies the zero-based index to the table dimension that is one higher than the
output dimensionality. The next input specifies the zero-based index to the next table
dimension, and so on.

Output Shape | Output Dimensionality Table Dimension That Maps to the First Input
Element 0 1
Column 1 2
Matrix 2 3

Suppose that you want to select a column of values from a 4-D table:

4D Tk]

ol i

LYY

Direct Lookup Table (n-D)

The following mapping of block input port to table dimension applies:

This input port... Is the index for this table dimension...
1 2
2 3
3 4

Changes in Block Icon Appearance
Depending on parameters you set, the block icon changes appearance. For table
dimensions higher than 4, the icon matches the 4-D version but shows the exact number

of dimensions in the top text.

When you use the Table data parameter, you see the following icons:

Object That Inputs Number of Table Dimensions
Select from the
1 2 3 4
Table
Element
1-D T[H] 2D T y =0TE 4D T[]
p b P y, ‘ —p E Heh
Y)
Column
1-0 T[K] 2D T 30 T y 0TH
b X P b X b
Y)
2-D Matrix Not applicable
2D TH) 30T 4D T
b p o b
2

When you use the table input port, you see the following icons:

1-427

1 Blocks — Alphabetical List

Object That Inputs
Select from the

Number of Table Dimensions

Table 3 4
Element
N 1-0 T[] y ZDTH y 20TH 40 TH
VU TuEt g 4,
T 3T 37 T
Column
1.0 T[H] 2.0 T[] y DT y B
")
T b b X o 3
AT AT T
2-D Matrix Not applicable

2-D T[K]

30 T[K)

4-[T[]

Data Type Support

The Direct Lookup Table (n-D) block accepts input signals of different data types.

Type of Input Port

Index port

Data Types Supported

* Floating point
Built-in integer
Boolean

Enumerated data types

1-428

Table port (with the label T)

Floating point
Built-in integer
Fixed point

Boolean

Direct Lookup Table (n-D)

Type of Input Port Data Types Supported
* Enumerated data types

The output data type is the same as the table data type. Inputs for indexing must be real,
but table data can be complex.

When the table data is... The block inherits the output type from...
The Table data type parameter
The table input port

Not an input

An input

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-429

1 Blocks — Alphabetical List

1-430

Parameters and Dialog Box

"k Function Block Parameters: Direct Lookup Table (n-0) ﬁ

Direct Lookup Table (n-D)

Table member selection. Inputs are zero-based indices into the table, e.g., an
input of 3 returns the fourth element in that dimension. Block can also be used to
select a column or 2-D matrix out of the table. The first selection index
corresponds to the top (or left) input port.

Main Table Attributes

Number of table dimensions: 2 -

Inputs select this object from table: ’Element ']

("] Make table an input

Table data: [4 5 6;16 19 20;10 18 23]

Diagnestic for out-of-range input: ’Warning *]

s.)‘ [oK H Cancel ” Help Apply

“Main tab” on page 1-430
“Table Attributes tab” on page 1-432

Main tab

Number of table dimensions

Specify the number of dimensions that the Table data parameter must have. This
value determines the number of independent variables for the table and the number
of inputs to the block.

Direct Lookup Table (n-D)

To specify... Do this...

1,2, 3,0or4 Select the value from the drop-down list.

A higher number of table dimensions Enter a positive integer directly in the
field.

The maximum number of table
dimensions that this block supports is 30.

Inputs select this object from table

Specify whether the output data is a single element, a column, or a 2-D matrix. The
number of input ports for indexing depends on your selection.

Selection Number of Input Ports for Indexing
Element Number of table dimensions
Column Number of table dimensions — 1
2-D Matrix Number of table dimensions — 2

This numbering matches MATLAB indexing. For example, if you have a 4-D table of
data, follow these guidelines:

To access... Specify... As in...

An element Four indices array(1,2,3,4)
A column Three indices array(:,2,3,4)
A 2-D matrix Two indices array(:,:,3,4)

Make table an input

Select this check box to force the Direct Lookup Table (n-D) block to ignore the Table
data parameter. Instead, a new input port appears with T next to it. Use this port to
input table data.

Table data

Specify the table of output values. The matrix size must match the dimensions of the
Number of table dimensions parameter. The Table data field is available only if
you clear the Make table an input check box.

1-431

1 Blocks — Alphabetical List

1-432

Tip During block diagram editing, you can leave the Table data field empty. But
for simulation, you must match the number of dimensions in Table data to the
Number of table dimensions. For details on how to construct multidimensional
MATLAB arrays, see “Multidimensional Arrays” in the MATLAB documentation.

Click Edit to open the Lookup Table Editor. For more information, see “Edit Lookup
Tables” in the Simulink documentation.

Diagnostic for out-of-range input
Specify whether to show a warning or error when an index is out of range with
respect to the table dimension. Options include:
* None — do not display any warning or error message

* Warning — display a warning message in the MATLAB Command Window and
continue the simulation

* Error — halt the simulation and display an error in the Diagnostic Viewer
When you select None or Warning, the block clamps out-of-range indices to fit table

dimensions. For example, if the specified index is 5.3 and the maximum index for
that table dimension is 4, the block clamps the index to 4.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Table Attributes tab

Note: The parameters in the Table Attributes pane are not available if you select Make
table an input. In this case, the block inherits all table attributes from the input port
with the label T.

Table minimum
Specify the minimum value for table data. The default value is [] (unspecified).

Table maximum

Direct Lookup Table (n-D)

Specify the maximum value for table data. The default value is [] (unspecified).

Table data type
Specify the table data type. You can set it to:

A rule that inherits a data type, for example, Inherit: Inherit from "Table
data”

The name of a built-in data type, for example, single

The name of a data type object, for example, a Simul ink.NumericType object

An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button ;l to display the Data Type
Assistant, which helps you set the Table data type parameter.
Lock data type settings against changes by the fixed-point tools

Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Examples

When Table Data Is Not an Input

Suppose that you have the following model:

1
Corsmrt []
| <D0 T[E]
uint18{3) - Hﬂ%‘ >
.
Constanti =
Direct Lockup
int8(2) Table:(n-0) Dis play
Constant2

The Direct Lookup Table (n-D) block parameters are:

1-433

1

Blocks — Alphabetical List

1-434

Block Parameter Value
Number of table dimensions 4
Inputs select this object from table Column
Make table an input off
Table data a
Diagnostic for out-of-range input Warning
Sample time -1
Table minimum 1
Table maximum N
Table data type intl6
Lock data type settings against off

changes by the fixed-point tools

In this example, a is a 4-D array of linearly increasing values that you define with the

following model preload function:

a = reshape(1:2800, [4 5 20 71);

When you run the model, you get the following results:

double

1

Constant

8
8

int&

int&(2)

Constant2

] uint 15 i
uint18(3}) -
.
Constant1 v

Y

2g

&

Display

Because the Direct Lookup Table (n-D) block uses zero-based indexing, the output is:

a(:,2,4,3)

The output has the same data type as the table: intl6.

Direct Lookup Table (n-D)

When Table Data Is an Input

Suppose that you have the following model:

1
e []
B 4.0 T[K]
uint18{2) L
.
> P
Constant1 T
Direct Lockup
intB{2) DY
L Table {n-D) Diplay
Constant2
8
Constant3

The Direct Lookup Table (n-D) block parameters are:

Block Parameter Value
Number of table dimensions 4
Inputs select this object from table Column
Make table an input on
Diagnostic for out-of-range input Warning
Sample time -1

The key parameters of the Constant3 block are:

Block Parameter Value
Constant value a
Output data type fixdt(1,16,2)

In this example, a is a 4-D array of linearly increasing values that you define with the
following model preload function:

1-435

1 Blocks — Alphabetical List

1-436

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

double
1
e
— B 40 T[E]
uint18{3) - =fecdf_En2
- L BT
corstent T
ints Direct Lockup
intB{2) i Y
L Table (n-D) Deplay
Constant2
=inelf_EnZ
8
Constant3

The Constant3 block feeds the 4-D array to the Direct Lookup Table (n-D) block, using
the fixed-point data type Fixdt(1,16,2). Because the Direct Lookup Table (n-D) block
uses zero-based indexing, the output is:

a(:,2,4,3)

The output has the same data type as the table: Fixdt(1,16,2).

Characteristics

Data Types

Double | Single | Boolean | Base Integer |
Enumerated

Sample Time

Inherited from driving block

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No

Direct Lookup Table (n-D)

‘Code Generation Yes

See Also

n-D Lookup Table

Introduced before R2006a

1-437

1 Blocks — Alphabetical List

1-438

Discrete Derivative

Compute discrete-time derivative

Library

Discrete
Kzt |
T==z
Description

The Discrete Derivative block computes an optionally scaled discrete time derivative as
follows

Ku(t,) Kulty)
T. T,

S S

y(t,) =

where

u(t,) and y(¢,) are the block's input and output at the current time step,
respectively.

u(t,_1) is the block's input at the previous time step.

K is a scaling factor.

T, is the simulation's discrete step size, which must be fixed.

Note: Do not use this block in subsystems with a non-periodic trigger (for example, non-
periodic function-call subsystems). This configuration will produce inaccurate results.

Discrete Derivative

Data Type Support

The Discrete Derivative block supports all numeric Simulink data types, including fixed-
point data types.

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

The Main pane of the Discrete Derivative block dialog box appears as follows:

i h
*k Function Block Parameters: Discrete Denvative ﬁ

Discrete Derivative (mask) (link)

Discrete-time derivative of the input.

This block only works with fixed sample rates. Do not use this block in
subsystems with a non-periodic trigger.

Main | Signal Attributes

Gain value:

1.0

Initial condition for previous weighted input K*u/Ts:

0.0
Input processing: | Inherited -
',._}' OK] [Cancel] [Help Apply

L=

Gain value

1-439

1 Blocks — Alphabetical List

1-440

Scaling factor used to weight the block's input at the current time step.

Initial condition for previous weighted input K*u/Ts

Set the initial condition for the previous scaled input.

Input processing

Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

Elements as channels (sample based) — Treat each element of the input
as a separate channel (sample-based processing).

Columns as channels (frame based) — Treat each column of the input as a
separate channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Inherited — Inherit the processing mode from the input signal and delay the
input accordingly. You can identify whether the input signal is sample or frame
based by looking at the signal line. Simulink represents sample-based signals
with a single line and frame-based signals with a double line.

Note: When you choose the Inherited option for the Input processing

parameter, and the input signal is frame-based, Simulink will generate a warning
or error in future releases.

Use Input processing to specify whether the block performs sample- or frame-based
processing. The block accepts frame-based signals for the input u. All other input
signals must be sample based.

Input Signal v Input Processing Mode Block Works?

Sample based Sample based Yes

Frame based No, produces an error
Sample based Frame based Yes

Frame based Yes

Sample based Inherited Yes

Discrete Derivative

Input Signal v Input Processing Mode Block Works?

Yes

Frame based

For more information about these two processing modes, see “Sample- and Frame-
Based Concepts” in the DSP System Toolbox documentation.

The Signal Attributes pane of the Discrete Derivative block dialog box appears as

follows:

E Function Block Parameters: Discrete Derivative @
Discrete Derivative (mask) (link)

Discrete-time derivative of the input.

This block only works with fixed sample rates, so it will not work inside
a triggered subsystem.

Main Signal Attributes

Output minimurm:

(] (]

Output data type: Inherit: Inherit via internal rule -

["] Lock output data type setting against changes by the fixed-point tools

7)

Output maximum:

Integer rounding mode: [Floor

[saturate to max or min when overflows occur

[OK H Cancel H Help Apply

Output minimum
Specify the minimum value that the block should output. The default value is []

(unspecified). Simulink software uses this value to perform:

* Simulation range checking (see “Signal Ranges”)

1-441

1 Blocks — Alphabetical List

+ Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:

* Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:
* A rule that inherits a data type, for example, Inherit: Inherit via back
propagation
* The name of a built-in data type, for example, single
* The name of a data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #I to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” in Simulink User's Guide for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate to max or min when overflows occur

Select to have overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. In general, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

1-442

Discrete Derivative

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point
Direct Feedthrough Yes

Multidimensional Signals No

Variable-Size Signals Yes

Code Generation Yes

See Also

Derivative

Introduced before R2006a

1-443

1 Blocks — Alphabetical List

1-444

Discrete Filter

Model Infinite Impulse Response (IIR) filters

Library

Discrete

1+0.5z 1

Description

The Discrete Filter block independently filters each channel of the input signal with

the specified digital IIR filter. You can specify the filter structure as one of | Direct
form I | Direct form 1 transposed | Direct form 11 | Direct form 11
transposed. The block implements static filters with fixed coefficients. You can tune the
coefficients of these static filters.

This block filters each channel of the input signal independently over time. The Input
processing parameter allows you to specify how the block treats each element of the
input. You can specify treating input elements as an independent channel (sample-based
processing), or treating each column of the input as an independent channel (frame-based
processing). To perform frame-based processing, you must have a DSP System Toolbox
license.

The output dimensions equal those of the input, except when you specify a matrix of
filter taps for the Numerator coefficients parameter. When you do so, the output
dimensions depend on the number of different sets of filter taps you specify.

Use the Numerator coefficients parameter to specify the coefficients of the discrete
filter numerator polynomial. Use the Denominator coefficients parameter to specify
the coefficients of the denominator polynomial of the function. The Denominator
coefficients parameter must be a vector of coefficients.

Specify the coefficients of the numerator and denominator polynomials in ascending
powers of z. The Discrete Filter block lets you use polynomials in z” (the delay operator)

Discrete Filter

to represent a discrete system. This method is the one that signal processing engineers
typically use. Conversely, the Discrete Transfer Fen block lets you use polynomials in z
to represent a discrete system. This method is the one that control engineers typically

use. When the numerator and denominator polynomials have the same length, the two
methods are identical.

Specifying Initial States

In Dialog parameters and Input port(s) modes, the block initializes the internal filter
states to zero by default, which is equivalent to assuming past inputs and outputs are
zero. You can optionally use the Initial states parameter to specify nonzero initial states
for the filter delays.

To determine the number of initial state values you must specify, and how to specify
them, see the following table on Valid Initial States and Number of Delay Elements
(Filter States). The Initial states parameter can take one of four forms as described in
the following table.

Valid Initial States

(for applying
the same delay
elements to
each channel)

elements: [d; d]

The delay elements for all channels
are d1 and d2.

Initial state Examples Description
Scalar 5 The block initializes all delay elements in
the filter to the scalar value.
Each delay element for each
channel is set to 5.
Vector For a filter with two delay Each vector element specifies a unique

initial condition for a corresponding delay
element. The block applies the same vector
of initial conditions to each channel of the
input signal. The vector length must equal
the number of delay elements in the filter
(specified in the table Number of Delay
Elements (Filter States)).

Vector or
matrix

(for applying
different delay
elements to
each channel)

For a 3-channel input signal and a
filter with two delay elements:

[d1 dg D] D2 dl dg] or

Each vector or matrix element specifies a
unique initial condition for a corresponding
delay element in a corresponding channel:

* The vector length must be equal to the
product of the number of input channels
and the number of delay elements in the

1-445

1 Blocks — Alphabetical List

3 are d;and

* The delay elements for channel
1 are d; and d».

* The delay elements for channel
2 are D; and D..

* The delay elements for channel

ds.

Initial state Examples Description
d, D, d; filter (specified in the table Number of
Delay Elements (Filter States)).
%5

* The matrix must have the same number
of rows as the number of delay elements
in the filter (specified in the table
Number of Delay Elements (Filter
States)), and must have one column for
each channel of the input signal.

Empty matrix

L1

Each delay element for each
channel is set to O.

The empty matrix, [], is equivalent to
setting the Initial conditions parameter to

the scalar value O.

1-446

The number of delay elements (filter states) per input channel depends on the filter
structure, as indicated in the following table.

Number of Delay Elements (Filter States)

Filter Structure

Number of Delay Elements per Channel

Direct form 1

Direct form 1 transposed

* number of zeros - 1
* number of poles - 1

Direct form I1

Direct form 1l transposed

poles)-1

max(number of zeros, number of

The following tables describe the valid initial states for different sizes of input and
different number of channels. These tables provide this information according to whether
you set the Input processing parameter to frame based or sample based.

Frame-Based Processing

Input Number of Channels | Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
+ Column vector 1 * Scalar + Scalar

(K-by-1)

* Unoriented vector

(K)

* Column vector
(M-by-1)

* Column vector
(M-by-1)

Discrete Filter

Input Number of Channels |Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
* Row vector (1-
by-M)
Row vector (1- N Scalar Scalar
by-N) Column vector Matrix (M-by-N)
Matrix (K-by-N) (M-by-1)

Row vector (1-
by-M)
Matrix (M-by-N)

Sample-Based Processing

Input Number of Channels | Valid Initial States Valid Initial States
(Dialog Box) (Input Port)

Scalar 1 * Scalar * Scalar
Column vector Column vector
(M-by-1) (M-by-1)
Row vector (1- Row vector (1-
by-M) by-M)

Row vector (1- N Scalar Scalar

by-N) Column vector

Column vector (M-by-1)

(N-by-1) Row vector (1-

Unoriented vector by-M)

) Matrix (M-by-N)

Matrix (K-by-N) |KXN Scalar Scalar

Column vector
(M-by-1)

Row vector (1-
by-M)

Matrix (M-by-
(EXN))

1-447

1 Blocks — Alphabetical List

1-448

When the Initial states is a scalar, the block initializes all filter states to the same
scalar value. Enter O to initialize all states to zero. When the Initial states is a vector or
a matrix, each vector or matrix element specifies a unique initial state. This unique state
corresponds to a delay element in a corresponding channel:

* The vector length must equal the number of delay elements in the filter, M =
max(number of zeros, number of poles).

* The matrix must have the same number of rows as the number of delay elements in
the filter, M = max(number of zeros, number of poles). The matrix must also
have one column for each channel of the input signal.

The following example shows the relationship between the initial filter output and the
initial input and state. Given an initial input u;, the first output y; is related to the
initial state [x;, xo] and initial input by:

y =b {(ul —agx) —agxy)

+ boxq +bgxy
ay

To see an example of how to set initial conditions as a vector:

* Click on the model ex_discretefilter_nonzero_ic, or type it at the MATLAB
command prompt.

* Double-click on the Discrete Filter block, and set the parameters. The following shows
how to set the initial conditions of the Discrete Filter block to [1 2].

Discrete Filter

i

Function Block Parameters: Discrete Filter
Discrete Filter

Independently filter each channel of the input over time using a discrete IR filter. Specify the numerator and

denominator coefficients in ascending order of powers of 1/z.

A DSP Systemn Toolbox license is required to use a filter structure other than Direct form IL

Main | Data Types | State Attributes

Filter structure: [Direct form IT -
Data
Source Value

Numerator: [0.29 0.59 0.29]

Denominator: [100.17]

Initial states: [12]

External reset: [None v]
Input processing: [Elements as channels (sample based) v]

Optimize by skipping divide by leading denominator coefficient (a0

Sample time (-1 for inherited): -1

(]9 H Cancel H

Help

Apply

* Simulate the model, by left-clicking the green simulation icon.

1-449

1 Blocks — Alphabetical List

ﬂ ex_discretefilter_nonzero_ic E@
File Edit View Display Diagram Simulation Analysis Code Tools Help
-8 BE-EHGOP = ©- Cm—— N
ex_discretefilter_nonzero_ic
& ||Pa| ex_discretefilter_nonzero_ic -
(o]
Ed
=1
[
Tl 0.28+D 55z 1+0 2822
(L u 1401722 . fier |:|
Sine Wave D Borete Fiter
diference
Scope
AR N
Unit Delay | —
z
xd
=7 & N
2] l
Gain2
1
UnitDelayl | —
<57] - F
Gaind Gaing
»

* Double-click the scope. You can see that the difference between the signal filtered by
the Discrete Filter block, and the signal from the filter’s building blocks, is zero.

1-450

Discrete Filter

-) B (o |[= | =]

o a<@O%N% Das 5

difference

This demonstrates that you can enter the initial conditions of the Discrete Filter block
as a vector of [1 2]. You can also set the initial condition of the first Unit Delay to 1
and the second Unit Delay to 2. The resulting outputs are the same.

1-451

1 Blocks — Alphabetical List

1-452

Data Type Support

The Discrete Filter block accepts and outputs real and complex signals of any signed
numeric data type that Simulink supports. The block supports the same types for the
numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity. They can have
different word lengths and fraction lengths.

The following diagrams show the filter structure and the data types used within the
Discrete Filter block for fixed-point signals.

Output

The block omits the dashed divide when you select the Optimize by skipping divide
by leading denominator coefficient (a0) parameter.

Discrete Filter

Denominator

Input accumulator

Input

Denominator
accumulator
data type

Denominator
accumulator
data type

State

Denominator
product output

Denominator
coefficient
data type

Ev]
Denominator Numerator

product output

data type ! data type data type
Cast <- - b Cast

product output

Denominator
coefficient
data type

data type 4
A._

Numerator

product output

.data type - data type Q__ *O_'- data type_»’data type
-]

Numerator
product output

Numerator
accumulator

data type
=0

Numerator
accumulator

—>|b data type [Cast data type
‘ L

Numerator
coefficient
data type

Y

|
v

Numerator
coefficient
data type

Numerator
accumulator

Output

data type
.

Output

1-453

1 Blocks — Alphabetical List

Parameters and Dialog Box

-

E Function Block Parameters: Discrete Filter | 23 |
Discrete Filter

Independently filter each channel of the input over time using a discrete IIR filter. Specify the numerator and
denominator coefficients in ascending order of powers of 1/z.

Main | Data Types | State Attributes |
Data

Source Value

Numerator: [1]
Denominator: [10.5]
Initial states: 0

Algorithm
External reset: [None ']
Input processing: [Elements as channels (sample based) ']

[C] Optimize by skipping divide by leading denominator coefficient (a0)
Sample time (-1 for inherited): 1

[OK H Cancel H Help] Apply

Numerator

Numerator coefficients of the discrete filter. To specify the coefficients, set the

Source to Dialog. Then, enter the coefficients in Value as descending powers of z.

Use a row vector to specify the coefficients for a single numerator polynomial.
Denominator

Denominator coefficients of the discrete filter. To specify the coefficients, set the
Source to Dialog. Then, enter the coefficients in Value as descending powers of z.
Use a row vector to specify the coefficients for a single denominator polynomial.

1-454

Discrete Filter

Initial states

If the Source is Dialog, then, in Value, specify the initial states of the filter states.
To learn how to specify initial states, see “Specifying Initial States” on page 1-445.

If the Source is Input port, then you do not need to specify Value.

External reset

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:
when there is a nonzero at the current
time step
* when the time step value changes
from nonzero at the previous time
step to zero at the current time step
Level hold Reset when nonzero at the current time
step.

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for uFix1, are not supported.

Input processing

Specify whether the block performs sample- or frame-based processing.

+ Elements as channels (sample based) — Process each element of the

input as an independent channel.

+ Columns as channels (frame based) — Process each column of the input as

an independent channel.

Note: Frame-based processing requires a DSP System Toolbox license.

1-455

1 Blocks — Alphabetical List

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Optimize by skipping divide by leading denominator coefficient (a0)

Select when the leading denominator coefficient, ay, equals 1. This parameter
optimizes your code.

When you select this check box, the block does not perform a divide-by-a, either in
simulation or in the generated code. An error occurs if a, is not equal to one.

When you clear this check box, the block is fully tunable during simulation. It
performs a divide-by-a, in both simulation and code generation.

Sample time
Specify the time interval between samples. To inherit the sample time, set this
parameter to —-1. See “ Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

State
Specify the state data type. You can set this parameter to:

* A rule that inherits a data type, for example, Inherit: Same as input
* A built-in integer, for example, int8

+ A data type object, for example, a Simul ink.NumericType object

+ An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button #I to display the Data Type

Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator coefficients

Specify the numerator coefficient data type. You can set this parameter to:

* A rule that inherits a data type, for example, Inherit: Inherit via

internal rule
* A built-in integer, for example, int8
+ A data type object, for example, a Simulink.NumericType object

1-456

Discrete Filter

+ An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Numerator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator coefficient minimum

Specify the minimum value that a numerator coefficient can have. The default value

is [] (unspecified). Simulink software uses this value to perform:

+ Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Numerator coefficient maximum
Specify the maximum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:
* Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Numerator product output
Specify the product output data type for the numerator coefficients. You can set this
parameter to:
* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule
* A built-in data type, for example, Int8
+ A data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #I to display the Data Type

Assistant, which helps you set the Numerator product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Numerator accumulator

Specify the accumulator data type for the numerator coefficients. You can set this
parameter to:

1-457

1 Blocks — Alphabetical List

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

* A built-in data type, for example, Int8
+ A data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type

Assistant, which helps you set the Numerator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator coefficients

Specify the denominator coefficient data type. You can set this parameter to:

* A rule that inherits a data type, for example, Inherit: Inherit via

internal rule

* A built-in integer, for example, int8

+ A data type object, for example, a Simul ink.NumericType object

* An expression that evaluates to a data type, for example, fFixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Denominator coefficients parameter.
See “Specify Data Types Using Data Type Assistant” for more information.

Denominator coefficient minimum

Specify the minimum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Denominator coefficient maximum

Specify the maximum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Check Parameter Values”)

1-458

Discrete Filter

+ Automatic scaling of fixed-point data types

Denominator product output
Specify the product output data type for the denominator coefficients. You can set
this parameter to:
* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule
* A built-in data type, for example, Int8
+ A data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type

Assistant, which helps you set the Denominator product output parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Denominator accumulator

Specify the accumulator data type for the denominator coefficients. You can set this

parameter to:

* A rule that inherits a data type, for example, Inherit: Inherit via

internal rule

* A built-in data type, for example, Int8

+ A data type object, for example, a Simul ink.NumericType object

* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Denominator accumulator parameter.
See “Specify Data Types Using Data Type Assistant” for more information.

Output
Specify the output data type. You can set this parameter to:

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

* A built-in data type, for example, Int8

1-459

1 Blocks — Alphabetical List

* A data type object, for example, a Simul ink_.NumericType object
+ An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” for more information.
Output minimum
Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:
+ Simulation range checking (see “Signal Ranges”)

* Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink software uses this value to perform:
+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools

Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This What Happens for Example
Action Overflows

Select this Your model has possible Overflows saturate to The maximum value

check box. overflow, and you want either the minimum or that the Int8 (signed,
explicit saturation maximum value that the |8-bit integer) data type
protection in the data type can represent. can represent is 127.
generated code.

1-460

Discrete Filter

Action

Reasons for Taking This
Action

What Happens for
Overflows

Example

Any block operation

result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a

block handles out-of-

range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as Int8, is -126.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

State name

Use this parameter to assign a unique name to the block state. The default is *

When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

1-461

1 Blocks — Alphabetical List

+ A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.
State name must resolve to Simulink signal object

Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class

Select custom storage class for state.

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State 1s stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.

ImportedExternPointer

1-462

Discrete Filter

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (-h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.
State name enables this parameter.
The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier

Specify a Simulink Coder storage type qualifier. The default is * *. When this field is
blank, no qualifier is assigned.

1-463

1 Blocks — Alphabetical List

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

* The initial value of the signal object to which the state name resolves

* Minimum and maximum values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point

Sample Time Specified in the Sample time parameter

Direct Feedthrough Only when the leading numerator coefficient does not
equal zero

Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

Filter Structure Diagrams

The diagrams in the following sections show the filter structures supported by the Digital
Filter block. They also show the data types used in the filter structures for fixed-point
signals. You can set the coefficient, output, accumulator, product output, and state data
types shown in these diagrams in the block dialog.

+ “IIR direct form I” on page 1-465

+ “IIR direct form I transposed” on page 1-467

1-464

Discrete Filter

+ “IIR direct form II” on page 1-470
+ “IIR direct form II transposed” on page 1-472

IIR direct form |

i) &
input F Y & output
k J k4
1 1
z z

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

* Inputs can be real or complex.

* Numerator and denominator coefficients can be real or complex.

* Numerator and denominator coefficients must have the same complexity

characteristics.

When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

1-465

1 Blocks — Alphabetical List

* When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.
* Numerator and denominator coefficients must have the same word length. They can
have different fraction lengths.

* The State data type cannot be specified on the block mask for this structure. Doing so
is not possible because the input and output states have the same data types as the
input and output buffers.

Input Product output Accunulator Accunulator Cutput
data type data type data type data type ,—ldata type
b -5 - + -3 >-—p€> g Cast D
input Hunerator & Fy & F'y output
coefficient
data type

Accunulator Accunulator Product output

Product output
data type data type data type I

H data type

Hunerator Denominator
cosfficient coefficient
data type data type

: s

¥

h FProduct ocutput Accunulator Accunulator Froduct ocutput W

H data tvpe data types data type data tvpe H

-
Hunerator Denomninator
cosfficient cosfficient
data type data type

1-466

Discrete Filter

IR direct form | transposed

output

N
N

—~

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

* Inputs can be real or complex.

1-467

1 Blocks — Alphabetical List

1-468

Numerator and denominator coefficients can be real or complex.

Numerator and denominator coefficients must have the same complexity
characteristics.

When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

* When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it 1s a complex vector with zero-
valued imaginary parts.

States are complex when either the input or the coefficients are complex.

Numerator and denominator coefficients must have the same word length. They can
have different fraction lengths.

Discrete Filter

Input Accunulator Hultiplicand Product output Accunulator
data type data type data type

Humerator
coefficient
data type

Accumulator
data type

Accumulator
data type

State

State
data type

data type

Accumulato:
data typ

Product output
data type

Product output
data type

Accumulator
data type

Denominator Numerator
Accumulator coefficient coefficient
data type data type data type

Accumulator
data type

Accumnulator Product output Product output Accunulator
1 data tune data type data type data twvne |
S e
Denominator Numerator
coefficient coefficient
data type data type

1-469

Output

data ty;

1 Blocks — Alphabetical List

IIR direct form I

:) » (b0 .

input F'y Fy output

e ol
=2 P

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

* Inputs can be real or complex.

Numerator and denominator coefficients can be real or complex.

Numerator and denominator coefficients must have the same complexity
characteristics.

When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.

1-470

Discrete Filter

States are complex when either the inputs or the coefficients are complex.

Numerator and denominator coefficients must have the same word length. They can
have different fraction lengths.

Input Accunulator State Product output Accunulator Output
data type data type data type data type data type data type

R R e

Y cutput

&

ccunulator
data type

Product output
data type

Humerator
coefficient
data typs

Product output
data type

Denominator | Humerator
cosfficient |cosfficient
data type data type

Accunulator
data type

hccunulator Product ocutput v Product ocutput Accunulator
data type data type H data type data type
Cast . Cast
Denominator Nunerator
cosfficient cosfficient
data type data type

1-471

1 Blocks — Alphabetical List

IR direct form Il transposed

b ¢ >

input

output

The following constraints are applicable when processing a fixed-point signal with this
filter structure:

* Inputs can be real or complex.

Numerator and denominator coefficients can be real or complex.

Numerator and denominator coefficients must have the same complexity
characteristics.

1-472

Discrete Filter

* When the numerator and denominator coefficients are specified using input ports
and have different complexities from each other, you get an error.

+ When the numerator and denominator coefficients are specified in the dialog
box and have different complexities from each other, the block does not error.
Instead, it processes the filter as if two sets of complex coefficients are provided.
The real-valued coefficient set is treated as if it is a complex vector with zero-
valued imaginary parts.

+ States are complex when either the inputs or the coefficients are complex.

* Numerator and denominator coefficients must have the same word length. They can
have different fraction lengths.

1-473

Blocks — Alphabetical List

1-4

Input Product output
data type I data type
Numerator
coefficient
data type

Product output

data type

Humerator
coefficient
data type

.

Product output

H data type

Humerator
coefficient
data type

Accumulator
data type

Accunulator
data type

Output
data type
i 1
Accunulator output
data type
Cast
F ¥
-1
z
b State
data type
Cast
Accunulator Product output
data type data type

Accunulator
data type

coefficient E
data type
Accunulator
data type
Cast
2 State :
data type !
-1 H
= '
A v
N Y
: Accumulator Product output 5
data type data type

Denominator

Denominator
coefficient
data type

Discrete Filter

Supported Data Types

Double-precision floating point
Single-precision floating point
Fixed point (signed only)

8-, 16-, and 32-bit signed integers

See Also

Allpole Filter DSP System Toolbox
Digital Filter Design DSP System Toolbox
Discrete FIR Filter Simulink

Filter Realization DSP System Toolbox
Wizard

dsp.ITRFilter DSP System Toolbox
dsp.AllpoleFilter DSP System Toolbox
fdatool DSP System Toolbox
fvtool Signal Processing Toolbox

Introduced before R2006a

1-475

1 Blocks — Alphabetical List

1-476

Discrete FIR Filter

Model FIR filters

Library

Discrete

0.5+0.521 |
1

Description

The Discrete FIR Filter block independently filters each channel of the input signal
with the specified digital FIR filter. The block can implement static filters with fixed
coefficients, as well as time-varying filters with coefficients that change over time. You
can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time. The Input
processing parameter allows you to specify whether the block treats each element of the
input as an independent channel (sample-based processing), or each column of the input
as an independent channel (frame-based processing). To perform frame-based processing,
you must have a DSP System Toolbox license.

The output dimensions equal those of the input, except when you specify a matrix of
filter taps for the Coefficients parameter. When you do so, the output dimensions
depend on the number of different sets of filter taps you specify.

The outputs of this block numerically match the outputs of the DSP System Toolbox
Digital Filter Design block and of the Signal Processing Toolbox™ dfi It object.

This block supports the Simulink state logging feature. See “States” in the Simulink
User's Guide for more information.

Discrete FIR Filter

Filter Structure

Support

You can change the filter structure implemented with the Discrete FIR Filter block by
selecting one of the following from the Filter structure parameter:

+ Direct form
* Direct form
+ Direct form
* Direct form
+ Lattice MA

symmetric
antisymmetric
transposed

You must have an available DSP System Toolbox license to run a model with any of these
filter structures other than direct form.

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to zero by default,
which has the same effect as assuming that past inputs and outputs are zero. You can
optionally use the Initial states parameter to specify nonzero initial conditions for the

filter delays.

To determine the number of initial states you must specify and how to specify them, see

the table on valid

initial states. The Initial states parameter can take one of the forms

described in the next table.

Valid Initial States

Initial Condition

Description

Scalar

The block initializes all delay elements in the filter to the scalar value.

Vector or matrix

(for applying different
delay elements to each
channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel:

* The vector length equal the product of the number of input
channels and the number of delay elements in the filter,
of Filter_coeffs-1 (or# of reflection_coeffs for
Lattice MA).

* The matrix must have the same number of rows as the number
of delay elements in the filter, # of Filter_ coeffs-1

1-477

1 Blocks — Alphabetical List

Initial Condition Description

(#_of_reflection_coeffs for Lattice MA), and must have one
column for each channel of the input signal.

Data Type Support

The Discrete FIR Filter block accepts and outputs real and complex signals of any
numeric data type supported by Simulink. The block supports the same types for the
coefficients.

The following diagrams show the filter structure and the data types used within the
Discrete FIR Filter block for fixed-point signals.
Direct Form

You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

1-478

Discrete FIR Filter

Input Product output Accumulator

Accumulator Output
data type data type data type data type data type
D) I by ~|| Cast > N 4 D
Input 3 L Output
Numerator

3 coefficient

EZI data type

Product output Accumulator
b data type ‘| Cast data type
—>| A ’| as!
Numerator

I coefficient

S | data type

I
1
v

Product output Accumulator
r _>| P data type J Cast data type
L

Numerator
coefficient
data type

1-479

1 Blocks — Alphabetical List

Direct Form Symmetric

You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

It is assumed that the filter coefficients are symmetric. The block only uses the first half
of the coefficients for filtering.

Output Output

»| b,

7!
Zr1
-1

i

Even Order - Type | 0dd Order - Type Il

1-480

Discrete FIR Filter

Input Tap sum Product output Accumulator Output
data type data type [data type data type
@_ yp yp 4 B data type ol Cast ;()_>©_> n

L (e
Input X Yy y Output
Numerator
3 coefficient
EZI data type
=[]
Tap sum
l data type Product output Accumulator
EZ| B A > data type ‘m data type
) (B g
Numerator
coefficient
data type
Product output Accumulator
~|b data type J_‘Cast data type
[|
Numerator
-1
I:Z:I ™ Tap sum coefficient
data type data type
_>| Cast | | Cast |

Even Order - Type |

1-481

1 Blocks — Alphabetical List

Input Tap sum Product output Accumulator
p p p
data type - data type data type data type data type
@——».—»cw ()—»{ by ~|| Cast || O—>Q_.
Input s X 2
Numerator
A coefficient
E:I data type
Tap sum
data type
’ Product output Accumulator
+ datatype | | data type
3 Q ‘I b, il ~| Cast | il
7! A
I::I Numerator
coefficient
data type
o
dT:tg St\%ne Product output Accumulator
T datatype | | data type
Y ~|bM i :I Cast | i
-1 =
E:I T Tap sum Numerator
data type coefficient
data type
A
, Tap sum
-
Tap sum data type

data type E{I

A

0dd Order - Type Il

1-482

Output

a»)

Output

Discrete FIR Filter

Direct Form Antisymmetric

You cannot specify the state data type on the block mask for this structure because the
input states have the same data types as the input.

It is assumed that the filter coefficients are antisymmetric. The block only uses the first
half of the coefficients for filtering.

Output Output

~
‘bM
1

-

i

Even Order - Type llI 0dd Order - Type IV

1-483

1 Blocks — Alphabetical List

Input Tap sum Product output Accumulator Output
data type data type [data type data type
@_ yp yp 4 B data type ol Cast ;()_>©_>
| i L (e
nput X Yy y Output
Numerator
3 coefficient
EZI data type
=[]
Tap sum
l data type Product output Accumulator
] O P pa i
- " ! i
Numerator
coefficient
data type
Product output Accumulator
~|b data type ;m data type
[|
S Numerator
™ Tap sum ~~ coefficient
data type data type
_>| Cast | | Cast |

Even Order - Type Il

1-484

Discrete FIR Filter

Input Tap sum Product output Accumulator Output
data type data type data type data type data type
O D B e O R ORIl e

Input 5 X 1 Output
Numerator
3 coefficient
E:I data type
Tap sum
data type
> Product output Accumulator
+ datatype | | data type
3 Q ‘I b, e, Cast il
a0 Y L
I:Z:I 1 Numerator
coefficient
data type
— e
dT:tZ St\%ne Product output Accumulator
T datatype | | data type
Y ~| w i :I Cast | i
-1 -
E:I T Tap sum Numerator
data type coefficient
data type
A Tap sum
21 data type
Tap sum

data type E{I

A

0dd Order - Type IV

1-485

1 Blocks — Alphabetical List

Direct Form Transposed

States are complex when either the inputs or the coefficients are complex.

O[> s

Section ection
input output

;

O

vy

n

1-486

Discrete FIR Filter

Input

Input Product output Accumulator

data type | data type data type

Accumulator

data type
Numgr_ator Accumulator
coefficient Product output Accumulator | data type

data type | data type data type
A
I

n

Numerator

coefficient Product output Accumulator | Accumulator

data type

4

data type | data type | data type
» byq » Cast >
| L

Accumulator
Numerator data type
coefficient Product output Accumulator

data type data type data type

Ouput

data type
D

Output

1-487

1 Blocks — Alphabetical List

Lattice MA

-,

Input

| |

| CONJ (k) |

_>| 71

Input

data type
ap S

Input

v

o]

data type
| Cast

Accumulator

Output

%

Y

Cast |

A

State Product output
data t
data type ™ & 2a e
Coefficient
data type
Product output

1-488

data type
* CONJ (ko)

Accumulator
data type

Accumulator
data type

;Q_.@

Output

Accumulator
data type

(o]
Product output

data type
Coefficient
data type

Accumulator

data type State

data type

Discrete FIR Filter

Parameters and Dialog Box

ﬂ Function Block Parameters: Discrete FIR Filter @
Discrete FIR Filter
Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients using
either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.

A DSP System Toolbox license is required to use a filter structure other than Direct Form.

Main Data Types |

Coefficient source: [Dialog parameters ']
Filter structure: [Direct form v]
Coefficients: [0.5 0.5]

Input processing: ’Elements as channels (sample based) v]
Initial states: 0

Sample time (-1 for inherited): -1

[oK H Cancel H Help] Apply

Coefficient source

Select whether you want to specify the filter coefficients on the block mask or
through an input port.

Filter structure

Select the filter structure you want the block to implement. You must have an
available DSP System Toolbox license to run a model with a Discrete FIR Filter block
that implements any filter structure other than direct form.

Coefficients

Specify the vector coefficients of the filter's transfer function. Filter coefficients must
be specified as a row vector. When you specify a row vector of filter taps, the block
applies a single filter to the input. To apply multiple filters to the same input, specify
a matrix of coefficients, where each row represents a different set of filter taps. This

1-489

1 Blocks — Alphabetical List

parameter is visible only when Coefficient source is set to Dialog parameters.
For multiple filter, Filter structure must be Direct form, and the input must be a

scalar.

Input processing
Specify whether the block performs sample- or frame-based processing. You can
select one of the following options:

+ Elements as channels (sample based) — Treat each element of the input
as an independent channel (sample-based processing).

+ Columns as channels (frame based) — Treat each column of the input as
an independent channel (frame-based processing).

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Initial states
Specify the initial conditions of the filter states. To learn how to specify initial states,
see “Specifying Initial States” on page 1-477.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this
parameter to —1. See “ Specify Sample Time” in “How Simulink Works” in the

Simulink User's Guide.

Tap sum

Specify the tap sum data type of a direct form symmetric or direct form
antisymmetric filter, which is the data type the filter uses when it sums the inputs
prior to multiplication by the coefficients. You can set it to:

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

* A built-in integer, for example, int8
+ A data type object, for example, a Simulink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

This parameter is only visible when the selected filter structure is either Direct
form symmetricor Direct form antisymmetric.

1-490

Discrete FIR Filter

Click the Show data type assistant button ;l to display the Data Type
Assistant, which helps you set the Tap sum parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Coefficients

Specify the coefficient data type. You can set it to:

* A rule that inherits a data type, for example, Inherit: Same word length as

input

* A built-in integer, for example, int8

+ A data type object, for example, a Simul ink.NumericType object

* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Coefficients parameter.

See “Specify Data Types Using Data Type Assistant” for more information.
Coefficients minimum

Specify the minimum value that a filter coefficient should have. The default value is

[1 (unspecified). Simulink software uses this value to perform:

+ Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Coefficients maximum
Specify the maximum value that a filter coefficient should have. The default value is
[1 (unspecified). Simulink software uses this value to perform:
+ Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Product output
Specify the product output data type. You can set it to:
* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule
* A built-in data type, for example, Int8
+ A data type object, for example, a Simul ink.NumericType object

1-491

1 Blocks — Alphabetical List

+ An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button Ll to display the Data Type
Assistant, which helps you set the Product output parameter.
See “Specify Data Types Using Data Type Assistant” for more information.

Accumulator
Specify the accumulator data type. You can set it to:
* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule
* A built-in data type, for example, int8
* A data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Accumulator parameter.
See “Specify Data Types Using Data Type Assistant” for more information.
State
Specify the state data type. You can set it to:
* A rule that inherits a data type, for example, Inherit: Same as accumulator
* A built-in integer, for example, int8
+ A data type object, for example, a Simulink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

This parameter is only visible when the selected filter structure is Lattice MA.

Click the Show data type assistant button ;l to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” for more information.

Output
Specify the output data type. You can set it to:

* A rule that inherits a data type, for example, Inherit: Same as accumulator

1-492

Discrete FIR Filter

* A built-in data type, for example, int8
+ A data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button Ll to display the Data Type
Assistant, which helps you set the Output parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.
Output minimum

Specify the minimum value that the block should output. The default value is []

(unspecified). Simulink software uses this value to perform:

* Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:
* Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools

Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action Reasons for Taking This What Happens for Example
Action Overflows
Select this Your model has possible |Overflows saturate to The maximum value
check box. overflow, and you want either the minimum or that the Int8 (signed,
explicit saturation maximum value that the |8-bit integer) data type
data type can represent. |can represent is 127.

1-493

1 Blocks — Alphabetical List

Action

Reasons for Taking This
Action

What Happens for
Overflows

Example

protection in the
generated code.

Any block operation

result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a

block handles out-of-

range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as Int8, is -126.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

Characteristics

‘Data Types

Double | Single | Base Integer | Fixed-Point

1-494

Discrete FIR Filter

Sample Time

Specified in the Sample time parameter

Direct Feedthrough

Yes

Multidimensional Signals No
Variable-Size Signals Yes
Zero-Crossing Detection No
Code Generation Yes

Introduced in R2008a

1-495

1 Blocks — Alphabetical List

1-496

Discrete State-Space

Implement discrete state-space system

Library

Discrete

) ®(n+1 =Axin+Bu{n)
yin=Ca(n+Duin)

-~

Description oscck Siei=Seece

Block Behavior for Non-Empty Matrices

The Discrete State-Space block implements the system described by

x(n+1)= Ax(n)+ Bu(n)
y(n) = Cx(n)+ Du(n),

where u is the input, x is the state, and y is the output. The matrix coefficients must have
these characteristics, as illustrated in the following diagram:

A must be an n-by-n matrix, where n is the number of states.
B must be an n-by-m matrix, where m is the number of inputs.
C must be an r-by-n matrix, where r is the number of outputs.

D must be an r-by-m matrix.

n m
A B
[o D

The block accepts one input and generates one output. The width of the input vector is
the number of columns in the B and D matrices. The width of the output vector is the

Discrete State-Space

number of rows in the C and D matrices. To define the initial state vector, use the Initial
conditions parameter.

To specify a vector or matrix of zeros for A, B, C, D, or Initial conditions, use the
zeros function.

Block Behavior for Empty Matrices
When the matrices A, B, and C are empty (for example, []), the functionality of the block

becomes y(n) = Du(n). If the Initial conditions vector is also empty, the block uses
an initial state vector of zeros.

Data Type Support

The Discrete State Space block accepts and outputs a real signal of type single or
double. For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

1-497

1 Blocks — Alphabetical List

Parameters and Dialog Box

E Function Block Pararneters: Discrete State-Space @
Discrete State Space
Discrete state-space model:

x®nt+1) = Ax{n) + Bu(n)
y(n} = Cx(n)+ Du(n)

Main State Attributes |
Al

D
1

Initial conditions:

0

Sample time (-1 for inherited):

1

[oK][Cancel H Help Apply

A,B,C,D
Specify the matrix coefficients, as defined in the Description section.

Initial conditions

1-498

Discrete State-Space

Specify the initial state vector. The default value is 0. Simulink does not allow the
initial states of this block to be inf or NaN.

Sample time (-1 for inherited)
Specify the time interval between samples. See “ Specify Sample Time”.

State name

Use this parameter to assign a unique name to the block state. The default is *
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

+ A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object

Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.

Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class

Select custom storage class for state.
Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

1-499

1 Blocks — Alphabetical List

1-500

SimulinkGlobal

model P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State 1s stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.

State name enables this parameter.

Discrete State-Space

The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or

ImportedExternPointer enables Code generation storage type qualifier.
Code generation storage type qualifier

Specify a Simulink Coder storage type qualifier. The default is * . When this field is

blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

* The initial value of the signal object to which the state name is resolved

* Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single

Sample Time Specified in the Sample time parameter
Direct Feedthrough Onlyif D+0

Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

1-501

1 Blocks — Alphabetical List

1-502

Discrete-Time Integrator

Perform discrete-time integration or accumulation of signal

Library

Discrete

K Ts

=1

Description

Capabilities of the Discrete-Time Integrator Block

You can use the Discrete-Time Integrator block in place of the Integrator block to
create a purely discrete system. With the Discrete-Time Integrator block, you can:

* Define initial conditions on the block dialog box or as input to the block.
* Define an input gain (K) value.

* Output the block state.

* Define upper and lower limits on the integral.

* Reset the state depending on an additional reset input.

Output Equations

The block starts from the first time step, n = 0, with either initial output y(0) = ICor
initial state Xx(0) = IC, depending on the Initial condition setting parameter value.

For a given step n > 0 with simulation time t(n), Simulink updates output y(n) as
follows:

* Forward Euler method:

Discrete-Time Integrator

y(n) = y(n-1) + K*[t(n)-t(n-1)J*u(n-1)
* Backward Euler method:

y(n) = y(n-1) + K*[t(n)-t(n-1)J*u(n)
* Trapezoidal method:

y(m) = y(n-1) + K*[t(n)-t(n-1)]*[u(n)+u(n-1)]/2

Simulink automatically selects a state-space realization of these output equations
depending on the block sample time, which can be explicit or triggered. When using
explicit sample time, t(n)-t(n-1) reduces to the sample time T for all n > 0. For more
information on these methods, see “Integration and Accumulation Methods” on page
1-503.

Integration and Accumulation Methods

The block can integrate or accumulate using the forward Euler, backward Euler, and
trapezoidal methods. Assume that u is the input, y is the output, and X is the state. For

a given step n, Simulink updates y(n) and x(n+1). In integration mode, T is the block
sample time (delta T in the case of triggered sample time). In accumulation mode, T = 1.
The block sample time determines when the output is computed but not the output value.

K is the gain value. Values clip according to upper or lower limits.

+ Forward Euler method (default), also known as forward rectangular, or left-hand
approximation

For this method, the software approximates 1/s as T/(z-1). The expressions for the
output of the block at step n are:

x(n+1) = x(n) + K*T*u(n)
y(n) = x(n)

The block uses the following steps to compute the output:

Step O: y(0) IC (clip if necessary)

x(1) = y(0) + K*T*u(0)
Step 1: y(1) = x(1)

x(2) = x(1) + K*T*u(d)
Step n: y(n) = x(n)

1-503

1 Blocks — Alphabetical List

1-504

x(n+1l) = x(n) + K*T*u(n) (clip if necessary)

Using this method, input port 1 does not have direct feedthrough.

Backward Euler method, also known as backward rectangular or right-hand
approximation

For this method, the software approximates 1/s as T*z/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n).
Let x(n) = y((n)-1). The block uses these steps to compute the output.
If the parameter Initial condition setting is set to Output:

Step O: y(0) = IC (clipped if necessary)
x(1) =y

If the parameter Initial condition setting is set to State (most efficient):

Step O: x(0) IC (clipped if necessary)

x(1) = y(0) x(0) + K*T*u(0)
Step 1: y(1) = x(1) + K*T*u(d)
x(2) =y@®

x(n) + K*T*u(n)

Step n: y(n)
x(n+1l) = y(n)

Using this method, input port 1 has direct feedthrough.
Trapezoidal method

For this method, the software approximates 1/s as T/2*(z+1)/(z-1).

When T is fixed (equal to the sampling period), the expressions to compute the output
are:

x(n)
y(n)

y(n-1) + K*T/2 * u(n-1)
x(n) + K*T/2*u(n)

If the Initial condition setting parameter is set to Output:

Step O: y(0) = IC (clipped if necessary)

Discrete-Time Integrator

x(1) = y(0) + K*T/2*u(0)
If the Initial condition setting parameter is set to State (most efficient):

Step O: x(0) IC (clipped if necessary)

y(0) = x(0) ; K*T/2*u(0)
x(1) = y(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2*u(l)
x(2) = y() + K*T/2*u(l)

Step n: y(n) = x(n) + K*T/2*u(n)

x(n+l) = y(n) + K*T/2*u(n)

Here, x(n+1) is the best estimate of the next output. It is not the same as the state,
in that x(n) is not equal to y(n).

If T is variable (for example, obtained from the triggering times), the block uses these
steps to compute the output.

If the Initial condition setting parameter is set to Output:

Step O: y(0) = IC (clipped if necessary)
x(1) =y

If the Initial condition setting parameter is set to State (most efficient):

Step O: x(0) IC (clipped if necessary)

x(1) = y(0) x(0) + K*T/2*u(0)
Step 1: y(1) = x() + T/2*(u(1) + u(0))
x(2) =y@®

Step n: y(n) x(n) + T/2*Cu(n) + u(n-1))

x(n+1l) = y(n)

Using this method, input port 1 has direct feedthrough.

Define Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them
from an external signal:

1-505

1 Blocks — Alphabetical List

1-506

* To define the initial conditions as a block parameter, set the Initial condition
source parameter to internal and enter the value in the Initial condition text
box.

* To provide the initial conditions from an external source, set the Initial condition
source parameter to external. An additional input port appears on the block.
Input

K Ts Output
#y ozl

Initial candifian
—»

Discrete-Time
Integrator

When to Use the State Port
Use the state port instead of the output port:

* When the output of the block is fed back into the block through the reset port
or the initial condition port, causing an algebraic loop. For an example, see the
sldemo_bounce_two_integrators model.

* When you want to pass the state from one conditionally executed subsystem to
another, which can cause timing problems. For an example, see the sldemo_clutch
model.

You can work around these problems by passing the state through the state port rather
than the output port. Simulink generates the state at a slightly different time from the
output, which protects your model from these problems. To output the block state, select
the Show state port check box. The state port appears on the top of the block

Stte

[nput K Ts 0 utput

=1

Liscrete-Time
Integratar

Limit the Integral

To keep the output within certain levels, select the Limit output check box and enter
the limits in the corresponding text box. Doing so causes the block to function as a
limited integrator. When the output reaches the limits, the integral action turns off to

Discrete-Time Integrator

prevent integral windup. During a simulation, you can change the limits but you cannot
change whether the output is limited. The table shows how the block determines output.

Integral Output

Less than or equal to the Lower Held at the Lower saturation limit
saturation limit and the input is negative

Between the Lower saturation limit and |The integral
the Upper saturation limit

Greater than or equal to the Upper Held at the Upper saturation limit
saturation limit and the input is positive

To generate a signal that indicates when the state is being limited, select the Show
saturation port check box. A new saturation port appears below the block output port:
Output

[nput K Ts

=1 Saturatian

Discrete-Time
Integratar

The signal has one of three values:

* 1 indicates that the upper limit is being applied.
* 0O indicates that the integral is not limited.

* -1 indicates that the lower limit is being applied.

Reset the State

The block can reset its state to the initial condition you specify, based on an external
signal. To cause the block to reset its state, select one of the External reset parameter
options. A reset port appears that indicates the reset trigger type:

Input

» K Ts Output
Reset 5 =

Discrete-Time
Integrater

The reset port has direct feedthrough. If the block output feeds back into this port, either
directly or through a series of blocks with direct feedthrough, an algebraic loop results.

1-507

1 Blocks — Alphabetical List

To resolve this loop, feed the output of the block state port into the reset port instead. To
access the block state, select the Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the reset signal that
triggers the reset. The trigger options include:

* rising — Resets the state when the reset signal has a rising edge. For example, this
figure shows the effect that a rising reset trigger has on backward Euler integration.

Reset |

Rising
Reset

Input

v
Integrate

| Nof Inte:gratiion

/

+ falling — Resets the state when the reset signal has a falling edge. For example,
this figure shows the effect that a falling reset trigger has on backward Euler

integration.

Reset ! ; ; ,

: o
Falling Integrate { ¢ i i i INo integration
Reset A Y S

Input

1-508

Discrete-Time Integrator

either — Resets the state when the reset signal rises or falls. For example, the
following figure shows the effect that an either reset trigger has on backward Euler
integration.

Reset‘ : . .
T
Either Intégrate | iNo Integration
Reset o : : : ! ; : : :
Input :
'4

level — Resets and holds the output to the initial condition while the reset signal
is nonzero. For example, this figure shows the effect that a level reset trigger has on
backward Euler integration.

Reset

oo
Level Np Int@gratio

Reset
Input

sampled level — Resets the output to the initial condition when the reset signal is
nonzero. For example, this figure shows the effect that a sampled level reset trigger
has on backward Euler integration.

1-509

1 Blocks — Alphabetical List

1-510

r

Reset
Sampled m ' m : ' ! F m A >
LeveﬁJ Reset No Integration i ' Inteigrate
nput[{0\

The sampled level reset option requires fewer computations, making it more
efficient than the level reset option. However, the sampled level reset option can
introduce a discontinuity when integration resumes.

Note: For the discrete-time integrator block, all trigger detections are based on
signals with positive values. For example, a signal changing from -1 to 0 is not
considered a rising edge, but a signal changing from 0 to 1 is.

Behavior in Simplified Initialization Mode

Simplified initialization mode is enabled when you set Configuration Parameters >
Diagnostics > Data Validity > Underspecified initialization detection is set to
Simplified. If you use simplified initialization mode, the behavior of the Discrete-Time
Integrator block differs from classic initialization mode. The new initialization behavior
is more robust and provides more consistent behavior in these cases:

* In algebraic loops

* On enable and disable

* When comparing results using triggered sample time against explicit sample time,
where the block is triggered at the same rate as the explicit sample time

Simplified initialization mode enables easier conversion from Continuous-Time
Integrator blocks to Discrete-Time Integrator blocks, because the initial conditions have
the same meaning for both blocks.

Discrete-Time Integrator

For more information on classic and simplified initialization modes, see “Underspecified
initialization detection”.

Enable and Disable Behavior with Initial Condition Setting set to Output

When you use simplified initialization mode with Initial condition setting set to
Output, the enable and disable behavior of the block is simplified as follows:

At disable time tg:
y(ty) = y(ty-1)
At enable time t.:
+ If the parent subsystem control port has States when enabling set to reset:

y(te) = IC.
+ If the parent subsystem control port has States when enabling set to held:

y(te) = y(ty)-

The following figure shows this condition.

1-511

1 Blocks — Alphabetical List

1-512

y()

/ u(t)

_'__/’
t,-1 t Tt
t .
Di dbl First
/1SabIe execution
time time after

Enable

lterator Subsystems

When using simplified initialization mode, you cannot place the Discrete-Time Integrator
block in an Iterator Subsystem.

In simplified initialization mode, Iterator subsystems do not maintain elapsed time.
Thus, if a Discrete-Time Integrator block, which needs elapsed time, is placed inside an
Iterator Subsystem block, Simulink reports an error.

Discrete-Time Integrator

Triggered Subsystems and Function-Call Subsystems

Simulink does not support model simulation when all the following conditions are true:

* A Discrete-Time Integrator block is placed within a triggered subsystem or a function-
call subsystem.

* The block’s Initial condition setting parameter is set to State (most
efficient).

* Simplified initialization mode is enabled.

Behavior in an Enabled Subsystem Inside a Function-Call Subsystem

Suppose that you have a function-call subsystem that contains an enabled subsystem,
which contains a Discrete-Time Integrator block. The following behavior applies.

Integrator Method

Sample Time Type of
Function-Call Trigger Port

Value of delta T When
Function-Call Subsystem

Executes for the First
Time After Enabled

Reason for Behavior

Forward Euler

Triggered

t — tstart

When the function-call
subsystem executes
for the first time, the
integrator algorithm
uses tstart as the
previous simulation
time.

Backward Euler and
Trapezoidal

Triggered

t — tprevious

When the function-call
subsystem executes

for the first time, the
integrator algorithm
uses tprevious as the
previous simulation
time.

Forward Euler,
Backward Euler, and
Trapezoidal

Periodic

Sample time of the
function-call generator

In periodic mode,

the Discrete-Time
Integrator block uses
sample time of the

1-513

1 Blocks — Alphabetical List

function-call generator
for delta T.

1-514

Data Type Support

The Discrete-Time Integrator block accepts real signals of the following data types:
* Floating point
* Built-in integer

+ Fixed point

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Discrete-Time Integrator

-

“# Function Block Parameters: Discrete-Time Integrator

23]

DiscreteIntegrator

Discrete-time integration or accumulation of the input signal.

Main | Signal Attributes | State Attributes

Integrator method: [Integratic-n: Forward Euler -
Gain value:

1.0

External reset: [none *]
Initial condition source: [internal *]
Initial condition:

0

Initial condition setting: [State (most efficient) -
Sample time (-1 for inherited):

1
(7] Limit output

Upper saturation limit:

inf

Lower saturation limit:

-inf
["] Shows saturation port
["] show state port
["] 1gnore limit and reset when linearizing

‘)- [0K J [Cancel] [Help Apply

1-515

1 Blocks — Alphabetical List

During simulation, the block uses the following values:

* The initial value of the signal object to which the state name is resolved

* Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

1-516

Discrete-Time Integrator

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1-517

1 Blocks — Alphabetical List

Integrator method

Specify the integration or accumulation method.
Settings

Default: Integration: Forward Euler

Integration: Forward Euler
Integrator method is Forward Euler.
Integration: Backward Euler
Integrator method is Backward Euler.
Integration: Trapezoidal
Integrator method is Trapezoidal.
Accumulation: Forward Euler
Accumulation method is Forward Euler.
Accumulation: Backward Euler
Accumulation method is Backward Euler.
Accumulation: Trapezoidal

Accumulation method is Trapezoidal.

Command-Line Information

Parameter: IntegratorMethod

Type: string

Value: "Integration: Forward Euler® | "Integration: Backward Euler*
| "Integration: Trapezoidal®™ | "Accumulation: Forward Euler” |
"Accumulation: Backward Euler® | "Accumulation: Trapezoidal*
Default: " Integration: Forward Euler”

1-518

Discrete-Time Integrator

Gain value

Specify a scalar, vector, or matrix by which to multiply the integrator input. Each
element of the gain must be a positive real number.

Settings
Default: 1.0
+ Specifying a value other than 1.0 (the default) is semantically equivalent to

connecting a Gain block to the input of the integrator.

+ Valid entries include:

+ double(1.0)
single(1.0)

- [1.1 2.2 3.3 4.4]

« [1.1 2.2; 3.3 4.4]

+ Using this parameter to specify the input gain eliminates a multiplication operation
in the generated code. However, this parameter must be nontunable to realize this
benefit. If you want to tune the input gain, set this parameter to 1.0 and use an
external Gain block to specify the input gain.

Command-Line Information
Parameter: gainval
Type: string

Value: "1.0"

Default: "1.0"

1-519

1 Blocks — Alphabetical List

1-520

External reset

Reset the states to their initial conditions when a trigger event occurs in the reset signal.
Settings

Default: none

none

Do not reset the state to initial conditions.
rising

Reset the state when the reset signal has a rising edge.
falling

Reset the state when the reset signal has a falling edge.
either

Reset the state when the reset signal rises or falls.
level

Reset and holds the output to the initial condition while the reset signal is nonzero.
sampled level

Reset the output to the initial condition when the reset signal is nonzero.

Command-Line Information

Parameter: ExternalReset

Type: string

Value: "none” | "rising” | "falling” | "either” | "level” | "sampled
level”

Default: "none*

Discrete-Time Integrator

Initial condition source

Get the initial conditions of the states.
Settings

Default: internal

internal
Get the initial conditions of the states from the Initial condition parameter.
external

Get the initial conditions of the states from an external block.
Tips
Simulink software does not allow the initial condition of this block to be inF or NaN.
Dependencies
Selecting internal enables the Initial condition parameter.
Selecting external disables the Initial condition parameter.
Command-Line Information
Parameter: InitialConditionSource
Type: string

Value: "internal” | "external”
Default: "internal”

1-521

1 Blocks — Alphabetical List

1-522

Initial condition

Specify the states' initial conditions.

Settings

Default: O

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Tips

Simulink software does not allow the initial condition of this block to be inF or NaN.
Dependencies

Setting Initial condition source to internal enables this parameter.
Setting Initial condition source to external disables this parameter.

Command-Line Information
Parameter: InitialCondition
Type: scalar or vector

Value: "0F

Default: "0*

Discrete-Time Integrator

Initial condition setting

Specify whether to apply the Initial condition parameter to the block state or output.
This initial condition is also used as the reset value. This parameter was named Use
initial condition as initial and reset value for in Simulink before R2014a.

Settings
Default: State (most efficient)

State (most efficient)

Use this option in all situations except when the block is in a triggered subsystem or
a function-call subsystem and Integrator method is set to an integration method.

Set the following initial conditions:

x(0) = IC

At reset:

x(n) = IC
Output

Use this option when the block is in a triggered subsystem or a function-call
subsystem and Integrator method is set to an integration method.

Set the following initial conditions:

y(©0) = IC
At reset:
y(n) = IC

Compatibility
This option is present to provide backward compatibility. You cannot select this
option for Discrete-Time Integrator blocks in Simulink models but you can select
it for Discrete-Time Integrator blocks in a library. Use this option to maintain
compatibility with Simulink models created before R2014a.

Prior to R2014a, the option State (most efficient) was known as State only
(most efficient). The option Output was known as State and output. The
behavior of the block with the option Compatibility is as follows.

1-523

1 Blocks — Alphabetical List

1-524

+ If Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection is set to Classic, the Initial
condition setting parameter behaves as State (most efficient).

+ If Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection is set to Simplified, the Initial
condition setting parameter behaves as Output.

Command-Line Information

Parameter: InitialConditionSetting

Type: string

Value: "State (most efficient)” | "Output” | "Compatibilty*®
Default: "Output”

Discrete-Time Integrator

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits.
Settings

Default: 1

By default, the block uses a discrete sample time of 1. To set a different sample time,
enter another discrete value, such as 0.1.

See also “ Specify Sample Time” in the online documentation for more information.

Tips

* Do not specify a sample time of 0. This value specifies a continuous sample time,
which the Discrete-Time Integrator block does not support.

* Do not specify a sample time of inf or NaN because these values are not discrete.

+ If you specify -1 to inherit the sample time from an upstream block, verify that
the upstream block uses a discrete sample time. For example, the Discrete-Time
Integrator block cannot inherit a sample time of 0.

Command-Line Information
Parameter: SampleTime
Type: string

Value: "1°

Default: "1*

1-525

1 Blocks — Alphabetical List

Limit output

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

Settings
Default: Off

Y1 On

Limit the block's output to a value between the Lower saturation limit and Upper
saturation limit parameters.

Off

Do not limit the block's output to a value between the Lower saturation limit and
Upper saturation limit parameters.

Dependencies
This parameter enables Upper saturation limit.
This parameter enables Lower saturation limit.

Command-Line Information
Parameter: LimitOutput
Type: string

Value: "off" | "on*
Default: "off"

1-526

Discrete-Time Integrator

Upper saturation limit

Specify the upper limit for the integral.

Settings

Default: inf

Minimum: value of Output minimum parameter
Maximum: value of Output maximum parameter
Dependencies

Limit output enables this parameter.

Command-Line Information

Parameter: UpperSaturationLimit
Type: scalar or vector

Value: "inf~

Default: "inf*

1-527

1 Blocks — Alphabetical List

1-528

Lower saturation limit

Specify the lower limit for the integral.

Settings

Default: -inf

Minimum: value of Output minimum parameter
Maximum: value of Output maximum parameter
Dependencies

Limit output enables this parameter.

Command-Line Information

Parameter: LowerSaturationLimit
Type: scalar or vector

Value: "-inf"

Default: "-inf"

Discrete-Time Integrator

Show saturation port
Add a saturation output port to the block.
Settings
Default: Off
Y1 On
Add a saturation output port to the block.
Off

Do not add a saturation output port to the block.

Command-Line Information
Parameter: ShowSaturationPort
Type: string

Value: "off" | "on"

Default: "off"

1-529

1 Blocks — Alphabetical List

Show state port

Add an output port to the block for the block's state.
Settings
Default: Off
Y On
Add an output port to the block for the block's state.

Off
Do not add an output port to the block for the block's state.

Command-Line Information
Parameter: ShowStatePort
Type: string

Value: "off" | "on"
Default: "off"

1-530

Discrete-Time Integrator

Ignore limit and reset when linearizing

Cause Simulink linearization commands to treat this block as not resettable and as
having no limits on its output, regardless of the settings of the block reset and output
limitation options.

Settings

Default: Off

Y1 On

Cause Simulink linearization commands to treat this block as not resettable and as
having no limits on its output, regardless of the settings of the block reset and output
limitation options.

Off

Do not cause Simulink linearization commands to treat this block as not resettable
and as having no limits on its output, regardless of the settings of the block reset and
output limitation options.

Tips

Ignoring the limit and resetting allows you to linearize a model around an operating
point. This point may cause the integrator to reset or saturate.

Command-Line Information
Parameter: IgnoreLimit
Type: string

Value: "off" | "on*
Default: "off"

1-531

1 Blocks — Alphabetical List

1-532

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings

Default: Off

Y On
Locks the output data type setting for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string

Value: "off" | "on"
Default: "off"

See Also

For more information, see “Use Lock Output Data Type Setting”.

Discrete-Time Integrator

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to
the MATLAB cei l function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to
the MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Command-Line Information

Parameter: RndMeth

Type: string

Value: "Ceiling” | "Convergent” | "Floor" | "Nearest” | "Round” |
Simplest” | "Zero

Default: "Floor*

1-533

1 Blocks — Alphabetical List

See Also

For more information, see “Rounding” in the Fixed-Point Designer documentation.

1-534

Discrete-Time Integrator

Saturate on integer overflow
Specify whether overflows saturate.
Settings

Default: Off

Y On
Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

Off

Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
Tips
+ Consider selecting this check box when your model has a possible overflow and you

want explicit saturation protection in the generated code.

* Consider clearing this check box when you want to optimize efficiency of your
generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

+ In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information

Parameter: SaturateOnlntegerOverflow
Type: string

Value: "off" | "on*

Default: "off"

1-535

1 Blocks — Alphabetical List

1-536

State name

Use this parameter to assign a unique name to each state.
Settings

Default: = -

+ If left blank, no name is assigned.

Tips

+ A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

* The state name applies only to the selected block.
Dependency

This parameter enables State name must resolve to Simulink signal object when
you click the Apply button.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Command-Line Information
Parameter: Stateldentifier
Type: string

Value: = *

Default: = *

Discrete-Time Integrator

State name must resolve to Simulink signal object
Require that state name resolve to Simulink signal object.
Settings

Default: Off

Y1 On

Require that state name resolve to Simulink signal object.

Off

Do not require that state name resolve to Simulink signal object.
Dependencies
State name enables this parameter.
Selecting this check box disables Code generation storage class.

Command-Line Information

Parameter: StateMustResolveToSignalObject
Type: string

Value: "off" | "on”

Default: "off"

1-537

1 Blocks — Alphabetical List

Package

Select a package that defines the custom storage class you want to apply.
Settings

Default: ---None---

-—-None---

Sets internal storage class attributes.
mpt

Applies the built-in mpt package.
Simulink

Applies the built-in Simul ink package.

Dependencies

If you have defined any packages of your own, click Refresh. This action adds all user-
defined packages on your search path to the package list.

1-538

Discrete-Time Integrator

Code generation storage class
Select state storage class.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

ExportedGlobal

State is stored in a global variable
ImportedExtern

model private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.

Dependencies
State name enables this parameter.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Command-Line Information

Command-Line Information

Parameter: StateStorageClass

Type: string

Value: "Auto” | "ExportedGlobal”® | "ImportedExtern” |
"ImportedExternPointer*

Default: "Auto”

1-539

1 Blocks — Alphabetical List

1-540

Code generation storage class
Select custom storage class for state.
Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to
external code.

SimulinkGlobal

model_ P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private_h declares the state as an extern variable.
ImportedExternPointer

model private._h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (-h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile
Predefined header (.h) files containing global variable declarations are included.
FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Discrete-Time Integrator

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.
Dependencies
State name enables this parameter.
The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer and Package to ---None--- enables Code generation
storage type qualifier.

See Also

“Storage Classes for Block States” in the Simulink Coder documentation.

1-541

1 Blocks — Alphabetical List

1-542

Code generation storage type qualifier
Specify the Simulink Coder storage type qualifier.
Settings

Default: * *

If left blank, no qualifier is assigned.

Dependency

Setting Package to ---None--- and Code generation storage class to
ExportedGlobal, ImportedExtern, or ImportedExternPointer enables this
parameter.

Command-Line Information

Parameter: RTWStateStorageTypeQualifier
Type: string

Value: * *

Default: = -

Discrete-Time Integrator

Output minimum

Lower value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.
Simulink uses the minimum to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

* Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

+ Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string

Value: "[]1°

Default: []°

1-543

1 Blocks — Alphabetical List

1-544

Output maximum

Upper value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.
Simulink uses the maximum value to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

* Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

+ Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string

Value: "[]1°

Default: []°

Discrete-Time Integrator

Output data type

Specify the output data type.
Settings
Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

* Specify the output data type explicitly.

+ Explicitly specify a default data type such as Fixdt(1,32,16) and then use the
Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

+ To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.

double

Output data type is double.

single
Output data type is single.
int8

Output data type is int8.
uintd

Output data type is uints8.
intl6

1-545

1 Blocks — Alphabetical List

1-546

Output data type is intl6.
uintl6

Output data type is uintl6.
int32

Output data type is int32.
uint32

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point Fixdt(1,16,0).
fixdt(1,16,2"0,0)

Output data type is fixed point Fixdt(1,16,270,0).
<data type expression>

Use a data type object, for example, Simul ink.NumericType.

Command-Line Information

Parameter: OutDataTypeStr

Type: string

Value: "Inherit: Inherit via internal rule™ | "Inherit: Inherit via
back propagation® | "double® | "single”™ | "int8" | "uint8" | "Intl6" |
"uintl6® | "Int32" | "uint32" | "fixdt(1,16,0)" | "fixdt(1,16,2°0,0)"
Default: "Inherit: Inherit via internal rule-

See Also

For more information, see “Control Signal Data Types”.

Discrete-Time Integrator

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

* Inherit via internal rule (default)
+ Inherit via back propagation
Built in

Built-in data types. Selecting Bui It in enables a second menu/text box to the right.
Select one of the following choices:

+ double (default)

+ single
+ Int8

* uint8
+ Intl6
* uintl6
+ Int32
* uint32

Fixed point
Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

1-547

1 Blocks — Alphabetical List

1-548

Command-Line Information

Parameter: OutDataTypeStr

Type: string

Value: "Inherit: Inherit via internal rule” | "Inherit: Inherit via
back propagation® | "double” | "single”™ | "int8" | "uint8" | "Intl6" |
"uintl6e® | "int32" | "uint32" | "fixdt(1,16,0)" | "fixdt(1,16,270,0)"
Default: "Inherit: Inherit via internal rule”

See Also

See “Specify Data Types Using Data Type Assistant”.

Discrete-Time Integrator

Data type override

Specify data type override mode for this signal.
Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built inor Fixed point.

1-549

1 Blocks — Alphabetical List

1-550

Signedness

Specify whether you want the fixed-point data as signed or unsigned.
Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies
Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Discrete-Time Integrator

Word length

Specify the bit size of the word that holds the quantized integer.
Settings

Default: 16

Minimum: O

Maximum: 32

Dependencies

Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-551

1 Blocks — Alphabetical List

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings
Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.
Dependencies
Selecting Mode > Fixed point enables this parameter.
Selecting Binary point enables:

* Fraction length

+ Calculate Best-Precision Scaling
Selecting Slope and bias enables:

+ Slope
* Bias

+ Calculate Best-Precision Scaling
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-552

Discrete-Time Integrator

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: O

Binary points can be positive or negative integers.
Dependencies

Selecting Scaling > Binary point enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-553

1 Blocks — Alphabetical List

Slope

Specify slope for the fixed-point data type.

Settings

Default: 270

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.

Settings

Default: O

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

The sldemo_fuelsys model uses a Discrete-Time Integrator block in the
fuel _rate_control/airflow_calc subsystem. This block uses the Forward Euler
integration method.

1-554

Discrete-Time Integrator

Intake Airflow Estimation and Closed-Loop Correction

)

est_airflow

Feedforward Control

.m-.m:‘]
Sthrottles Tl Ty | -
Throttle Transient
J b 2DTE) w
“spesds
u2 " X
: Pumging Constant
sensors meing tens ’—’
<map=
Lyfyr 22T
2 é
<sgo> i Ramp Rate Ki
o N
Ongygen Sensor Convert| _-;J el 7 =l
Switching Threshold L
-
D,
02_normal
2} » enable_integration

fuel_mode
sid_FuelModes. LOW I

normal_ocperation

fb_comection

Feedback Control

When the Switch block feeds a nonzero value into the Discrete-Time Integrator block,
integration occurs. Otherwise, integration does not occur.

Characteristics

Data Types

Double | Single | Base Integer | Fixed-Point

Sample Time

Specified in the Sample time parameter

Direct Feedthrough

Yes, of the reset and external initial condition source
ports. The input has direct feedthrough for every
integration method except Forward Euler and
accumulation Forward Euler.

Multidimensional Signals No
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

1-555

1 Blocks — Alphabetical List

See Also

Integrator

Introduced before R2006a

1-556

Discrete Transfer Fen

Discrete Transfer Fcn

Implement discrete transfer function

Library

Discrete

z+0.5

Description
The Discrete Transfer Fen block implements the z-transform transfer function:

_ num(z) _ numyz" +numy 2™ 4+ um,,

H(z) n n—1
den(z) denyz" + denyz

+...+den,

where m+1 and n+1 are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and denominator

in descending powers of z. num can be a vector or matrix, den must be a vector, and you
specify both as parameters on the block dialog box. The order of the denominator must be
greater than or equal to the order of the numerator.

Specify the coefficients of the numerator and denominator polynomials in descending
powers of z. This block lets you use polynomials in z to represent a discrete system, a
method that control engineers typically use. Conversely, the Discrete Filter block lets
you use polynomials in z” (the delay operator) to represent a discrete system, a method
that signal processing engineers typically use. The two methods are identical when the
numerator and denominator polynomials have the same length.

The Discrete Transfer Fen block applies the z-transform transfer function to each
independent channel of the input. The Input processing parameter allows you to

1-557

1 Blocks — Alphabetical List

1-558

specify whether the block treats each element of the input as an individual channel
(sample-based processing), or each column of the input as an individual channel (frame-
based processing). To perform frame-based processing, you must have a DSP System

Toolbox license.

Specifying Initial States

Use the Initial states parameter to specify initial filter states. To determine the number
of initial states you must specify and how to specify them, see the following tables.

Frame-Based Processing

(K-by-1)

Column vector

Input Number of Channels | Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
Column vector 1 * Scalar Scalar

Column vector

Row vector (1-
by-M)
Matrix (M-by-N)

Unoriented vector (M-by-1) (M-by-1)
(5) Row vector (1-
by-M)
Row vector (1- N Scalar Scalar
by-N) Column vector Matrix (M-by-N)
Matrix (K-by-NN) (M-by-1)

Sample-Based Processing

by-N)

Input Number of Channels | Valid Initial States Valid Initial States
(Dialog Box) (Input Port)

Scalar 1 * Scalar * Scalar
Column vector Column vector
(M-by-1) (M-by-1)
Row vector (1- Row vector (1-
by-M) by-M)

Row vector (1- N Scalar Scalar

Discrete Transfer Fen

+ Column vector
(M-by-1)

+ Row vector (1-
by-M)

* Matrix (M-by-
(KXN))

Input Number of Channels |Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
Column vector + Column vector
(N-by-1) (M-by-1)
Unoriented vector * Row vector (1-
) by-M)
* Matrix (M-by-N)
* Matrix (K-by-N) |KXN * Scalar * Scalar

When the Initial states is a scalar, the block initializes all filter states to the same
scalar value. Enter O to initialize all states to zero. When the Initial states is a
vector or a matrix, each vector or matrix element specifies a unique initial state for a
corresponding delay element in a corresponding channel:

The vector length must equal the number of delay elements in the filter, M =
max(number of zeros, number of poles).

The matrix must have the same number of rows as the number of delay elements in

the filter, M =

have one column for each channel of the input signal.

max(number of zeros, number of poles). The matrix must also

The following example shows the relationship between the initial filter output and the
initial input and state. Given an initial input u;, the first output y; is related to the
initial state [x;, xo] and initial input by:

yi=4x1

x2=1/2(1 —3x1)

1-559

1 Blocks — Alphabetical List

Dis oreteTransfer Fon_input1 Dis creteTransfer Feon

1-560

1

4

.
-

¥

yout
2z+3

Signal To

Workspace

Delay| 271

x1

h

youtl

Signal Tor

Workspace1

Data Type Support

The Discrete Transfer Function block accepts and outputs real and complex signals of
any signed numeric data type that Simulink supports. The block supports the same types
for the numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity. They can have
different word lengths and fraction lengths.

Discrete Transfer Fen

States are complex when either the input or the coefficients are complex.

The following diagrams show the filter structure and the data types that the block uses
for floating-point and fixed-point signals.

—>O—@

7 Y Output

The block omits the dashed divide when you select the Optimize by skipping divide
by leading denominator coefficient (a0) parameter.

1-561

1 Blocks — Alphabetical List

Denominator

Input accumulator

®datalype Cast data type O

Input

Denominator
accumulator
data type

State

Denominator
product output

Denominator
accumulator
data type

Cast

data type @‘_

Denominator
coefficient
data type

PR A —

“

Denominator
product output

Numerator
product output

Numerator
accumulator

Output

data type
NS e

7y Output

Denominator
accumulator
data type

data type /al
NI

Denominator
coefficient
data type

lb\data type Cast | data type
. L1

I/

Numerator
coefficient
data type

Denominator
product output

data type 3
Cast 4---

Denominator
coefficient
data type

Parameters and Dialog Box

Numerator
product output

Numerator
accumulator

data type | data type
by » Cast |

Numerator
coefficient
data type

The Main pane of the Discrete Transfer Fen block dialog box appears as follows.

1-562

Discrete Transfer Fen

E Function Block Parameters: Discrete Transfer Fcn
Discrete Transfer Fcn

Implement a z-transform transfer function. Specify the numerator and denominator coefficients in descending
powers of z. The order of the denominator must be greater than or equal to the order of the numerator.

Main | Data Types | State Attributes |

el

Data

Source Value

Numerator: [1]
Denominator: [10.5]
Initial states: 0

Algorithm
External reset: [None ']
Input processing: [Elements as channels (sample based) ']

["] Optimize by skipping divide by leading denominator coefficient (a0)
Sample time (-1 for inherited): 1

OK H Cancel H

|| Apply

Numerator

Numerator coefficients of the discrete transfer function. To specify the coefficients,
set the Source to Dialog. Then enter the coefficients in Value as descending
powers of z. Use a row vector to specify the coefficients for a single numerator
polynomial. Use a matrix to specify coefficients for multiple filters to be applied to the

same input. Each matrix row represents a set of filter taps.

Denominator

Denominator coefficients of the discrete transfer function. To specify the coefficients,
set the Source to Dialog. Then, enter the coefficients in Value as descending
powers of z. Use a row vector to specify the coefficients for a single denominator

1-563

1 Blocks — Alphabetical List

polynomial. Use a matrix to specify coefficients for multiple filters to be applied to the
same input. Each matrix row represents a set of filter taps.

Initial states
If the Source is Dialog, then, in Value, specify the initial states of the filter states.
To learn how to specify initial states, see “Specifying Initial States” on page 1-558.
If the Source is Input port, then there is nothing to be specified for Value.
External reset

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior

None No reset.

Rising Reset on a rising edge.

Falling Reset on a falling edge.

Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

* when there is a nonzero at the current
time step

* when the time step value changes
from nonzero at the previous time
step to zero at the current time step

Level hold Reset when nonzero at the current time
step.

The reset signal must be a scalar of type single, double, boolean, or integer.
Fixed point data types, except for uFix1, are not supported.

Input processing
Specify whether the block performs sample- or frame-based processing.
+ Elements as channels (sample based) — Process each element of the
input as an independent channel.

+ Columns as channels (frame based) — Process each column of the input as
an independent channel.

1-564

Discrete Transfer Fen

Note: Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

Optimize by skipping divide by leading denominator coefficient (a0)

Select when the leading denominator coefficient, a,, equals one. This parameter
optimizes your code.

When you select this check box, the block does not perform a divide-by-a, either in
simulation or in the generated code. An error occurs if a, is not equal to one.

When you clear this check box, the block is fully tunable during simulation, and
performs a divide-by-a, in both simulation and code generation.

Sample time

Specify the time interval between samples. To inherit the sample time, set this
parameter to —1. See “ Specify Sample Time” in “How Simulink Works” in the
Simulink User's Guide.

The Data Types pane of the Discrete Transfer Function block dialog box appears as
follows.

1-565

1 Blocks — Alphabetical List

E Function Block Parameters: Discrete Transfer Fen @
Discrete Transfer Fen
Implement a z-transform transfer function. Specify the numerator and denominator coefficients in descending
powers of z. The order of the denominator must be greater than or equal to the order of the numerator.
Data Types | State Attributes
Floating-point inheritance takes precedence over the settings in the "Data Type" column below. When the block input
is floating point, all block data types match the input.
Data Type Assistant Minimum Maximum
State: Inherit: Same as input hd
Numerator coefficients: Inherit: Inherit via internal rule - il [1
Numerator product output: Inherit: Inherit via internal rule -
Numerator accumulator: Inherit: Inherit via internal rule -
Denominator coefficients: Inherit: Inherit via internal rule - [[1
Denominator product output: Inherit: Inherit via internal rule -
Denominator accumulator: Inherit: Inherit via internal rule -
Output: Inherit: Inherit via internal rule - [[1
[7] Lock data type settings against changes by the fixed-point tools
Integer rounding mode: Floor v]
[7] Saturate on integer overflow
[OK] [Cancel l [Help Apply

State
Specify the state data type. You can set it to:

* A rule that inherits a data type, for example, Inherit: Same as input
* A built-in integer, for example, int8

* A data type object, for example, a Simul ink.NumericType object

* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

1-566

Discrete Transfer Fen

Click the Show data type assistant button ;l to display the Data Type
Assistant, which helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Numerator coefficients
Specify the numerator coefficient data type. You can set it to:
* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule
* A built-in integer, for example, int8
* A data type object, for example, a Simul ink._NumericType object
* An expression that evaluates to a data type, for example, fFixdt(1,16,0)

Click the Show data type assistant button ;l to display the Data Type
Assistant, which helps you set the Numerator coefficients parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Numerator coefficient minimum

Specify the minimum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Numerator coefficient maximum

Specify the maximum value that a numerator coefficient can have. The default value
is [] (unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Numerator product output
Specify the product output data type for the numerator coefficients. You can set it to:

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

1-567

1

Blocks — Alphabetical List

A built-in data type, for example, int8
A data type object, for example, a Simul ink.NumericType object
An expression that evaluates to a data type, for example, Fixdt(1,16,0)

r

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Numerator product output parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Numerator accumulator

Specify the accumulator data type for the numerator coefficients. You can set it to:

A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

A built-in data type, for example, int8
A data type object, for example, a Simul ink.NumericType object
An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #I to display the Data Type
Assistant, which helps you set the Numerator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Denominator coefficients

Specify the denominator coefficient data type. You can set it to:

A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

A built-in integer, for example, int8
A data type object, for example, a Simul ink.NumericType object
An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button Ll to display the Data Type
Assistant, which helps you set the Denominator coefficients parameter.

1-568

Discrete Transfer Fen

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Denominator coefficient minimum

Specify the minimum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

+ Parameter range checking (see “Check Parameter Values”)

+ Automatic scaling of fixed-point data types

Denominator coefficient maximum

Specify the maximum value that a denominator coefficient can have. The default
value is [] (unspecified). Simulink software uses this value to perform:

+ Parameter range checking (see “Check Parameter Values”)

* Automatic scaling of fixed-point data types

Denominator product output

Specify the product output data type for the denominator coefficients. You can set it
to:

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

* A built-in data type, for example, Int8

+ A data type object, for example, a Simul ink.NumericType object

* An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Denominator product output parameter.

See “Specify Data Types Using Data Type Assistant” in theSimulink User's Guide for
more information.

Denominator accumulator
Specify the accumulator data type for the denominator coefficients. You can set it to:

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

* A built-in data type, for example, Int8
+ A data type object, for example, a Simulink_NumericType object

1-569

1 Blocks — Alphabetical List

+ An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #l to display the Data Type
Assistant, which helps you set the Denominator accumulator parameter.

See “Specify Data Types Using Data Type Assistant” in the Simulink User's Guide
for more information.

Output
Specify the output data type. You can set it to:

* A rule that inherits a data type, for example, Inherit: Inherit via
internal rule

* A built-in data type, for example, Int8
+ A data type object, for example, a Simul ink.NumericType object
+ An expression that evaluates to a data type, for example, Fixdt(1,16,0)

Click the Show data type assistant button #I to display the Data Type
Assistant, which helps you set the Qutput parameter.

See “Control Signal Data Types” in the Simulink User's Guide for more information.

Output minimum
Specify the minimum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

* Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block can output. The default value is []
(unspecified). Simulink uses this value to perform:

* Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools

Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” in the Fixed-Point Designer documentation.

1-570

Discrete Transfer Fen

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see

“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

Action

Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow, and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a

block handles out-of-
range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as Int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as Int8, is -126.

1-571

1 Blocks — Alphabetical List

When you select this check box, saturation applies to every internal operation on
the block, not just the output or result. Usually, the code generation process can

detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

The State Attributes pane of the Discrete Filter block dialog box appears as follows.

E Function Block Parameters: Discrete Transfer Fen @
Discrete Transfer Fcn

Implement a z-transform transfer function. Specify the numerator and denominator coefficients in descending
powers of z. The order of the denominator must be greater than or equal to the order of the numerator.

| Main | DataTypes | State Attributes |

State name:

State name must resolve to Simulink signal object

Package: |--- Mone --- Refresh

Code generation storage class: | Aufo

0K H Cancel H Help Apply

State name

Use this parameter to assign a unique name to the block state. The defaultis * *.

When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

1-572

Discrete Transfer Fen

+ A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object

Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class

Select custom storage class for state.
Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model P initializes the state to its corresponding value in the workspace.
ExportedGlobal

State is stored in a global variable
ImportedExtern

model private.h declares the state as an extern variable.
ImportedExternPointer

model_private.h declares the state as an extern pointer.

1-573

1 Blocks — Alphabetical List

Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (-h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.
State name enables this parameter.
The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

Code generation storage type qualifier
Specify a Simulink Coder storage type qualifier. The default is * . When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

1-574

Discrete Transfer Fen

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

* The initial value of the signal object to which the state name resolves

* Minimum and maximum values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single | Base Integer | Fixed-Point

Sample Time Specified in the Sample time parameter

Direct Feedthrough Only when the leading numerator coefficient is not
equal to zero and the numerator order equals the
denominator order

Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

1-575

1 Blocks — Alphabetical List

1-576

Discrete Zero-Pole

Model system defined by zeros and poles of discrete transfer function

Library

Discrete
1)
=z0.5]
Description

The Discrete Zero-Pole block models a discrete system defined by the zeros, poles, and
gain of a z-domain transfer function. This block assumes that the transfer function has
the following form:

He) =K Z(2) _x (z-2Z1)z-2Z9)..\2—-Z,,) ’
P(z) (z-=P)(z-R)..(z-P,)
where Z represents the zeros vector, P the poles vector, and K the gain. The number of

poles must be greater than or equal to the number of zeros (n > m). If the poles and zeros
are complex, they must be complex conjugate pairs.

The block displays the transfer function depending on how the parameters are specified.
See Zero-Pole for more information.

Data Type Support

The Discrete Zero-Pole block accepts and outputs real signals of type double and
single. For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Discrete Zero-Pole

Parameters and Dialog Box

-

P

E Function Block Parameters: Discrete Zero-Pole @
Discrete Zero-Fole

Matrix expression for zeros. Vector expression for poles and gain.
Output width equals the number of columns in zeros matrix, or one if

Zeros is a vector.

Main State Attributes

feros;

(1]

Poles:

[0 0.5]

Gain:

1

Sample time (-1 for inherited):

1

[0K][Cancel H Help Apply

Zeros
Specify the matrix of zeros. The default is [1].

Poles
Specify the vector of poles. The defaultis [0 0.5].

Gain
Specify the gain. The default is 1.

Sample time

1-577

1 Blocks — Alphabetical List

Specify the time interval between samples. See Specifying Sample Time in the “How
Simulink Works” chapter of the Simulink documentation.

State name

Use this parameter to assign a unique name to the block state. The default is *
When this field is blank, no name is assigned. When using this parameter, remember
these considerations:

* A valid identifier starts with an alphabetic or underscore character, followed by
alphanumeric or underscore characters.

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object
when you click Apply.

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

State name must resolve to Simulink signal object

Select this check box to require that the state name resolve to a Simulink signal
object. This check box is cleared by default.

State name enables this parameter.

Selecting this check box disables Code generation storage class.
Package

Select a package that defines the custom storage class you want to apply. If you have
defined any packages of your own, click Refresh. This action adds all user-defined
packages on your search path to the package list.

Code generation storage class

Select custom storage class for state.
Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface
to external code.

SimulinkGlobal

model_P initializes the state to its corresponding value in the workspace.

1-578

Discrete Zero-Pole

ExportedGlobal

State is stored in a global variable
ImportedExtern

model_private.h declares the state as an extern variable.
ImportedExternPointer

model private.h declares the state as an extern pointer.
Default

A non-editable placeholder storage class is created.
BitField

A struct declaration is created that embeds Boolean data.
Volatile

Volatile type qualifier is used in state declaration.
ExportToFile

Header (.h) file containing global variable declarations is generated with user-
specified name.

ImportFromFile

Predefined header (.h) files containing global variable declarations are
included.

FileScope

A static qualifier is generated in front of the state declaration to make the state
visible only to the current file.

Struct

A struct declaration is created to encapsulate parameter or signal object data.
StructVolatile

Volatile type qualifier is used in struct declaration.
GetSet

Supports specialized function calls to read and write memory.
State name enables this parameter.
The list of valid storage classes differs based on the Package selection.

Setting this parameter to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables Code generation storage type qualifier.

1-579

1 Blocks — Alphabetical List

Code generation storage type qualifier

Specify a Simulink Coder storage type qualifier. The defaultis * *. When this field is
blank, no qualifier is assigned.

The Simulink Coder product does not check this string for errors. Thus, whatever
value you enter appears automatically in the variable declaration.

Setting Code generation storage class to ExportedGlobal, ImportedExtern, or
ImportedExternPointer enables this parameter.

During simulation, the block uses the following values:

* The initial value of the signal object to which the state name is resolved

* Min and Max values of the signal object

For more information, see “Discrete Block State Naming in Generated Code” in the
Simulink Coder documentation.

Characteristics

Data Types Double | Single

Sample Time Specified in the Sample time parameter
Direct Feedthrough Yes, if the number of zeros and poles are equal
Multidimensional Signals No

Variable-Size Signals No

Zero-Crossing Detection No

Code Generation Yes

Introduced before R2006a

1-580

Display

Display

Show value of input

Library

Sinks

Description

Format Options

You control the display format using the Format parameter:

If you select...

The block displays...

short A 5-digit scaled value with fixed decimal
point

long A 15-digit scaled value with fixed decimal
point

short_e A 5-digit value with a floating decimal
point

long e A 16-digit value with a floating decimal
point

bank A value in fixed dollars and cents format

(but with no $ or commas)

hex (Stored Integer)

The stored integer value of a fixed-point
input in hexadecimal format

binary (Stored Integer)

The stored integer value of a fixed-point
input in binary format

1-581

1 Blocks — Alphabetical List

1-582

If you select...

The block displays...

decimal (Stored Integer) The stored integer value of a fixed-point

input in decimal format

octal (Stored Integer)

The stored integer value of a fixed-point
input in octal format

If the input to a Display block has an enumerated data type (see “Simulink
Enumerations” and “Define Simulink Enumerations”):

* The block displays enumerated values, not the values of underlying integers.

+ Setting Format to any of the Stored Integer settings causes an error.

Display Abbreviations

The following abbreviations appear on the Display block to help you identify the format

of the value.

When you see...

The value that appears is...

GSH

The stored integer value

Note: (SI1) does not appear when the signal is of an integer

data type.
hex In hexadecimal format
bin In binary format
oct In octal format

Frequency of Data Display

The amount of data that appears and the time steps at which the data appears depend on
the Decimation block parameter and the SampleTime property:

* The Decimation parameter enables you to display data at every nth sample, where n
is the decimation factor. The default decimation, 1, displays data at every time step.

Note: The Display block updates its display at the initial time, even when the
Decimation value is greater than one.

Display

+ The SampleTime property, which you can set with set_param, enables you to specify
a sampling interval at which to display points. This property is useful when you are
using a variable-step solver where the interval between time steps is not the same.
The default sample time, -1, causes the block to ignore the sampling interval when
determining the points to display.

Resizing Options

If the block input is an array, you can resize the block to show more than just the first
element. You can resize the block vertically or horizontally, and the block adds display
fields in the appropriate direction. A black triangle indicates that the block is not
displaying all input array elements.

The Display block shows the first 200 elements of a vector signal and the first 20 rows
and 10 columns of a matrix signal.
Floating Display

To use the block as a floating display, select the Floating display check box. The block
input port disappears and the block displays the value of the signal on a selected line.

If you select Floating display:

* Turn off signal storage reuse for your model. See “Signal storage reuse ” in the
Simulink documentation for more information.

* Do not connect a multidimensional signal to a floating display. Otherwise, you get a
simulation error because the block does not support multidimensional signals.

Data Type Support

The Display block accepts real or complex signals of the following data types:

* Floating point

* Built-in integer
* Fixed point

* Boolean

* Enumerated

1-583

1 Blocks — Alphabetical List

For more information, see “ Data Types Supported by Simulink” in the Simulink
documentation.

Parameters and Dialog Box

P "

E Sink Block Pararneters: Display @
Display

Numeric display of input values.

Parameters

Format: |short -

Decimation:

1

Floating display

0K H Cancel || Help Apply

Format

Specify the format of the data that appears, as discussed in “Format Options” on page
1-581. The default is short.

Decimation

Specify how often to display data, as discussed in “Frequency of Data Display” on
page 1-582. The default is 1.

Floating display

Select to use the block as a floating display, as discussed in “Floating Display” on
page 1-583.

Examples

The sldemo_auto_climatecontrol model shows how you can use the Display block.

1-584

Display

E Simulating Automatic Cimate Contral Systems
Distribution
Distribution Request T
1 o n
] [} —femenms
Distributiom! En
istributin
25 Comp Tor
Recycling Ar [==] =
Torque Comp
ﬂ ~ System Trigger
Recycling A Recycle

Ar On

AC Control

User Setpaint in Cebius

Tempersture Contrel Chart

Heater Control

18 Celsius o Kelvin
II _4 Kehinta Cels us FﬂL__J |

Thermometer Display

Fan Spesd rate

propartion fan s peed

Hest Sources Interior Dynamics

Heatfrom cocupsnts

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-

Point | Enumerated

Sample Time Use set_param to specify the SampleTime property
Multidimensional Signals No

Variable-Size Signals Yes

Zero-Crossing Detection No

Code Generation No

See Also

Scope

1-585

1 Blocks — Alphabetical List

Introduced before R2006a

1-586

Divide

Divide

Divide one input by another

Library

Math Operations

Description
The Product and Product of Elements blocks are variants of the Divide block.

* For information on the Product block, see Product.
+ For information on the Product of Elements block, see Product of Elements.

Supported Block Operations

The Divide block outputs the result of dividing its first input by its second. The

inputs can be scalars, a scalar and a nonscalar, or two nonscalars that have the same
dimensions. The Divide block is functionally a Product block that has two block
parameter values preset:

* Multiplication: Element-wise(.%*)

* Number of Inputs: */

Setting non-default values for either of those parameters can change a Divide block to be

functionally equivalent to a Product block or a Product of Elements block. See the
documentation of those two blocks for more information.

Expected Differences Between Simulation and Code Generation

If any of the Divide block inputs contains a NaN or inf value, or if the block generates
NaN or inF during execution, you might see different results when you compare the block

1-587

1 Blocks — Alphabetical List

1-588

simulation results with the generated code. This difference is due to the nonfinite NaN or
inf values. In such cases, inspect your model configuration and eliminate the conditions
that produce NaN or inf.

Code Optimizations

The Simulink Coder build process provides efficient code for matrix inverse and division
operations. The following summary describes the benefits and when each benefit is

available:

Benefit

Small matrices
(2-by-2 to 5-by-5)

Medium matrices
(6-by-6 to 20-by-20)

Large matrices
(larger than 20-by-20)

Faster code
execution time,
compared to R2011a
and earlier releases

Yes

No

Yes

Reduced ROM

and RAM usage,
compared to R2011a
and earlier releases

Yes, for real values

Yes, for real values

Yes, for real values

MATLAB Coder
results

Reuse of variables |Yes Yes Yes
Dead code Yes Yes Yes
elimination

Constant folding Yes Yes Yes
Expression folding |Yes Yes Yes
Consistency with Yes Yes Yes

For blocks that have three or more inputs of different dimensions, the code might include
an extra buffer to store temporary variables for intermediate results.

Divide

Parameters and Dialog Box

i "|
“# Function Block Parameters: Divide @

Product

Multiply or divide inputs. Choose element-wise or matrix product and
specify one of the following:

a) * or [for each input port. For example, **/* performs the operation
'ul*u2fu3*ud',

b) scalar specifies the number of input ports to be multiplied.

If there is only one input port and the Multiplication parameter is set to
Element-wise(.*), a single * or / collapses the input signal using the
specified operation. However, if the Multiplication parameter is set to
Matriz{™), @ single * causes the block to output the matrix unchanged, and
a single / causes the block to output the matrix inverse.

Main | Signal Attributes

Mumber of inputs:

=/

Multiplication: | Element-wise(.*}

5}' [0K H Cancel H Help Apply

Show data type assistant

Display the Data Type Assistant.

1-589

1 Blocks — Alphabetical List

1-590

Settings
The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

Number of inputs

Control two properties of the block:

* The number of input ports on the block
* Whether each input is multiplied or divided into the output

Settings
Default: */

* lor*or/

Has one input. In element-wise mode, processes the input as described for the
Product of Elements block. In matrix mode, if the parameter value is 1 or *, the
block outputs the input value. If the value is /, the input must be a square matrix
(including a scalar as a degenerate case) and the block outputs the matrix inverse.
See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page 1-1425 for
more information.

* Integer value > 1

Has the number of inputs given by the integer value. The inputs are multiplied
together in element-wise mode or matrix mode, as specified by the Multiplication
parameter. See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page
1-1425 for more information.

* Unquoted string of two or more * and / characters

Has the number of inputs given by the length of the string. Each input that
corresponds to a * character is multiplied into the output. Each input that
corresponds to a / character is divided into the output. The operations occur in
element-wise mode or matrix mode, as specified by the Multiplication parameter.
See “Element-wise Mode” on page 1-1424 and “Matrix Mode” on page 1-1425 for
more information.

Divide

Dependency

Setting Number of inputs to * and selecting Element-wise(.*) for Multiplication
enables the Multiply over parameter:

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiplication

Specify whether the Product block operates in Element-wise mode or Matrix mode.
Settings

Default: Element-wise(.*)

Element-wise(.*)
Operate in Element-wise mode.
Matrix(*)

Operate in Matrix mode.
Dependency

Selecting Element-wise(.*) and setting Number of inputs to * enable the following
parameter:

* Multiply over
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Multiply over
Affect multiplication on matrix input.
Settings

Default: All dimensions

1-591

1 Blocks — Alphabetical List

1-592

All dimensions

Output a scalar that is product of all elements of the matrix, or the product of their
inverses, depending on the value of Number of inputs.

Specified dimension

Output a vector, the composition of which depends on the value of the Dimension
parameter.

Dependencies

+ Enable this parameter by selecting Element-wise(.*) for Multiplication and
setting Number of inputs to * or 1 or /.

+ Setting this parameter to Specified dimension enables the Dimension
parameter.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Dimension

Affect multiplication on matrix input.
Settings

Default: 1

Minimum: 1

Maximum: 2

1

Output a vector that contains an element for each column of the input matrix.
2

Output a vector that contains an element for each row of the input matrix.
Tips

Each element of the output vector contains the product of all elements in the
corresponding column or row of the input matrix, or the product of the inverses of those
elements, depending on the value of Number of inputs:

Divide

* lor*

Multiply the values of the column or row elements
-/

Multiply the inverses of the column or row elements
Dependency
Enable this parameter by selecting Specified dimension for Multiply over.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not
Recommended”.

Require all inputs to have the same data type
Require that all inputs have the same data type.
Settings
Default: Off
/I On
Require that all inputs have the same data type.

Off

Do not require that all inputs have the same data type.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-593

1 Blocks — Alphabetical List

1-594

Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor.

Settings
Default: Off

Y1 On

Locks the output data type setting for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change the output data
type setting for this block.

Command-Line Information
Parameter: LockScale
Type: string

Value: "off" | "on”
Default: "off"

See Also

For more information, see “Use Lock Output Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the
MATLAB ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the
nearest even integer. Equivalent to the Fixed-Point Designer convergent function.

Divide

Floor

Rounds positive and negative numbers toward negative infinity. Equivalent to the
MATLAB floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward
positive infinity. Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive
numbers toward positive infinity and rounds negative numbers toward negative
infinity. Equivalent to the Fixed-Point Designer round function.

Simplest

Chooses between rounding toward floor and rounding toward zero to generate
rounding code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB Ffix function.

Command-Line Information
See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

For more information, see “Rounding”.
b

Saturate on integer overflow
Specify whether overflows saturate.
Settings

Default: Off

41 On

Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128
or 127.

1-595

1 Blocks — Alphabetical List

1-596

Off
Overflows wrap to the appropriate value that the data type can represent.
For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
Tips
+ Consider selecting this check box when your model has a possible overflow and you
want explicit saturation protection in the generated code.
* Consider clearing this check box when you want to optimize efficiency of your
generated code.
Clearing this check box also helps you to avoid overspecifying how a block handles
out-of-range signals. For more information, see “Checking for Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the
block, not just the output or result.

+ In general, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Command-Line Information

Parameter: SaturateOnlntegerOverflow

Type: string

Value: "off" | "on*

Default: "off"

Output minimum

Lower value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.

Simulink uses the minimum to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

* Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

Divide

+ Automatic scaling of fixed-point data types

Note: Output minimum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMin
Type: string

Value: "[]1°

Default: "[]°

1-597

1 Blocks — Alphabetical List

1-598

Output maximum

Upper value of the output range that Simulink checks.
Settings

Default: [] (unspecified)

Specify this number as a finite, real, double, scalar value.
Simulink uses the maximum value to perform:

* Parameter range checking (see “Check Parameter Values”) for some blocks

* Simulation range checking (see “Signal Ranges” and “Enabling Simulation Range
Checking”)

* Automatic scaling of fixed-point data types

Note: Output maximum does not saturate or clip the actual output signal. Use the
Saturation block instead.

Command-Line Information
Parameter: OutMax
Type: string

Value: "[1"

Default: []1°

Output data type

Specify the output data type.
Settings
Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule

Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target
hardware. If you change the embedded target settings, the data type selected by the
internal rule might change. It is not always possible for the software to optimize code

Divide

efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet
your specific needs for numerical accuracy or performance, use one of the following
options:

* Specify the output data type explicitly.

* Use the simple choice of Inherit: Same as first input

+ Explicitly specify a default data type such as Fixdt(1,32,16) and then use the
Fixed-Point Tool to propose data types for your model. For more information, see
fxptdlg.

* To specify your own inheritance rule, use Inherit: Inherit via back
propagation and then use a Data Type Propagation block. Examples of
how to use this block are available in the Signal Attributes library Data Type
Propagation Examples block.

Inherit: Inherit via back propagation

Use data type of the driving block.

Inherit: Same as first input

Use data type of the first input signal.

double
Output data type is double.
single

Output data type is single.
int8

Output data type is Int8.
uint8

Output data type is uint8.
intl6

Output data type is intl6.
uintl6

Output data type is uintl6.
int32

Output data type is Int32.
uint32

1-599

1 Blocks — Alphabetical List

1-600

Output data type is uint32.
fixdt(1,16,0)

Output data type is fixed point Fixdt(1,16,0).
fixdt(1,16,2"0,0)

Output data type is fixed point Fixdt(1,16,270,0).
<data type expression>

Use a data type object, for example, Simul ink.NumericType.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

For more information, see “Control Signal Data Types”.

Mode

Select the category of data to specify.
Settings
Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right. Select one of the following choices:

* Inherit via internal rule (default)
+ Inherit via back propagation
+ Same as Ffirst input

Built in

Built-in data types. Selecting Bui It in enables a second menu/text box to the right.
Select one of the following choices:

* double (default)
+ single

Divide

+ Int8

* uint8
+ Intlé
* uintl6
¢ Int32
* uint32

Fixed point
Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.
See Also

See “Specify Data Types Using Data Type Assistant”.

Data type override

Specify data type override mode for this signal.
Settings

Default: Inherit

Inherit

Inherits the data type override setting from its context, that is, from the block,
Simulink.Signal object or Stateflow chart in Simulink that is using the signal.

Off

Ignores the data type override setting of its context and uses the fixed-point data
type specified for the signal.

1-601

1 Blocks — Alphabetical List

1-602

Tip

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Dependency

This parameter appears only when the Mode is Built inor Fixed point.

Signedness

Specify whether you want the fixed-point data as signed or unsigned.
Settings

Default: Signed

Signed

Specify the fixed-point data as signed.
Unsigned

Specify the fixed-point data as unsigned.

Dependencies
Selecting Mode > Fixed point enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Word length

Specify the bit size of the word that holds the quantized integer.
Settings

Default: 16

Minimum: O

Maximum: 32

Divide

Dependencies
Selecting Mode > Fixed point enables this parameter.
See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors.

Settings
Default: Best precision

Binary point

Specify binary point location.
Slope and bias

Enter slope and bias.
Best precision

Specify best-precision values.

Dependencies
Selecting Mode > Fixed point enables this parameter.
Selecting Binary point enables:

+ Fraction length

+ Calculate Best-Precision Scaling
Selecting Slope and bias enables:

+ Slope
+ Bias
+ Calculate Best-Precision Scaling

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

1-603

1 Blocks — Alphabetical List

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: O

Binary points can be positive or negative integers.
Dependencies

Selecting Scaling > Binary point enables this parameter.
See Also

i

For more information, see “Specifying a Fixed-Point Data Type”.

Slope

Specify slope for the fixed-point data type.

Settings

Default: 20

Specify any positive real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.
See Also

i

For more information, see “Specifying a Fixed-Point Data Type”.

Bias

Specify bias for the fixed-point data type.
Settings

Default: O

1-604

Divide

Specify any real number.

Dependencies

Selecting Scaling > Slope and bias enables this parameter.

See Also

For more information, see “Specifying a Fixed-Point Data Type”.

Examples

The following examples show the output of the Divide block for some typical inputs using

default block parameter values.

ta

—

e

P

¥

| —
LE 0]

h
| I—

Introduced before R2006a

[4 8] 1
"I > 7 ‘
A
z 1,
x o 05| 0.25
. —I—b +
Z 3
[e ::] »x | 0.8857|| 05|
s gl =9

1-605

1 Blocks — Alphabetical List

1-606

DocBlock

Create text that documents model and save text with model

Library

Model-Wide Utilities

pocC
Te

Description

The DocBlock allows you to create and edit text that documents a model, and save that
text with the model. Double-clicking an instance of the block creates a temporary file
containing the text associated with this block and opens the file in an editor. Use the
editor to modify the text and save the file. Simulink software stores the contents of the
saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII text document types.
The default editors for these different document types are

HTML — Microsoft® Word (if available). Otherwise, the DocBlock opens HTML
documents using the editor specified on the Editor/Debugger Preferences pane of
the Preferences dialog box.

RTF — Microsoft Word (if available). Otherwise, the DocBlock opens RTF documents
using the editor specified on the Editor/Debugger Preferences pane of the
Preferences dialog box.

Text — The DocBlock opens text documents using the editor specified on the Editor/
Debugger Preferences pane of the Preferences dialog box.

Use the docblock command to change the default editors.

DocBlock

Data Type Support

Not applicable.

Parameters and Dialog Box

Double-clicking an instance of the DocBlock opens an editor. To access the DocBlock
parameter dialog box, select the block in the Model Editor and then select Mask
Parameters from either the Edit menu or the block's context menu.

E Block Parameters: DocBlock @
DocBlock (mask) (link)

Use this block to save long descriptive text with the model. Double-
clicking the block will open an editor.

Parameters
Code generation template symbol

Document type | Text L

[OK H Cancel || Help Apply

Code generation template symbol (Embedded Coder” license required)

Enter a template symbol name in this field. Embedded Coder software uses this
symbol to add comments to the code generated from the model. For more information,
see “Add Global Comments”.

Document type

Select the type of document associated with the DocBlock. The options are:

1-607

1 Blocks — Alphabetical List

+ Text (the default)
- RTF
* HTML

Note If you are using a DocBlock to add comments to your code during code
generation, ensure that you set the Document Type as Text. If you set the
Document Type as RTF or HTML, your comments will not appear in the code.

Characteristics

Data Types Not applicable
Multidimensional Signals No
Variable-Size Signals No

Code Generation Yes

Introduced before R2006a

1-608

Dot Product

Dot Product

Generate dot product of two vectors

Library

Math Operations

Description

The Dot Product block generates the dot product of the vectors at its inputs. The scalar
output, y, is equal to the MATLAB operation

y = sum(conj(ul) .* u2)

where ul and u2 represent the vectors at the block's top and bottom inputs, respectively.
(See “How to Rotate a Block” in the Simulink documentation for a description of the port
order for various block orientations.) The inputs can be vectors, column vectors (single-
column matrices), or scalars. If both inputs are vectors or column vectors, they must be
the same length. If ul and u2 are both column vectors, the block outputs the equivalent
of the MATLAB expression ul®*u2.

The elements of the input vectors can be real- or complex-valued signals. The signal type
(complex or real) of the output depends on the signal types of the inputs.

Input 1 Input 2 Output
real real real
real complex complex
complex real complex
complex complex complex

To perform element-by-element multiplication without summing, use the Product block.

1-609

1 Blocks — Alphabetical List

1-610

Data Type Support

The Dot Product block accepts and outputs signals of any numeric data type that
Simulink supports, including fixed-point data types.

For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box
The Main pane of the Dot Product block dialog box appears as follows:

" Function Block Parameters: Dot Preduct M

Dot Product

Dot (inner) product of inputs.
y = sum(conj{ul).*u2)

Main | Signal Attributes |

5}' [OK] [Cancel] [Help Apply

Dot Product

The Signal Attributes pane of the Dot Product block dialog box appears as follows:

P

Dot Product

Dot (inner) product of inputs.
y = sum(conj{ul).*uZ)

| Main Signal Attributes

E Function Elock Parameters: Dot Product @

Require all inputs to have the same data type

Output minimum: Output maximum:

(] (]

Output data type: Inherit: Inherit via internal rule -
Data Type Assistant

Mode: [therit '] [Inherit via internal rule ']

["] Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: [Flonr v]

["] saturate on integer overflow

[OK H Cancel H Help Apply

-

Sample time

Note: This parameter is not visible in the block dialog box unless it is explicitly set
to a value other than -1. To learn more, see “Blocks for Which Sample Time Is Not

Recommended”.

Require all inputs to have same data type

1-611

1 Blocks — Alphabetical List

Select to require all inputs to have the same data type.
Output minimum
Specify the minimum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:
+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is []
(unspecified). Simulink software uses this value to perform:
+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:
* A rule that inherits a data type, for example, Inherit: Inherit via back
propagation
* The name of a built-in data type, for example, single
* The name of a data type object, for example, a Simul ink.NumericType object
* An expression that evaluates to a data type, for example, fFixdt(1,16,0)

Click the Show data type assistant button Ll to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Control Signal Data Types” for more information.
Lock output data type setting against changes by the fixed-point tools

Select to lock the output data type setting of this block against changes by the Fixed-
Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting”.

Integer rounding mode

Specify the rounding mode for fixed-point operations. For more information, see
“Rounding”. in the Fixed-Point Designer documentation.

Saturate on integer overflow

1-612

Dot Product

Action Reasons for Taking This What Happens for Example

Action Overflows
Select this Your model has possible Overflows saturate to The maximum value
check box. overflow, and you want either the minimum or that the Int8 (signed,

explicit saturation
protection in the
generated code.

maximum value that the
data type can represent.

8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box selected, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

Do not select
this check box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a

block handles out-of-

range signals. For more
information, see “Checking
for Signal Range Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value
that the Int8 (signed,
8-bit integer) data type
can represent is 127.
Any block operation
result greater than this
maximum value causes
overflow of the 8-bit
integer. With the check
box cleared, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result
of 130 (binary 1000 0010)
expressed as Int8, is -126.

When you select this check box, saturation applies to every internal operation on

the block, not just the output or result. Usually, the code generation process can
detect when overflow is not possible. In this case, the code generator does not produce
saturation code.

1-613

1 Blocks — Alphabetical List

1-614

Characteristics

Data Types

Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time

Inherited from driving block

Direct Feedthrough Yes
Multidimensional Signals Yes
Variable-Size Signals No
Zero-Crossing Detection No
Code Generation Yes

See Also

Product

Introduced before R2006a

Dual Port RAM

Dual Port RAM

Dual port RAM with two output ports

Library

HDL Coder / HDL Operations

wr_din

wr_dout [

NT_ S0

Wr_en

rd_dout [

LT T RN Y Y

Ia_S0dar

Dusl Port RAM

Description
The Dual Port RAM block models a RAM that supports simultaneous read and write
operations, and has both a read data output port and write data output port. You can use

this block to generate HDL code that maps to RAM in most FPGAs.

If you do not need to use the write output data, wr_dout, you can achieve better RAM
inference with synthesis tools by using the Simple Dual Port RAM block.

Read-During-Write Behavior

During a write, new data appears at the output of the write port (wr_dout) of the Dual
Port RAM block. If a read operation occurs simultaneously at the same address as a write
operation, old data appears at the read output port (rd_dout).

1-615

1 Blocks — Alphabetical List

Dialog Box and Parameters

P "

" Function Block Parameters: Dual Port RAM @
Dual-port RAM (mask) (link)

This block simulates a dual-port RAM with two data output ports.

Parameters

Address port width (2 to 29 bits)
8

oK]| Cancel || Help Apply

Address port width

Address bit width. Minimum bit width is 2, and maximum bit width is 29. The
default is 8.

Ports

The block has the following ports:

wr_din
Write data input. The data can be any width. It inherits the width and data type
from the input signal.
Data type: scalar fixed point, integer, or complex
wr_addr
Write address.

Data type: scalar unsigned integer (UINtN) or unsigned fixed point (UFixN) with a
fraction length of O

1-616

Dual Port RAM

wr_en
Write enable.

Data type: Boolean
rd_addr
Read address.
Data type: scalar unsigned integer (UINtN) or unsigned fixed point (UFixN) with a
fraction length of O
wr_dout
Output data from write address, wr_addr.
rd_dout
Output data from read address, rd_addr.

See Also
Dual Rate Dual Port RAM | Simple Dual Port RAM | Single Port RAM

Introduced in R2014a

1-617

1 Blocks — Alphabetical List

1-618

Dual Rate Dual Port RAM

Dual Port RAM that supports two rates

Library

HDL Coder / HDL Operations

din_A,
addr_a, dout_A D
WE_A
din_B

addr_E dout_B

LT AR T IR Y IRV IR Y Y]

we_B

Dual Rate Dual Port RAM
Description
The Dual Rate Dual Port RAM block models a RAM that supports simultaneous read and

write operations to different addresses at two clock rates. Port A of the RAM can run at
one rate, and port B can run at a different rate.

In high-performance hardware applications, you can use this block to access the RAM
twice per clock cycle. If you generate HDL code, this block maps to a dual-clock dual-port
RAM in most FPGAs.

Simultaneous Access

You can access different addresses from ports A and B simultaneously. You can also read
the same address from ports A and B simultaneously.

However, do not access an address from one RAM port while it is being written from the
other RAM port. During simulation, if you access an address from one RAM port at the

Dual Rate Dual Port RAM

same time as you write that address from the other RAM port, the software reports an
error.

Read-During-Write Behavior

The RAM has write-first behavior. When you write to the RAM, the new write data is
immediately available at the output port.

HDL Code Generation

For simulation results that match the generated HDL code, in the Configuration
Parameters dialog box, in the Solver pane, Tasking mode for periodic sample times
must be SingleTasking.

If you simulate this block using MultiTasking mode, the output data can update in the
same cycle, but in the generated HDL code, the output data is updated one cycle later.

Dialog Box and Parameters

P "

"4 Function Block Parameters: Dual Rate Dual Port RAM @
Dual-rate dual-port RAM (mask) (link)

This block simulates a dual-clock dual-port RAM with two data output
ports.

Parameters

Address port width (2 to 28 bits)
8

oK]| Cancel || Help Apply

Address port width

1-619

1 Blocks — Alphabetical List

1-620

Address bit width. Minimum bit width is 2, and maximum bit width is 28. The
default value is 8.

Ports

The block has the following ports:

din_A
Write data input for RAM port A. The data can be any width. It inherits the width
and data type from the input signal.

Data type: scalar fixed point, integer, or complex
addr_A
Write address for RAM port A.

Data type: scalar unsigned integer (UENtN) or unsigned fixed point (UFIXN) with a
fraction length of O

we_A

Write enable for RAM port A. Set we_A to true for a write operation, or false for a
read operation.

Data type: Boolean
din_B

Write data input for RAM port B. The data can be of any width, and inherits the
width and data type from the input signal.

Data type: scalar fixed point, integer, or complex

addr_B
Write address for RAM port B.

Data type: scalar unsigned integer (UINtN) or unsigned fixed point (UFIXN) with a
fraction length of O

we_B

Write enable for RAM port B. Set we_B to true for a write operation, or False for a
read operation.

Data type: Boolean

Dual Rate Dual Port RAM

dout_A

Output data from RAM port A address, addr_A.
dout B

Output data from RAM port B address, addr_B.

See Also
Dual Port RAM | HDL FIFO | Simple Dual Port RAM | Single Port RAM

Introduced in R2014a

1-621

1 Blocks — Alphabetical List

1-622

Enable

Add enabling port to system

Library

Ports & Subsystems

Description

Adding an Enable block to a subsystem or at the root level of a model makes it an
enabled system. A subsystem can contain no more than one Enable block. An enabled
system executes while the input received at the Enable port is greater than zero.

At the start of a simulation, Simulink software initializes the states of blocks inside an
enabled system to their initial conditions.

If you use an enable port for a root-level model:

For multi-rate enabled models, set the solver to single-tasking.

If the enabled model has a fixed-step size, at least one block in that model must run at
that fixed-step size rate.

The Enable block supports signal label propagation.

Data Type Support

The Enable block accepts signals of supported Simulink numeric data types, including
fixed-point data types. For more information, see “ Data Types Supported by Simulink”.

Parameters and Dialog Box

The Main pane of the Enable block dialog box appears as follows:

Enable

E Block Parameters: Enable @

Enable Port

Flace this block in @ subsystem or at the root level of a model to create an
enabled system.

Flacing this block at the root level of @ model enables a Signal Attributes
tab.

Main | Signal Attributes

States when enabling: | held
Propagate sizes of variable-size signals: | Only when enabling -

Show output port

Enable zero-crossing detection

‘),- [oK][Cancel][Help Apply

Placing the Enable block at the root of a model enables the Signal Attributes pane:

1-623

1 Blocks — Alphabetical List

1-624

E Block Parameters: Enable

Main Signal Attributes

Enable Port

(]

Flace this block in a subsystem or at the root level of a model to create an

enabled system.

Flacing this block at the root level of a model enables a Signal Attributes

tab.

Port dimensions:

1
Sample time:
-1
Minirmurm: Maximum:
[[

Data type: | double

Interpolate data

‘}- 0K H Cancel H Help

“States when enabling” on page 1-626

“Propagate sizes of variable-size signals” on page 1-627
“Show output port” on page 1-628

“Enable zero-crossing detection” on page 1-629

“Port dimensions” on page 1-630

“Sample time” on page 1-631

“Minimum” on page 1-632

“Maximum” on page 1-633

Apply

Enable

“Data type” on page 1-634

“Show data type assistant” on page 1-128
“Mode” on page 1-637

“Interpolate data” on page 1-639

1-625

1 Blocks — Alphabetical List

States when enabling

At the instant when an enabled system is being disabled, specify what happens to the
states of blocks in the enabled system.

Settings
Default: held
held

Holds the states at their previous values.
reset

Resets the states to their initial conditions (zero if not defined).

Command-Line Information
Parameter: StatesWhenEnabling
Type: string

Value: "held” | "reset”

Default: "held”

1-626

Enable

Propagate sizes of variable-size signals
Specify when to propagate a variable-size signal.
Settings

Default: Only when enabling

Only when enabling

Propagates variable-size signals only when reenabling the system containing the
Enable Port block. When you select this option, sample time must be periodic.

During execution

Propagates variable-size signals at each time step.

Command-Line Information
Parameter: PropagateVarSize
Type: string

Value: "Only when enabling
Default: "Only when enabling”

During execution”

1-627

1 Blocks — Alphabetical List

Show output port
Select this check box to output the enabling signal.
Settings
Default: On
Y1 On

Shows the Enable block output port and outputs the enabling signal. Selecting this
option allows the system to process the enabling signal.

Off
Removes the output port from the Enable block.

Command-Line Information
Parameter: ShowOutputPort
Type: string

Value: "on” | "off"

Default: "on*

1-628

Enable

Enable zero-crossing detection

Select this check box to enable zero-crossing detection.

Settings

Default: On

Y1 On

Detect zero crossings.

Off

Do not detect zero crossings.

Command-Line Information
Parameter: ZeroCross
Type: string

Value: "on” | "off"
Default: "on*

1-629

1 Blocks — Alphabetical List

Port dimensions

Specify the dimensions of the input signal to the block.
Settings

Default: 1

Valid values are:

n Vector signal of width n accepted

[m n] Matrix signal having m rows and n columns accepted

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-630

Enable

Sample time

Specify the time interval between samples.

Settings

Default: -1

See “ Specify Sample Time” in the online documentation for more information.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-631

1 Blocks — Alphabetical List

Minimum

Specify the minimum value that the block should output.
Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.
Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-632

Enable

Maximum

Specify the maximum value that the block should output.
Settings

Default: [] (unspecified)

This number must be a finite real double scalar value.
Simulink software uses this value to perform:

+ Simulation range checking (see “Signal Ranges”)

+ Automatic scaling of fixed-point data types
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-633

1 Blocks — Alphabetical List

Data type

Specify the output data type of the external input.
Settings

Default: double

double
Data type is double.
single
Data type is single.
int8
Data type is int8.
uintd
Data type is uints8.
intl6
Data type is Int16.
uintl6
Data type is uintl6.
int32
Data type is int32.
uint32
Data type is uint32.
boolean
Data type 1s boolean.
fixdt(1,16,0)
Data type is fixed point Fixdt(1,16,0).
fixdt(1,16,270,0)
Data type is fixed point Fixdt(1,16,270,0).
<data type expression>
The name of a data type object, for example Simul ink.NumericType

1-634

Enable

Do not specify a bus object as the expression.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-635

1 Blocks — Alphabetical List

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

For more information, see “Control Signal Data Types”.

1-636

Enable

Mode

Select the category of data to specify.
Settings

Default: double

Built in

Built-in data types. Selecting Bui It 1n enables a second menu/text box to the right.
Select one of the following choices:

+ double (default)

+ single
+ iInt8

* uint8
+ Intl6
* uintl6
+ Int32
* uint32

* boolean

Fixed point
Fixed-point data types.
Expression

Expressions that evaluate to data types. Selecting EXpression enables a second
menu/text box to the right, where you can enter the expression.

Do not specify a bus object as the expression.
Dependency
Clicking the Show data type assistant button enables this parameter.
Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

1-637

1 Blocks — Alphabetical List

See Also

See “Specify Data Types Using Data Type Assistant”.

1-638

Enable

Interpolate data

Cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

Settings

Default: On

Y1 On

Cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

Off

Do not cause the block to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists when loading data from the workspace.

Command-Line Information

See “Block-Specific Parameters” on page 6-96 for the command-line information.

Characteristics

Data Types

Double | Single | Boolean | Base Integer | Fixed-
Point

Sample Time

Determined by the signal at the enable port

Multidimensional Signals

Yes

Variable-Size Signals No
Zero-Crossing Detection Yes, if enabled
Code Generation Yes

Introduced before R2006a

1-639

1

Blocks — Alphabetical List

1-640

Enabled and Triggered Subsystem

Represent subsystem whose execution is enabled and triggered by external input

Library

Ports & Subsystems

Description

This block 1s a Subsystem block that is preconfigured to serve as the starting point
for creating an enabled and triggered subsystem. For more information, see “Create a
Triggered and Enabled Subsystem” in the online Simulink help.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

Introduced before R2006a

Enabled Subsystem

Enabled Subsystem

Represent subsystem whose execution is enabled by external input

Library

Ports & Subsystems

b | 4

In1 Ot

Description

This block 1s a Subsystem block that is preconfigured to serve as the starting point
for creating an enabled subsystem. For more information, see “Create an Enabled
Subsystem” in the “Creating a Model” chapter of the Simulink documentation.

Characteristics

Data Types Double | Single | Boolean | Base Integer | Fixed-
Point | Enumerated | Bus

Multidimensional Signals Yes

Variable-Size Signals Yes

Code Generation Yes

Introduced before R2006a

1-641

1 Blocks — Alphabetical List

1-642

Enumerated Constant

Generate enumerated constant value

Library

Sources

SlemoSign.Positive

Description

The Enumerated Constant block outputs a scalar, array, or matrix of enumerated
values. You can also use the Constant block to output enumerated values, but it
provides block parameters that do not apply to enumerated types, such as Output
minimum and Qutput maximum. When you need a block that outputs only constant
enumerated values, preferably use Enumerated Constant rather than Constant. For
more information, see “S